NASA Reference Publication 1211

1988

Nimbus-7 ERB Solar Analysis Tape (ESAT) User's Guide

Eugene R. Major Research and Data Systems Corporation Lanham, Maryland

John R. Hickey Eppley Laboratory, Inc. Newport, Rhode Island

H. Lee Kyle Goddard Space Flight Center Greenbelt, Maryland

Bradley M. Alton Eppley Laboratory, Inc. Newport, Rhode Island

Brenda J. Vallette Research and Data Systems Corporation Lanham, Maryland

National Aeronautics and Space Administration

Scientific and Technical Information Division

PREFACE

The Nimbus-7 Earth Radiation Budget (ERB) data set activity is being conducted by NASA, Goddard Space Flight Center. Launched on October 24, 1978, the Nimbus-7 satellite would have been considered successful if its several experiments had gathered useful data covering one complete year. Nine years later, half of the experiments are still operating. The ERB and the spacecraft are still in good condition; however, budget priorities may require the termination of the ERB experiment within the next year or so.

Monitoring the solar irradiance and its fluctuations is an important part of the ERB experiment. The ERB Solar Analysis Tape (ESAT) has been developed to make these solar observations available to the scientific community in a compact form. The present version of the ESAT contains 89 months (November 1978 to March 1986) of solar data, but additional data will be added in yearly increments as it is received and processed.

The Nimbus-7 ERB Experiment has been guided by the ERB Nimbus Experiment Team (NET) whose members are listed below. The members were competitively chosen by a NASA original NET Announcement of Opportunity issued in the fall of 1975. Later the NET elected to membership certain individuals who had made a considerable contribution to the scientific success of the experiment. The ERB solar sensors were furnished by Eppley Laboratory, Inc., and John Hickey, of Eppley Laboratory, has taken the lead in the quality control and analysis of the solar data. All the ERB orbital and daily mean solar data on the ESAT were provided by John Solar active region data were provided by the NOAA Hickey. (National Oceanic and Atmospheric Administration) World Data Center-A in Boulder, Colorado. The ERB Solar Analysis Tape and this User's Guide were put together at Goddard by Eugene Major of the Research and Data Systems Corporation, under NASA Contracts NAS5-27728 and NAS5-29373. This was done under the guidance of H. Lee Kyle, NASA/GSFC, and of John Hickey. This updated document supersedes the old version (Hickey, et al., 1984, NASA TM Additional background material about the sensors has been 86143). added, as well as a section on solar variability and additional data use references. The solar plots have been redone to show 89 months of solar data.

Since April 10, 1986, solar data have, from time to time, been taken in a special mode due to spacecraft power limitations. These limitations are caused by a combination of the aging of the spacecraft power system and special operating modes of other experiments on the Nimbus-7. In this mode, the ERB electronics are turned on only for a 20- or 30-minute period in the neighborhood of the south pole in order to obtain solar data. The solar sensors do not have time to warm up to normal operating temperature (18°C or warmer) before the measurements are taken. These measurements cannot, therefore, be accurately reduced by the algorithm described in this

iii

IGE _____ INTERMINONALLY REAWK

User's Guide. John Hickey has carried out an analysis of the problem and set up a new procedure for analyzing both these low temperature measurements and also the earlier measurements described here. This new analysis will be described in future papers. It does not affect the usefulness of the present ESAT data set, but will probably lead to the issuance of a more complete data set in a modified format in the future.

ERB NIMBUS EXPERIMENT TEAM (NET) MEMBERS

THE ORIGINAL TEAM

*Coulson, K. L.	University of California, Davis
Hickey, J. R.	Eppley Laboratory, Inc.
House, F. B.	Drexel University
*Ingersoll, A. P.	California Institute of Technology
**Jacobowitz, H.	NOAA/NESDIS
Smith, G. L.	NASA/LaRC
Stowe, L. L.	NOAA/NESDIS
Vonder Haar, T. H.	Colorado State University

ELECTED TEAM MEMBERS

Ardanuy, P. (1986)	Research and Data Systems Corporation
Arking, A. (1983)	NASA/GSFC
Campbell, G. G. (1983)	CIRA, Colorado State University
Kyle, H. L. (1983)	NASA/GSFC
Maschhoff, R. R. (1983)	Gulton Industries, Inc.

*Left the NET because of other commitments.

^{**}Jacobowitz was elected team leader in 1976. He was succeeded in 1983 by Kyle.

TABLE OF CONTENTS

Sect	tion																						<u>Page</u>
PRI	EFACE						•••		•		•	•	•	•	•	•	•	•		•	•	•	iii
1.0	INTR	ODUCTI	ON				• •		•		•	•	•					•	•	•	•	•	1
2.0	BACK	GROUN	D.				•••				•	•		•		•	•	•	•	•	•		3
	2.2	Backgro Operati ERB So	onal S	Schedu	le •		• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	3 3 3
		2.3.2	ERB	nnel 1(Solar Solar	Chai	nnel	Calit	ora	tior	n.	•	•	•	•	•	•	•	•	•	•	٠	•	7 7 10
	2.4	ERB So	lar Da	ata Pro	ocessi	ing.	•••	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	21
				Solar T Sola																			21 26
	2.5	Observa	tions	of Sol	lar V	ariat	oility	•	•		•	•	•	•	•	•	•	•	•	•	•	•	27
		2.5.2	Solar	erties Activ Varia	vity a	and S	Solar	Су	cle	s.	•	•	•	•	•	•	•	•	•	•	•	•	29 29 31
3.0	DESC	RIPTION	I OF	ESAT	CON	TEN	TS.	•	•		•	•	•	•	•	•	•	•	•	•	•	•	39
	3.2 3.3 3.4 3.5	ERB So Origin o Solar Ao Missing ESAT T Summar	of Sol ctivity Data Cape S	ar Act y India tructu	cator: . re	Ind	icato:	rs	•	 	• • •	39 39 41 42 42 42											
4.0	PHYS	ICAL ST	RUC	TURE	OF 1	ESAT	ΓТА	PE	•			•		•		•	•	•			•	•	45
	4.2	Tape Or Tape an ESAT D	d File	e Speci	ificat	tions	• •	•	•		•	•	•		• •	• • •	• • •	•	• •	• •	• • •	•	45 45 45
REI	FEREN	CES	••	• • •		••		•	•		•	•	•	•	•	•	•	•	•	•	•	•	55
LIS	Г OF A	CRONY	'MS, I	NITIA	LS,	AND	ABI	BRI	EVI	[A]	ГІС)NS	5	•	•	•	•	•	•	•	•	•	59

v

TABLE OF CONTENTS (continued)

<u>Section</u>

1

1

<u>APPENDIXES</u>

Α	NOPS Standard Header File and Trailer Documentation File (TDF)	61
В	Sequence Numbers of the SEFDT Tapes Used to Generate Solar Data at Eppley Laboratories for the ERB Solar	
	Analysis Tape (ESAT)	65
С	Table of Scale Factors	67
D	Data Availability	69
Ε	Unpacking Earth-Sun Distance	71
F	Source Code	73

<u>Page</u>

SECTION 1

INTRODUCTION

A compact Nimbus-7 ERB Solar Analysis Tape (ESAT) data set has been compiled to facilitate the solar science community's access to ERB solar measurements. These measurements include the total solar irradiance and six spectral regions (listed in Table 1-1) as of June 1987. The ESAT tape contains a collection of seven years plus five months of solar data derived from the ERB Solar and Earth Flux Data Tapes (SEFDTs). The ERB instrument is still taking data, and additional data will be added to the ESAT in yearly increments. This data set contains the orbital solar data as obtained from the SEFDT and the daily mean solar data computed from the SEFDT orbital data by Eppley Laboratory. The present data set covers the period November 16, 1978, through March 31, 1986. The ERB instrument is normally on 3 out of every 4 days and makes approximately 14 solar observations per day. The SEFDTs contain the raw counts and calibrated irradiances for each observation period whereas only one average irradiance value per channel per observation is given on the ESAT. For inclusion on the ESAT, the SEFDT data have been carefully sorted and questionable observations rejected. Certain common solar activity indicators are included on the ESAT to facilitate analysis of the data. Data will be available on one 1600 BPI Computer Compatible Tape (CCT). Revised ESAT tapes will be issued as the ERB data become available.

This document is intended to be both a user's guide for the ERB Solar Analysis Tape (ESAT) product and a guide to the history of ERB solar data processing.

Section 2.0 presents a brief review of the Nimbus-7 Earth Radiation Budget (ERB) experiment and a detailed account of the solar sensor construction, calibration (both pre and postlaunch), and degradation. Emphasis is placed on solar channel 10 (referred to as channel 10c); there are ten solar channels on the Nimbus-7 ERB experiment. Channel 10c is a self-calibrating cavity pyrheliometer which measures the total solar irradiance in the 0.2 μ m to 50 μ m spectral range. Section 2.3.3 discusses in detail degradation effects experienced by all ten solar channels. Emphasis, again, is on channel 10c, which has remained relatively free of degradation effects. The processing steps to generate ERB solar data are discussed in Section 2.4. The development of algorithms to compute solar irradiance is also discussed with emphasis on channel 10c. Section 2.5 presents a brief background of current research on solar irradiance variability. Recent analysis of channel 10c data is presented in examining short- and long-term solar irradiance variability.

The contents of ESAT are described in Section 3.0. A summary of statistics for all ten solar channels is presented in Section 3.6. The tape record formats are presented in Section 4.0, along with individual item descriptions for orbital, daily mean, and solar activity data files. A source code listing to read and extract data from ESAT is given in Appendix F.

Table 1-1 Characteristics of ERB Solar Channels (Jacobowitz, et al., 1978)

Channel	Sensor (c) Type	Wavelength Limits (µm)	Filter	Solar Irradiance (d) Air Mass Zero (Wm ⁻²)	Gain	Noise Equivalent Irradiance (Wm ⁻²)
	EN					
2 (a)	EN S	0.2-3.8	Suprasil W Suprasil W	1370 1370	692.3 205 0	1.77 x 10 ⁻²
ε,	EN	<0.2 to> 50	None	1370	000.00 007	
4 L	N3	0.526-2.8	06530	970	974.5	* >
0 4	EN CN	0.698-2.8	RG695	679	1339.4	< >
0	N3	0.395-0.508	Interference	206	8512.7	3.58 x 10 ⁻²
7	EN	0.344-0.460	Filter Interference	166	17964.7	>
ω	EN	0.300-0.410	Filter Interference	109	26985.3	7.55 × 10-2
თ	K2	0.275-0.360	Filter Interference	57	9808.6	0.94 × 10-2
10C(b)	H-F	<0.2 to> 50	Filter None	1370	2791.0	2.39 × 10-2

Notes:

- Channels 1 and 2 are redundant. Channel 1 is normally shuttered and is opened periodically to adjust value of Channel 2. (a)
- Channel 10C is a self-calibrating cavity channel added to Nimbus-7 and replacing a UV channel on Nimbus-6. <u>(</u>
- (c) All are types of Eppley wire wound thermopiles.
- (d) Values obtained from adjusted Nimbus-6 results.
- The unencumbered FOV for all channels is 10 degrees; the maximum field is 26 degrees for channels 1 through 8 and 10C. The maximum FOV for Channel 9 is 28 degrees.

SECTION 2

BACKGROUND[•]

2.1 Background of Nimbus-7 and ERB Experiment

A brief background of the Nimbus-7 ERB experiment is presented here. The user is referred to Jacobowitz et al. (1984) and Kyle et al. (1985) for more detailed descriptions of Nimbus-7 and the ERB experiment. The Nimbus-7 spacecraft was launched on October 24, 1978, and placed into a 955-km, Sun-synchronous polar orbit with ascending-node and descending-node equator crossings at noon and midnight, respectively. The orbital period is about 104 minutes.

The ERB experiment is one of eight experiments on board the Nimbus-7. The original objectives of the ERB experiment were twofold. First, to determine, over a one-year period, the radiation budget of the Earth by simultaneous measurement of: (1) incoming solar radiation and (2) outgoing Earth-reflected (shortwave) and Earth-emitted (longwave) radiation; and second, to develop angular models of the reflection and emission of radiation from clouds and Earth surfaces (Taylor and Stowe, 1984 and 1986). Both of these objectives have been fulfilled and, at present, over 8 1/2 years of solar and Earth flux measurements have been recorded.

2.2 Operational Schedule

Because of the competition for available power among the various Nimbus-7 experiments, the ERB instrument normally operates on a 3-day-on/1-day-off duty cycle. However, a number of other operational modes have also been used. For instance, the ERB was on full-time during the winters of 1984, 1985, and 1986. The first operational science data were available from November 16, 1978, and the first data year is defined to start on November 1, 1978. As of the spring of 1987, high quality solar data are still being received from the ERB instrument, which is still in excellent condition.

2.3 ERB Solar Channels

The solar sensor array on the ERB contains ten spectral channels in a single block which may be adjusted to acquire the Sun in the cross-orbit direction. However, at any one time, either channel 1 or channel 3 is closed. Solar measurements are taken when the Sun moves through the field of view (FOV) as the satellite crosses the southern terminator heading northward. The solar channel assembly is located on the side of the spacecraft facing the direction of spacecraft motion (see Figure 2-1). The assembly can be rotated in 1-degree steps up to 20 degrees on either side of the spacecraft's forward direction in order to acquire an on-axis view of the Sun under the expected variation of the satellite orbit plane with respect to the Sun.

When the ERB instrument is on, measurements of the solar irradiance by 9 of the 10 solar channels are made once per orbit as the Nimbus-7 spacecraft crosses the southern terminator, just before its northward movement over the sunlit side of the Earth. The instrument views space as a reference before and after each solar exposure. The mission allows for up to 14 measurements per day at approximately 104-minute intervals. For the channel 10c cavity radiometer, the solar disk is completely within the cavity FOV (10 degrees) for approximately 200 seconds during each 104-minute orbit. Therefore, a single orbit contains a solar record of 200 raw count samples which are digitized on an 11-bit quantization scale. The readings from channel 10c vary as the cosine of the Sun's off-axis angle. A smoothed estimate of solar irradiance for each solar measurement, approximately 14 values per day, can be averaged to generate a best daily estimate of the solar constant (Hickey and Alton, 1983).

Despite the fact that solar measurements are made only at the southern end of the orbit, the solar channel signals are monitored continually because of the way they enter the data stream

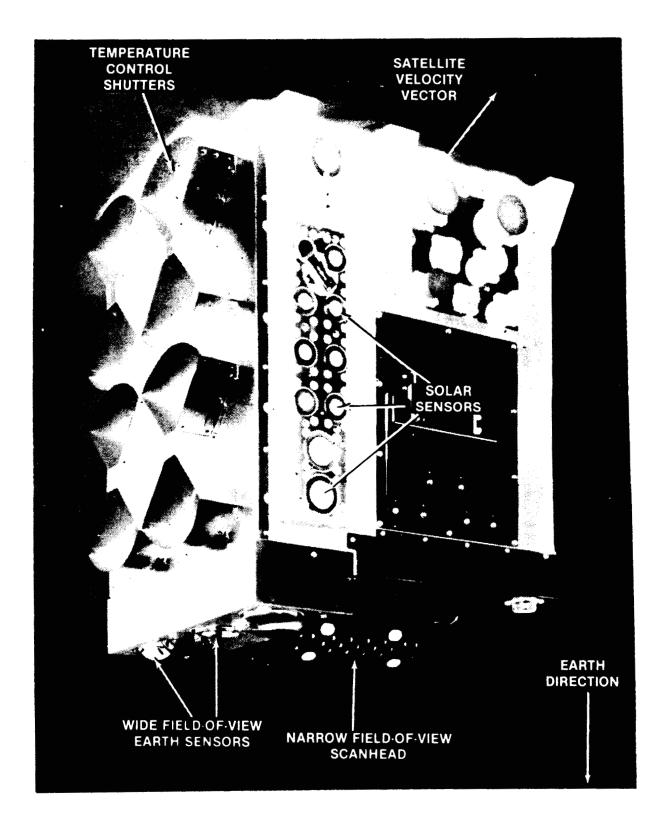


Figure 2-1. Complete ERB sensor assembly showing location of solar sensors

with data from the other sensors of ERB. The solar channels' digital count output is sensed every second, with an integration time of 0.8 seconds. That is to say that deep space is measured most of the time, except for channel 1, which normally views its closed shutter.

Table 1-1 lists the spectral characteristics of each of the solar channels. The spectral intervals, monitored by the ten ERB solar channels, are illustrated in Figure 2-2, superimposed on the 1971 NASA Standard Curve of Extraterrestrial Solar Spectral Irradiance.

The spectral intervals include--

- necessary input data for heat budget calculations
- bands in which deviations among various solar spectral curves exist
- bands in which solar variability may be evident.

Channels 1 and 2 are duplicates, channel 1 being the reference for channel 2 for the inflight calibration program. Channel 1 is normally shuttered.

Channels 4 and 5 contain broad bandpass filters with transmittance spectra matching those of the standard Schott glasses, OG530, and RG695, of the World Meteorological Organization. The interference filters on channels 6 through 9 are deposited on Suprasil W (grade 3) fused silica substrates to minimize degradation. Blocking outside the primary transmission bands is achieved by interference layers only. No radiation absorbing glasses are used.

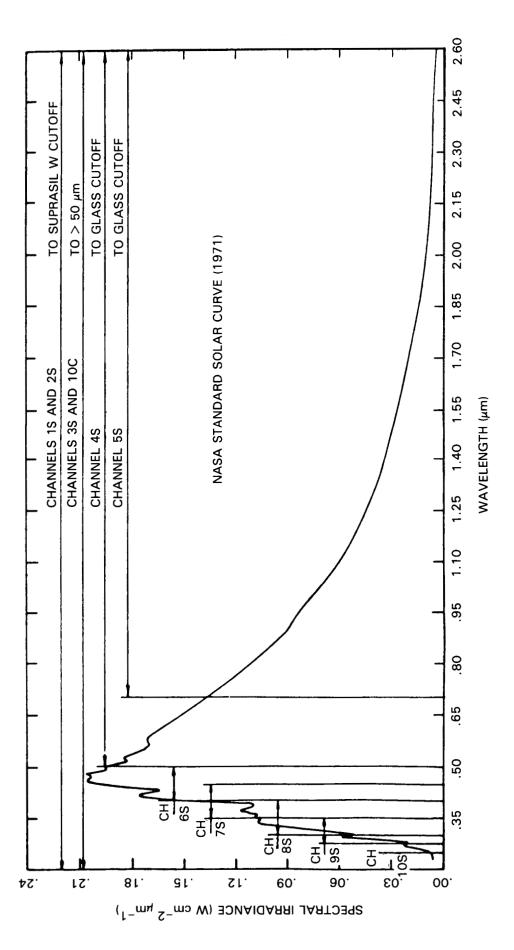

The spectral intervals in the 0.2 μ m to 0.526 μ m, 0.526 μ m to 0.695 μ m, and 0.20 μ m to 0.695 μ m range are obtained by differential treatment of the channels 4 and 5 data, together with readings obtained from channel 2. Channel 3 is closed when channel 1 is open. The channel 1 shutter acts as a secondary reference for channel 3. The primary reference for channel 3 and channel 10 is deep space, which the sensors view over most of the orbit.

Figure 2-3 shows a cross-sectional drawing of the typical filtered solar channel. Incoming radiation enters the sensor through a protective window. After passing through a spectral filter, it passes through a second window and strikes a 3M (Inc.), black-painted thermopile detector surface. The first protective window minimizes the effects of charged particles, whereas the second window reduces the effects of solar heating of the filter and reradiation to the detector. The whole interior of the cell was anodized to reduce the reflection of solar radiation onto the detector (Soule, 1983).

Each of the 10 solar channels is an independent, individual modular element with a mated amplifier as part of the unit. The sensors are advanced versions of wire-wound type thermopiles used in the Eppley-JPL radiometers (Drummond and Hickey, 1968). There are no imaging optics in the solar channels--only filters, windows, and apertures. No optical amplification is required to maintain high signal-to-noise ratios because of the high thermopile sensitivities and state-of-theart electronics used.

There are two types of thermopiles: N3 and K2. Type N3 is used for solar channels 1 through 8 (and for the Earth flux channel 11 through 14). Type K2 is used for solar channel 9. (Type K2 is larger than N3, but similar in construction.) A typical thermopile is shown in Figure 2-4.

The thermopiles were constructed to react to a conductive thermal transient in such a way that both active and reference receivers would respond simultaneously and equally to the temperature offset, thus cancelling any offset in output signal. The time constants of the actual active and reference couples were also matched by position control during the plating operation. The receivers were matched, coated, and mounted to ensure a time constant balance. This

NASA Standard Curve of Extraterrestrial Solar Spectral Irradiance Figure 2-2.

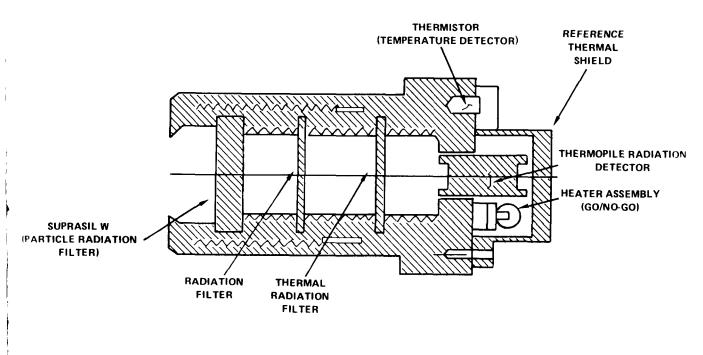
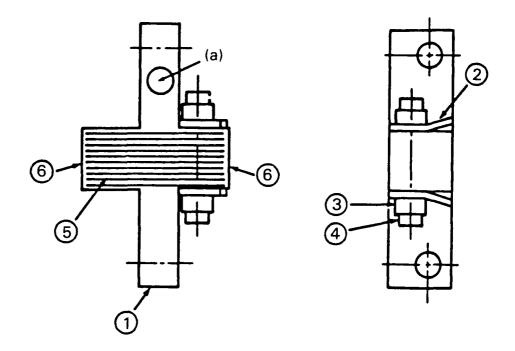


Figure 2-3. Typical Solar Channel Schematic (Soule, 1983)

requirement was extremely important because of the orbital characteristics of the experiment, since solar measurements were made during the thermal transient period due to the satellite crossing the terminator from darkness to full sunlight. See Hickey (1973) and Soule (1983) for additional details on individual solar channel construction.

2.3.1 Channel 10c Construction

The solar channel 10 on Nimbus-7 consists of a thermopile with a cavity radiometer receiver in front of it, referred to as a modified Hickey-Freiden self-calibrating cavity element.


Figure 2-5 shows the construction of channel 10c. As noted, its interior is circular and it has an aperture at A, together with baffles located along the interior of the cylinder at B. The inverted black-painted cone at C absorbs and also reflects some radiation to the surrounding wall.

The radiometer has a 10-degree FOV that allows the Sun to fully irradiate the cavity for about 3 minutes during each orbit. The angular response is a cosine function. This has been proven during flight by monitoring the off-axis response relative to the on-axis solar signal. Although the adherence to cosine response holds over the entire 10-degree field, the measurements are generally selected for an off-axis angle of less than 0.5 degree.

2.3.2 ERB Solar Channel Calibration

2.3.2.1 Prelaunch

The reference for the preflight absolute calibration of the ERB solar channels was the World Radiometric Reference (WRR) scale, which is embodied in a number of self-calibrating cavity radiometers. Solar channel 10c of the ERB is such a device. This new scale can be referenced to previous scales, such as the International Pyrheliometric Scale (IPS) of 1956 (Hickey and Karoli, 1974). The four major solar channels (1, 2, 3, and 10c) have been directly intercompared with self-calibrating cavity instruments of the JPL-PACKRAD and Eppley model H-F types.

- THERMOPILE BODY (THE TWO MOUNTING LUGS EXTEND TO EITHER SIDE OF THE MAIN BODY; THE TOP SURFACE OF THE LUGS IS THE THERMAL TRANSFER CONTROL SURFACE TO THE CHANNEL BODY) THE HOLE IN THE RIGHT LUG AT (a) WAS FOR MOUNTING THE MONITORING THERMISTER
- ² CONTACTS
- ③ INSULATOR THAT ELECTRICALLY ISOLATES THE CONTACT MOUNTING SCREW
- ④ CONTACT MOUNTING SCREW
- ⁽⁵⁾ WOUND AND PLATED COPPER-CONSTANTAN THERMOCOUPLE WIRES (THE COUPLES ARE MADE BY PLATING COPPER OVER A WOUND CONSTANTAN COIL IN A PARTICULAR MANNER)
- ⁶ ACTIVE (UPPER) AND REFERENCE (LOWER) RECEIVERS

Figure 2-4. Schematic of Construction of a Typical Solar Sensor Thermopile (Soule, 1983)

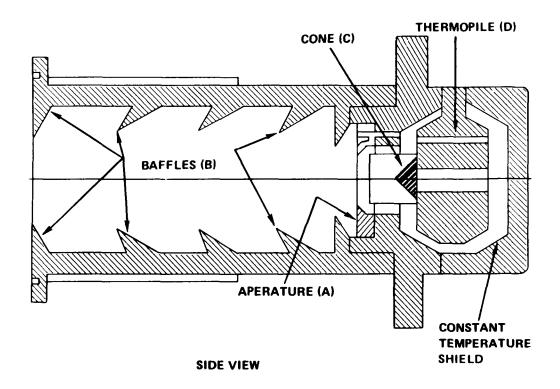


Figure 2-5. Cross-Section of Nimbus-7 ERB Solar Channel 10c Construction (extracted from an Eppley Laboratory blueprint (Soule, 1983))

For transfer operations, a solar simulator was used as a source and a Normal Incidence Pyrheliometer (NIP) was employed, both traceable to the WRR. When calibrating the filtered channels (4, 5, 6, 7, 8, and 9), the NIP was fitted with a filter wheel containing filters matching the flight set. The incident irradiance is calculated using the measured irradiance and the appropriate filter factor for the particular filter.

The ERB Reference Sensor Model (RSM), which is a duplicate of the flight instruments relative to the solar channels, has been employed as a transfer and checking device throughout the Nimbus-6 and -7 calibration program. All vacuum calibrations of the Nimbus-6 and -7 ERB solar channels can be referenced through the RSM, as can many of the calibrations performed at atmospheric pressure.

2.3.2.2 <u>In-flight</u>

In-flight calibration for the solar channels does not exist, except for channel 10c, whose cavity is heated by a precision resistance heater. Accurate monitoring of the voltage and current of the heater, as well as the detector response, yields the calibration sensitivity. This led to very precise determinations of the total solar irradiance (Hickey et al., 1981). All thermopile channels are equipped with the same heaters which were used during prelaunch activities to check whether the channels are functioning properly. The heaters are used as a rough check in the analysis of operational data. These channels are also equipped with an electrical calibration, which inserts a precision voltage staircase at the input to the entire signal conditioning stream. While the electronic calibration cannot be used to infer changes in the sensor or optics characteristics, it prevents misinterpretation of electronic measurements. Analysis of the electronic calibration data has yielded no abnormalities. Channels 1 through 3 can be directly compared with channel 10c to access their in-flight calibration. In addition, the degradation of channel 2 is checked by the occasional exposure of its duplicate (channel 1), which is normally shuttered. Further details of ERB sensor calibration can be found in Soule (1983).

2.3.2.3 Channel 10c Calibration

A precision electrical heater, attached to the cavity assembly, is turned on about once every 2 weeks during calibration sequences while the instrument "views" deep space. This is initiated by a "Go/No-Go" heater command. The sensor output is sampled once each second when the experiment is in its operational mode.

To make very high accuracy irradiance measurements, it is necessary to measure the cavity electrical heating power. In addition, the nonequivalence in sensor response to radiative and electrical heating must be measured. Thus, it is necessary to measure channel 10c cavity heater currents and voltage in addition to the sensor response. This is initiated by the "E-CAL" command. The thermopile output, heater current, and heater voltage are submultiplexed into the channel 10c data system; however, during solar measurements, the thermopile signal is the only sensed value (Soule, 1983).

It was decided not to include the processing of this calibration in the SEFDT generating program, since the values had remained stable for the first two years of operation and efficiencies in processing were required. It was decided to obtain real-time printouts of the calibration data from the ground station in Subsystem Display (Sub-D) format. These Sub-D printouts were checked out by the Eppley Laboratory. Values over the 7 1/2-year period have been logged. Since there has been no change of greater than ~1 count for any of the three variables, the instrument is said to be stable at the resolution limit. It had been planned to use this calibration as the basis for adjusting the channel 10c sensitivity, if a calibration change or drift was noted. However, no such change has been found and, therefore, no change has been made to the channel 10c value used in SEFDT processing. It should be noted that the channel 10c temperature coefficient for flight conditions (as well as the reference temperatures of 22°C) was determined, using the initial calibration orbit analysis, prior to reprocessing of the SEFDT tapes. Further information on channel 10c calibration can be found in Hickey (1985).

2.3.3 ERB Solar Channel Degradation

The degradation, with time, of the solar channels 1 through 9 is depicted for the first eight months of flight in Figure 2-6. The solar channels are shown in detail through March 1986 in Figures 2-7 through 2-15. The plots are shown as solar irradiance (Wm^{-2}) versus number of days (2,692 days), month and year for 89 months. Particular attention should be given to channels 6 through 9, which contain the interference filters. Their curves show that a high rate of degradation occurred during the first two months, followed by a short period of relative stability. After this, the channels reversed the earlier trend and began to recover. After a little over four months in orbit, three of the channels completely recovered while the remaining one (channel 7) almost recovered.

Shortly thereafter, channels 7 and 8 began to degrade again with rates that were much slower than those encountered initially. This contamination/recovery event, exhibited in channels 6 through 9, is associated with the outgassing or deposition of contaminants at launch and their subsequent cleansing as a result of impingement of active ions on the front surface of the sensors (Predmore et al., 1982). This effect has been experienced by forward-looking sensors on other spacecraft, including the ERB on Nimbus-6. The changes in the spectral channels after the recovery exhibit trends similar to those experienced by the matching channels on Nimbus-6. Channels 2, 4, 7, and 8 (Figures 2-8, 2-10, 2-13, and 2-14) show a downward trend, while channels 6 and 9 (Figures 2-12 and 2-15) show readings at or above their initial values until 1984, when slow declines started. The shifts are associated with solarization of the Suprasil W filter substrates and the Suprasil W IR blockers behind the filters, as well as changes in the deposited filter layers themselves, which will probably change the effective pass bands. The flight filters were "burned-in" by exposure to UV in vacuum, prior to insertion in the instrument, but the

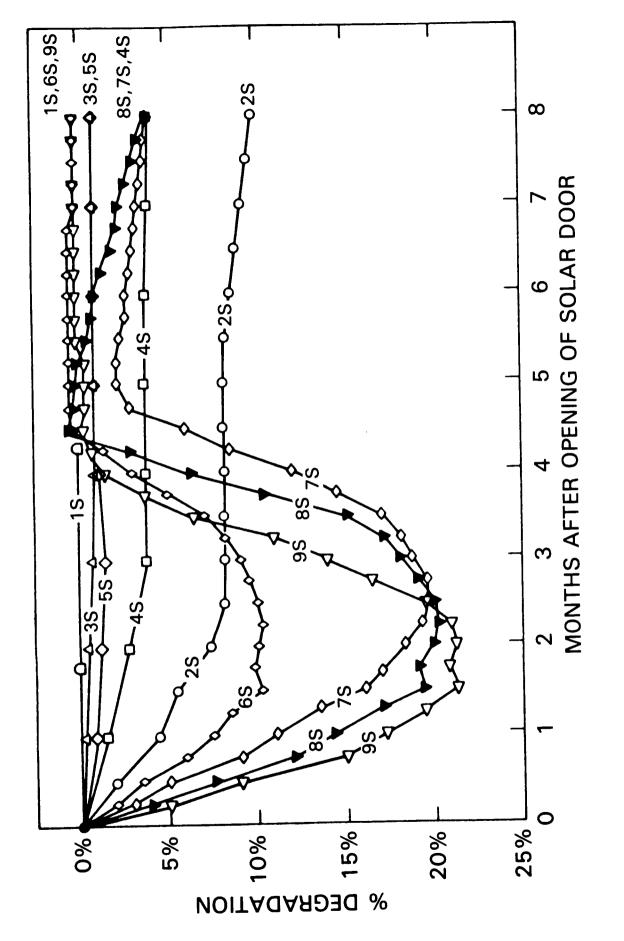
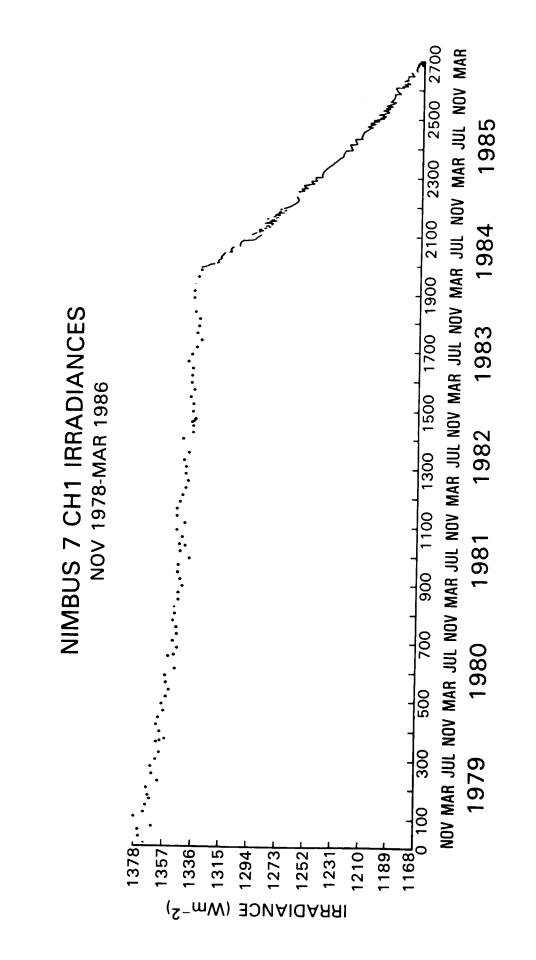
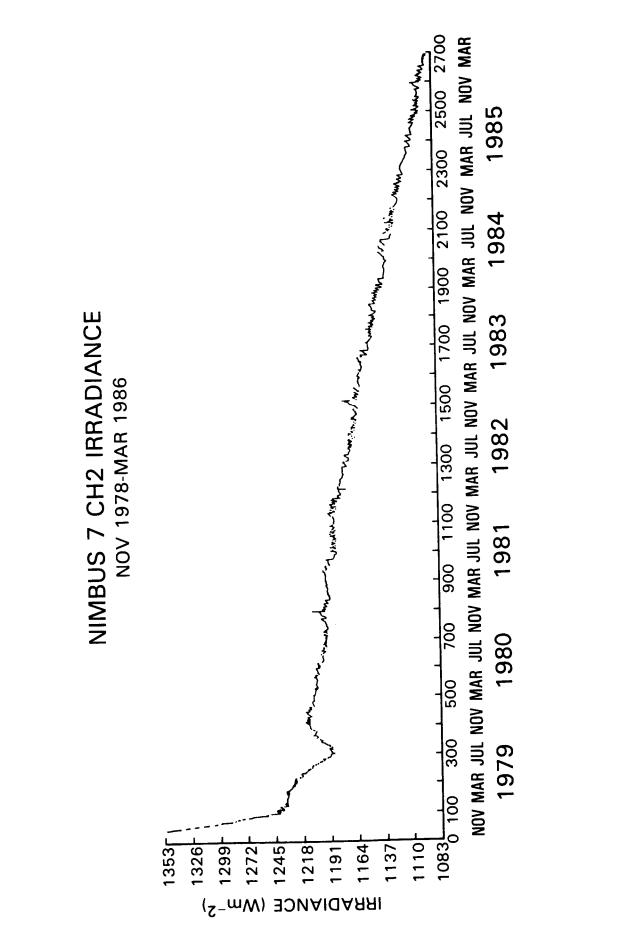
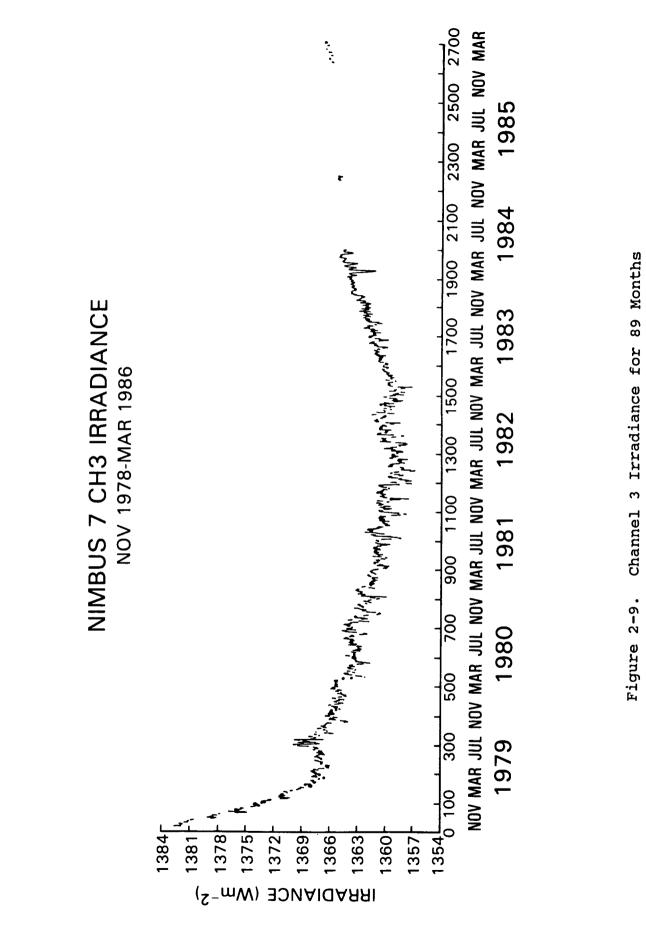
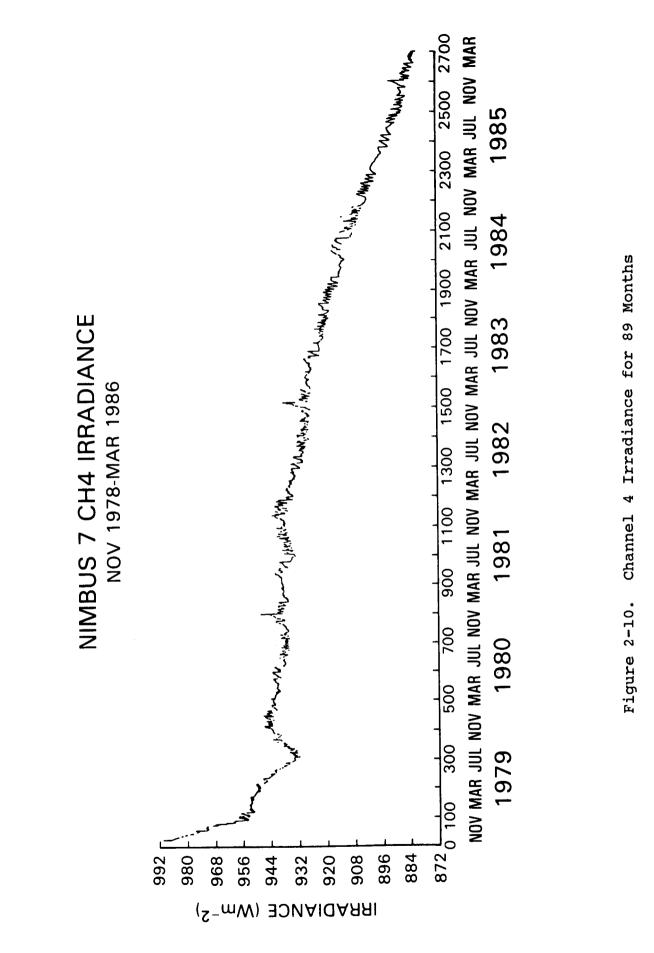


Figure 2-6. Percent degradations of solar channels (Jacobowitz, et al., 1984)


Figure 2-7. Channel l Irradiance for 89 Months



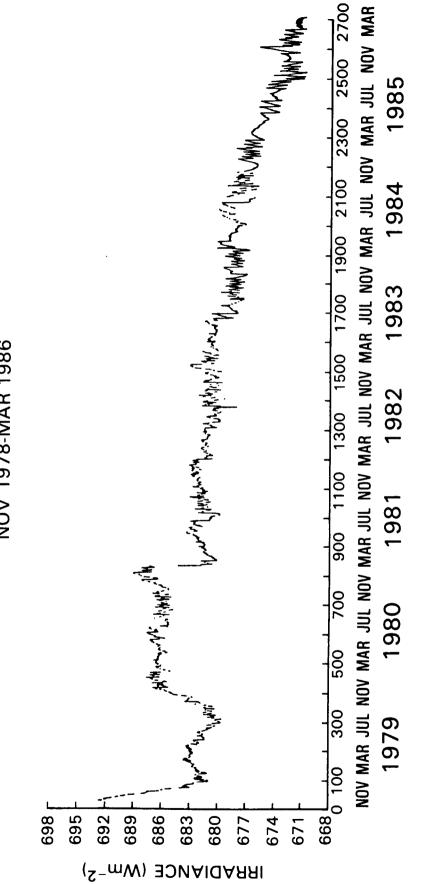
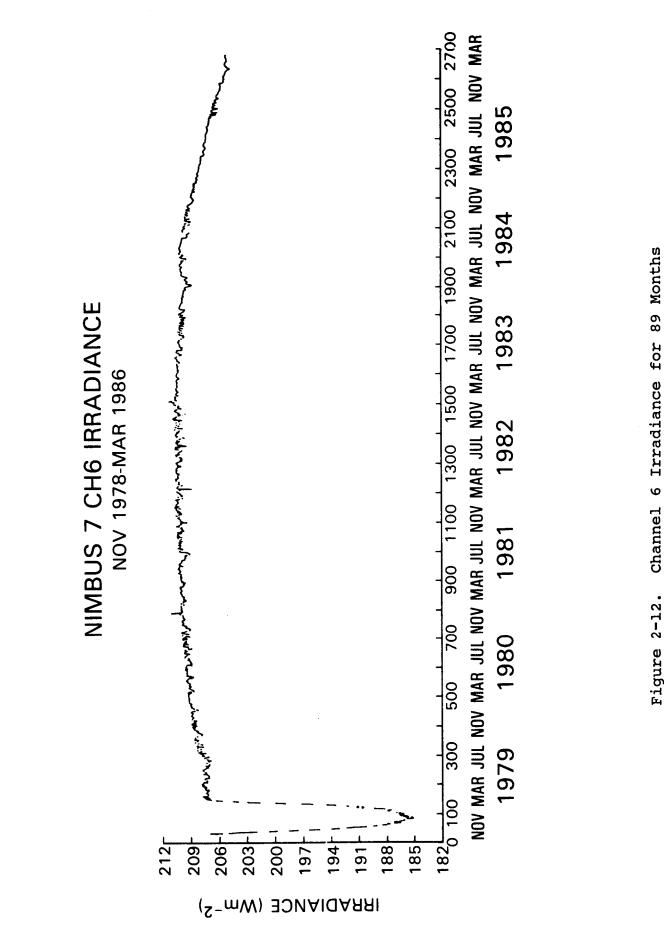
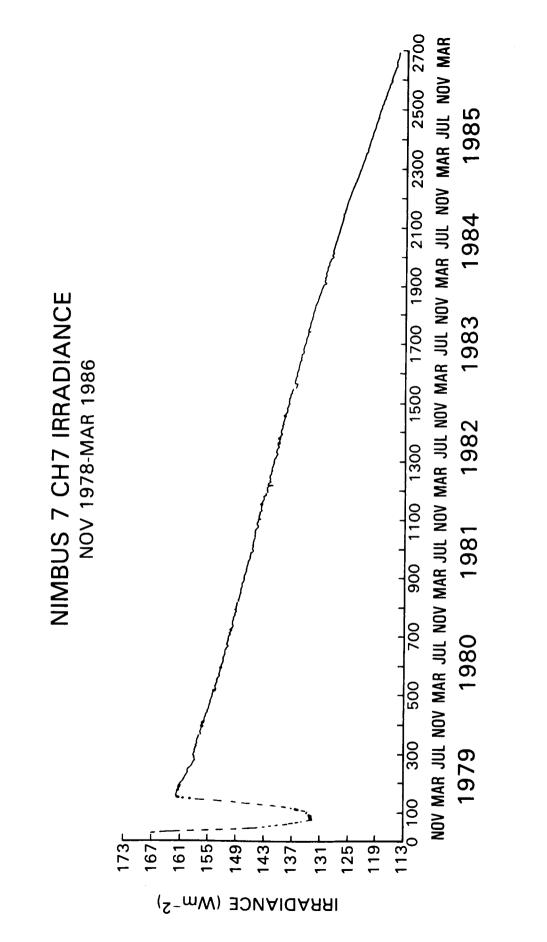
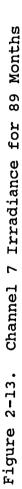

Channel 2 Irradiance for 89 Months

Figure 2-8.




Channel 5 Irradiance for 89 Months


Figure 2-11.

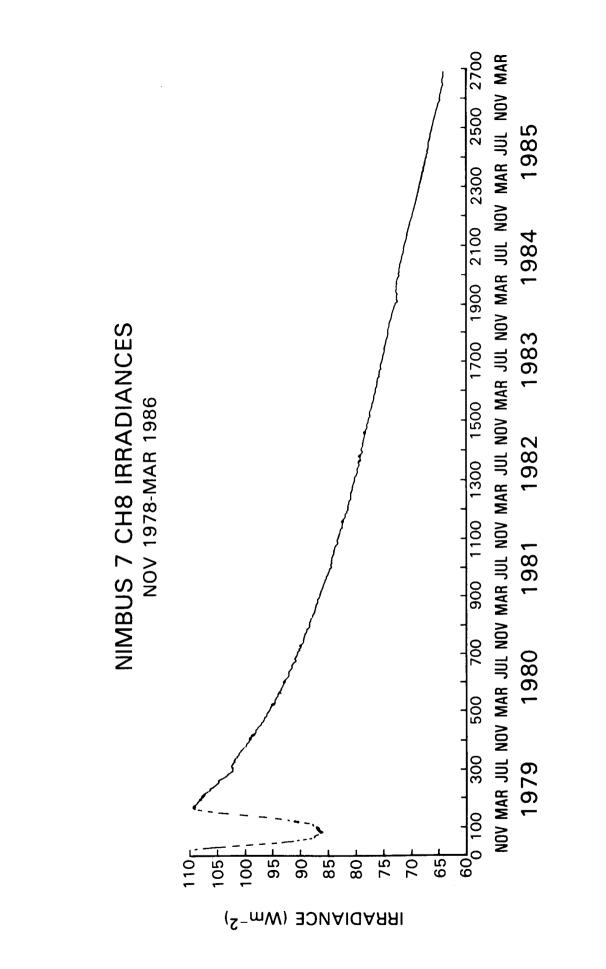


Figure 2-14. Channel 8 Irradiance for 89 Months

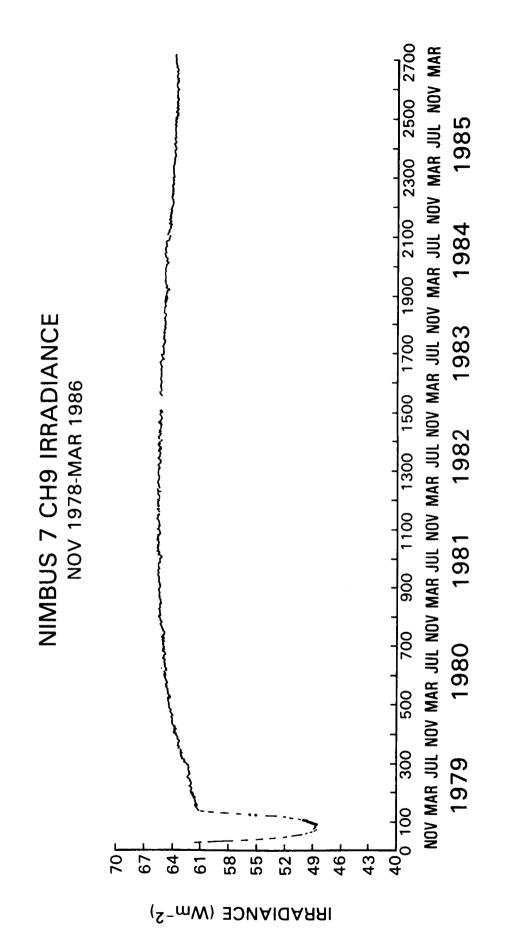


Figure 2-15. Channel 9 Irradiance for 89 Months

blockers were not. It is possible that the upward trend of channels 6 and 9 could be due to development of pinholes in the filter coatings (Hickey et al., 1986).

The only other channel with no optical filtering is channel 3, which matches the total irradiance sensor on Nimbus-6. Channel 3 suffered some degradation at the start of the mission, followed by a small downward drift through 1982, then in 1983 a small upward drift set in. In 1984, channel 3 was closed. The shutters on the comparison channels 1 and 11 are opened and closed by the same command signal; further, when channel 1 is opened its shutter moves into a position blocking channel 3. In 1984, it was decided to keep channel 11 open most of the time, and this effectively closed channel 3. For the first several years, channel 1 was normally shuttered so that any possible degradation was not detected. After channel 1 was opened full-time, the degradation became apparent. Notice in Figure 2-6 and the other figures that degradation appears strongest in the ultraviolet. The contaminant layer on the Suprasil-W windows appears to act as a strong shortwave length blocker. Channel 5 in the near infrared is only mildly affected. The spectrally integrated effect of the contaminant layer can be judged from the degradation in channel 2 (0.2 μ m to 3.8 μ m). Further details on the degradation of the ERB filtered solar channels can be found in Hickey et al., (1986).

In order to maintain the uniformity and precision of the channel 10c solar irradiance data, only the central 44 seconds of each solar view are used, as well as a comparison with deep space. The sensor output is read once per second, with an integration time of 0.8 second. The data are separated into major frames of 16 seconds each. From the central three major frames, the central 44 seconds (out of 48) readings (counts) are averaged to obtain the "on-sun" reading for that orbit. The on-sun counts are corrected to a deep space reference by applying the average of the offset of the radiometer when viewing deep space before and after the solar reading. The deep space values are also 44-second averages taken at 13 minutes before and after the solar pass. The details of the algorithm are given in Section 2.4.

Channel 10c has remained relatively free of the degradation effects experienced by the other channels (see Figure 2-16). The calibration parameters have remained at the 0.5-percent resolution level throughout year 7. The space-load signal offset has also remained within ± 0.5 count when corrected for instrument temperature (Hickey et al., 1986).

2.4 ERB Solar Data Processing

A first analysis of the total solar irradiance was made using a preliminary data set called the "engineering level" data (Hickey et al., 1980). These data are obtained in near-real-time directly from the Nimbus ground station and are not available as an archived product. Other solar parameters are obtained from the ERB Master Archival Tapes (MATs). After preliminary review of the processed flight data from the Nimbus-7 ERB, certain changes were made in the processing algorithms, and the solar data were reprocessed. This new high-quality data set for the ERB solar channels (plus Earth flux channel data) was made available on a set of special digital tapes referred to as the Solar-Earth Flux Data Tapes (SEFDT). A user's guide for the SEFDT data has been made available (Ray et al., 1984). As described in Section 2.4.2, the ESAT is derived from the SEFDT. Figure 2-17 illustrates the solar data processing scenario.

2.4.1 ERB Solar Channel Algorithms

The algorithms used to determine the solar irradiance from the 10 ERB solar channels were derived based on early data returns from the Nimbus-7 (Smith et al., 1983; Hickey et al., 1980). The algorithms are as follows:

The Temperature Sensitivity Correction Factors:

$$S(T) = S_V[1 + A(T - L)]$$
 (1)

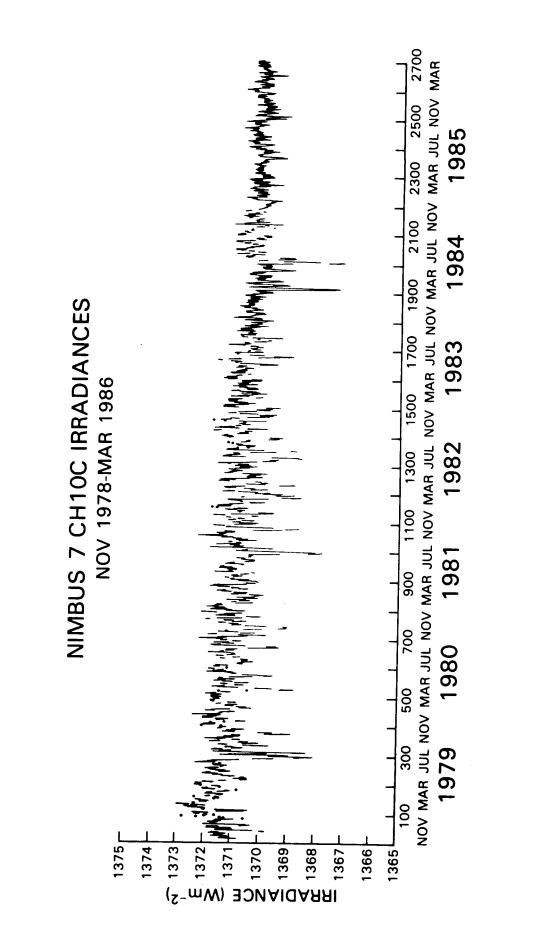


Figure 2-16. Channel 10c Irradiance for 89 Months

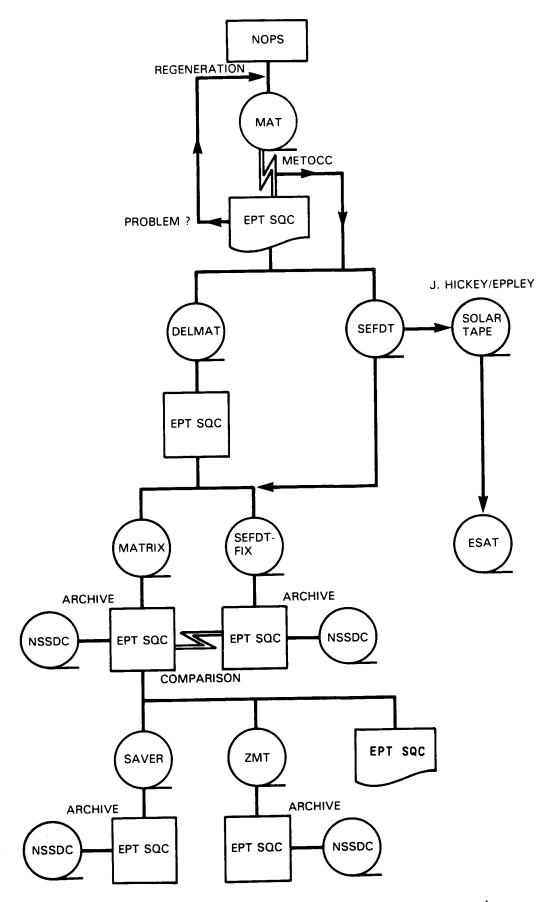


Figure 2-17. Schematic of ERB Data Processing

where

- S_V = Channel sensitivity in a vacuum at 25°C (22°C for channel 10c only) in counts per watts/m² (see Table 2-1).
- A = Temperature sensitivity at 25°C (22°C for channel 10c only) in °C⁻¹ (see Table 2-1).
- T = Temperature in °C.
- L = Reference temperature: Channels 1 through 9: 25°C, Channel 10c: 22°C.

The channel sensitivity (S_v) was determined from laboratory measurements at an average temperature (L) for the calibrations (Hickey, 1985).

CHANNEL	Sv	Α
1	1.299	0.0007
2	1.275	0.0008
3	1.214	0.0008
4	1.719	0.0007
5	2.424	0.0006
6	6.931	0.0007
7	9.588	0.0003
8	12.715	-0.0004
. 9	30.170	-0.0011
10c	1.3013	0.000524

Table 2-1 Channel Coefficients

The Uncorrected Net Solar Irradiance:

$$R = [V_0 - 1/2 (V_+ + V_+)] / S (T)$$
(2)

where

V_o

= Solar channel detector output in counts at T_o , where T_o = time of minimum solar elevation, i.e., when the telescope is pointing most directly at the Sun.

 V_{-} = Solar channel detector output in counts at T_{o} - 13 minutes.

 V_+ = Solar channel detector output in counts at $T_0 + 13$ minutes.

S(T) = Temperature sensitivity correction factor.

Adjustment of Channel 10c for Reflectance. (Note: This correction is applied to channel 10c only):

$$R_{10c} = U_{10c} * 0.998 \tag{3}$$

 U_{10c} = Unadjusted channel 10c net solar irradiance.

 R_{10c} = Adjusted channel 10c net solar irradiance.

Note: At this point, all the net solar irradiances must be corrected for Sun-Earth distance.

Correction of Net Solar Irradiance for Sun-Earth Distance:

$$NSR = R * R_{SE}^{2}$$
⁽⁴⁾

R = Instantaneous net solar irradiance.

 R_{SE} = Instantaneous Sun-Earth distance in astronomical units. The semi-major axis of the Earth's orbit about the Sun is defined to be 1.0 astronomical units.

NSR = The final corrected net solar irradiance that appears in the SEFDT solar orbital summary records.

NSR is the value for the irradiance that also appears in the orbital and daily mean files of the ESAT.

In addition, a separate cosine-corrected channel 10c value is given in the ESAT orbital and daily mean files. This is a correction for the off-axis angle (γ_{o-a}) . The off-axis angle measures the angular deviation of the pointing vector of the solar channel assembly from the position of the Sun. The gamma angle (γ) is adjusted by ground commands in order to account for changes in the Digital Solar Aspect Sensor (DSAS) solar azimuth angle (β) . The off-axis angle as used in the SEFDT is defined as (Ray et al., 1984):

$$\gamma_{\rm off-axis} = \gamma + *\beta_{\rm DSAS} \tag{5}$$

This angle is then used by the Eppley Laboratory to obtain the cosine-corrected channel 10c irradiance:

NSR' (10c) = NSR (10c)/cos (
$$\gamma_{\text{off-axis}}$$
) (6)

The off-axis angle is calculated under the assumption that the spacecraft orientation is known exactly and the calculated off-axis angle is normally less than 0.5 degree. However, the average error in the assumed spacecraft orientation may be of the order of 0.5 degree. It is questionable whether the cosine-corrected irradiances are, in most cases, actually more accurate than the uncorrected values.

2.4.1.1 <u>Time of Minimum Solar Elevation</u>

The time of minimum solar elevation is defined to be the relative minimum of the ERB solar channel 5 counts for each orbit as shown in Figure 2-18. Channel 5 is the solar alignment indicator because it suffers the least degradation of those channels (1, 2, 4, and 5) that have the proper angular response function.

The time of minimum solar elevation was labelled T_o for all of the ten solar channels. The algorithm for determining T_o was a 3-step process:

- 1. Search the channel 5 counts for the orbit and tabulate the occurrence of counts between 1000 and 2000. Counts greater than 1000 indicate Sun is in the FOV.
- 2. Find, in the table, the smallest count value occurring more than four consecutive times (occurring n times).

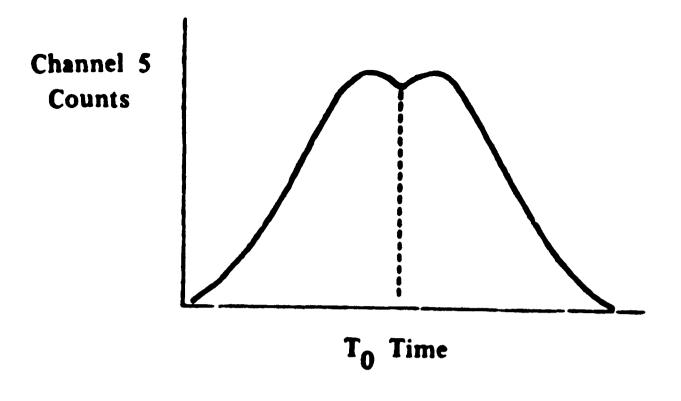


Figure 2-18. Time of Minimum Solar Elevation

3. T_o is the time associated with the median of the possible smallest count values (n/2) (i.e., if the smallest count values occur eight times, T_o will be the time associated with the fourth occurrence).

If no time of minimum solar elevation was found, T_o was set to the southern terminator time for selection of solar data records.

It should be noted that the processing involved in transforming the SEFDT orbital summary data to the final solar data set used in ESAT is not performed in exactly the same manner as described by Smith et al., (1983). The main distinctions are (1) that the low temperature orbits are screened out in the solar data set generated by Eppley Laboratory, as opposed to applying the temperature correction then employed to obtain the SEFDT orbital summary and (2) that the cosine correction is applied using the off-axis angle at the time of the peak solar pass, as determined by the angular response of channel 5. This is because the data are immediately available on the SEFDT orbital summary and do not require recalculation of the time of peak response. The algorithm determined by the ERB NET (see Section 2.3.3.1) was employed in calculating the best on-sun value for the SEFDT orbital summary. The more detailed method discussed by Smith et al., (1983), would require recalculation from the raw data.

2.4.2 ESAT Solar Data Processing

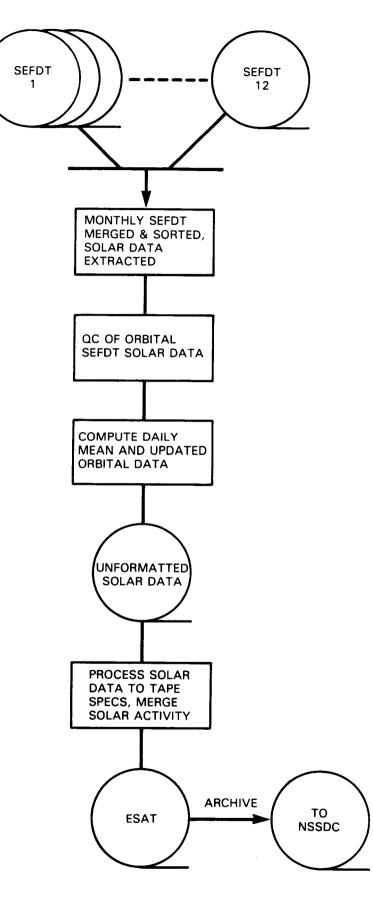
A complete and high precision data set for the Nimbus-7 ERB solar channels was made available on a set of special digital tapes referred to as the SEFDTs. The ERB solar data on these tapes were used by Eppley Laboratory to derive the solar data for the ESAT. Appendix B shows the SEFDTs used to generate the ESAT data. With the exception of channel 10c (see Section 2.4.2.2), all of the ERB solar channel data on the ESAT are the same as on the SEFDT.

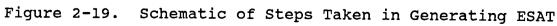
2.4.2.1 Differences Between ESAT and SEFDT

The purpose of ESAT is to present a complete ERB solar data set free of the Earth flux data and other information on the SEFDT that is not used by the solar community. Although the solar data used to generate the ESAT data set was derived from the SEFDTs, there are some differences between the two data sets.

- Solar data are corrected or deleted for bad orbits and/or missing or incorrect data (see Section 2.4.2.2).
- Daily mean and statistics derived from "cleaned" orbital information are included on the ESAT.
- Calculated off-axis angle, mission day, and Earth-Sun distance are included on ESAT. The Earth-Sun distance was included on the SEFDTs.
- Cosine-corrected channel 10c (see Section 3.3) is included on the ESAT.
- **ESAT** includes solar activity indicators.

2.4.2.2 Corrections to SEFDT Data


The solar data for the ESAT represents a higher order data set than the already high quality SEFDT data. For the ESAT data set, orbits and/or variables that are incorrect or beyond certain limits were deleted or corrected by Eppley Laboratory from the SEFDT orbital summary records. Limit criteria were based on the off-axis angle and temperatures of channels 3 and 10c. If the off-axis angle exceeded 3.1 degrees, then those orbits were deleted. If the temperature of either channel 3 or channel 10c fell below 18°C, then those orbits were deleted. The daily mean solar data and statistics were generated after screening of the orbital data.


The ESAT data set includes a cosine-corrected channel 10c. This correction is a first-order correction performed by Eppley Laboratory and is simply the cosine of the off-axis angle applied to the mean channel 10c irradiance calculated in the SEFDT (see Section 2.4.1).

The ESAT data set also includes the calculated mission day (mission day 1 is November 16, 1978) and the calculated off-axis angle (solar azimuth + gamma angle). Figure 2-19 illustrates the processing scenario for the ESAT data.

2.5 Observations of Solar Variability

The solar sensors on the Nimbus-7 ERB experiment have been returning high-quality measurements of the solar irradiance, "solar constant," since November 16, 1978. Analysis of solar data from the self-calibrating radiometer, channel 10c, has revealed variations in the solar irradiance by up to 0.2 percent on time scales from days to weeks (well within the sensor precision uncertainty of 0.02 percent). These solar irradiance variations have been found to be due to the passage of sunspots across the Sun's disc (Hickey et al., 1980; Smith et al., 1983). The Solar Maximum Mission (SMM) launched in February 1980, with the Active Cavity Radiometer Irradiance Monitor (ACRIM) has also monitored solar irradiance variations (Willson et al., 1981). The discovery of solar irradiance variations by the Nimbus-7 ERB and the SMM ACRIM has precipitated a number of technical papers launching a debate on the nature of solar irradiance variations, which was the subject of two NASA-sponsored workshops (Sofia, 1981; LaBonte et al., 1983), a special issue of the Journal of Geophysical Research on January 20, 1987 (Vol. 92, No. D1), and a recent review by Hudson (1987).

Observations of solar irradiance variations have important implications in our current understanding of solar physics, including the growth and decay of solar active regions, solar energy transportation, solar luminosity changes and possible long-term effects on the Sun-Earth system and Earth's climatology.

2.5.1 Properties of the Sun

The Sun is the closest star, and can be studied in detail. Observations indicate that the Sun has a radius of 700,000 km and emits energy at a rate of 4×10^{26} watts. Basically, the Sun consists of a core, radiative zone, photosphere, chromosphere, and corona (see Figure 2-20). The core contains most of the mass of the Sun and over 99 percent of the energy production. Energy is produced by thermonuclear reaction, fusing two hydrogen nuclei to form helium and a release of energy in what is known as the proton-proton reaction. Theoretical models indicate that such energy production has been occurring for about five billion years and will continue for another five billion years, thus, restraining the Sun to a relatively stable state as a typical main-sequence star.

Observations and models indicate that, from the core out to about 0.85, solar radii energy is transported by radiation. From about 0.85 solar radii and out (~150,000 km), energy is transported by convection--turbulent, circulating currents of gas; each element of rising gas takes energy directly to the surface. At the surface, radiation is again the dominant mode of energy transport. The solar atmosphere consists of the chromosphere, which extends from the photosphere to about 2000 km and merges with the corona, a region of low density and high temperature.

2.5.1.1 Convection Cells

The circulating convection cells are believed to consist of giant cells, which are about 200,000 km across and are deeper than the smaller cells. Next in the tier are the super-granular cells, which are about 30,000 km across. The final tier are the smaller currents, which are about 1000 km across and 2000 km deep. This tier marks the surface of the Sun.

The visible surface of the Sun is the photosphere. Telescopic observations reveal a mottled solar surface (granulation) that is a manifestation of the upper-level tier of circulating cells. Disturbances deep in the convection zone may be related to the observed 5-minute oscillation (Woodard and Hudson, 1983).

Oscillations in the Sun may be created in response to gravitational forces and gas pressure gradients (Christensen-Dalsgaard et al., 1985). Pressure gradients give rise to acoustic or pressure waves called p-modes. Gravity gives rise to buoyancy that could lead to the formation of gravity modes or g-modes. Such modes can be used to probe the Sun's interior much in the same way seismic waves are used to probe the Earth's interior. Both Nimbus-7 and SMM data have been used to detect p- and g-modes (Frohlich, 1987; Wolff, 1983; Wolff and Hickey, 1987a,b).

2.5.2 Solar Activity and Solar Cycles

We tend to think of the Sun as a static ball of gas; energy is created in the core and is radiated out to space through the convection zone, photosphere, and solar atmosphere. However, the Sun is a highly dynamic body, exhibiting a considerable amount of detectable phenomena.

Solar activity is caused by the interplay between strong solar magnetic fields and the Sun's differential rotation. Rotation at the solar poles takes about 37 days, while at the solar equator the rotation period is on the order of 26 days.

The appearance of sunspots in the photosphere is but one phenomena associated with solar activity. Sunspots appear and disappear on a daily basis, reaching a maximum every 11 years--the

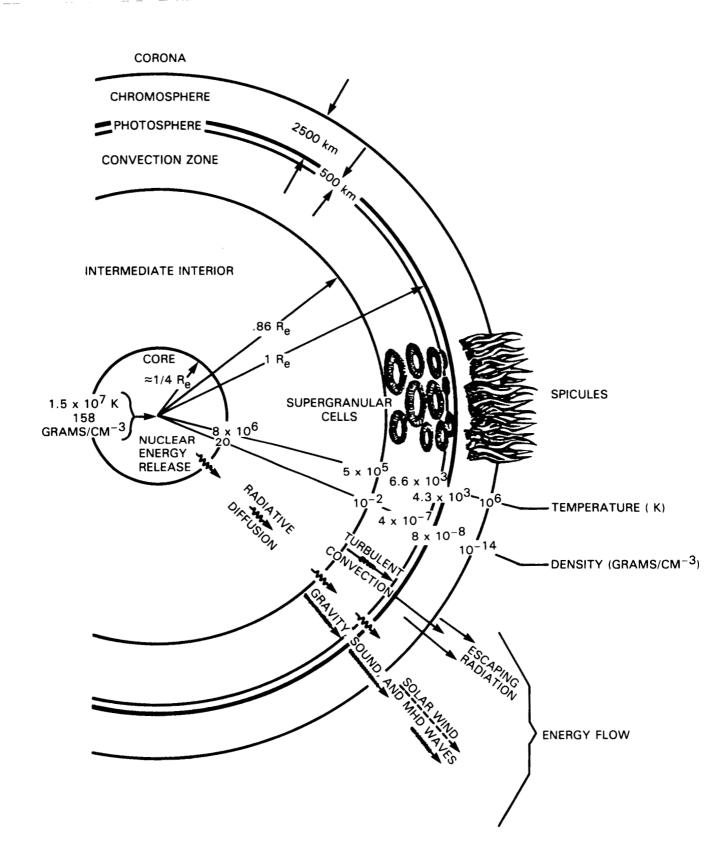
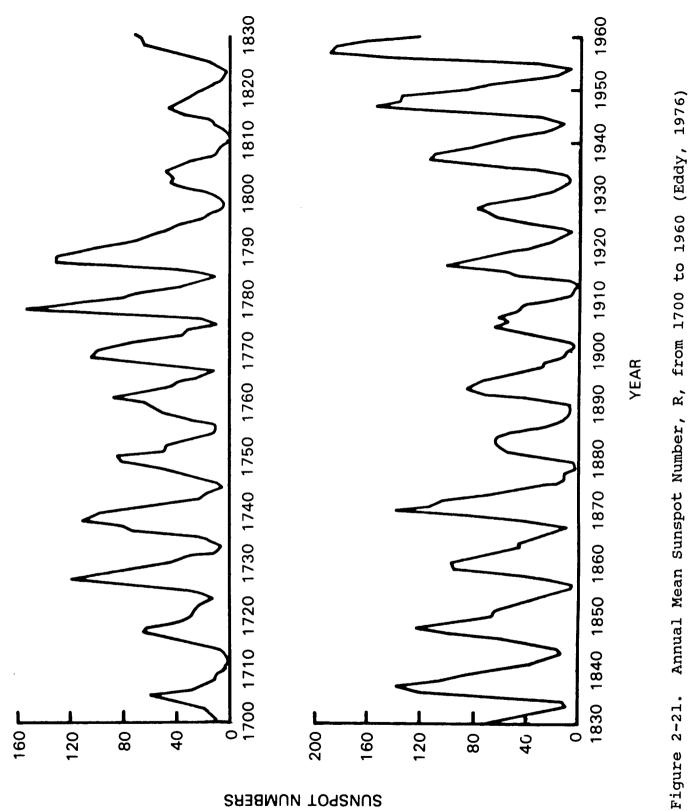


Figure 2-20. General Solar Properties, Structure, and Modes of Outward Energy Flow (not to scale). From Gibson, E. G., "The Quiet Sun," NASA SP-303, NASA, Washington, DC, 1973. famous sunspot cycle. However, this cycle is but a part of a longer 22-year solar cycle associated with the Sun's magnetic field (Babcock, 1961). Internal magnetism rises due to convection and differential rotation and then collapses. This takes about 11 years. After the collapse of the magnetic field, the field reverses polarity and, during the next 11 years, differential rotation winds up the magnetic strength until the reversed field collapses. During each 11-year cycle, magnetic energy builds up as rotation amplifies the field. The energy is released through the appearance of sunspots, solar active regions, and flares. The sunspot or solar cycle may be much more complicated than Babcock envisioned. Recent evidence suggests there may be two overlapping solar cycles (Robinson, 1987).

2.5.2.1 Sunspots

Sunspots had been observed by early Chinese and Greek astronomers and were rediscovered by the Europeans in 1611. A sunspot appears black against the bright photosphere because it is about 30 percent cooler than the surrounding region. The average size of a sunspot is about 10,000 km, and some are as large as 150,000 km. Sunspots consist of a dark central region, called the umbra, surrounded by a less dark region called the penumbra. Sunspots are regions of intense magnetic fields. Differential rotation builds a shell of a strong magnetic field, under the photosphere, where convection eventually twists the field. Eventually the magnetic pressure is strong enough to make the field buoyant; it wells up and bursts through the photosphere and forms sunspots.


Sunspots have been systematically recorded for at least 300 years. Detailed analysis by H. Schwabe in 1843 and R. Wolff in 1856 first noticed that the sunspots' activity reaches a maximum about every 11 years. Over the last 50 years, the sunspot cycle has averaged 10.4 years and can be as short as 7 years and as long as 17 years (see Figure 2-21). Further analysis by R. Carrington and G. Sporer identified the latitude of occurrence of sunspots during maximum and minimum, which consequently led to the identification of the magnetic nature of the sunspot groupings by G. E. Hale.

2.5.2.2 Solar Active Regions

Solar active regions, in addition to sunspots, include plages, prominences, faculae and flares. Common to all are a strong magnetic field. Plages are highly disturbed zones in the chromosphere. Plages are bright and usually appear prior to the appearance of sunspots and live longer than sunspot groups. Faculae are a bright region around a solar active region in the photosphere. Prominences are regions of locally enhanced density. These are the most spectacular of solar displays. Flares are highly concentrated, explosive releases of energy, usually in the X-ray region. Flares usually appear in the vicinity of an active region. It has been suggested that there is a possible 154-day periodicity in the occurrence of solar flares (Rieger et al., 1984; Bogart and Bai, 1985).

2.5.3 Solar Variability

Newkirk (1983), in a review of current research in solar luminosity variations, indicates that fluctuations in luminosity may occur on time scales of days or weeks associated with specific sunspot groups, of 11 or 22 years associated with the solar cycle, of many decades associated with a modulation of the solar cycle, or of much longer periods associated with episodic mixing in the Sun's interior as the Sun evolves off the main sequence. The 11-year sunspot cycle has long been suspected as modulating the total solar radiative output. The 11-year cycle is known to have irregular variations in between cycles, and this would seem to indicate that the processes of nuclear generation and convection or rotation are not as exact as once thought (evidenced by the solar-neutrino discrepancy). A detailed historical analysis by Eddy (1976) has shown that solar activity was drastically reduced during the years 1645 to 1715 in which virtually no sunspots were detected. This period has been referred to as the Maunder minimum and is also associated with

SUNSPOT NUMBERS

the "Little Ice Age" in North America and Europe. The cause of this reduction may be related to differential rotation anomalies (Eddy et al., 1976) and strongly suggests that variations in the solar cycle may lead to variations in the total solar luminosity, which can affect the Earth's climate. A recent paper by Ribes et al. (1987) suggests that the Sun was actually larger during the Maunder minimum and had a slower rotation.

On short time scales, early studies by Foukal and Vernazza (1979) and Foukal et al. (1977) suggest that variations of 0.01 percent in the Sun's luminosity correlate with the 11-year cycle. These studies suggest that luminosity variations are caused by magnetic field activity of sunspots and faculae that redistribute the flow of convective energy.

Prior to the launch of Nimbus-7, ground-based observations to monitor the solar constant (or changes in the solar constant) have been attempted without much success because observations cannot be corrected for atmospheric extinctions to the degree necessary to detect solar irradiance variations. Balloon, rocket, and aircraft flights have also made attempts to monitor the solar constant, but not on a continuous daily basis (Willson, 1984). Our knowledge of the total solar irradiance has grown significantly as a result of the radiometers on board the Nimbus-7 and SMM spacecraft.

Observed irradiance variations on time scales associated with solar active regions is based on days. It is believed that the presence of sunspots blocks the emerging radiant flux from the Sun. The blocked energy may be re-emitted immediately by the brighter and hotter faculae surrounding the active region, or the energy may be stored in the convection zone to be released slowly and unobserved over a long period of time.

Theoretical models of sunspot blocking, using Nimbus-7 and SMM solar irradiance data, have been developed to determine the mechanism that causes irradiance variations. It is not clear what role the faculae play in solar irradiance variations. Some modelers (Eddy et al., 1982; Foukal and Lean, 1986; Foukal, 1987) have evidence that the energy contribution from faculae is insufficient to balance the radiation blocked by the sunspots, and that the remainder of the energy is probably stored within the convective layer. Other modelers (Oster et al., 1982; Schatten et al., 1985; Schatten et al., 1987) have suggested that the energy is reradiated through faculae. In either case, the physical nature of the mechanism involved is undoubtedly a complex interplay of magnetic fields, convection, and rotation, as evidenced by complex relationships between irradiance observations and solar activity indicies (Pap, 1986; Hoyt and Eddy, 1983; Smith et al., 1983; Willson, 1984). Other unexplained features may be due to complexities of solar oscillations (Frohlich, 1987; Wolff and Hickey, 1987a,b). Short-term solar irradiance variations have also been observed in the ultraviolet and correlated with active regions (Lean, 1987). Figure 2-22 shows a plot of channel 10C solar irradiance for 1979 compared with Zurich sunspot numbers and 2800 MHz solar flux.

2.5.3.1 Long-Term Solar Variability

An examination of the slopes of solar irradiance measurements has revealed a persistent longterm, downward trend in the solar irradiance that seems to be associated with the 11-year sunspot or 22-year solar cycle. Over the 89-month span of ERB solar incidence measurements, a downward slope of -0.011 percent per year has been observed with a mean solar irradiance at 1 astronomical unit of 1370.4 W/m^2 . A year-by-year statistical analysis has been made for the ERB solar irradiance data as shown in Table 2-2. As can be seen, the first year of observation (November 1978 to October 1979) experiences the largest slope, which may be related to the degradation observed in the filtered channels (Hickey et al., 1985). It is interesting to note that years 4, 6, and 7 all show a positive slope.

This downward trend has been given much attention and is obviously of great importance to solar physicists (Kerr, 1986). The trend also appears in the ACRIM record (Willson et al., 1986), and it

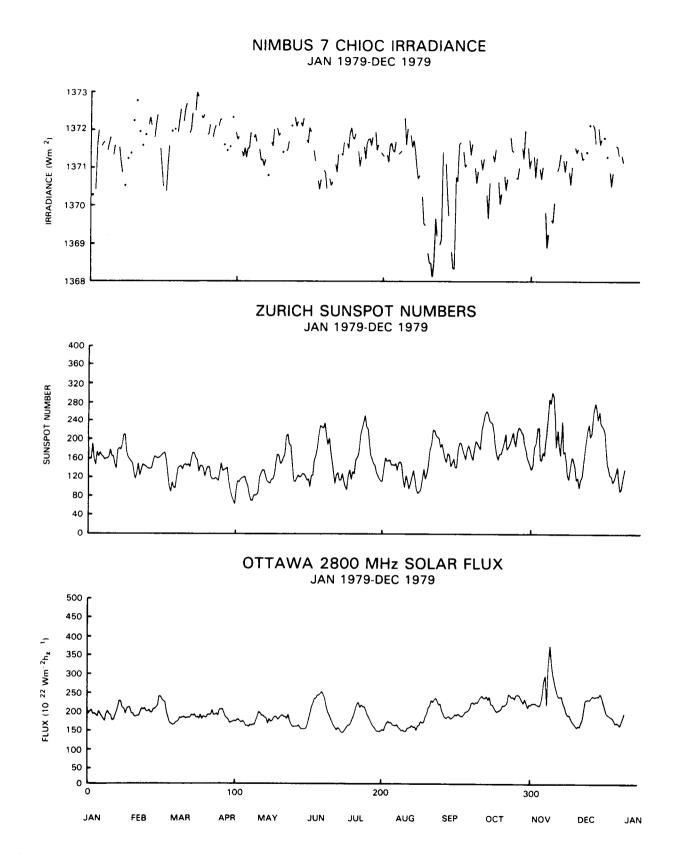
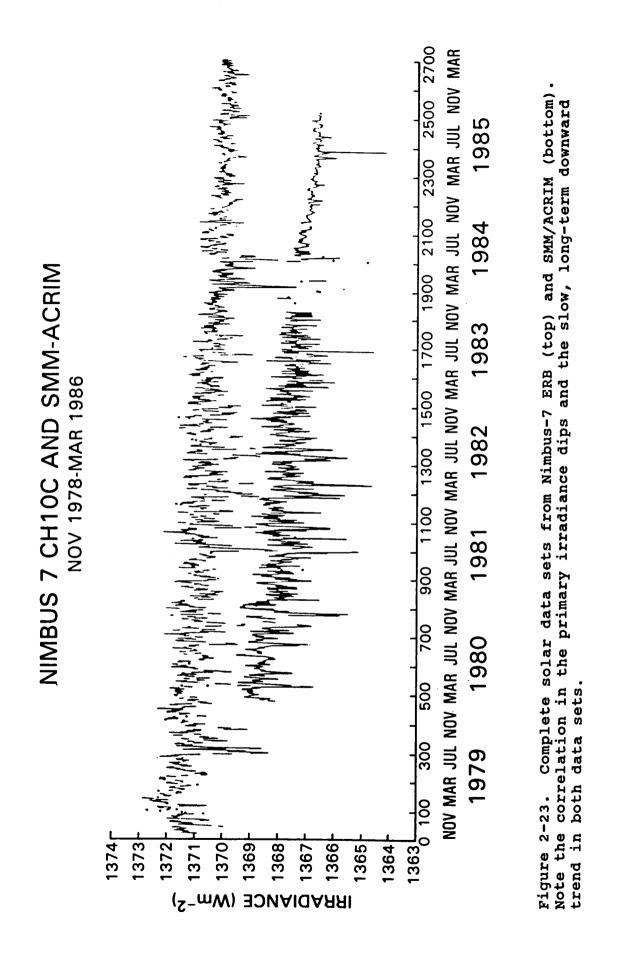


Figure 2-22. Correlation between Nimbus-7 channel 10c irradiance, Zurich sunspot numbers, and Ottawa 2800 MHz solar flux for the period January to December 1979, during an active period


is uncertain whether this trend will continue or whether it is of solar origin. Such a downward trend, if it is real, could be related to actual luminosity changes associated with the solar cycle and could have possible climatological significance. Although this does not appear to be the case at the present time, changes in solar luminosity associated with the solar cycle could explain such anomalies as the Maunder minimum (Foukal and Lean, 1986; Foukal, 1987). The ERB channel 10c has the longest existing continuous record of accurate extraterrestrial monitoring, and it started measurements before the current solar maximum (solar cycle 21, 1980). As the solar cycle passed through its minimum (which occurred in September 1986), a change in the trend was expected (Hickey et al., 1986). A flattening of the trend has been observed in the 10c data and appears associated with the solar minimum. The next question is this: Will the ERB 10c and SMM ACRIM measure an increase in the solar irradiance as the next solar activity maximum approaches?

	<u>NOBS</u>	<u>MEAN</u>	<u>SLOPE</u>	%/ <u>YEAR</u>	STD. <u>Error</u>
Nov 1978-Oct 1979	263	1371.26	-0.0025	-0.066	0.0005
Nov 1979-Oct 1980	271	1371.06	-0.0006	-0.017	0.0004
Nov 1980-Oct 1981	284	1370.74	-0.0006	-0.015	0.0004
Nov 1981-Oct 1982	275	1370.57	+0.0002	+0.004	0.0004
Nov 1982-Oct 1983	291	1370.53	-0.0009	-0.024	0.0003
Nov 1983-Oct 1984	318	1370.13	+0.0006	+0.017	0.0003
Nov 1984-Oct 1985	365	1370.09	+0.0001	+0.026	0.0001
Nov 1985-Mar 1986	150	1370.07	-0.0001	-0.003	0.0004
Nov 1978-Mar 1986	2217	1370.44	-0.0004	-0.011	0.00002

Table 2-2 Year-by-Year Solar Irradiance Measurements

2.5.3.2 Comparisons with SMM/ACRIM

The ACRIM on the SMM satellite began receiving data on February 16, 1980. A comparison between the ERB and ACRIM slopes reveals that the same long-term trends are evident (see Figure 2-23). The ACRIM also exhibits a positive slope for years 1982 and 1984. Since the ERB operates on a 3-day-on/1-day-off duty cycle, a comparison was made between the two instruments on those days when the ERB was on. The results are shown in Table 2-3. In general, the ERB solar measurements are on the order of 0.2 percent higher than the ACRIM over a similar period in time. This difference can probably be assigned to unknown calibration problems; however, the same short- and long-term trends are evident.

Table 2-3

.

Nimbus-7 ERB Channel 10c and SMM/ACRIM Statistics on Identical Days

	Date	<u>NOBS</u>	<u>Mean</u>	Slope	<u>%/Year</u>	Std. Err. <u>Slope</u>
N7	FEB 1980	1453	1370.451	-0.00038	-0.010	0.00002
SMM	SEP 1985		1367.191	-0.00080	-0.021	0.00002
N7	FEB 1980	221	1370.960	-0.00143	-0.0381	0.00049
SMM	DEC 1980		1368.161	-0.00280	-0.075	0.00047
N7	JAN 1981	262	1370.752	-0.00082	-0.0218	0.00038
SMM	DEC 1981		1367.645	-0.00105	-0.0280	0.00039
N7	JAN 1982	269	1370.524	+0.00064	+0.0170	0.00042
SMM	DEC 1982		1367.333	+0.00061	+0.0162	0.00043
N7	JAN 1983	234	1370.534	-0.00138	-0.0368	0.00030
SMM	DEC 1983		1367.189	-0.00027	-0.0072	0.00038
N7	JAN 1984	197	1370.210	-0.00003	-0.0008	0.00041
SMM	DEC 1984		1366.811	-0.00005	-0.0014	0.00030
N7	JAN 1985	270	1370.130	-0.00005	-0.00140	0.000217
SMM	SEP 1985		1366.464	-0.000047	-0.0127	0.000219

37

SECTION 3

DESCRIPTION OF ESAT CONTENTS

The ERB ESAT consists of ERB solar channel data and solar activity indicators as described in the following sections.

3.1 ERB Solar Channel Data

The ERB solar channel data on ESAT, derived from the SEFDTs, are comprised of two parts: (1) the orbital solar data and (2) the daily mean solar data which consists of the mean, standard deviation, minimum, and maximum. The daily mean data were derived by Eppley Labs from the filtered orbital data using the Statistical Analysis System (SAS) software package.

The contents of the orbital ERB solar data are as follows:

- Orbit number, year, day of year
- Solar azimuth and elevation
- Instrument status word (ISW)
- Gamma angle
- Earth-Sun distance (least significant bit, most significant bit)
- Channel 3 and Channel 10c temperatures
- Channels 1 through 10c irradiances
- Southern terminator crossing time
- Mission day since November 16, 1978
- Off-axis angle
- Cosine corrected channel 10c irradiance

The contents of the daily mean ERB solar data (which includes the mean, standard deviation, minimum and maximum measurements, and the number of orbits for each parameter) is as follows:

- Orbit number, year, day of year
- Solar azimuth and elevation
- Gamma angle
- Channel 3 and 10c temperatures
- Channel 1 through 10c irradiances
- Mission day since November 16, 1978
- Off-axis angle
- Cosine corrected channel 10c irradiance

3.2 Origin of Solar Activity Indicators

The solar activity indicators defined on ESAT were derived from the NOAA/National Geophysical Data Center (NGDC) Solar Geophysical Data Reports (SGD) (NOAA/NGDC, 1982). Solar active region data were obtained from Dr. Ken Schatten at NASA/GSFC and were originally obtained from NOAA/NGDC World Data Center-A and published in the SGD. Daily calcium plage index and geomagnetic index were obtained directly from the SGD prompt reports.

A detailed description of the solar activity indicators is as follows:

<u>Zurich Relative Sunspot Numbers</u>. A measure of visible daily solar activity. This number is derived from several observatories and combines the number of single spots and groups of spots on the solar disk. The formula is

$$\mathbf{R}_{\mathbf{z}} = \mathbf{k}(10\mathbf{g} + \mathbf{s}) \tag{7}$$

PRECEDING PAGE BLANK NOT FILMED

where

10g	=	Number of spots and groups (weighted by 10).
S	=	Total number of distinct single spots.
k	=	Factor that depends on the observer and is used to convert measure from the original Wolff sunspot scale.

The Zurich Relative Sunspot Numbers comprise a complete daily record of solar activity for the period November 16, 1978, through March 31, 1986.

Ottawa 2800 MHz Solar Flux. A measure of daily radio solar activity. These measurements are the daily observations of the 2800 MHz radio emissions that originate from the solar disk and from any active region. Measurements are made at the Algonquin Radio Observatory (ARO) of the National Research Council of Canada with a 1.8-m diameter reflector. Measurements are in flux units of 10⁻²² Wm⁻² Hz⁻¹.

The Ottawa 2800 MHz Solar Flux comprises a complete daily record of solar activity for the period November 16, 1978, to March 31, 1986.

<u>Daily Calcium Plage Index</u>. An index of solar activity based on the solar plage area and coordinates. The index as given by W. R. Swartz and modified in the SGD is as follows:

 $C_{A}II_{index} = [\Sigma I_{i}A_{i} \cos \theta_{i} \cos \phi_{i}]/1000$ (8)

where the summation includes all plages visible on that day.

I _i	=	Intensity of plage i.
Ă	=	Corrected area of plage i in millionths of solar hemisphere.
θ_{i}	=	Central meridian distance of plage i in degrees.
ϕ_{i}	=	Latitude of plage i.

The Daily Calcium Plage Index data are available on a daily basis from November 16, 1978, through March 31, 1986. Missing data or where no observations were made are defined as 0.

<u>Geomagnetic Index</u>. A daily index of magnetic activity due to solar events recorded on a linear scale. The daily Ap series is used and is an average of eight values of an intermediate 3-hourly index.

The Geomagnetic Ap Series Index is available on a daily basis from November 16, 1978, through December 1982. Missing data are defined as 0.

Solar Active Region Data. Solar active region data are comprised of two parts: calcium plage data and sunspot group data. Plage regions are the bright areas on the solar disk sometimes preceeding the appearance of sunspots. The calcium plage data contain seven parameters that were derived from the NOAA solar active region tape:

- 1. <u>McMath-Hale Region Number</u>. This is the active region number assigned in order of appearance on the solar disk. More than one region number can appear on a day.
- 2. <u>Central Meridian Passage Date</u>. The date of central meridian passage of the region, at 12^hUT and corrected for whether before noon or after noon.
- 3. <u>Latitude</u>. The latitude of the region center of mass, north or south of solar equator. Negative latitudes are south.

- 4. <u>Central Meridian Distance</u>. Distance of the region center of mass east or west of the central meridian at 12^hUT. Distance is in degrees, measured to the west 0° to 360°.
- 5. <u>Area</u>. The corrected area (corrected for distance from the center of the solar disk) in millionths of the solar hemisphere.
- 6. <u>Intensity</u>. The intensity of the plage region on a scale of 1 (very faint) to 5 (very bright). Solar plage data are available from November 16 to June 1982. The number of plage regions per day is noted on the ESAT tape so that the proper number of page region records can be read. If no observations were made, then the solar plage parameters are 0.
- 7. <u>Carrington Longitude</u>. An internationally-agreed central meridian that passed through the apparent center of the solar disc on January 1, 1854, at 12^h Universal Time (UT). From this Carrington-central meridian, heliographic longitude is measured to the west 0° to 360°. The zero meridian (L = 0°) becomes established on completion of a solar rotational period (synodic period) observed from the Earth and of mean duration of 27.2753 days.

Sunspot group data contain six parameters, which also were derived from the NOAA solar active region tape:

- 1. <u>Mount Wilson Region Number</u>. The sunspot group number is assigned by Mount Wilson Observatory as groups appear on solar disc.
- 2. <u>Latitude</u>. Same as for calcium plage data.
- 3. <u>Central Meridian Distance</u>. Same as for calcium plage data.
- 4. <u>Class</u>. Magnetic classification in numerical format as follows: A=1; AP=2; AF=3; BP=4; B=5; BF=6; BG or BY=7; G or Y=8; D=9; No Class=0.
- 5. <u>Area</u>. Same as for calcium plage area.
- 6. <u>Carrington Longitude</u>. Same as for calcium plage data.

3.3 Solar Activity Indicators

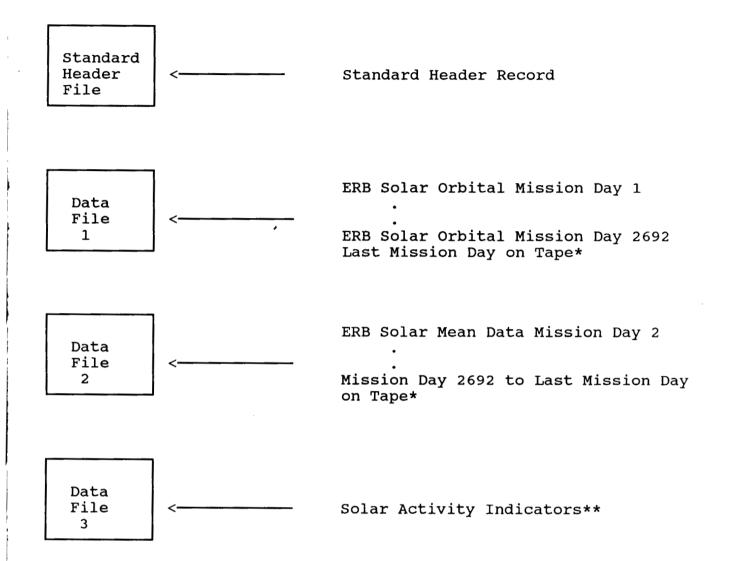
The solar activity indicators on the ESAT are not the most comprehensive, but do constitute a long-time series of the more common and useful indicators. A description of the contents of the solar activity data set is as follows:

- Zurich Relative Sunspot Number (daily)
- Daily Calcium Plage Index
- Geomagnetic Index (Ap)
- Solar active regions including:
 - McMath-Hale region number
 - Coordinates of plage region including CM and latitude
 - Corrected area of plage region
 - Intensity of plage region
 - Mount Wilson sunspot group number
 - Coordinates of sunspot group area
 - Magnetic classification of sunspot area
 - Corrected area of sunspot group

3.4 Missing Data

Missing data in the orbital and mean data sets are flagged with -9999. Data gaps and ERB off days in the mean data are flagged with -9999. Gaps in the solar activity records are not flagged, but are simply missing as indicated by 0.

3.5 ESAT Tape Structure


The ESAT has three data files. Data File 1 contains the orbital data set, Data File 2 contains the daily mean data set, and Data File 3 contains the solar activity data. The physical structure of the tape is shown in Figure 3-1.

3.6 Summary of ESAT Solar Channel Uncertainties

The ESAT represents the highest level of precision of the ERB solar data currently available. The SEFDTs have been carefully screened for bad orbits, low temperatures (less than 18°C), and excessive off-axis angle (greater than 3.1 degrees). Along with quality controlled orbital data, the inclusion of daily mean solar data represents a significant improvement over the solar data available on the SEFDT. The degradation effects experienced by nine of the ten solar channels are retained on ESAT with no adjustments or corrections. The ERB off days (due to the ERB duty cycle of 3-days-on/1-day-off) are retained on ESAT as missing values.

A summary of the solar channels is presented below:

<u>Channel</u>	<u>NOBS</u>	Mean	Std. <u>Dev.</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Range</u>
1	731	1246.32	55.810	1168.32	1377.07	208.75
2	2217	1164.83	44.959	1083.82	1357.26	273.44
3	1588	1363.37	3.982	1357.31	1382.55	25.24
4	2217	922.07	21.376	878.11	990.42	112.31
5	2217	679.92	4.187	670.66	692.82	22.16
6	2217	208.00	3.745	185.22	211.00	25.78
7	2217	136.79	13.367	114.17	166.87	52.70
8	2217	81.50	11.211	66.41	109.28	42.87
9	2153	64.38	2.746	48.27	66.26	17.99
10	2217	1370.44	0.692	1367.10	1372.95	5.85

*March 31, 1986 is mission day 2692. **Not all solar activity indicators are available for all 89 months.

Figure 3-1. Physical Structure of ESAT Tape

43

SECTION 4

PHYSICAL STRUCTURE OF ESAT TAPE

4.1 Tape Organization

The ESAT Tape is a 9-track, unlabeled, 1600-BPI compatible tape. The first file contains the Nimbus Observation Processing System (NOPS) Standard Header. The second file contains the ERB solar orbital data for 89 months. The third file contains the ERB solar daily mean data for 89 months. The fourth file contains the solar activity indicator data. The NOPS Standard Header file is described in Appendix A.

4.2 Tape and File Specifications

Tape Specifications: 1600-BPI, 9-track, non-labeled tape

File Specifications:

	Header File	Data File 1	Data File 2	Data File 3
File Location	1	2	3	4
Record Length (bytes)	630	84 ¹	376 ²	48 ³
Record Format	unblocked	UT	UT	UT
Data Type	EBCDIC	binary	binary	binary
REC ID No.	none	100	200	300

¹84 bytes per observations by 27,671 observations = 2,324,364 bytes
²376 bytes per day by 2,692 days = 1,012,192
³48 bytes per observation by 2,692 days = 129,216 bytes minimum
The total number of bytes for the solar activity data set 559,324 bytes.

4.3 ESAT Data File Specifications

Tables 4.1, 4.2, and 4.3 and the accompanying information describe in detail the word location of each data item in each data file. A description of each data item is also included. Appendix C includes the scale factors used to generate the ESAT data set.

PRECEDING FAGE ELANK NOT FILMED

PAGE 44 INTENTIONALLY BLANK

Table 4-1 ESAT Orbital Data Record Format

	MSB	LSB				
WORDS	32	0	BITS			
1	RECORD NUMBER	RECORD ID	32			
2	ORBIT NO.	SPARE	64			
3	YEAR	DAY OF YEAR	96			
4	SOLAR AZIMUTH	SOLAR ELEVATION	128			
5	INSTRUMENT STATUS WORD	GAMMA ANGLE	160			
6	EARTH-SUN DISTANCE (MSB)	EARTH-SUN DISTANCE (LSB)	192			
7	CHANNEL 3 TEMPERATURE					
8	CHANNEL 10C TEMPERATURE					
9-18	CHANNEL 1-10C IRRADIANCE					
19	SOUTH TERM. (HRS/MIN)	SOUTH TERM. (SECS)	608			
20	MISSION DAY	OFF-AXIS ANGLE	640			
21	COSINE-CORRECTED CHANNEL 10C IRRADIANCES 672					

WORDS 1-6 AND 19-20 ARE IBM INTEGER *2 FORMAT WORDS 7-18 AND 21 ARE IBM INTEGER *4 FORMAT

Table 4-2 ESAT Daily Mean Data Record Format

I.

WORDS	32		BITS		
1	RECORD NUMBER	RECORD ID	32		
2-6	ORBIT NO. (MEAN, ST	D. DEV., MIN., MAX., NO.)	192		
7	YEAR		224		
8	DAY OF YEAR		256		
9-13	SOLAR AZIMUTH (MEAN	N, STD. DEV., MIN., MAX., NO.)	416		
14-18	SOLAR ELEVATION (M	SOLAR ELEVATION (MEAN, STD. DEV., MIN., MAX., NO.) 576			
19-23	GAMMA ANGLE (MEAN, STD. DEV., MIN., MAX., NO.) 736				
24-28	CHANNEL 3 TEMPERATURE (MEAN, STD. DEV., MIN., MAX., NO.)				
29-33	CHANNEL 10C TEMPERATURE (MEAN, STD. DEV., MIN., MAX., NO.)				
34-83	CHANNEL 1-10C IRRADIANCE (MEAN, STD. DEV., MIN., MAX., NO.)				
84	MISSION DAY				
85-89	OFF-AXIS ANGLE (MEA	OFF-AXIS ANGLE (MEAN, STD. DEV., MIN., MAX., NO.) 2			
90-94	COSINE-CORRECTED CH (MEAN, STD. DEV., M	IANNEL 10C IRRADIANCE IIN., MAX., NO.)	3008		

WORD 1 IS IBM INTEGER *2 FORMAT WORDS 2-94 ARE IBM INTEGER *4 FORMAT

Table 4-3 ESAT Solar Activity Data Record Format

WORDS	32		BITS
1	RECORD NUMBER	RECORD ID	32
2	YEAR	DAY OF YEAR	64
3	NO. PLAGE REGIONS (NPR)	NO. SUNSPOT GROUPS (NSG)	96
4	ZURICH SUNSPOT NO.	2800 MHz SOLAR FLUX	128
5	DAILY CALCIUM PLAGE INDEX	GEOMAGNETIC AP INDEX	160
6	CMP DATE	MH REGION NO.	224
7	LAT (PLAGE)	LON (PLAGE)	288
8	AREA	INTENSITY	352
9	CAR. LON (PLAGE)	BLANK (9999)	416
10	MT. WILSON (GROUP NO.)	LAT (SUNSPOT)	480
11	LON (SUNSPOT)	CAR. LON (SUNSPOT)	544
12	AREA (SUNSPOT)	MAG. CLASS (SUNSPOT)	608

*MINIMUM OF 608 BITS, DEPENDS ON NUMBER OF PLAGE REGIONS AND SUNSPOT GROUPS PER DAY.

ESAT SOLAR ANALYSIS TAPE--DATA FILE 1 ORBITAL ITEM DESCRIPTIONS

- ----

<u>ITEM NO.</u>	WORD	<u>TYPE</u>	DETAILED DESCRIPTION OF DATA ITEMS
,			NOTE: Scaling factor for the data contained within the data array is as follows: True Values = Integer Value/Scaling Factor.
1	1	I*2	RECORD NO: Number of this record in this file.
2	1	I*2	RECORD ID: Record identification number. 100 = Orbital File.
3	2	I*2	ORBIT NO: Data orbit number.
4	2		Spare (-9999).
4	3	I*2	YEAR: 4-digit year.
5	3	I*2	DAY OF YEAR: Day number.
6	4	I*2	SOLAR AZIMUTH: Azimuth of sun relative to the spacecraft axes. Ranges from -180 to +180. Stored in tenths of a degree. Same as DSAS alpha angle.
7	4	I*2	SOLAR ELEVATIONS: Elevation of sun relative to the space- craft axes. Ranges from -180 to +180. Stored in tenths of a degree. Same as DSAS beta angle, in tenths of a degree.
8	5	I * 2	INSTRUMENT STATUS WORD: Determined from VIP MF.
			Units Decimal Digit (indicates position of scanhead)
			0 = Scan mode3 = LW check position1 = Nadir position4 = SW check position2 = Space position9 = Transition mode
			<u>Tens Decimal Digit</u> (indicates status of shutters, channels 1, 11, and 12)
			 0 = Reference channels CLOSED, Channel 12 OPEN 1 = Reference channels CLOSED, Channel 12 CLOSED 2 = Reference channels OPEN, Channel 12 OPEN 3 = Reference channels OPEN, Channel 12 CLOSED 9 = Status unknown
			Hundreds Decimal Digit (indicates status of Channel 12 FOV)
			0 = Channel 12 FOV Wide 1 = Channel 12 FOV narrow 9 = Status unknown

49

.

<u>ITEM NO.</u>	WORD	<u>TYPE</u>	DETAILED DESCRIPTION OF DATA ITEMS
			<u>Thousands Decimal Digit</u> (indicates status of Electrical Calibra- tion (ECAL), and Go/No-Go heater)
			0 = Go/No-Go heater OFF, ECAL OFF 1 = Go/No-Go heater OFF, ECAL ON 2 = Go/No-Go heater ON, ECAL OFF 9 = Status unknown
9	5	I*2	GAMMA ANGLE: Solar channel subassembly position at middle of major frame (MF).
10	6	I*2	EARTH-SUN DISTANCE: MSB Earth-Sun distance in AU (see Appendix E).
11	6	I*2	EARTH-SUN DISTANCE: LSB Earth-Sun distance in AU (see Appendix E).
12	7	I * 4	CHANNEL 3 TEMPERATURE: Temperature in degrees centi- grade, in tenths of a degree.
13	8	I*4	CHANNEL 10c TEMPERATURE: Temperature in degrees centi- grade, in tenths of a degree.
14-24	9-18	I * 4	CHANNELS 1 through 10c IRRADIANCES: Channels 1 through 10c irradiances are in W/m^2 . Channels 1 through 5 and 10c are in tenths of a W/m^2 (e.g., 13705 on ESAT is actually 1370.5 W/m^2); channels 6 through 9 are in hundredths of a W/m^2 .
25	19	I * 2	SOUTHERN TERMINATOR (HRS/MIN): GMT hours/minutes of southern terminator crossing.
26	19	I * 2	SOUTHERN TERMINATOR (SECS): GMT seconds of southern terminator crossing (1-60).
27	20	I * 2	MISSION DAY: Mission day number starting with 1 on 16 November 1978.
28	20	I*2	OFF-AXIS ANGLE: Calculated sum of solar azimuth and gamma angles, in tenths of a degree.
29	21	I*4	COSINE-CORRECTED CHANNEL 10c: Channel 10c irradiance corrected with cosine of off-axis angle, in tenths of a W/m^2 .

ESAT SOLAR ANALYSIS TAPE--DATA FILE 2 ERB DAILY MEAN ITEM DESCRIPTIONS

<u>ITEM NO.</u>	WORD	<u>TYPE</u>	DETAILED DESCRIPTION OF DATA ITEMS
			NOTE: Scaling factor for the data contained within the data array is as follows: True Values = Integer Value/Scaling Factor.
1	1	I*2	RECORD NO: The number of this record in this file.
2	1	I*2	RECORD ID: The record identification for this file. 200 = daily mean.
3	2-6	I * 4	ORBIT NO: Data orbit number. MEAN: Scaled by 10. STD. DEV.: Scaled by 10,000. MINIMUM: Minimum orbit number. MAXIMUM: Maximum orbit number. NUMBER: Number of orbits to calculate mean per day.
4	7	I * 4	YEAR: 4-digit year.
5	8	I * 4	DAY OF YEAR: Day number.
6	9-13	I*4	SOLAR AZIMUTH: Azimuth of sun relative to spacecraft axes. Value in degrees (-180 to +180). MEAN: Scaled by 10,000. STD. DEV.: Scaled by 1,000,000. MINIMUM: Minimum solar azimuth, scaled by 10. MAXIMUM: Maximum solar azimuth, scaled by 10. NUMBER: Number to calculate mean solar azimuth per day.
7	14-18	I*4	 SOLAR ELEVATION: Elevation of sun relative to spacecraft axes. Value in degrees (-180 to +180). MEAN: Scaled by 100,000. STD. DEV.: Scaled by 1,000,000. MINIMUM: Minimum solar elevation, scaled by 10. MAXIMUM: Maximum solar elevation, scaled by 10. NUMBER: Number to calculate mean solar elevation per day.
8	19-23	I*4	GAMMA ANGLE: Solar channel subassembly position at middle of MF. MEAN: Scaled by 100,000. STD. DEV.: Scaled by 1,000,000. MINIMUM: Minimum gamma angle. MAXIMUM: Maximum gamma angle. NUMBER: Number to calculate mean gamma angle per day.
9	24-28	I*4	 CHANNEL 3 TEMPERATURE: Temperature of channel 3 in degrees centigrade. MEAN: Scaled by 10,000. STD. DEV.: Scaled by 100,000. MINIMUM: Minimum channel 3 temperature, scaled by 10. MAXIMUM: Maximum channel 3 temperature scaled by 10. NUMBER: Number to calculate mean channel 3 temperature per day.

<u>ITEM NO.</u>	<u>WORD</u>	<u>TYPE</u>	DETAILED DESCRIPTION OF DATA ITEMS
10	29-33	I*4	CHANNEL 10c TEMPERATURE: Temperature of channel 10c in degrees centigrade. MEAN: Scaled by 10,000. STD. DEV.: Scaled by 100,000. MINIMUM: Minimum channel 10c temperature, scaled by 10. MAXIMUM: Maximum channel 10c temperature, scaled by 10. NUMBER: Number to calculate mean channel 10c temperature per day.
11	34-83	I*4	 IRRADIANCES: Channels 1 through 10c irradiances in W/m². MEAN: Channels 1 through 3, 10c scaled by 100; channels 4 through 7 scaled by 1000; channels 8 through 9 scaled by 10,000. STD. DEV.: Channels 2, 4, and 10c scaled by 100,000; channels 1, 3 scaled by 1,000,000; channels 7 through 9 scaled by 10,000,000. MINIMUM: Minimum channels 1 through 10c irradiances. Channels 1 through 5, 10c scaled by 10; channels 6 through 9 scaled by 100. MAXIMUM: Maximum channels 1 through 10c irradiances. Channels 1 through 5, 10c scaled by 10; channels 6 through 9 scaled by 100. MAXIMUM: Maximum channels 1 through 10c irradiances. Channels 1 through 5, 10c scaled by 10; channels 6 through 9 scaled by 100. NUMBER: Number to calculate mean channels 1 through 10c irradiances per day. NOTE: Irradiances are stored as channel 1 (MEAN, STD. DEV., MIN, MAX, NUMBER),, channel 10c (MEAN, STD. DEV., MIN, MAX, NUMBER)
12	84	I*4	MISSION DAY: Day number starting with 1 on 16 November 1978.
13	85-89	I*4	OFF-AXIS ANGLE: Calculated sum of solar azimuth and gamma angle. MEAN: Scaled by 1,000,000. STD. DEV.: Scaled by 10,000. MINIMUM: Minimum off-axis angle, scaled by 10. MAXIMUM: Maximum off-axis angle, scaled by 10. NUMBER: Number to calculate mean off-axis angle per day.
14	90-94	I*4	COSINE-CORRECTED CHANNEL 10C: Channel 10c irradiance corrected by cosine of off-axis angle. MEAN: Scaled by 100. STD. DEV.: Scaled by 100,000. MINIMUM: Minimum corrected channel 10c irradiance scaled by 100. MAXIMUM: Maximum corrected channel 10c irradiance scaled by 100. NUMBER: Number to calculate mean corrected channel 10c irradiance per day.

ESAT SOLAR ANALYSIS TAPE--DATA FILE 3 SOLAR ACTIVITY INDICATORS

<u>ITEM NO.</u>	WORD	<u>TYPE</u>	DETAILED DESCRIPTION OF DATA ITEMS
			NOTE: Scaling factor for the data contained within the data array is as follows: True Values = Integer Value/Scaling Factor
1	1	I*2	RECORD NO.: The number of this record in this file.
2	1	I*2	RECORD ID: The record identification of this file. Solar Activity = 300.
3	2	I*2	YEAR: 4-digit year.
4	2	I*2	DAY OF YEAR: Day number.
5	3	I*2	PLAGE REGION NO.: Number of plage regions for this day. If 0, then no observations are available for this day.
6	3	I*2	SUNSPOT GROUP NO.: Number of sunspot groups for this day. If 0, then no observations are available for this day.
7	4	I*2	ZURICH RELATIVE SUNSPOT NO.: Daily index of solar activity. Daily sunspot numbers.
8	4	I*2	OTTAWA 2800 MHz SOLAR FLUX: Daily index of solar activity. Daily radio emissions from active regions in 10 to 22 Wm ⁻² Hz ⁻¹ in tenths of a degree.
9	5	I*2	DAILY CALCIUM PLAGE INDEX: Summation of all plages visible on solar disk, corrected for distance from center, in tenths of a degree.
10	5	I*2	GEOMAGNETIC INDEX: Geomagnetic Ap series measurement of magnetic activity due to solar activity, in tenths of a degree.
11	6-9	I*2	SOLAR PLAGE REGION DATA: Consists of the following seven parameters:
			MCMATH-HALE REGION NUMBER: Number assigned to region of solar activity.
			CENTRAL MERIDIAN PASSAGE DATE: Greenwich date of central meridian passage at time of observation in hours from $12^{h}UT$, in tenths of a degree.
			LATITUDE: Latitude of region in degrees north or south of solar equator. South latitudes are negative.
			CENTRAL MERIDIAN DISTANCE: Distance east or west of central meridian of region. Measured 0° to 90° west is nega- tive.

ITEM NO. WORD TYPE DETAILED DESCRIPTION OF DATA ITEMS

AREA: Area of region corrected for distance from the center of the solar disk in millionths of solar hemisphere.

INTENSITY: Intensity of region on a scale of 1 = faint to 5 = very bright, in tenths of a degree.

CARRINGTON LONGITUDE: Central meridian that passed through solar disk on January 1, 1854 at 12^hUT. Measured 0° to 360° to the west. Note: More than one solar plage region per day may be visible.

BLANK FIELD: Filled with 9999.

10-12 I*2 SOLAR SUNSPOT GROUP DATA: Consists of the following parameters:

MT. WILSON GROUP NUMBER: Number assigned to sunspot group.

LATITUDE: Latitude of group north or south of solar equator. South latitudes are negative.

CENTRAL MERIDIAN DISTANCE: Distance east or west of central meridian of group. Measured 0° to 90° west is negative.

CARRINGTON LONGITUDE: Same description as above for sunspot group.

AREA: Area of group in millionths of solar hemisphere.

MAGNETIC CLASSIFICATION: Magnetic classification of sunspot configuration on a numerical scale of 0 to 9. Note: More than one sunspot group per day may be visible.

SECTION 5

REFERENCES

- Babcock, H. W., "The topology of the Sun's magnetic field and the 22-year cycle," <u>Ap. J.</u>, <u>133</u>, 572-587, 1961.
- Bogart, R. S. and T. Bai, "Confirmation of a 152-day periodicity in the occurrence of solar flares inferred from microwave data," <u>Apl J. Letters</u>, <u>297</u>, L51-L55, 1985.
- Christensen-Dalsgaard, J., D. Gough, and J. Toomre, "Seismology of the Sun," <u>Science</u>, <u>229</u>, 923, 1985.
- Drummond, A. J. and J. R. Hickey, "The Eppley-JPL solar constant measurement program," <u>Solar</u> <u>Energy</u>, <u>12</u>, 217-232, 1968.
- Eddy, J. A., "The maunder minimum," Science, 192, 4245, 1189-1202, 1976.
- Eddy, J. A., P. A. Gilman, and D. E. Trotter, "Solar rotation during the maunder minimum," <u>Solar</u> <u>Phys.</u>, <u>46</u>, 3-14, 1976.
- Eddy, J. A., "Climate and the changing Sun," <u>Clim. Change</u>, <u>1</u>, 173-190, 1977.
- Eddy, J. A., R. L. Gilliland, and D. V. Hoyt, "Changes in the solar constant and climatic effects," Nature, 300, 689-693, 1982.
- Foukal, P. V., P. E. Mack, and J. E. Vernazza, "The effect of sunspots and faculae on the solar constant," Ap. J., 215, 952-959, 1977.
- Foukal, P. V. and J. Vernazza, "The effect of magnetic fields on solar luminosity," <u>Ap. J.</u>, <u>234</u>, 707-715, 1979.

Foukal, P. and J. Lean, "The influence of faculae on total solar irradiance and luminosity," <u>Ap. J.</u>, <u>302</u>, 826-835, 1986.

- Foukal, P., "Physical interpretation of variations in total solar irradiance," J. Geophys. Res., 92, D1, 801-807, 1987.
- Frohlich, C., "Variability of the solar constant on time scales of minutes to years," J. Geophys. <u>Res.</u>, 92, D1, 796-800, 1987.
- Hickey, J. R., "A satellite experiment to establish the principal extraterrestrial solar energetic fluxes and their variance in the extraterrestrial solar spectrum," a chapter in <u>The Extraterrestrial Solar Spectrum</u>, A. J. Drummond and M. P. Thekaekara, Eds., Pub. by <u>Inst. of</u> <u>Environ. Sci.</u>, Mt. Prospect Illinois, 135-160, 1973.
- Hickey, J. R. and A. R. Karoli, "Radiometric calibrations for the Earth radiation budget experiment," <u>Appl. Opt.</u>, <u>13</u>, 3, 523-533, 1974.
- Hickey, J. R., L. L. Stowe, H. Jacobowitz, P. Pelligrino, R. H. Maschhoff, F. House, and T. H. Vonder Haar, "Initial solar irradiance determination from Nimbus-7 cavity radiometer measurements," <u>Science</u>, 208, 281-283, 1980.

- Hickey, J. R., B. M. Alton, F. J. Griffin, H. Jacobowitz, P. Pelligrino, and R. H. Maschhoff, "Indications of solar variability in the near UV from Nimbus-7 ERB experiment," Collection of Extended Abstracts, IAMAP. Third Scientific Assembly, Hamburg, F. R. G., August 17-28, Boulder, CO, 103-109, 1981.
- Hickey, J. R., B. M. Alton, F. J. Griffin, H. Jacobowitz, P. Pelligrino, R. H. Maschhoff, E. A. Smith, and T. H. Vonder Haar, "Extraterrestrial solar irradiance variability, two and one-half years of measurements from Nimbus-7," <u>Solar Energy</u>, 29, 125-127, 1982.
- Hickey, J. R. and B. M. Alton, "Extraterrestrial solar irradiance results from the ERB experiment of Nimbus-7," Fifth Conference on Atmospheric Radiation, AMS, Baltimore, MD, October 31-November 4, 444-447, 1983.
- Hickey, J. R., E. R. Major and H. L. Kyle, "User's guide for the Nimbus-7 ERB Solar Analysis Tape (ESAT)," NASA Technical Memorandum 86143, August 1984 (NASA/Goddard Space Flight Center, Greenbelt, MD 20771), 83 pages, 1984.
- Hickey, J. R., B. M. Alton, H. L. Kyle, R. H. Maschhoff, and E. R. Major, "Comments on solar irradiance measurements from Nimbus-7," Symposium for the Sixth International Pyroheliometer Comparison, PMOD, Davos, Switzerland, October 1-18, 1985.
- Hickey, J. R., "Analysis of calibration of Nimbus-7 radiometry, in advances in absolute radiometry," ed. by P. Foukal, pp. 30-33, Cambridge Research and Instrumentation, Inc., Cambridge, MA, 1985.
- Hickey, J. R., H. L. Kyle, B. M. Alton, and E. R. Major, "ERB Nimbus-7 solar measurements: 7 years," Extended Abstract, Sixth Conference on Atmospheric Radiation, Williamsburg, VA (AMS), pp. 290-293, May 13-16, 1986.
- Hoyt, D. V., and J. A. Eddy, 1983: "Solar irradiance modulation by active regions from 1969 through 1981," <u>Geophys. Res. Lett.</u>, 10, 509-512.
- Hudson, H. S., "Solar variability and oscillations," Rev. Geophys., 25, 3, pp. 651-662, 1987.
- Jacobowitz, H., L. L. Stowe, and J. R. Hickey, "The Earth Radiation Budget (ERB) experiment," in the Nimbus-7 User's Guide, NASA/Goddard Space Flight Center, Greenbelt, MD pp. 33-69, 1978.
- Jacobowitz, H., H. V. Soule, H. L. Kyle, F. B. House, and the Nimbus-7 ERB Experiment Team, "The Earth Radiation Budget (ERB) experiment: an overview," J. Geophys. Res., 89, pp. 5021-5038, 1984.
- Kerr, R. A., "The Sun is fading," Research News, Science, 231, p. 339, 1986.
- Kyle, H. L., P. E. Ardanuy, and E. J. Hurley, "The status of the Nimbus-7 ERB Earth radiation budget data set," <u>Bull. Amer. Meteor. Soc.</u>, <u>66</u>, 1378-1388, 1985.
- LaBonte, B. J., G. A. Chapman, H. S. Hudson, and R. C. Willson, eds., "Solar irradiance variations on active region time scales," NASA Conference Publication 2310, 1984.
- Lean, J., "Solar ultraviolet irradiance variations: a review," <u>J. Geophys. Res.</u>, <u>92</u>, D1, 839-868, 1987.

Newkirk, G., Jr., "Variations in solar luminosity," Ann. Rev. Astron. Astrophys., 21, 429-467, 1983.

- Oster, L., K. Schatten, and S. Sofia, "Solar irradiance variations due to active regions," <u>Ap. J.</u>, <u>256</u>, 768-773, 1982.
- Pap, Judit, "Variations of the solar constant during 1978-79 and 1981," <u>Bull. Astron. inst. Czechol.</u>, <u>37</u>, pp. 202-210, 1986.
- Predmore, R. E., H. Jacobowitz, and J. R. Hickey, "Exospheric cleaning of the Earth radiation budget solar radiometer during solar maximum," Spacecraft Contamination Environment, <u>Proc.</u> <u>SPIE</u>, <u>338</u>, 103-113, 1982.
- Ray, S. N., R. J. Tighe, and S. A. Scherrer, "User's guide for ERB 7 SEFDT," NASA Contract Report CR170616, NASA/GSFC, Greenbelt, MD, 1984.
- Ribes, E., J. C. Ribes, and R. Barthalot, "Evidence for a larger Sun with a slower rotation during the seventeenth century," <u>Nature</u>, <u>326</u>, 52-55, 1987.
- Rieger, E., G. H. Share, D. J. Forrest, G. Kanbach, C. Reppin and E. L. Chubb, "A 154-day periodicity in the occurrence of hard solar flares?," <u>Nature</u>, <u>312</u>, 623-625, 1984.
- Robinson, L. J., "The sunspot cycle: tip of the iceberg," Sky and Telescope, 589-591, June 1987.
- Schatten, K. H., N. Miller, S. Sofia, A. J. Endal, G. Chapman, and J. Hickey, "The importance of improved facular observations in understanding solar constant variations," <u>Ap. J.</u>, 294, 689-696, 1985.
- Schatten, K. H., G. M. Mayr, and K. Omidvar, "Active region influence upon the solar constant," <u>J.</u> <u>Geophys. Res.</u>, <u>92</u>, D1, 818-822, 1987.
- Smith, E. A., T. H. Vonder Haar, J. R. Hickey, and R. H. Maschhoff, "The nature of short period fluctuations in solar irradiance received by the Earth," <u>Clim. Change</u>, <u>5</u>, 211-235, 1983.
- Sofia, S., ed., "Variations of the solar constant," NASA Conference Publication 2191, NASA/GSFC, Greenbelt, MD, 1981.
- Soule, H., "Nimbus-6 and -7 Earth Radiation Budget (ERB) sensor details and component tests," NASA Technical Memorandum 83906, NASA/GSFC, Greenbelt, MD, 1983.
- Taylor, V. R. and L. L. Stowe, "Reflectance characteristics of uniform Earth and cloud surfaces derived from Nimbus-7 ERB," J. Geophys. Res., 89, 4987-4996, 1984.
- Taylor, V. R. and L. L. Stowe, "Revised reflectance and emission models from Nimbus-7 ERB data," Extended Abstracts, Sixth Conference on Atmospheric Radiation, Williamsburg, VA (AMS), J19-J22, May 13-16, 1986.
- Willson, R. C., S. Golkis, M. Janssen, H. S. Hudson, and G. A. Chapman, "Observations of solar irradiance variability," <u>Science</u>, 211, 700-702, 1981.
- Willson, R. C., "Measurements of solar total irradiance and its variability," <u>Space Sci. Rev.</u>, <u>38</u>, 203-242, 1984.
- Willson, R. C., H. S. Hudson, C. Frohlich, and R. W. Brusa, "Observations of a long-term downward trend in total solar irradiance," <u>Science</u>, 234, 1114-1117, 1986.

Wolff, C. L., "The rotational spectrum of g-modes in the Sun," Ap. J., 264, 667-676, 1983.

- Wolff, C. L. and J. R. Hickey, "Multiperiodic irradiance changes caused by r-modes and g-modes," Solar Phys., 109, 1-18, 1987a.
- Wolff, C. L. and J. R. Hickey, "Solar irradiance change and special longitudes due to r-modes," Science, 235, 1631-1633, 1987b.
- Woodard, M. and H. Hudson, "Solar oscillations observed in the total irradiance," <u>Solar Phys.</u>, <u>82</u>, 62-73, 1983.

LIST OF ACRONYMS, INITIALS, AND ABBREVIATIONS

ļ

ACRIM	Active Cavity Radiometer Irradiance Monitor
ARO	Algonquin Radio Observatory
bpi	bits per inch
CCT	computer-compatible tape
Ch	Channel
CIRA	Cooperative Institute for Research in the Atmosphere
DSAS	Digital Solar Aspect Sensor
ECAL	Electrical Calibration
EPT	ERB Processing Team
ERB	Earth Radiation Budget
ESAT	ERB Solar Analysis Tape
FOV	field of view
GSFC	Goddard Space Flight Center
H-F	Hickey-Frieden
ID	identification
IPS	International Pyrheliometric Scale
IR	infrared
ISW	Instrument Status Word
JPL	Jet Propulsion Laboratory
LaRC	Langley Research Center
Isb	least significant bit
Iw	longwave
MAT	Master Archival Tape
max	maximum
mf	major frame
min	minimum
msb	most significant bit
NASA	National Aeronautics and Space Administration
NESDIS	National Environmental Satellite, Data, and Information Service
NET	Nimbus Experiment Team
NGDC	National Geophysical Data Center
NIP	Normal Incidence Pyrheliometer
NOAA	National Oceanic and Atmospheric Administration
NOPS	Nimbus Observation Processing System
NPR	Number of Plage Regions
NSG	Number of Sunspot Groups
NSSDC	National Space Science Data Center
PCDS	Pilot Climate Data System
1005	The children but by the second

59

QC	Quality Control
RSM	Reference Sensor Model
SAS SAVER SEFDT SGD SMM So SQC SQC Std. Dev. Sub-D SW	Statistical Analysis System Seasonal Average (tape) Solar and Earth Flux Data Tape Solar Geophysical Data Solar Maximum Mission Southern Science Quality Control Standard Deviation Subsystem display Shortwave
TDF	Trailer Documentation File
UT UV	Universal Time Ultraviolet
WRR	World Radiometric Reference
ZMT	Zonal Means Tape

APPENDIX A

NOPS STANDARD HEADER FILE AND TRAILER DOCUMENTATION FILE (TDF)

Every individual derivative products tape contains a Standard Header File and a Trailer Documentation File.* Each is written in a format common to all archival tapes produced by the Nimbus Observation Processing System (NOPS).

The Standard Header File is the first file on any tape. It is used to define key characteristics of the tape.

The Trailer Documentation File (TDF) is the last file on any tape. It is intended to provide a geneology of the current product by providing data relating to previous products that went into the making of the current product.

A.1 Standard Header File

The standard header file contains two identical blocks (physical records) of 630 characters, written in EBCDIC. Each block consists of five 126-character lines.

Lines 1 and 2 are written according to a standardized format called the NOPS Standard Header Record.

Line 1:

<u>COLUMNS</u>	DESCRIPTION
1	An indicator to show that a TDF will be found at the end of a tape (blank = no TDF; * = TDF present).
2-24	Label: NIMBUS-7 _b NOPS _b SPEC _b No _b T.
25-30	Tape Specification Number. See Appendix D.
31-37	Label: _b SQ _b NO _b .
38-39	PDF Code:
	AS = ESAT.
40-45, 47 40	Tape sequence number, defined as follows: The last digit of the year in which the data were acquired.
41-43	Day of the year in which the data were acquired.
44	Sequence number for this particular product.

*Trailer Documentation File not included on ESAT Tape. b = blank

<u>COLUMNS</u>	DESCRIPTION
45	The existing hyphen remains unless there is a remake of the tape for any reason. In this case, an ascending alpha character will replace the hyphen, and the most recent reasons for remake will be recorded in logical record 4 of the header.
47	This will remain as a blank unless it is needed to remove ambiguities in character 40. This may occur if data are being acquired on or after October 24, 1988.
46	Copy Number: 1 = original 2 = copy.
47-52	Subsystem ID (with leading and trailing blank). For ERB code is 1.
53-56	Generation (Source) Facility (see page 64).
57-60	Label: _b TO _b
61-64	Destination Facility (see page 64).
65-87	Start year, day, hour, minute, second for data coverage on this tape, in the form:
	_b START _b 19YY _b DDD _b HHMMSS _b
88-106	End year, day, hour, minute, second for data coverage on this tape, in the form:
	TO _b 19YY _b DDD _b HHMMSS _b
	In order to avoid unnecessary processing complications, the true ending date does not appear in the header record. Instead a fill date is used:
	1999 _b 365 _b 240000
107-126	Generation year, day, hour, minute, second that the tape was created in the form:

GEN_b19YY_bDDD_bHHMMSS_b

<u>COLUMNS</u>	DESCRIPTION
Line 2:	
1-12	Software program name and version number.
13-18	Program documentation reference number, if it exists.
19	Blank.
20-126	User-defined comments that may be more relevant to the user than the preceding ones.
Lines 3-5:	
	May contain further descriptive information about the tape, such as which software was used (program name, version number, and version date) or how this version of the data differs from the previous version.

i

NOPS PRODUCT SPECIFICATION CODES

- --

Tapes: A six-digit number prefixed with a T to denote TAPE will be used.

	Т	\mathbf{X}_{1}	X ₂	X ₃	X4	X ₅	\mathbf{X}_{6}
X1	5 = L	RB MMR HIR AM II IMS BUV/TOM ZCS AMS	1S				
X ₂	Sourc	e Facility	(Same co	de as Des	tination H	Facility)	
X ₃	1 = N	nation Fac OC (Pre-N	NOPS)				

- 2 = MDHS (NOPS)3 = SACC4 = IPD5 = LARC6 = NCAR7 = NOAA8 = OXFD9 = USER
- X4,X5 Tape number in sequence for subsystem (code to be derived depending on how many tapes are needed)

X₆ Tape Description: 1 = 9 Trk 1600 BPI2 = 9 Trk 800 BPI3 = 7 Trk 800 BPI4 = 7 Trk 556 BPI5 = HDT (IPD)6 = 9 Trk 6250 BPI

64

APPENDIX B

I.

ī

SEQUENCE NUMBERS OF THE SEFDT TAPES USED TO GENERATE SOLAR DATA AT EPPLEY LABORATORIES FOR THE ERB SOLAR ANALYSIS TAPE (ESAT)

DEC 1978 JAN 1979 FEB 1979	AD91521-3 AD91821-3	APR 1982 MAY 1982 JUN 1982 JUL 1982	AD13051-3 AD13361-3 AD20011-3 AD20321-3 AD20601-3 AD20911-3 AD21211-3 AD21521-3 AD21831-3 AD22441-3 AD22441-3 AD22751-3	APR 1985	AD43061-3 AD43361-3 AD50011-3 AD50321-3 AD50601-3 AD50911-3 AD51211-3 AD51521-3 AD51521-3 AD51821-3 AD52131-3 AD52441-3 AD52741-3
APR 1980 May 1980 Jun 1980 Jul 1980	AD93051-3 AD05771-3 AD06241-3 AD06661-3 AD07111-3 AD07531-3 AD07951-3 AD08421-3 AD08831-3 AD09261-3 AD09731-3 AD00141-3	DEC 1982 JAN 1983 FEB 1983 MAR 1983 APR 1983 MAY 1983 JUN 1983 JUL 1983	AD23051-3 AD23361-3 AD30011-3 AD30321-3 AD30601-3 AD30911-3 AD31211-3 AD31521-3 AD31521-3 AD31831-3 AD32131-3 AD32441-3 AD32751-3	NOV 1985 DEC 1985 JAN 1986 FEB 1986 MAR 1986	AD53051-3 AD53351-3 AD60011-3 AD60321-3 AD60601-3
DEC 1980 JAN 1981 FEB 1981 MAR 1981 APR 1981 JUN 1981 JUL 1981	AD03061-3 AD03361-3 AD10011-3 AD19321-3 AD10601-3 AD10921-3 AD11211-3 AD11521-3 AD11821-3 AD12131-3 AD12441-3 AD12741-3	DEC 1983 JAN 1984 FEB 1984 MAR 1984 APR 1984 MAY 1984 JUN 1984 JUL 1984	AD33051-3 AD33361-3 AD40011-3 AD40321-3 AD40611-3 AD40921-3 AD41221-3 AD41531-3 AD41831-3 AD42141-3 AD42451-3 AD42751-3		

APPENDIX C

l

TABLE OF SCALE FACTORS DAILY MEAN DATA

DAT	<u>A ITEM</u>	<u>MEAN</u>	STANDARD <u>DEVIATION</u>	<u>MINIMUM</u>	MAXIMUM	NUMBER OF <u>ORBITS</u>
1.	Orbit No.	10	100,000	I	I	Ι
2.	Year	Ι	-			
3.	Day of year	I				
4.	Solar Azimuth	10,000	1,000,000	10	10	Ι
5.	Solar Elevation	100,000	1,000,000	10	10	Ι
6.	Gamma Angle	100,000	100,000	Ι	Ι	Ι
7.	Ch. 3 Temp	10,000	1,000,000	10	10	Ι
8.	Ch. 10c Temp	10,000	1,000,000	10	10	I
9.	Ch. 1 Irrad.	100	10,000,000	10	10	Ι
10.	Ch. 2 Irrad.	100	10,000,000	10	10	I
11.	Ch. 3 Irrad.	100	10,000,000	10	10	Ι
12.	Ch. 4 Irrad.	1000	100,000	10	10	Ι
13.	Ch. 5 Irrad.	1000	100,000	10	10	Ι.
14.	Ch. 6 Irrad.	1000	100,000	100	100	Ι
15.	Ch. 7 Irrad.	1000	1,000,000	100	100	I
16.	Ch. 8 Irrad.	10,000	1,000,000	100	100	I
17.	Ch. 9 Irrad.	10,000	1,000,000	100	100	Ι
18.	Ch. 10c Irrad.	100	1,000,000	10	10	Ι
19.	Mission Day	Ι				
20.	Off-Axis Angle	1,000,000	10,000	10	10	Ι
21.	Cosine Corrected					
	Ch. 10c Irrad.	100	100,000	100	100	Ι

I = Integer value; not scaled

NOTE: All data items on ESAT are in integer format and must be divided by the appropriate factor to obtain the actual real value.

PRECEDING PAGE BLANK NOT FILMED

67

PAGE 66 INTENTIONALLY BLANK

TABLE OF SCALE FACTORS ORBITAL DATA

DATA ITEM

SCALE FACTOR

1.	Orbit Number	I
2.	Year	I
3.	Day of Year	Ι
4.	Solar Azimuth	10
5.	Solar Elevation	10
6.	ISW	I
7.	Gamma Angle	I
8.	MSB E-S Distance	I
9.	LSB E-S Distance	I
10.	Ch. 3 Temp	10
11.	Ch. 10c Temp	10
12.	Ch. 1 Irrad.	10
13.	Ch. 2 Irrad.	10
14.	Ch. 3 Irrad.	10
15.	Ch. 4 Irrad.	10
16.	Ch. 5 Irrad.	10
17.	Ch. 6 Irrad.	100
18.	Ch. 7 Irrad.	100
19.	Ch. 8 Irrad.	100
20.	Ch. 9 Irrad.	100
21.	Ch. 10c Irrad.	10
22.	So. Term (hrs/min)	I
23.	So. Term (secs)	Ι
24.	Mission Day	Ι
25.	Off-Axis Angle	10
26.	Cosine Corrected Ch. 10c Irrad.	10

I = Integer value; not scaled

NOTE: All data items on ESAT are in integer format and must be divided by the appropriate factor to obtain the actual real value.

APPENDIX D

DATA AVAILABILITY

To obtain archived data, or information about it, call or write to--

National Space Science Data Center Code 633.4 Goddard Space Flight Center Greenbelt, Maryland 20771 Telephone: (301) 286-6695 Telex: 89675 NASCOM GBLT TWX: 7108289716 SPAN: NSSDC::REQUEST

A user's guide should be ordered by all first-time users of the data. Researchers who reside outside the USA should direct their request to--

World Data Center A for Rockets and Satellites Code 630.2 Goddard Space Flight Center Greenbelt, Maryland 20771 Telephone: (301) 286-6695 Telex: 89675 NASCOM GBLT TWX: 7108289716 SPAN: NSSDC::REQUEST

The data will also be made available on the NASA/GSFC Pilot Climate Data System (PCDS). This is a scientific information system for selected climate data sets. Users of the system may access the data and information about the data via local (i.e., at the GSFC) and remote computer terminals. They may learn about climate data, its availability, the details of the PCDS holdings, access, select and subset data sets of interest; perform data manipulation and comparisons; and obtain a wide variety of graphical representations of data.

The PCDS has many climate data sets, most of spacecraft origin. Data sets from the following experiments are supported in the PCDS.

- Nimbus-4 Backscatter Ultraviolet (BUV)
- Nimbus-4/5 Selective Chopper Radiometer (SCR)
- Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR)
- Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS)
- Nimbus-7 Solar Backscatter Ultraviolet (SBUV)
- Nimbus-7 Total Ozone Mapping Spectrometer (TOMS)
- Nimbus-7 Earth Radiation Budget (ERB)
- Nimbus-7 Stratospheric Aerosol Measurement (SAM II)
- AEM-2 Stratospheric Aerosol and Gas Experiment (SAGE)

- National Meteorological Center (NMC) Daily Analyses of Atmospheric Parameters
- World Monthly Surface Station Climatology
- First Global Atmospheric Research Program Global Experiment (FGGE)
- NOAA Heat Budget Data
- Middle Atmosphere Electrodynamics (MAD) miscellaneous data sets

In addition to the ERB Solar Analysis data set, the PCDS will also make available, in the future, selected data sets produced for the International Satellite Cloud Climatology Project (ISCCP).

Those interested in utilizing the PCDS should contact--

Ms. Lola Olsen PCDS User's Support Office National Space Science Data Center Code 634 NASA/Goddard Space Flight Center Greenbelt, Maryland 20771 Telephone: (301) 286-9760

APPENDIX E

UNPACKING EARTH-SUN DISTANCE

The Earth-Sun distance is stored on the ESAT Orbital Data File (2) as two 16-bit words. These words are referred to as the most significant bit (MSB) Earth-Sun distance and the least significant bit (LSB) Earth-Sun distance.

The procedure to unpack the Earth-Sun distance (in FORTRAN) is as follows:

INTEGER * 2 ESD(1), MSB, LSB INTEGER * 4 ESD1 EQUIVALENCE (ESD1, ESD(1)) . . ESD(1) = MSB ESD(2) = LSB ESD(1) = ESD1/10000 . .

APPENDIX F SOURCE CODE

Т

T

PAGE 72 INTENNIONALLY BLANK

_				
C				00000010
-			***************************************	
C			GRAM READS THE ERB SOLAR ANALYSIS TAPE (ESAT	
C			STANDARD HEADER FILE, THE FIRST 10	00000040
C			Y MEAN FILE, THE FIRST 10 RECORDS	00000050
C			, AND THE FIRST 10 RECORDS OF THE	00000060
C			FOR EACH YEAR.	00000070
C			E MODIFIED TO DUMP AS MANY OR AS FEW OM ANY FILE BY SPECIFYING THE	00000080
C			READ AND THE START AND END DATES TO DUMP.	00000090
C C	FILE NUMBE	EK TU DE P	KEAD AND THE START AND END DATES TO DOMP.	00000100 00000110
C	DETAILS OF	THTS TADE	E CAN BE FOUND IN THE "USER'S GUIDE	00000120
c			B SOLAR ANALYSIS TAPE (ESAT)", BY	00000120
C			DR, AND H.L.KYLE, NASA TECH. MEMO.	00000130
c			ENBELT, MD 20771, AUGUST 1984.	00000140
C	6014J; NAJA/	OSFC, OKE	INDEL13HD 207713A00031 1984.	00000160
c	THE REVISE	A LISERTS (GUIDE FOR ESAT WILL BE	00000170
c			HE NIMBUS 7 ERB SOLAR ANALYSIS	00000180
c			R.MAJOR, J.R.HICKEY, AND H.L.KYLE,	00000190
c			ICATION XXXX,NASA/GSFC,GREENBELT,	00000200
c	MD 20771.AU			00000210
c			•	00000220
č				00000230
č				00000240
c	ARGUMENT LI	IST - NONE	ŧ.	00000250
č				00000260
C				00000270
С	LOCAL VARIA	BLES:		00000280
С				00000290
	ARIABLE	TYPE	DESCRIPTION	00000300
с -			**	00000310
С	IFILE	I×4	FILE NUMBER TO BE READ:	00000320
С			IFILE=1 - NOPS STANDARD LABEL	00000330
С			IFILE=2 - ORBITAL SOLAR DATA	00000340
С			IFILE=3 - DAILY MEAN SOLAR DATA	00000350
С			IFILE=4 - SOLAR ACTIVITY INDICATORS	00000360
С				00000370
C	YYDDD1	I¥4	DATE TO BEGIN READING ESAT DATA	00000380
С			YY=2 DIGIT YEAR DDD=3 DIGIT DAY OF YEAR	00000390
С	YYDDD2	I¥4	DATE TO END READING ESAT DATA	00000400
С				00000410
С				00000420
-	CALLED FROM:	NONE. TH	IS IS THE MAIN PROGRAM	00000430
С				00000440
C	CALLS TO:			00000450
С	NOPS		EADS THE NOPS STANDARD HEADER FILE	00000460
С	DMEA		EADS THE DAILY MEAN SOLAR DATA FILE	00000470
С			ADS THE ORBITAL SOLAR DATA FILE	00000480
С	SOLA	R – RE	ADS THE SOLAR ACTIVITY DATA FILE	00000490
С				00000500
С	INPUT TAPE:	9-TRACK,	1600 BPI, RECFM=U, BLKSIZE=32760	00000510
С				00000520
С	PROGRAMMER :	G. MAJOR	R, RESEARCH & DATA SYSTEMS, INC.	00000530
С			· · · · · · · · · · · · · · · · · · ·	00000540
C C	LANGUAGE/CO	MPUTER: V	/S FORTRAN/IBM 3081 AT NASA/GSFC	00000550
				00000560

00000570 С **VERSION DATE: JULY 1984** С 00000580 С MODIFIED SEPTEMBER 1985; GRM-RDS, INC. 00000590 С 00000600 INCLUDES DATA THROUGH YEAR 6 (NOVEMBER 1978 - OCTOBER 1984) С 00000610 С 00000620 С MODIFIED JUNE 1985; GRM-RDS, CORP. TO INCLUDE YEAR 6 ESAT 00000630 С 00000640 MODIFIED JULY 1987 TO INCLUDE NEW SOLAR ACTIVITY FILE AND С 00000650 С 89 MONTHS OF NIMBUS 7 SOLAR DATA (NOV 1978 - MARCH 1986). 00000660 С 00000670 С 00000680 C 00000690 00000710 С READ FILE AND RECORD INFORMATION FROM UNIT 5 00000720 С 00000730 С 00000740 INTEGER*4 YYDDD1, YYDDD2 READ(5,1000,END=999) IFILE,YYDDD1,YYDDD2 00000750 10 1000 FORMAT(3110) 00000760 IF(IFILE.EQ.0) GO TO 10 00000770 WRITE(6,1001) YYDDD1,YYDDD2 00000780 FORMAT(/1X,' START DATE:', 110, 2X,' END DATE:', 110/) 1001 00000790 00000800 YR1=YYDDD1/1000. 00000810 IY1=YR1 ID1=((YR1-IY1)*1000)+1 00000820 YR2=YYDDD2/1000. 00000830 IY2=YR2 00000840 ID2=((YR2-IY2)*1000)+1 00000850 WRITE(6,1002) IY1,IY2,ID1,ID2 00000860 1002 FORMAT(/4I10) 00000870 С 00000880 IF(IFILE.EQ.1) CALL NOPS(IFILE) 00000890 IF(IFILE.EQ.2) CALL ORBTAL(IFILE,IY1,IY2,ID1,ID2) 00000900 IF(IFILE.EQ.3) CALL DMEAN(IFILE,IY1,IY2,ID1,ID2) 00000910 IF(IFILE.EQ.4) CALL SOLAR(IFILE,IY1,IY2,ID1,ID2) 00000920 00000930 GO TO 10 999 CONTINUE 00000940 STOP 00000950 FND 00000960 С 00000980 SUBROUTINE NOPS(IF) 00000990 С 00001000 FUNCTION - NOPS READS THE NOPS STANDARD HEADER LABEL ON 00001020 С С THE ERB SOLAR ANALYSIS TAPE (ESAT) AND 00001030 С PRINTS THE LABEL. 00001040 SEE APPENDIX A OF THE ESAT USER'S GUIDE. С 00001050 С 00001060 **ARGUMENT LIST:** 00001070 С С 00001080 IO TYPE DESCRIPTION С 00001090 VARIABLE ____ С -------00001100 С IF I IX4 ESAT FILE POSITION 00001110 С 00001120 00001130 С LOCAL VARIABLES: 00001140 С _____ _____ VARIABLE TYPE DESCRIPTION С 00001150 С ----- ----00001160 -----

С CONTENTS OF NOPS STANDARD LABEL LABEL L¥1 00001170 С 00001180 С CALLED FROM - MAIN 00001190 С 00001200 С CALLS TO: 00001210 С - FTIO TAPE POSITIONING ROUTINE POSN 00001220 С FREAD - FTIO TAPE READ ROUTINE 00001230 С 00001240 С PROGRAMMER - G. MAJOR, RESEARCH & DATA SYSTEMS, INC. 00001250 С 00001260 С COMPUTER/LANGUAGE - VS FORTRAN/IBM 3081 AT NASA/GSFC 00001270 С 00001280 С VERSION DATE - JULY 1984 00001290 С 00001300 LOGICAL*1 LABEL(630),LABEL2(126) 00001320 С 00001330 С POSITION TAPE TO FILE 1 00001340 С 00001350 CALL POSN(1,10,IF) 00001360 С 00001370 WRITE(6,1000) 00001380 1000 FORMAT(/' OPEN FILE 1 TO READ DATA'//10X, 'NOPS STANDARD HEADER', 00001390 1 ' LABEL'/) 00001400 С 00001410 С **READ FIRST FILE** 00001420 С 00001430 DO 20 L=1,2 00001440 CALL FREAD(LABEL, 10, LENGTH, 900, 900) 00001450 K=0 00001460 DO 10 I=1,5 00001470 DO 15 J=1,126 00001480 K = K + 100001490 LABEL2(J)=LABEL(K) 00001500 15 CONTINUE 00001510 С 00001520 С WRITE HEADER 00001530 С 00001540 WRITE(6,2000) LABEL2 00001550 2000 FORMAT(1X,126A1) 00001560 CONTINUE 10 00001570 С GO TO 20 00001580 20 CONTINUE 00001590 900 WRITE(6,3000) 00001600 FORMAT(//' END OF FILE 1 PROCESSING'//) 3000 00001610 RETURN 00001620 FND 00001630 С 00001650 SUBROUTINE ORBTAL(IF, IY1, IY2, ID1, ID2) 00001660 С 00001670 00001680 С 00001690 С FUNCTION - THIS ROUTINE WILL DUMP SELECTED RECORDS FROM 00001700 С THE ORBITAL DATA FILE OF THE ESAT TAPE (FILE 00001710 С 2 OF THE ESAT). 00001720 С 00001730 С THE DATA IN THE ORBITAL FILE IS AS FOLLOWS: 00001740 С RECORD NUMBER 00001750 С **RECORD ID** 00001760

			00001770
С	ORBIT		00001770
С	YEAR		00001780
С	DAY OF YEAR		00001790
С	SOLAR AZIMUTH ANG		00001800
С	SOLAR ELEVATION A		00001810
С	INSTRUMENT STATUS	WORD (ISW)	00001820
С	GAMMA ANGLE		00001830
С	MSB - EARTH-SUN D	ISTANCE	00001840
С	LSB - EARTH-SUN D	ISTANCE	00001850
С	CHANNEL 3 TEMPERA		00001860
С	CHANNEL 10C TEMPE	RATURE	00001870
С	CHANNELS 1-10C IR		00001880
С	COSINE-CORRECTED	CHANNEL 10C IRRADDIANCE	00001890
С			00001900
С	THIS FILE CONTAIN	S 276671 DATA POINTS	00001910
С	WITH EACH DAY CON	SISTING OF 84 BYTES	00001920
С			00001930
С	ARGUMENT LIST -		00001940
c			00001950
Ċ	VARIABLE TYPE ID DESCRIPTI	ON	00001960
c			00001970
c	IF I¥4 I FILE NUMB	FR	00001980
c	IY1,ID1 I¥4 I FIRST DAT	Έ ΤΟ DUMP ESAT DATA	00001990
c	IY2, ID2 I¥4 I SECOND DA		00002000
C			00002010
c	CALLED FROM: MAIN		00002020
c	CALLED FROM: MAIN		00002020
c	CALLS TO.		00002040
	CALLS TO:	UTTNE	00002050
С	POSN - FTIO TAPE POSITION RO		00002060
С	FREAD - FT10 TAPE READ ROUTI	NE	
С		RESEARCH & DATA SYSTEMS, INC.	00002070
С	PROGRAMMER/DESIGNER: G.MAJUR	RESEARCH & DATA SYSTEMS, INC.	00002080
С			00002090
С	LANGUAGE/COMPUTER: VS FORTRA	N/IBM 3081	00002100
С			00002110
С	VERSION DATE: DECEMBER 1984		00002120
С			00002130
С	MODIFIED SEPTEMBER 1985 BY G	RM-RDS,INC.	00002140
С			00002150
С	MODIFIED JUNE 1985 BY GRM-RD	S,CORP. TO INCLUDE YEAR 6 ESAT	
С			00002170
С	MODIFIED JULY 1987 TO INCLUD	E 89 MONTHS OF ESAT	00002180
С			00002190
С			00002200
С			00002210
CXXXXX	******	******	00002220
	DIMENSION KYEAR(2),KDAY(2),K	MSDAY(2)	00002230
С			00002240
	INTEGER*2 SOLORB(42), ISOLRB(4	2)	00002250
	INTEGER¥4 IR1(12)		00002260
	REAL*4 R2(12)		00002270
	INTEGER¥4 R10C		00002280
	EQUIVALENCE(IR1(1), SOLORB(13))	00002290
	EQUIVALENCE(R10C, SOLORB(41))		00002300
с			00002310
-	LENGTH=84		00002320
	IN=0		00002330
	J1 = 9999		00002340
	J2=0		00002350
	NOBS=27671		00002360

с		00002370
•	WRITE(6,1000)	00002380
1000	FORMAT(//' OPEN FILE 2 FOR PROCESSING'//20X, 'ORBITAL SOLAR',	00002390
1	' DATA FROM ESAT'//)	00002400
C		00002410
С	POSITION ESAT TAPE TO FILE 2	00002420
C		00002430
	CALL POSN(1,10,IF)	00002440
C		00002450
С	LOOP OVER ALL OBSERVATIONS AND READ ESAT ORBITAL FILE	00002460
С		00002470
	DO 105 KREC=1,NOBS	00002480
	CALL FREAD(ISOLRB,10,LENGTH,*900,*902)	00002490
C		00002500
С	STORE DATA IN TEMPORARY ARRAY	00002510
С		00002520
	DO 10 I=1,42	00002530
10	SOLORB(I)=ISOLRB(I)	00002540
10	CONTINUE	00002550
C	UNDACK AND DESCALE THE ODDITAL DATA	00002560
C C	UNPACK AND DESCALE THE ORBITAL DATA	00002570
L	IREC=ISOLRB(1)	00002580
	IRECID=ISOLRB(2)	00002590 00002600
	SOLAZ=SOLORB(7)/10.	00002610
	SOLEL=SOLORB(8)/10.	00002620
с		00002630
-	DO 50 J3=1,7	00002640
	R2(J3)=FLOAT(IR1(J3))/10.	00002650
50	CONTINUE	00002660
С		00002670
	DO 51 J4=8,11	00002680
	R2(J4)=FLOAT(IR1(J4))/100.	00002690
51	CONTINUE	00002700
C		00002710
	R2(12)=FLOAT(IR1(12))/10.	00002720
С		00002730
	Clocc=FLOAT(Rloc)/10.	00002740
	OFFAX=SOLORB(40)/10.	00002750
C		00002760
C	ORGANIZE ARRAYS TO KEEP TRACK OF YEAR, DAY AND MISSION DAY	00002770
С	TE(FDEC EQ 1) THEN	00002780
	IF(KREC.EQ.1) THEN KYEAR(2)=SOLORB(5)	00002790
	KDAY(2) = SOLORB(6)	00002800
	KMSDAY(2)=SOLORB(39)	00002810 00002820
	ELSE	00002820
	KYEAR(1)=KYEAR(2)	00002840
	KDAY(1) = KDAY(2)	00002850
	KMSDAY(1)=KMSDAY(2)	00002860
	KYEAR(2)=SOLORB(5)	00002870
	KDAY(2)=SOLORB(6)	00002880
	KMSDAY(2)=SOLORB(39)	00002890
	ENDIF	00002900
С		00002910
С	FILL IN FOR MISSING DAYS	00002920
С		00002930
391	CONTINUE	00002940
	MSDCK=0	00002950
	IF(KMSDAY(2).EQ9999) THEN	00002960

```
00002970
         KMSDAY(2)=KMSDAY(1)
         KYEAR(2)=KYEAR(1)
                                                                            00002980
         KDAY(2)=KDAY(1)
                                                                            00002990
         MSDCK=1
                                                                            00003000
        ENDIF
                                                                            00003010
       IF(DTACK.EQ.1) THEN
                                                                            00003020
                                                                            00003030
        KMSDAY(1)=FMSDAY
                                                                            00003040
        KYEAR(1)=FYEAR
                                                                            00003050
        KDAY(1)=FDAY
                                                                            00003060
       ENDIF
                                                                            00003070
        DTACK=0
        IF(KMSDAY(2).GT.KMSDAY(1)+1) THEN
                                                                            00003080
         IF(KDAY(1).NE.365.AND.KDAY(1).NE.366)THEN
                                                                            00003090
                                                                            00003100
          FYEAR=KYEAR(1)
          FDAY=KDAY(1)+1
                                                                            00003110
                                                                            00003120
         ELSE.
                                                                            00003130
          FYEAR=KYEAR(1)+1
                                                                            00003140
          FDAY=1
                                                                            00003150
         ENDIF
         FMSDAY=KMSDAY(1)+1
                                                                            00003160
         DTACK=1
                                                                            00003170
        ENDIF
                                                                            00003180
С
                                                                            00003190
        IF(STPCK.EQ.1.AND.KMSDAY(2).GT.J2) GO TO 900
                                                                            00003200
С
                                                                            00003210
        CHECK FOR FIRST AND LAST DAYS
                                                                            00003220
С
                                                                            00003230
С
                                                                            00003240
       IF(DTACK.EQ.0) THEN
         IF(IY1.EQ.KYEAR(2).AND.ID1.EQ.KDAY(2))
                                                                            00003250
                                                                            00003260
     1
         J1=KMSDAY(2)
         STPCK=0
                                                                            00003270
         IF(IY2.EQ.KYEAR(2).AND.ID2.EQ.KDAY(2)) THEN
                                                                            00003280
                                                                            00003290
           J2=KMSDAY(2)
           STPCK=1
                                                                            00003300
         ENDIF
                                                                            00003310
                                                                            00003320
       ELSE
                                                                            00003330
         IF(IY1.EQ.FYEAR.AND.ID1.EQ.FDAY)
     1
         J1=FMSDAY
                                                                            00003340
         STPCK=0
                                                                            00003350
         IF(IY2.EQ.FYEAR.AND.ID2.EQ.FDAY) THEN
                                                                            00003360
           J2=FMSDAY
                                                                            00003370
           STPCK=1
                                                                            00003380
         ENDIF
                                                                            00003390
       ENDIF
                                                                            00003400
                                                                            00003410
С
С
         FORMAT DATA FOR OUTPUT
                                                                            00003420
С
                                                                            00003430
С
        DUMP ONLY THE RECORDS INDICATED
                                                                            00003440
С
                                                                            00003450
                                                                            00003460
         IF(KMSDAY(2).GE.J1) THEN
                                                                            00003470
           IN=IN+1
           IF(IN.GT.1) GO TO 390
                                                                            00003480
           WRITE(6,4900)
                                                                            00003490
 4900
           FORMAT(//20X, '89 MONTHS OF ESAT ORBITAL DATA'//)
                                                                            00003500
 390
           CONTINUE
                                                                            00003510
                                                                            00003520
С
          TEST FOR MISSING DATA
С
                                                                            00003530
С
                                                                            00003540
        IF(DTACK.EQ.1) THEN
                                                                            00003550
           WRITE(6,4151)
                                                                            00003560
```

```
79
```

4151	FORMAT(//1X,'DAY',1X,'YEAR',1X,'MISDAY')	00003570
	WRITE(6,4152) FDAY,FYEAR,FMSDAY	00003580
4152	FORMAT(1X,13,2X,12,3X,15)	00003590
	WRITE(6,7000)	00003600
7000	FORMAT(//20X, ******** NO DATA*,	00003610
1	' AVAILABLE**********//)	00003620
	GO TO 391	00003630
	ELSE	00003640
С		00003650
С	WRITE SPECIFIED RECORDS	00003660
С		00003670
	WRITE(6,4150)	00003680
4150	FORMAT(//49X, 'EARTH-SUN DIS SO.TERM.OFF-'/	00003690
1		00003700
2		00003710
3		00003720
c		00003720
Ū	WRITE(6,5000) KDAY(2),KYEAR(2),SOLORB(3),	00003730
1		00003750
1		
2		00003760
5000		00003770
	FORMAT(1X,13,2X,12,3X,15,3X,14,1X,F7.2,1X,F7.2,1X,14,	00003780
1		00003790
2	11(F7.2,1X))	00003800
С		00003810
5003	WRITE(6,5001)	00003820
5001	FORMAT(/7X, 'TEMPERATURE', 22X, 'IRRADIANCE', 50X, 'COS.COR.'/	00003830
1		00003840
2		00003850
3	4X, 'CH.10C',1X, 'CH.10C'/)	00003860
С		00003870
	WRITE(6,5002) (R2(K),K=1,12),C10CC	00003880
5002	FORMAT(6X,F6.2,1X,F6.2,1X,11(F7.2,1X))	00003890
С		00003900
С	WRITE(20,8000) SOLORB(3),KYEAR(2),KDAY(2),SOLORB(11),	00003910
C 1	SOLORB(12),SOLORB(37),SOLORB(38)	00003920
C8000	FORMAT(17,2X,12,2X,13,2X,17,2X,17,2X,14,2X,12)	00003930
	ENDIF	00003940
	ENDIF	00003950
105	CONTINUE	00003960
	GO TO 900	00003970
902	WRITE(6,2001)	00003980
2001	FORMAT(//' ERROR IN TAPE READ'//)	00003990
	GO TO 999	00004000
900	CONTINUE	00004010
	WRITE(6,2000)	00004020
2000	FORMAT(/// END OF FILE 2 PROCESSING'//)	00004030
999	RETURN	00004040
	END	00004050
CXXXXX		
С		00004070
-	SUBROUTINE DMEAN(IFILE,IY1,IY2,ID1,ID2)	00004080
С		00004090

C		00004110
č	FUNCTION - THIS ROUTINE WILL OUTPUT DAILY MEAN SOLAR	00004120
c	DATA FROM THE ESAT TAPE.	
c	THE DATA CONTAINS THE MEAN, MAXIMUM, MINIMUM,	00004130
c	STANDARD DEVIATION AND NUMBER OF ORBITS. THE	00004140
c	DAILY MEAN SOLAR DATA IS AS FOLLOWS:	00004150
~	DATEL BERN JUENN DALA IJ AJ FULLUNJI	00004160

•			0000/170
C			00004170
C		RECORD NUMBER	00004180
С		RECORD ID	00004190
С		ORBIT (MEAN, SD, MIN, MAX, N)	00004200
С		YEAR	00004210
С		DAY OF YEAR	00004220
С		SOLAR AZIMUTH ANGLE (MEAN,SD,MIN,MAX,N)	00004230
С			00004240
С			00004250
С			00004260
С	1		00004270
С	(CHANNELS 1-10C IRRADIANCE (MEAN,SD,MIN,MAX,N)	00004280
С		MISSION DAY	00004290
С		OFF-AXIS ANGLE (MEAN,SD,MIN,MAX,N)	00004300
С		COSINE-CORRECTED CHANNEL 10C IRRADIANCE(MEAN, SD, MIN,	00004310
С	1	MAX,N)	00004320
С			00004330
С	-	THE DATA IS LOCATED IN THE 3RD FILE OF THE ESAT	00004340
С	•	TAPE AND CONTAINS 376 BYTES.	00004350
С			00004360
С			00004370
С	ARGUMENT LIS	ST -	00004380
С			00004390
С	VARIABLE I	O TYPE DECSRIPTION	00004400
С			00004410
С	IFILE I	I¥4 FILE POSITION	00004420
С	IY1,ID1 I	IX4 FIRST DATE TO DUMP ESAT DATA	00004430
С		I¥4 SECOND DATE TO DUMP ESAT DATA	00004440
С			00004450
С	OUTPUT VARI	ABLES -	00004460
С			00004470
с	VARIABLE T	YPE DESCRIPTION	00004480
C			00004490
C	XMEAN R	*4 ARRAY OF MEAN SOLAR DATA	00004500
Ċ	XMIN R	*4 ARRAY OF MINIMUM SOLAR DATA VALUES	00004510
Ċ.	XMAX R	ARRAY OF MAXIMUM SOLAR DATA VALUES	00004520
C	NO I)	ARRAY OF NUMBER OF ORBITS	00004530
c	XSD R		00004540
c	IYEAR I		00004550
c	IDOY I		00004560
c		K4 MISSION DAY	00004570
c			00004580
c	CALLED FROM	. ΜΔΤΝ	00004590
c		- IOAN	00004600
c	CALLS TO:		00004610
c		TAPE POSITION ROUTINE	00004620
c		D TAPE READ ROUTINE	00004630
c			00004640
c	PROGRAMMER	DESIGNER: G. MAJOR RESEARCH AND DATA SYSTEMS, INC.	00004650
C	T KOOKAMMER/ I	DESIGNER: O. MAJOR RESERVED AND DATA STSTENS/INC.	00004660
c		1PUTER: VS FORTRAN∕IBM 3081	00004670
C C	LANGUAGE/ CUP	HOLEVA AD LOVINAIA TON 2001	00004670
C C	VEDSTON DATE	E: DECEMBER 1984	00004680
C C	VERSION DATE	., DEVERIDER 1707	
	MODIETED ACT	TEMPED 1085 BY ODW DDC THO	00004700
C	MUDIFIED SEP	PTEMBER 1985 BY GRM-RDS,INC.	00004710
C	MODIFICS	17 1005 BY ODM DDC 0000 TO THE WEEKS (FALT	00004720
C	MUDIFIED JUN	IE 1985 BY GRM-RDS,CORP. TO INCLUDE YEAR 6 ESAT	00004730
C			00004740
C	MUDIFIED JUL	Y 1987 TO INCLUDE 89 MONTHS OF ESAT	00004750
С			00004760

-		
С		00004770
С		00004780

С		00004800
-	DIMENSION IMEAN(18), ISD(18), MIN(18), MAX(18), NO(18), XMEAN(18),	00004810
	XMIN(18),XMAX(18),XSD(18),IDATA(18,5),IYEAR(2692),IDOY(2692),	00004820
	MISDAY(2692)	00004830
C		00004840
	INTEGER*4 RMEAN(94)	00004850
_	INTEGER*2 R1(2), IREC, IRECID	00004860
C		00004870
_	EQUIVALENCE(R1(1),RMEAN(1))	00004880
С		00004890
	LENGTH=376	00004900
	IN=0	00004910
	J1=9999	00004920
	J2=0	00004930
_	NOBS=2692	00004940
С		00004950
	WRITE(6,1000) IFILE	00004960
1000	FORMAT(//' OPEN FILE', I3, ' TO READ ESAT DAILY MEAN SOLAR',	00004970
	' DATA'//)	00004980
C		00004990
С	POSITION TAPE TO FILE 3	00005000
С		00005010
_	CALL POSN(1,10,IFILE)	00005020
С		00005030
C	LOOP OVER NUMBER OF OBSERVATIONS IN THIS FILE	00005040
С		00005050
	DO 105 KREC=1,NOBS	00005060
	CALL FREAD(RMEAN, 10, LENGTH, 900, 902)	00005070
	IREC=R1(1)	00005080
-	IRECID=R1(2)	00005090
C		00005100
С	STORE DATA IN ARRAY IDATA(18,5)	00005110
С		00005120
	J=1	00005130
	K=0.	00005140
	DO 10 I=2,6	00005150
	K=K+1	00005160
	IDATA(J,K)=RMEAN(I)	00005170
10	CONTINUE	00005180
С		00005190
	IYEAR(KREC)=RMEAN(7)	00005200
•	IDOY(KREC)=RMEAN(8)	00005210
С		00005220
	J=J+1 K∞ 0	00005230
	K=0	00005240
	DO 20 I=9,83	00005250
	K=K+1	00005260
	IF(K.EQ.6) THEN	00005270
	K=0	00005280
	K=K+1	00005290
	J=J+1	00005300
	ENDIF	00005310
~ ~	IDATA(J,K)=RMEAN(I)	00005320
20	CONTINUE	00005330
С		00005340
•	MISDAY(KREC)=RMEAN(84)	00005350
С		00005360

С	REPLACE -9999'S WITH REAL VALUES FOR YEAR, DAY AND MISDAY	00005370
С		00005380
-	DATACK=0	00005390
	IF(IYEAR(KREC).EQ9999) THEN	00005400
	IF(IDOY(KREC-1).NE.365.AND.IDOY(KREC-1).NE.366)THEN	00005410
	IYEAR(KREC)=IYEAR(KREC~1)	00005420
	IDOY(KREC)=IDOY(KREC-1)+1	00005430
	ELSE	00005440
	IYEAR(KREC)=IYEAR(KREC~1)+1	00005450
	IDOY(KREC)=1	00005460
	ENDIF	00005470
	MISDAY(KREC)=MISDAY(KREC~1)+1	00005480
	DATACK=1	00005490
	ENDIF	00005500
С		00005510
	J=J+1	00005520
	K=0	00005530
	DO 21 I=85,94	00005540
	K=K+1	00005550
	IF(K.EQ.6) THEN	00005560
	K=0	00005570
	K=K+1	00005580
	J=J+1	00005590
	ENDIF	00005600
	IDATA(J,K)=RMEAN(I)	00005610
21	CONTINUE	00005620
c		00005630
c	UNPACK THE DATA INTO REAL DATA. STORE THE DATA IN	00005640
c	THE MEAN, STANDARD DEVIATION, MINIMUM, MAXIMUM, AND	00005650
c	NUMBER ARRAYS.	00005660
с С	NUMBER ARRATS.	
U		00005670
	DO 50 I=1,18	00005680
	IMEAN(I)=IDATA(I,1)	00005690
	IF(IMEAN(I).EQ9999) IMEAN(I)=0	00005700
	ISD(I)=IDATA(I,2)	00005710
	IF(ISD(I).EQ9999) ISD(I)=0	00005720
	MIN(I)=IDATA(I,3)	00005730
	IF(MIN(I).EQ9999) MIN(I)=0	00005740
	MAX(I)=IDATA(I,4)	00005750
	IF(MAX(I).EQ9999) MAX(I)=0	00005760
	NO(I)=IDATA(I,5)	00005770
	IF(NO(I).EQ9999) NO(I)=0	00005780
50	CONTINUE	00005790
С		00005800
С	DESCALE THE MEAN DATA	00005810
С		00005820
	XMEAN(1)=FLOAT(IMEAN(1))/10.	00005830
	XMEAN(2)=FLOAT(IMEAN(2))/10000.	00005840
	XMEAN(3)=FLOAT(IMEAN(3))/100000.	00005850
	XMEAN(4)=FLOAT(IMEAN(4))/100000.	00005860
	D0 52 I=5,6	00005870
	XMEAN(I)=FLOAT(IMEAN(I))/10000.	00005880
52	CONTINUE	00005890
52	XMEAN(7)=FLOAT(IMEAN(7))/100.	00005900
	D0 53 I=8,9	00005910
	XMEAN(I)=FLOAT(IMEAN(I))/100.	00005920
53	CONTINUE	00005930
	DO 54 I=10,13	00005940
	XMEAN(I)=FLOAT(IMEAN(I))/1000.	00005950
54	CONTINUE	00005960

	XMEAN(14)=FLOAT(IMEAN(14))/10000.	00005970
	XMEAN(15)=FLOAT(IMEAN(15))/10000.	00005980
	XMEAN(16)=FLOAT(IMEAN(16))/100.	00005990
	XMEAN(17)=FLOAT(IMEAN(17))/1000000.	00006000
	XMEAN(18)=FLOAT(IMEAN(18))/100.	00006010
С		00006020
С	DECSALE THE STANDARD DEVIATIONS	00006030
С		00006040
	XSD(1)=FLOAT(ISD(1))/100000.	00006050
	XSD(2)=FLOAT(ISD(2))/1000000.	00006060
	XSD(3)=FLOAT(ISD(3))/1000000.	00006070
	XSD(4)=FLOAT(ISD(4))/100000.	00006080
	XSD(5)=FLOAT(ISD(5))/1000000.	00006090
	XSD(6)=FLOAT(ISD(6))/1000000.	00006100
	XSD(7)=FLOAT(ISD(7))/10000000.	00006110
	XSD(8)=FLOAT(ISD(8))/10000000.	00006120
	XSD(9)=FLOAT(ISD(9))/10000000.	00006130
	DO 56 I=10,12	00006140
	XSD(I)=FLOAT(ISD(I))/100000.	00006150
56	CONTINUE	00006160
20	DO 57 I=13,16	00006170
	XSD(I)=FLOAT(ISD(I))/1000000.	00006180
57	CONTINUE	00006190
	XSD(17)=FLOAT(ISD(17))/10000.	00006200
	XSD(18)=FLOAT(ISD(18))/100000.	00006210
с	X5D(16)-(LOR((15D(16))) 100000:	00006220
c	DESCALE THE MINIMUM AND MAXIMUM DATA	00006230
c	DESCREE THE MININGH AND MAXINGH DATA	00006240
C	XMIN(1)=MIN(1)	00006250
	XMAX(1)=MAX(1)	00006260
	D0 60 $I=2,11$	00006270
	IF(I.EQ.4) THEN	00006280
	XMIN(4)=MIN(4)	00006290
	XMAX(4)=MAX(4)	00006300
	ELSE	00006310
	XMIN(I)=FLOAT(MIN(I))/10.	00006320
	XMAX(I)=FLOAT(MAX(I))/10.	00006330
	ENDIF	00006340
()		
60	CONTINUE	00006350 00006360
	DO 61 I=12,15	
	XMIN(I)=FLOAT(MIN(I))/100.	00006370
	XMAX(I)=FLOAT(MAX(I))/100.	00006380
61		00006390
	XMIN(16)=FLOAT(MIN(16))/10.	00006400
	XMAX(16)=FLOAT(MAX(16))/10.	00006410
	XMIN(17)=FLOAT(MIN(17))/10.	00006420
	XMAX(17)=FLOAT(MAX(17))/10.	00006430
	XMIN(18)=FLOAT(MIN(18))/100.	00006440
	XMAX(18)=FLOAT(MAX(18))/100.	00006450
C		00006460
С		00006470
С	CHECK WHICH RECORDS TO DUMP	00006480
С		00006490
	IF(IY1.EQ.IYEAR(KREC).AND.ID1.EQ.IDOY(KREC)) J1=MISDAY(KREC)	00006500
	STOPCK=0	00006510
	IF(IY2.EQ.IYEAR(KREC).AND.ID2.EQ.IDOY(KREC)) THEN	00006520
	J2=MISDAY(KREC)	00006530
	STOPCK=1	00006540
	ENDIF	00006550
С		00006560

00006570 IF(MISDAY(KREC).GE.J1) THEN IF(J2.GT.O.AND.MISDAY(KREC).GT.J2) GO TO 105 00006580 00006590 IN=IN+1 00006600 IF(IN.GT.1) GO TO 390 00006610 WRITE(6,4900) 00006620 4900 FORMAT(20X, 'SEVEN YEARS+5 MONTHS OF ESAT DAILY MEAN SOLAR 00006630 1 DATA (/) 00006640 390 CONTINUE 00006650 WRITE(6,4920) IREC, IRECID 00006660 FORMAT(/' RECORD NUMBER=',I10,5X,'RECORD ID=',I10/) 4920 00006670 WRITE(6,5001) IYEAR(KREC), IDOY(KREC), MISDAY(KREC) FORMAT(//15X, 'YEAR=', I10, 5X, 'DAY OF YEAR=', I10, 5X, 'MISSION', 00006680 5001 1 DAY=',I10/) 00006690 С 00006700 С TEST FOR MISSING DATA OR ERB OFF DAY 00006710 00006720 С 00006730 IF=0 00006740 IF(DATACK.EQ.1) THEN 00006750 WRITE(6,7000) 00006760 7000 00006770 1 * AVAILABLE**********//) IF=IF+1 00006780 ENDIF 00006790 IF(IF.GT.0) GO TO 899 00006800 00006810 С WRITE(6,4930) 00006820 FORMAT(42X, 'MEAN', 11X, 'MIN', 11X, 'MAX', 11X, 'N', 11X, 'STD. DEV') 00006830 4930 С 00006840 С 00006850 WRITE(6,5002) (XMEAN(J),XMIN(J),XMAX(J),NO(J),XSD(J),J=1,18) 00006860 5002 FORMAT(1X, 'ORBIT NUMBER', 26X, F10.3, 5X, F10.3, 4X, F10.3, 6X, 00006870 1 I2,8X,F12.4/1X,'SOLAR AZIMUTH',25X,F10.3,5X,F10.3,4X,F10.3,6X,00006880 2 12,8X,F12.4/1X,'SOLAR ELEVATION',23X,F10.3,5X,F10.3,4X,F10.3, 00006890 6X,I2,8X,F12.4/1X,'GAMMA ANGLE',27X,F10.3,5X,F10.3,4X,F10.3, 3 00006900 4 6X,I2,8X,F12.4/1X, CHAN.3 TEMP',27X,F10.3,5X,F10.3,4X,F10.3, 00006910 6X, I2, 8X, F12.4/1X, 'CHAN.10C TEMP', 25X, F10.3, 5X, F10.3, 4X, 5 00006920 00006930 6 F10.3,6X,I2,8X,F12.4/1X,'CHAN.1 IRRAD',26X,F10.3,5X,F10.3, 7 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.2 IRRAD',26X,F10.3,5X,F10.3, 00006940 8 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.3 IRRAD',26X,F10.3,5X,F10.3, 00006950 9 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.4 IRRAD',26X,F10.3,5X,F10.3, 00006960 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.5 IRRAD',26X,F10.3,5X,F10.3, 00006970 A 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.6 IRRAD',26X,F10.3,5X,F10.3, 00006980 B С 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.7 IRRAD',26X,F10.3,5X,F10.3, 00006990 D 4X,F10.3,6X,I2,8X,F12.4/1X, CHAN.8 IRRAD',26X,F10.3,5X,F10.3, 00007000 Ε 4X,F10.3,6X,I2,8X,F12.4/1X,*CHAN.9 IRRAD*,26X,F10.3,5X,F10.3, 00007010 F 4X,F10.3,6X,I2,8X,F12.4/1X,'CHAN.10C IRRAD',24X,F10.3,5X, 00007020 G F10.3,4X,F10.3,6X,I2,8X,F12.4/1X,'OFF AXIS ANGLE',24X,F10.3, 00007030 5X, F10.3, 4X, F10.3, 6X, I2, 8X, F12.4/1X, 'COSINE CORRECT.', 00007040 I 'CHAN.10C IRRAD',10X,F10.3,5X,F10.3,4X,F10.3,6X,I2,8X,F12.4/) 00007050 J 00007060 С 00007070 CH10C=XMEAN(16) IF(CH10C.LT.0.0) CH10C=0.0 00007080 С WRITE(20,8000) KREC, IYEAR(KREC), IDOY(KREC), CH10C 00007090 C8000 00007100 FORMAT(3110, F10.2) 00007110 C 899 CONTINUE 00007120 00007130 ENDIE 00007140 IF(STOPCK.EQ.1) GO TO 900 00007150 С 105 CONTINUE .00007160

	CO TO 000				
902	GO TO 900 WRITE(6,20	1011			00007170
2001	-		TN T	APE READ'/)	00007180 00007190
2001	GO TO 999	LKKUK	TIA		00007190
900	CONTINUE				00007200
900	WRITE(6,20	003			
2400			NE ET	LE 3 PROCESSING'//)	00007220
2000	RETURN	CND	JF FI	LE 3 FRUCESSING //)	00007230
999					00007240
~~~~~	END	~~~~~	~~~~	****	00007250
	*******	*****	****	***************************************	
С	CURDOUTING			TV1 TV0 TR1 TR0)	00007270
~~~~~~				IY1,IY2,ID1,ID2) ************************************	00007280
C				GRAM READS THE SOLAR ACTIVITY INDICATORS FILI	
C C	FUNCTION				
c				RB SOLAR ANLAYSIS TAPE (ESAT). Records are printed out.	00007310
C C		SELL		RECORDS ARE FRINTED UUT,	00007320
C C	ADOUMENT	LTCT.			00007330
C	ARGUMENT				00007340
c			70	RECOLDIN	00007350
	VARIABLE		10 	DESCRIPTION	00007360
C C					00007370
	IF IYl,IDl			FILE POSITION FIRST DATE TO DUMP ESAT DATA	00007380
C	IY2,ID2			LAST DATE TO DUMP ESAT DATA	00007390
C	112,102	174	T	LAST DATE TO DOMP ESAT DATA	00007400
с с		TABLEC	UCE	n.	00007410
c	LOCAL VAR	TADLES			00007420
c	VARIABLE	TYDE	nes	CRIPTION	00007430 00007440
c	VARIADLE			CRIFTION	00007440
C	ACTREG	I¥2		AY OF SOLAR PLAGE AND SUNSPOT DATA	00007450
c		1×2		AY CONTAINS SOLAR ACTIVITY DATA FOR 1 RECORD	
c	IREC	1×2 1×2		DRD NUMBER	00007470
c		I×2		ORD ID	00007480
c	YEAR	I×2		R OF OBSERVATION	00007500
c		I¥2		OF OBSERVATION	00007510
C		I¥2		ER OF PLAGE REGION OBSERVATIONS PER DAY	00007520
c				ER OF SUNSPOT REGION OBSERVATIONS FER DAY	00007520
c		I¥2		ICH SUNSPOT NUMBER	00007540
c	MHZ	R¥4		D MHZ SOLAR FLUX	00007550
č	CAL	R¥4		LY CALCIUM PLAGE INDEX	00007560
č	IGEO	I¥2		MAGNETIC INDEX (AP SERIES)	00007570
č				E REGION DATA. CONTAINS:	00007580
c				D - CENTRAL MERIDIAN PASSAGE DATE	00007590
c				N - MCMATH-HALE REGION NUMBER	00007600
c				- LATITUDE OF REGION	00007610
č				- LONGITUDE OF REGION	00007620
c			-	A - AREA OF REGION IN MILLIONTHS OF SOL. HEM.	
c				- INTENSITY OF REGION (1=FAINT, 5=BRIGHT)	00007640
c				- CARRINGTON LONGITUDE NUMBER	00007650
c	SPOT	I¥2		POT REGION DATA. CONTAINS:	00007660
c	0.0.			N - MCMATH-HALE REGION NUMBER	00007670
c				- LATITUDE OF REGION	00007680
c				- CARRINGTON LONGITUDE OF REGION	00007690
c				- INTENSITY OF REGION (1=FAINT,5=BRIGHT)	
c				A - AREA OF REGION IN MILLIONTHS OF SOL. HEM.	
c				- CARRINGTON LONGITUDE NUMBER	00007720
c					00007730
c	NOTE: THE	RE MAY	BFM	MORE THAN ONE PLAGE REGION OBSERVATION	00007740
c				ER DAY. THEREFORE PLAGE REGION RECORDS ARE	00007750
č				Y DEPENDING ON THE VALUE OF NPR AND NSG.	00007760
-		•			

С 00007770 С CALLED FROM: MAIN 00007780 С 00007790 С CALLS TO: 00007800 С **POSN - FTIO TAPE POSITIONING ROUTINE** 00007810 С FREAD - FTIO TAPE READ ROUTINE 00007820 С 00007830 С PROGRAMMER: G. MAJOR, RESEARCH & DATA SYSTEMS, INC. 00007840 С 00007850 С LANGUAGE/COMPUTER: VS FORTRAN/IBM 3081 AT NASA/GSFC 00007860 С 00007870 С **VERSION DATE: JULY 1984** 00007880 С 00007890 С MODIFIED SEPTEMBER 1985 BY GRM-RDS, INC 00007900 С 00007910 С MODIFIED JUNE 1985 BY GRM-RDS, CORP. TO INCLUDE YEAR 6 ESAT 00007920 С 00007930 С MODIFIED JULY 1987 TO INCLUDE 89 MONTHS OF SOLAR DATA 00007940 С (WHERE AVAILABLE) AND TO REVISE THE SOLAR ACTIVITY FILE. 00007950 С 00007960 С 00007970 С 00007980 С 0008000 INTEGER*2 SOLACT(1000), ACTREG(1000), IREC, IRECID, YEAR, DAY 00008010 С INTEGER*2 NPR(2700),NSG(2700) 00008020 REAL¥4 CAL,MHZ,PLAG(50,8),SPOT(50,6) 00008030 С 00008040 EQUIVALENCE(SOLACT(11), ACTREG(1)) 00008050 С 00008060 WRITE(6,3000) 00008070 3000 FORMAT(//' OPEN FILE 4 FOR PROCESSING'//' DAILY SOLAR ACTIVITY', 00008080 1 ' INDICATORS'//) 00008090 00008100 С JT1=9999 00008110 JT2=0 00008120 С 00008130 С POSITION TAPE TO FILE 4 FOR PROCESSING 00008140 С 00008150 CALL POSN(1,10,IF) 00008160 С 00008170 С WRITE HEADER FOR PRINTOUT 00008180 С 00008190 WRITE(6,1000) 00008200 1000 FORMAT(20X, 'ERB SOLAR ANALYSIS TAPE (ESAT)'/ 00008210 1 20X, 'SOLAR ACTIVITY INDICATORS'/ 00008220 2 20X, FILE # 31/) 00008230 С 00008240 С LOOP OVER ALL OBSERVATIONS 00008250 С 00008260 IUNIT=10 00008270 00008280 IN=0 DO 100 I=1,2692 00008290 С 00008300 С READ SOLAR ACTIVITY DATA 00008310 С 00008320 CALL FREAD(SOLACT, IUNIT, LENGTH) 00008330 IREC=SOLACT(1) 00008340 00008350 IRECID=SOLACT(2) YEAR=SOLACT(3) 00008360

DAY-SOLACT(4) 0008370 NFR-SOLACT(5) 0008370 NSG-SOLACT(6) 0008410 CAL-(SOLACT(7) 0008410 CAL-(SOLACT(7)) IGED-SOLACT(10) 0008420 COURSEC COURSECTION COURSECTION COURSECTION COURSECTION COURSECTION COURSECTION COURSECTION COURSECTION FCUTCO			
NSG=501ACT(2) 00008390 ISS=501ACT(7) 00008410 CL=(S01ACT(3))/10. 0008420 IGED=S01ACT(10) 0008420 C 0008420 D0 113 J=1,MR 0008500 D0 113 J=2:1,8 0008500 K=41 0008500 IF(JZ, EQ, 1) PLAG(J, JZ)=(ACTREG(K))/10. 0008520 IF(JZ, EQ, 5) PLAG(J, JZ)=ACTREG(K) 0008550 IS CONTINUE 0008570 D0 119 JZ=1,8 00008670 C		DAY=SOLACT(4)	00008370
ISS=50LACT(2) 00008400 MHZ=(SDLACT(B))/10. 00008400 CL 00008410 IGED=SDLACT(10) 00008450 C 00008450 C 00008450 C 00008450 C 00008450 C 00008460 D 0112 J=1.0 D 115 J=1.NPR 0000850 K=K+1 0000850 FL(2,C,C,T).1.AND.J2.(T.6) THEN 0000850 FL(2,C,C,T).1.AND.J2.(T.6) THEN 0000850 FL(2,E,C,T) PLAG(J,J2)=CACTREG(K))/10. 0000850 FL(2,C,C,G) PLAG(J,J2)=ACTREG(K) 0000850 FL(2,E,C,T) PLAG(J,J2)=ACTREG(K) 0000850 ISCONTINUE 0000850 J=1 00008610 J=1 00008610 J=1 00008610 J=1 0000850 J=1 0000850 J=1 00008610 J=1 00008610 J=2 00019 J=2=1,8 C 00008610 D<119 J=2=1,8		NPR=SOLACT(5)	00008380
HHZ=CS0LACT(B))/10. 0008410 CAL=(S0LACT(9))/10. 0008420 IGD=S0LACT(9))/10. 0008453 C 0008453 C 0008453 C 0008450 C 0008450 C 0008470 DO 113 J2-1.8 0008500 K=0 0008500 F(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008500 F(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.6) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2.EQ.6) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 0008650 C UPACK SUNSPOT DATA 0008650 C UPACK SUNSPOT DATA 00008650 <td></td> <td>NSG=SOLACT(6)</td> <td>00008390</td>		NSG=SOLACT(6)	00008390
CAL=(SQLACT(9))/10. IGD=SQLACT(10) C UNPACK PLAGE REGION DATA C UNPACK PLAGE REGION DATA C UNPACK PLAGE REGION DATA C K=0 IF(HPR.GT.Q)THEN DO112 J=1,NPR D0113 J=1,NPR D0113 J=1,APR D0008500 K=K+1 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. D0008550 IF(J2.EQ.7) PLAG(J,J2)=(ACTREG(K))/10. D0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) D0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) D0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) D0008550 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) D0008550 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) D0008550 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) D0008550 K=K+1 D0008660 ENDIF C UNPACK SUNSPOT DATA C UNPACK SUNSPOT DATA C UNPACK SUNSPOT DATA C UNPACK SUNSPOT DATA C UNPACK SUNSPOT DATA C IF(IY2.EQ.YEAR.AND.ID.EQ.DAY) J11=1 0000870 IF(IY2.EQ.YEAR.AND.ID.EQ.DAY) J11=1 00008570 IF(IY2.EQ.YEAR.AND.ID.C.JT2) GO TD 101 IF(IY2.EQ.YEAR.AND.ID.T2) C MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 MRITE(6,ZDD2) 00008950 00008950 00008950 00008950 C MRITE(6,ZDD2) 00008950 0008950 0008950 0000		ISS=SOLACT(7)	00008400
IGED-SOLACT(10) 00008450 C 00008450 C 00008450 C 00008450 C 00008450 C 00008450 C 00008450 D0 112 J-1,NR 0000850 D0 113 J2=1,8 00008510 FF(J2:EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 FLAG(J,J2)=CACTREG(K) 00008550 FLAG(J,J2)=CACTREG(K) 00008550 IF(J2:EQ.4) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2:EQ.5) PLAG(J,J2)=ACTREG(K) 00008550 IF(J2:EQ.6) PLAG(J,J2)=ACTREG(K) 00008500 IF(ISC 00008500 D 115 J=1,NS6		MHZ=(SOLACT(8))/10.	00008410
C UNPACK PLAGE REGION DATA 00008400 C UNPACK PLAGE REGION DATA 00008400 C NO008400 D 112 J=1,NPR 00008400 D 112 J=1,NPR 00008500 K=K+1 00008500 IF(J2.Eq.1) PLAG(J,J2)=(ACTREG(K))/10. 0008500 PLAG(J,J2)=ACTREG(K) 00008500 IF(J2.Eq.6) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.Eq.6) PLAG(J,J2)=(ACTREG(K))/10. 0008550 II2 CONTINUE 00008600 ELSE 00008600 ELSE 00008600 ELSE 00008600 EDIF 00008600 C UNPACK SUNSPOT DATA 00008650 C UNPACK SUNSPOT DATA 00008650 C UNPACK SUNSPOT DATA 00008670 IF(KSG.GT.0)THEN 0000870 D0 115 J=1,NSG 0000870 D0 115 J=1,NSG 0000870 D0 115 J=1,NSG 0000870 D0 115 J=1,S K=K+1 0000870 D0 120 J2=1,6 K=K+1 0000870 IF(KSG.GT.0)THEN 0000870 D0 120 J2=1,6 K=K+1 0000870 IF(IY2.Eq.YEAR.AND.ID1.Eq.DAY) JT1=I 00008850 C UNTINUE 0000870 IF(IY2.Eq.YEAR.AND.ID2.Eq.DAY) JT1=I 00008850 C WARTE SPECIFIED RECORDS 0000870 IF(IY2.Eq.YEAR.AND.ID1.Eq.DAY) JT1=I 00008850 C WARTE SPECIFIED RECORDS 0000870 C WARTE SPECIFIED RECORDS 00008850 C WARTE SPECIFIED R		CAL=(SOLACT(9))/10.	00008420
C UNPACK PLAGE REGION DATA 0008450 C 0008450 F(NFR, GT, 0)THEN 0008450 D0 112 J1,NFR 0008450 D0 113 J2=1,3 K=K+1 0008510 IF(J2, EQ, 1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 PLAG(J,J2)=ACTREG(K) 0008550 IF(J2, EQ, 6) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2, EQ, 6) PLAG(J,J2)=(ACTREG(K)) 0008550 IF(J2, EQ, 6) PLAG(J,J2)=(ACTREG(K)) 0008560 ELSE 0008640 ELSE 0008640 C 0008640 C 0008640 C 0008640 C 0008640 C 0008660 C 0008600 C 000		IGEO=SOLACT(10)	00008430
C 0008470 IF(NPR.GT.0)THEN 00008470 D0 112 J=1,MPR 00008470 D0 113 J=1,8 0008510 K=K+1 0008510 F(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.6) PLAG(J,J2)=ACTREG(K) 0008550 113 CONTINUE 0008610 J=1 0008610 ELSE 0008610 J=1 0008620 D0 119 J2=1,8 0008620 D0 119 J2=1,8 0008620 C UNPACK SUNSPOT DATA 0008650 IF(NSG.GT.0)THEN 0008670 IF(NSG.GT.0)THEN 0008670 IF(NSG.GT.0)THEN 0008670 C UNPACK SUNSPOT DATA 0008670 IF(NSG.GT.0)THEN 000870 IF(NSG.GT.0)THEN 000870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 000870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 000870 C IF(NSG.GT.0)THEN 000870 C IF(NSG.GT.0)THEN 000870 C IF(NSG.GT.0)THEN 0008870 C IF(NSG.GT.0)THEN 0008880 C IF(N	С		00008440
K=0 00008470 IF(NPR.GT.0)THEN 00008480 D0 112 J=1,NPR 00008490 D0 113 J2=1,3 00008500 K=K+1 00008510 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K)) 0008550 IF(J2.EQ.7) PLAG(J,J2)=(ACTREG(K)) 0008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K)) 0008550 IF(J2.EQ.7) PLAG(J,J2)=(ACTREG(K)) 0008650 ISCONTINUE 0008650 UNPACK SUNSPOT DATA 0008650 C UNPACK SUNSPOT DATA 0008710 D0 115 J=1,NSG 0008710 D0 115 J=1,KSG 0008720 D0 115 J=1,KSG 0008720 D0 116 J=1,A 0008720 D0 116 J=1,A 0008720 D0 116 J=1,A 0008720	С	UNPACK PLAGE REGION DATA	00008450
IF(NPR.GT.0)THEN 00088480 D0 112 J=1,MPR 0008850 K=K+1 0008510 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 PLAG(J,J2)=ACTREG(K) 0008550 PLAG(J,J2)=ACTREG(K) 0008550 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 0008500 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 0008650 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 0008660 ELSE 0008660 PLAG(J,J2)=(ACTREG(K)) 0008670 C 0000870 C 0008670 D0 115 J=1,NSG 000870 D15 J=1,NSG 0008710 D0 115 J=1,NSG 0008710 D0 115 J=1,NSG 0008710 D16 02 J2=1,6 0008710 K=k+1 0008710 <td>с</td> <td></td> <td>00008460</td>	с		00008460
D0 112 J=1,NPR 0008450 D0 113 J=1,8 0000850 K=K+1 0000850 F(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0000850 PLAG(J,J2)=ACTREG(K) 0000850 F(J2.EQ.7) PLAG(J,J2)=(ACTREG(K))/10. 0000850 IF(J2.EQ.7) PLAG(J,J2)=(ACTREG(K))/10. 0000850 112 CONTINUE 0000850 113 CONTINUE 00008610 J=1 00008610 J=1 00008610 FLSE 00008610 D1 19 J2=1,8 00008610 PLAG(J,J2)=(ACTREG(K)) 0000850 K=K+1 00008650 C 0000860 C 0000860 C 0000860 F(J2.EQ.6) PLAG(J,J2)=(ACTREG(K)) 0000860 C 0000860 FLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 0000860 C 0000860 C 0000860 C 0000860 FKNSG.GT.0)THEN 0000860 C 0000870 D0 115 J2=1,8 K=K+1 0000860 C 0000870 D0 115 J2=1,6 0000870 J=1 0000870 D0 120 J2=1,6 0000870 J=1 0000870 J=1 0000870 J=1 0000870 D0 120 J2=1,6 0000870 C 0000870 FC 0000870 J=1 0000870 D0 120 J2=1,6 0000870 C 0000870 FC 0000870 J=1 0000870 J=1 0000870 J=1 0000870 FC 0000870 C 0000870 J=1 0000870 IF(IY2.EQ.YEAR.AND.IDI.EQ.DAY) JT1=1 0000880 C 0000880 C 0000880 FC 000880 FC 000880		K=0	00008470
D0 115 J2=1,8 0008500 K=K+1 0008510 IF(J2:EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 IF(J2:EQ.1) PLAG(J,J2)=ACTREG(K) 0008550 PLAG(J,J2)=ACTREG(K) 0008550 IF(J2:EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008550 IF(J2:EQ.1) PLAG(J,J2)=(ACTREG(K)) 0008550 IF(J2:EQ.1) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2:EQ.3) PLAG(J,J2)=ACTREG(K) 0008550 I13 CONTINUE 0008500 I22 CONTINUE 0008600 ELSE 0008610 J-1 0008620 D0 119 J2=1,8 0008650 CONTINUE 0008650 ENDIF 0008650 C 0008650 C 0008650 C 0008670 D0 115 J=1,NSO 0008670 C 0008670 C 0008670 D0 116 J2=1,6 0008710 SPOT(J,J2)=ACTREG(K) 0008750 D116 J2=1,6 0008750 L16 CONTINUE 0008770 D120 J2=1,6		IF(NPR.GT.0)THEN	00008480
K=K+1 00008510 IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 00008520 PLAG(J,J2)=ACTREG(K) 00008530 PLAG(J,J2)=ACTREG(K) 00008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 00008550 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 00008550 IF(J2.EQ.7) PLAG(J,J2)=(ACTREG(K)) 00008570 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) 00008570 ITF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) 00008500 II3 CONTINUE 00008510 ELSE 00008600 J=1 00008600 D0 119 J=1,8 00008620 C 00008610 ENDIF 00008640 PLAG(J,J2)=(ACTREG(K)) 00008650 C UNPACK SUNSPOT DATA 0000870 C 00008710 00008710 D0 115 J=1,NS0 00008720 00008710 D0 116 J2=1,6 00008750 00008710 SPOT(J,J2)=ACTREG(K) 00008720 00008720 D116 J2=1,6 0000870 00008720 LSE 00008710 00008720 <tr< td=""><td></td><td>DO 112 J=1,NPR</td><td>00008490</td></tr<>		DO 112 J=1,NPR	00008490
IF(12, EQ.1) PLAG(J, J2)=(ACTREG(K))/10. 0008520 IF(12, CT, I, AND, J2, LT, 6) THEN 00008530 PLAG(J, J2)=ACTREG(K) 00008550 END IF 00008550 IF(12, EQ.6) PLAG(J, J2)=ACTREG(K) 00008570 IF(2, EQ.6) PLAG(J, J2)=ACTREG(K) 00008500 IF(2, EQ.7) PLAG(J, J2)=ACTREG(K) 00008500 IF(2, EQ.8) PLAG(J, J2)=ACTREG(K) 00008500 II3 CONTINUE 00008500 CONTINUE 00008510 J=1 00008510 J=1 00008510 J=1 00008620 D0 119 J2=1,8 00008630 K=K+1 00008650 C UNPACK SUNSPOT DATA 00008670 C UNPACK SUNSPOT DATA 00008710 D0 115 J=1, NSG 00008710 D0 116 J2=1,6 00008720 D116 J2=1,6 00008760 IS CONTINUE 00008760 I16 CONTINUE 00008760 I15 CONTINUE 00008760 I16 CONTINUE 00008770 <			00008500
IF(J2,EQ.1) PLAG(J,J2)=(ACTREG(K))/10. 0008520 IF(J2,CQ.1,AND.J2.LT.6) THEN 0008530 PLAG(J,J2)=CATREG(K) 0008550 END IF 0008550 IF(J2,EQ.6) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2,EQ.7) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2,EQ.7) PLAG(J,J2)=ACTREG(K) 0008550 IF(J2,EQ.8) PLAG(J,J2)=ACTREG(K) 0008510 CONTINUE 0008510 113 CONTINUE 0008500 J=1 0008500 J=1 0008620 D0 119 J2=1,8 0008620 K=K+1 0008650 ENDIF 0008650 C UNPACK SUNSPOT DATA 0008850 C UNPACK SUNSPOT DATA 0008870 C UNPACK SUNSPOT DATA 0008710 D0 116 J2=1, 6 0008720 0008720 D116 J2=1,6 0008720 0008720 J=1 0008720 0008720 J=1 0008720 0008720 J=1 0008720 0008720 J=1 0008720		K=K+1	00008510
IF(J2.GT.1.AND.J2.LT.6) THEN 00008530 PLAG(J,J2)=ACTREG(K) 00008570 IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 00008570 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 00008570 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) 00008570 II3 CONTINUE 00008600 0008600 0008600 ELSE 00008600 J=1 00008600 D0 119 J2=1,8 00008600 K=k+1 00008600 ENDIF 00008600 ENDIF 00008600 D0 119 J2=1,8 00008600 K=k+1 00008600 ENDIF 00008600 ENDIF 00008700 C 00008700 C 00008700 D0 115 J=1,NSG 00008700 D0 116 J2=1,6 00008700 SPDT(J,J2)=ACTREG(K) 00008700 J=1 00008700 J=1 00008700 J=1 00008700 J=1 00008700 J=1 00008700 J=1		IF(J2.EQ.1) PLAG(J,J2)=(ACTREG(K))/10.	00008520
END IF 00008550 IF(J2:Eq.6) PLAG(J,J2)=ACTREG(K) 00008570 IF(J2:Eq.7) PLAG(J,J2)=ACTREG(K) 00008570 II3 CONTINUE 00008500 113 CONTINUE 00008500 112 CONTINUE 00008500 113 CONTINUE 00008500 114 CONTINUE 00008500 115 CONTINUE 00008500 116 J=1 00008500 J=1 00008500 00008600 LAG(J,J2)=(ACTREG(K)) 00008600 ENDIF 00008600 C 00008600 C 00008600 C 00008600 D 115 J=1,85 00008700 D 115 J=1,MSG 00008740 SPOT(J,J2)=ACTREG(K) 00008740 SPOT(J,J2)=ACTREG(K) 00008740 SPOT(J,J2)=ACTREG(K) 00008740 J=1 00008740 J=1 00008740 J=1 00008740 J=1 00008740		IF(J2.GT.1.AND.J2.LT.6) THEN	00008530
IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 00008570 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 00008570 113 CONTINUE 00008500 112 CONTINUE 00008610 J=1 00008620 D0 119 J2=1,8 00008630 K=K+1 00008640 PLAG(J,J2)=(ACTREG(K)) 00008630 K=K+1 00008670 C 00008700 D0 115 J=1,NSG 00008710 D0 116 J2=1,6 00008750 D16 J2=1,6 00008750 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 0000870 J=1 0000870 D0 120 J2=1,6 0000870 J=1 0000870 D0 120 J2=1,6 0000870 SPOT(J,J2)=(ACTREG(K)) 00008810 SPO		PLAG(J,J2)=ACTREG(K)	00008540
IF(J2.EQ.6) PLAG(J,J2)=(ACTREG(K))/10. 00008570 IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 00008570 113 CONTINUE 00008500 112 CONTINUE 00008610 J=1 00008620 D0 119 J2=1,8 00008630 K=K+1 00008640 PLAG(J,J2)=(ACTREG(K)) 00008630 K=K+1 00008670 C 00008700 D0 115 J=1,NSG 00008710 D0 116 J2=1,6 00008750 D16 J2=1,6 00008750 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 0000870 J=1 0000870 D0 120 J2=1,6 0000870 J=1 0000870 D0 120 J2=1,6 0000870 SPOT(J,J2)=(ACTREG(K)) 00008810 SPO		END IF	00008550
IF(J2.EQ.7) PLAG(J,J2)=ACTREG(K) 00008570 IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) 00008590 113 CONTINUE 00008590 112 CONTINUE 00008610 ELSE 00008620 D0 119 J2=1,8 00008620 CONTINUE 00008650 FLAG(J,J2)=(ACTREG(K)) 00008650 CONTINUE 00008650 ENDIF 000086700 C 00008700 C 00008700 C 00008700 C 00008700 D0 115 J=1,NSG 00008710 D0 115 J=1,NSG 00008710 D0 116 J2=1,6 00008740 SPOT(J,J2)=ACTREG(K) 00008740 SPOT(J,J2)=ACTREG(K) 00008770 ELSE 0000870 J=1 00008820 J=1 00008820 J=1 0000870 D0 120 J2=1,6 00008820 K=K+1 00008820 J=1 00008820 CONTINUE 00008820 SPOT(J,J2)=(AC			00008560
IF(J2.EQ.8) PLAG(J,J2)=ACTREG(K) 00008590 113 CONTINUE 00008600 112 CONTINUE 00008600 ELSE 00008620 J=1 00008620 D0 119 J2=1,8 00008630 K=K+1 00008650 PLAG(J,J2)=(ACTREG(K)) 00008650 ENDIF 00008600 C 00008700 C 00008700 C 00008700 D 115 J=1,NSG 00008700 D 115 J=1,NSG 00008700 D 116 J2=1,6 00008700 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008700 D 120 J2=1,6 0000870 K=K+1 00008810 SPOT(J,J2)=ACTREG(K)) 00008810 J=1 0000870 D 120 J2=1,6 K=K+1 0000870 SPOT(J,J2)=(ACTREG(K)) 00008830 SPOT(J,J2)=(ACTREG(K)) 00008830 SPOT(J,J2)=(ACTREG(K)) 00008830			00008570
113 CONTINUE 00008590 112 CONTINUE 00008610 ELSE 00008610 J=1 00008620 D0 119 J2=1,8 00008630 K=K+1 00008640 PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008670 ENDIF 00008700 C UNPACK SUNSPOT DATA 0000870 C 0000870 D0 115 J=1,NSG 0000870 D0 115 J=1,6 0000870 K=K+1 0000870 0000870 D0 116 J2=1,6 0000870 K=K+1 0000870 0000870 J=1 0000870 0000870 <			00008580
112 CONTINUE 00008600 ELSE 00008610 J=1 00008620 D0 119 J2=1,8 00008620 00008650 PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008660 ENDIF 00008670 C UNPACK SUNSPOT DATA 00008700 C UNPACK SUNSPOT DATA 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,6 0000870 SPOT(J,J2)=ACTREG(K) 0000870 0000870 116 CONTINUE 0000870 0000870 J=1 00008710 0000870 0000870 J=1 00008710 00008870 0000870 J=1 00008710 00008870 00008870 J=1 00008710 00008870 00008810 SPOT(J,J2)=(ACTREG(K)) 00008830 00008830 0008830 C IF(IY1.EQ.YEAR.AND.	113		00008590
ELSE 000086310 J=1 00008620 D0 119 J2=1,8 00008620 K=K+1 00008650 PLAG(J,J2)=(ACTREG(K)) 0008650 119 CONTINUE 00008650 C 00008670 C 00008670 C 00008670 C 00008670 C 00008700 D0 115 J=1,NSG 00008700 D0 116 J2=1,6 0000870 K=K+1 0000870 SPOT(J,J2)=ACTREG(K) 0000870 116 CONTINUE 0000870 SPOT(J,J2)=ACTREG(K) 0000870 115 CONTINUE 0000870 J=1 0000870 D0 120 J2=1,6 0000870 C 00008800 ELSE 00008800 SPOT(J,J2)=(ACTREG(K)) 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008810 ENDIF 00008820 C IF(IY1.EQ.YEAR.AND.ID2.EQ.DAY) JT1=I 00008820 </td <td></td> <td></td> <td>00008600</td>			00008600
J=1 00008620 D0 119 J2=1,8 00008640 K=K+1 00008650 PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008670 C 00008670 C 00008710 D0 115 J=1,NSG 0000870 D0 115 J=1,NSG 00008720 D0 115 J=1,SG 0000870 K=K+1 00008740 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 0000870 J=1 0000870 D0 120 J2=1,6 00008780 K=K+1 0000870 D0 120 J2=1,6 0000870 K=K+1 0000870 D1 20 J2=1,6 0000870 SPOT(J,J2)=(ACTREG(K)) 00008820 I20 CONTINUE 00008820 ENDIF 00008820 IF(IY1,EQ,YEAR, AND.ID1.EQ.DAY) JT1=I 00008820 IF(IY2,EQ,YEAR, AND.ID1.EQ.DAY) JT2=I 00008880 C WRITE SPECIFIED RECORDS 00008880 C IF(I,GE,JT1) THEN 00008890 </td <td>112</td> <td></td> <td>00008610</td>	112		00008610
D0 119 J2=1,8 00008630 K=K+1 00008640 PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008660 ENDIF 00008690 C 00008690 C 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,ASG 00008700 N=K+1 0000870 SPOT(J,J2)=ACTREG(K) 0000870 116 CONTINUE 00008760 115 CONTINUE 00008760 J=1 00008760 D0 120 J2=1,6 0000870 D0 120 J2=1,6 00008800 K=K+1 0000870 D0 120 J2=1,6 00008800 K=K+1 00008800 C 00008800 I120 CONTINUE 00008800 K=K+1 00008800 C 00008800 I120 CONTINUE 00008800 C 00008800 C 00008800 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008850 C 00008800 C 00008900 IF(I,CE,JT1) THEN 00008910 IF(I,CE,JT1) THEN 00008910 IF(I,CE,JT1) THEN 00008910 IF(I,T2.GT.0.AND.I.GT.JT2) G0 T0 101 0008890 C 00008900 N=ITE(6,2002) 00008950			
K=K+1 00008640 PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008670 C 00008670 00008670 C 00008670 00008700 C 00008670 00008700 C 00008700 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,KSG 00008700 D0 116 J2=1,6 00008700 SPOT(J,J2)=ACTREG(K) 0000870 116 CONTINUE 0000870 115 CONTINUE 0000870 116 CONTINUE 0000870 115 CONTINUE 0000870 116 CONTINUE 0000870 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 0008830 L20 CONTINUE 00008830 D120 J2=1,6 00008840 C IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008840 C WRITE SPECIFIED RECORDS			00008630
PLAG(J,J2)=(ACTREG(K)) 00008650 119 CONTINUE 00008670 C 00008680 C UNPACK SUNSPOT DATA 00008670 C 00008700 00008700 D0 115 J=1,NSG 00008720 D0 116 J2=1,6 0000870 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008750 116 CONTINUE 00008760 115 CONTINUE 0000870 116 CONTINUE 0000870 115 CONTINUE 0000870 116 CONTINUE 0000870 115 CONTINUE 0000870 116 CONTINUE 0000870 117 CON08800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 118 CON08800 K=K+1 00008820 120 CONTINUE 00008840 00008840 C IF(IY1.EQ.YEAR.AND.ID2.EQ.DAY) JT1=I 00008870 C WRITE SPECIFIED RECORD			00008640
119 CONTINUE 00008660 ENDIF 00008670 C 00008600 C UNPACK SUNSPOT DATA 00008700 IF(NSG.GT.0)THEN 00008700 D0 115 J=1,NSG 00008720 D0 115 J=1,6 00008740 SPOT(J,J2)=ACTREG(K) 00008760 116 CONTINUE 00008760 I16 CONTINUE 00008760 J=1 00008760 00008760 J=1 00008760 00008760 D0 120 J2=1,6 00008700 0008870 J=1 00008700 0008870 D0 120 J2=1,6 00008870 00008870 J=1 00008870 00008800 SPOT(J,J2)=(ACTREG(K)) 00008810 SPOT(J,J2)=(ACTREG(K)) 120 CONTINUE 00008830 ENDIF 00008830 00008840 C IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008840 C WRITE SPECIFIED RECORDS 00008880 C WRITE SPECIFIED RECORDS 000088900			
ENDIF 00008670 C 00008680 C UNPACK SUNSPOT DATA 00008690 C 00008700 D0 115 J=1,NSG 00008700 D0 115 J=1,SG 00008700 D0 116 J2=1,6 00008740 SPOT(J,J2)=ACTREG(K) 00008760 116 CONTINUE 00008760 115 CONTINUE 00008760 J=1 00008760 D0 120 J2=1,6 00008800 K = K+1 00008800 D0 120 J2=1,6 00008800 K = K+1 00008800 C 00008800 I20 CONTINUE 00008800 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT1=I 00008800 C 00008800 IF(I.GE.JT1) THEN 00008890 C 00008890 C 00008900 IF(I.GE.JT1) THEN 0000890 C 00008900 IF(I.GE.JT1) THEN 0000890 C 00008900 IN=IN+1 00008900 MRITE(6,2002) 0008950	119		
C UNPACK SUNSPOT DATA 00008680 C UNPACK SUNSPOT DATA 00008700 IF(INSG.GT.0)THEN 00008710 D0 115 J=1,NSG 00008710 D0 116 J2=1,6 00008720 SPOT(J,J2)=ACTREG(K) 00008740 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008750 115 CONTINUE 00008760 J=1 00008760 J=1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008810 ENDIF 00008840 C 00008840 C 00008840 C 00008840 C 00008840 C 00008850 IF(IY2.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008890 C 00008890 C 00008890 C 00008900 IF(I.GE.JT1) THEN 00008900 IF(I.GE.JT1) THEN 00008900 C 00008900 IF(I.GE.JT1) THEN 00008900 C 00008900 IN=IN+1 00008900 C 00008900 MRITE(6,2002) 00008950	117		
C UNPACK SUNSPOT DATA 00008690 C 00008700 IF(NSG.GT.0)THEN 00008710 D0 115 J=1,NSG 00008720 D0 116 J2=1,6 00008730 K=K+1 00008740 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008760 115 CONTINUE 00008760 J=1 00008760 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 I20 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID1.EQ.DAY) JT2=I 00008850 C MRITE SPECIFIED RECORDS 00008890 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 C WRITE(6,2002) 00008950	c		
C 00008700 IF(NSG.GT.0)THEN 00008710 D0 115 J=1,NSG 00008720 D0 116 J2=1,6 00008730 K=K+1 00008740 SPOT(J,J2)=ACTREG(K) 00008740 115 CONTINUE 00008760 115 CONTINUE 00008760 J=1 00008790 D0 120 J2=1,6 00008800 K=K+1 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008860 C 00008850 C WRITE SPECIFIED RECORDS 00008890 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 NRITE(6,2002) 00008950		INPACK SUNSPOT DATA	
IF(NSG.GT.0)THEN 00008710 D0 115 J=1,NSG 00008720 D0 116 J2=1,6 00008730 K=K+1 00008750 SPOT(J,J2)=ACTREG(K) 00008760 116 CONTINUE 00008760 115 CONTINUE 00008760 J=1 00008700 00008870 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008820 120 CONTINUE 00008830 ENDIF 00008840 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008840 C 00008880 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008880 C WRITE SPECIFIED RECORDS 00008890 IF(I.GE.JT1) THEN 00008890 00008890 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008920 00008920 WRITE(6,2002) 00008950 00008950			
D0 115 J=1,NSG 00008720 D0 116 J2=1,6 00008730 K=K+1 00008740 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008750 115 CONTINUE 0000870 J=1 0000870 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008850 C WRITE SPECIFIED RECORDS 00008890 C 00008890 IF(I.GE.JT1) THEN 0000890 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 NRITE(6,2002) 00008950	C	TEINSG GT DITHEN	
D0 116 J2=1,6 D0 116 J2=1,6 K=K+1 SPOT(J,J2)=ACTREG(K) 116 CONTINUE 115 CONTINUE U0008750 116 CONTINUE U0008760 00008760 00008760 00008870 00008800 K=K+1 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 120 CONTINUE ENDIF C WRITE SPECIFIED RECORDS C IF(I,GE,JT1) THEN IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008910 IF(I,202) WRITE(6,2002) 00008950 C WRITE(6,2002) 00008950 C WRITE(6,2002)			
K=K+1 00008740 SPOT(J,J2)=ACTREG(K) 00008750 116 CONTINUE 00008760 115 CONTINUE 00008770 ELSE 00008790 00008790 D0 120 J2=1,6 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008820 121 00008820 00008820 141 151.EQ.PAR.AND.ID1.EQ.DAY) JT1=I 00008870 151.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008820 00008820 161.IF(IJ2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008890 00008890 161.GE.JT1) THEN 00008890 00008890 161.GE.JT1) THEN 000088910 000088920 1N=IN+1 00			
SPOT(J, J2)=ACTREG(K) 00008750 116 CONTINUE 00008760 115 CONTINUE 00008770 ELSE 00008790 00008790 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J, J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008880 C 00008880 C 00008890 C 00008890 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C 00008920 IN=IN+1 00008930 C 00008930			
116 CONTINUE 00008760 115 CONTINUE 00008770 ELSE 00008700 00008700 D0 120 J2=1,6 00008800 K=K+1 00008800 00008820 120 CONTINUE 00008830 C IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 000088900 C IF(I.GE.JT1) THEN 00008890 IF(J.GE.JT1) THEN 000088910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 WRITE(6,2002) 00008950			
115 CONTINUE 00008770 115 CONTINUE 00008780 J=1 00008790 00008800 D0 120 J2=1,6 00008800 K=K+1 00008800 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 000088900 IF(I.GE.JT1) THEN 00008900 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	114		
ELSE 00008780 J=1 00008790 D0 120 J2=1,6 00008800 K=K+1 00008810 SPDT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008870 C 00008870 IF(I.GE.JT1) THEN 00008890 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008930 C WRITE(6,2002)			+
J=1 00008790 D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 00008890 C IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	115	•••••	
D0 120 J2=1,6 00008800 K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008870 C 00008890 C IF(I.GE.JT1) THEN 00008900 IF(I.GE.JT1) THEN 00008900 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950			
K=K+1 00008810 SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C 00008880 C 00008890 C 00008890 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950			
SPOT(J,J2)=(ACTREG(K)) 00008820 120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 00008890 C IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950			
120 CONTINUE 00008830 ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C 00008880 C 00008890 C IF(I.GE.JT1) THEN IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002)			
ENDIF 00008840 C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 00008890 C IF(I.GE.JT1) THEN 00008900 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	100		
C 00008850 IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 00008890 IF(I.GE.JT1) THEN 00008900 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	120		
IF(IY1.EQ.YEAR.AND.ID1.EQ.DAY) JT1=I 00008860 IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C 00008890 C 00008900 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008930 C 00008930	•	ENDIF	
IF(IY2.EQ.YEAR.AND.ID2.EQ.DAY) JT2=I 00008870 C 00008880 C WRITE SPECIFIED RECORDS 00008900 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	Ç	TOUTH TO YEAR AND THE CO DAY! ITE-T	
C 00008880 C WRITE SPECIFIED RECORDS 00008890 C IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950			
C WRITE SPECIFIED RECORDS 00008890 C IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950	-	IF(IY2.EQ.YEAK.AND.ID2.EQ.DAT) JI2-1	
C 00008900 IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) GO TO 101 00008920 IN=IN+1 00008930 C WRITE(6,2002) 00008950			
IF(I.GE.JT1) THEN 00008910 IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008930 C 00008940 WRITE(6,2002) 00008950		WRITE SPECIFIED RECORDS	
IF(JT2.GT.0.AND.I.GT.JT2) G0 T0 101 00008920 IN=IN+1 00008930 C 00008940 WRITE(6,2002) 00008950	С		
IN=IN+1 00008930 C 00008940 WRITE(6,2002) 00008950			
C 00008940 00008950 00008950			
WRITE(6,2002) 00008950	-	IN=IN+1	
	C		
2002 FORMAT(6X, 'RECORD', 28X, 'SOLAR', 2X, 'DAILY', 2X, 'GEUM', 2X/ 00008960			
	2002	FURMAI(6X, 'RECURD', 28X, 'SULAR', 2X, 'DAILY', 2X, 'GEUM', 2X/	00009960

_		
1		
2	1X,'SSN',2X,'FLUX',2X,' CALCM',2X,' INDX')	00008980
С		00008990
	WRITE(6,1005) IREC,IRECID,YEAR,DAY,NPR,NSG,ISS,MHZ,CAL,	00009000
1		00009010
1005	FORMAT(3(I4,2X),I3,2X,2(I4,2X),I3,3X,F5.1,2X,	00009020
1	F5.1,3X,I4)	00009030
	WRITE(6,2000)	00009040
2000	FORMAT(/'SOLAR PLAGE DATA)'/	00009050
2	48X,' CMP',2X,'MHREG.NO',2X,'LATIT',2X,' LON',	00009060
3	5X, ' AREA', 2X, ' INTEN', 2X, ' CLN', 2X, 'BLANK'/)	00009070
С		00009080
	IF(NPR.GT.0)THEN	00009090
	DO 114 J9=1,NPR	00009100
	WRITE(6,1006) (PLAG(J9,J6),J6=1,8)	00009110
1006	FORMAT(48X,F5.1,2X,F8.0,2X,2(F5.0,2X),F8.0,2X,	00009120
1	F6.1,2X,2(F5.0,2X))	00009130
114	CONTINUE	00009140
	ENDIF	00009150
	IF(NPR.EQ.0) THEN	00009160
	J7=1	00009170
	WRITE(6,1006) (PLAG(J7,J8),J8=1,8)	00009180
	END IF	00009190
	WRITE(6,2001)	00009200
2001	FORMAT('(SOLAR SUNSPT DATA)'/	00009210
2	48X, MHREG.NO', 2X, 'LATIT', 3X, 'LON',	00009220
3	5X,'INTEN',5X,' AREA',4X,'CLN'/)	00009230
С		00009240
	IF(NSG.GT.0)THEN	00009250
	DO 118 J10=1,NSG	00009260
	WRITE(6,1008) (SPOT(J10,J11),J11=1,6)	00009270
1008	FORMAT(48X,F8.0,2X,2(F5.0,2X),F7.0,2X,F8.0,2X,F5.0)	00009280
118	CONTINUE	00009290
	ENDIF	00009300
	IF(NSG.EQ.0) THEN	00009310
	J12=1	00009320
	WRITE(6,1008) (SPOT(J12,J13),J13=1,6)	00009330
	END IF	00009340
101	CONTINUE	00009350
	END IF	00009360
100	CONTINUE	00009370
	WRITE(6,3001)	00009380
3001	FORMAT(/// END OF FILE 4 PROCESSING'//)	00009390
	RETURN	00009400
	END	00009410

National Aeronaulics and Space Administration	Report Docume	entation Page			
1. Report No. NASA RP-1211	2. Government Accessio	n No.	3. Recipient's Catalog	g No.	
4. Title and Subtitle			5. Report Date		
Nimbus-7 ERB Solar Analysis	; Tape (ESAT) Use	er's Guide	November 198 6. Performing Organia 636		
7. A. sh and a)			-		
7. Author(s) Eugene R. Major, John R. Hi Bradley M. Alton, and Brend		le,	 8. Performing Organiz 88-204 10. Work Unit No. 	zation Report No.	
9. Performing Organization Name and Addres	~~~~~		665-10-70		
Space Data and Computing Di	vision		11. Contract or Grant	No.	
Goddard Space Flight Center Greenbelt, MD 20771			Reference Pub 13. Type of Report and		
12. Sponsoring Agency Name and Address			·····		
National Aeronautics and Sp Washington, DC 20546-0001	ace Administrati	on	14. Sponsoring Agenc	y Code	
 Lanham, Maryland. John R. Hickey and Bradley M. Alton: Eppley Laboratory, Inc., Newport, Rhode Island. H. Lee Kyle: Goddard Space Flight Center, Greenbelt, Maryland. 16. Abstract Seven years and five months of Nimbus-7 ERB solar data are available on a single ERB Solar Analysis Tape (ESAT). The period covered is November 16, 1978 through March 31, 1986. The Nimbus-7 satellite performs approximately 14 orbits per day and the ERB solar telescope observes the Sun once per orbit as the satellite crosses the southern terminator. The solar data have been carefully calibrated and screened. Orbital and daily mean values are given for the total solar irradiance plus other spectral intervals (10 solar channels in all). In addition, selected solar activity indicators are included on the ESAT. The ESAT User's Guide is an update of the previous ESAT User's Guide (NASA TM 86143) and includes more detailed information on the solar data calibration, screening procedures, updated solar data plots, and applications to solar variability. Details of the tape format, including source code to access ESAT, are included. 					
17. Key Words (Suggested by Author(s))18. Distribution StatementSolar constant measurementsUnclassified - UnlimitedSolar spectral observationsSubject Category 92					
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of pages	22. Price	
Unclassified	Unclassified		96	A05	
NASA FORM 1626 OCT 86	L	·		• • • • • • •	

NASA	FORM	1626	OCT 86	
------	------	------	--------	--
