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Abstract 

Background: Identifying frequently mutated regions is a key approach to discover 

DNA elements influencing cancer progression.However, it is challenging to identify 

these burdened regions due to mutation rate heterogeneity across the genome and 

across different individuals. Moreover, it is known that this heterogeneity partially stems 

from genomic confounding factors, such as replication timing and chromatin organi-

zation. The increasing availability of cancer whole genome sequences and functional 

genomics data from the Encyclopedia of DNA Elements (ENCODE) may help address 

these issues.

Results: We developed a negative binomial regression-based Integrative Method for 

mutation Burden analysiS (NIMBus). Our approach addresses the over-dispersion of 

mutation count statistics by (1) using a Gamma–Poisson mixture model to capture the 

mutation-rate heterogeneity across different individuals and (2) estimating regional 

background mutation rates by regressing the varying local mutation counts against 

genomic features extracted from ENCODE. We applied NIMBus to whole-genome 

cancer sequences from the PanCancer Analysis of Whole Genomes project (PCAWG) 

and other cohorts. It successfully identified well-known coding and noncoding drivers, 

such as TP53 and the TERT promoter. To further characterize the burdening of non-

coding regions, we used NIMBus to screen transcription factor binding sites in pro-

moter regions that intersect DNase I hypersensitive sites (DHSs). This analysis identified 

mutational hotspots that potentially disrupt gene regulatory networks in cancer. We 

also compare this method to other mutation burden analysis methods.

Conclusion: NIMBus is a powerful tool to identify mutational hotspots. The NIMBus 

software and results are available as an online resource at github.gersteinlab.org/

nimbus.

Keywords: Somatic mutation burden, Mutation rate heterogeneity, Mutation rate 

estimation, Mutation count overdispersion
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Background

Population-level analysis, which looks for regions mutated more frequently than 

expected, is one of the most powerful ways of identifying deleterious mutations in 

diseases [1–3]. �e availability of whole genome sequencing (WGS) has provided 

unprecedented statistical power to perform such analyses. An accurate quantification 

of mutation burden is important to help uncover the genetic cause of various dis-

eases, which in turn would allow for targeted therapies in clinical studies. One typical 

application of such analysis is to find burdened regions in cancer genomes as poten-

tial drivers.

However, mutation burden tests for somatic variants in cancer research remain chal-

lenging for several reasons. First, it is well known that cancer genomes are heterogene-

ous [4]. If a constant mutation rate is assumed, the positional level mutation counts often 

demonstrate larger than expected variance, known as overdispersion. �is assumption 

results in poor data fitting and can lead to numerous false positives [5], so it is necessary 

to introduce more sophisticated models to handle this mutation rate heterogeneity. Sec-

ond, numerous genomic features have been reported to largely affect the mutation pro-

cess [6–12], necessitating careful correction in burden analysis. �ese features include 

chromatin status and replication timing. Various strategies have been suggested for inte-

grating these features to calibrate background mutation rate [7, 13–18]. However, these 

strategies may be limited by both the number and kinds of features used to model back-

ground mutation rate. For instance, cancer cells are usually highly heterogeneous and 

thus are not necessarily matched by features from a single cell type. Moreover, assay data 

does not necessarily exist for each feature type in all cell types. Lastly, many studies have 

shown that noncoding mutations can serve as driver events for diseases. For example 

the mutations in the TERT promoter were found to be associated with cancer progres-

sion [19–21]. A recent study of non-coding mutations in breast cancer identified driver 

mutations in three genes—FOXA1, NEAT1, and RMRP [22]. Hence, unified analysis of 

coding and noncoding regions is needed to give a thorough annotation of discovered 

hotspots.

Here, we propose a negative binomial regression based Integrative Method for muta-

tion Burden analysiS (NIMBus) that addresses the three problems mentioned above. 

It first intuitively treats mutation rates from different individuals as random variables 

with a gamma distribution, and resultantly models the pooled mutation counts from a 

heterogeneous population as a negative binomial distribution to handle overdispersion. 

Furthermore, to capture the effect of covariates, NIMBus integrates extensive features in 

all available tissues from Roadmap Epigenomics Mapping Consortium (REMC) and the 

Encyclopedia of DNA Elements (ENCODE) project to create a covariate matrix to pre-

dict the local mutation rate with high precision through regression.

In addition, NIMBus was used to analyze the most comprehensive noncoding anno-

tations from ENCODE in two ways. First, our approach enabled us to effectively pin-

point mutation hotspots associated with disease progression and to better understand 

the associated biological mechanisms. �is was accomplished by applying our method 

to the transcription start site (TSS) regions. Second, NIMBus targeted key transcrip-

tion factor binding sites to give insight into the potential mechanisms for transcriptional 

regulation. Lastly, we compared our results to those from ICGC/TCGA Pan-Cancer 
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Analysis of Whole Genomes Consortium [23]. To better illustrate how NIMBus works, 

Fig. 1 gives its workflow.

Results

We designed our NIMBus model based on statistical and biological problems inherent 

in our data, and then we demonstrated our model’s many applications. Compared to the 

Poisson distribution, the negative binomial model better accounts for the heterogene-

ity and overdispersion in the mutation rate across diseases and samples. Local muta-

tion rates are also affected by genomic features such as endogenous DNA damage and 

chromatin organization. NIMBus addresses both of these concerns by utilizing a nega-

tive binomial regression and also by adjusting the local background mutation rate based 

on the genomic context. �e covariates used in our model achieved the best prediction 

accuracy when the tissue type was matched, however when matching was not possi-

ble, pooling the tissue types increased power. Because of the availability of established 

knowledge surrounding coding regions, we first used NIMBus to identify significantly 

Fig. 1 Flowchart of NIMBus. For a given disease d(1 ≤ d ≤ D) , sd represents the total number of samples for 

that disease. In addition, there are a total of m features which are denoted as f1 . . . fm . The mutations from the 

samples and the features are binned on the bins b1 . . . bn for a total of n . Two resulting matrices are produced, 

Y  and X  . The matrix Y  is a D × n matrix consisting of mutation counts while X  is an n × m matrix consisting 

of feature values. Training the negative binomial model gives, for each disease, µ and σ values for each bin, 

n . The trained model can be applied to a set of user defined regions, 1 . . . K  , to evaluate relative mutation 

burden. This testing is associated with a set of P-values, p , for each of the K regions. The P-values from 

multiple regions may be combined using Fisher’s method
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mutated coding regions. �en, we also tested our model on KEGG pathways aimed at 

pinpointing significant pathways comprised of these coding regions. Additionally, we 

applied NIMBus to noncoding regions and identified both well documented and novel 

burdened genes. Lastly, we benchmarked our result against other methods [23, 24] and 

compared it to a list of empirically supported cancer genes from COSMIC [25].

Heterogeneity from various sources leads to large overdispersion in mutation counts data

First, it is known that there is significant mutation rate heterogeneity across diseases 

and samples. For this reason, it is usually incorrect to assume a homogeneous mutation 

rate per nucleotide or to consequently use binomial tests to calculate P values. To dem-

onstrate this, we collected WGS variants from 649 cancer patients and 7 cancer types 

(Additional file 1: Fig. S1, Text S1). In our data, the median number of variants was as 

low as 70 in Pilocytic Astrocytoma (PA) and as high as 21,287 in Lung adenocarcinoma 

(LUAD). Even within the same cancer type, mutation counts vary dramatically from 

sample to sample (lowest at 1743 and highest at 145,500 in LUAD, Fig. 2a). In addition, 

there are also large regional mutation rate differences within the same sample (Addi-

tional file 1: Fig. S2). �erefore, distributions based on constant mutation rate assump-

tion usually fit poorly to mutation count data (Fig. 2b, dashed lines with +, Additional 

file  1: Fig. S3). In light of these issues, we utilized a two-parameter negative binomial 

distribution to further capture the over-dispersed nature of mutation counts data, which 

improves fitting to real data significantly (dashed lines with star in Fig. 2b).

Local mutation rate is confounded by many genomic features

It has been reported that local mutation rates are associated with many well-known 

genomic features, such as mRNA expression, GC content, replication timing, and chro-

matin organization [11]. We found that the WGS data in our datasets also demonstrated 

similar characteristics. For example, Additional file  1: Fig. S4 shows how mutation 

counts at a 1mb resolution (the first 70 bins on chromosome 1) are correlated with sev-

eral genomic features.

Somatic mutation rate has been reported to be confounded by several genomic fea-

tures [7–9]. We examined two such genomic features: endogenous DNA damage and 

chromatin organization. Endogenous DNA damage, such as oxidation and deamination, 

can affect single-stranded DNA during replication. �e accumulative damage effect in 

the later replicated regions will result in increased mutation rate. We have observed 

a similar trend in our data. For example, the Pearson correlation between normalized 

mutation counts and replication timing values in breast cancer (BRCA) is as high as 0.67 

in the first 70 1mb bins (Additional file 1: Fig. S4A).

Another example is that the chromatin organization, which arranges the genome into 

heterochromatin- and euchromatin-like domains, has a dominant influence on regional 

mutation rate variation in human somatic cells [11]. Consistently, we also find that 

mutation counts are significantly associated with the DNase-seq signal (Pearson correla-

tion = − 0.61, P = 1.52 × 10−8, Additional file 1: Fig S4B). �erefore, it is important to 

accurately estimate local background mutation rate for mutation burden analysis.
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Negative binomial regression precisely estimates local mutation rates by correcting 

the in�uence of many genomic features

(A) Features in matched tissues usually provide best prediction accuracy but features 

in unmatched tissue still help

It has been reported that the most accurate local mutation rate prediction can be 

achieved by using features from matched tissue [9]. Hence, we specifically selected 

variants in two distinct cancer types, BRCA and medulloblastoma (MB), and predicted 

their local mutation rates with a few features from matched (or loosely matched) and 

unmatched tissues (Additional file 1: Table S2). Relative error, defined as the normalized 
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Fig. 2 a Disease and sample mutation rate heterogeneity; b improved fitting by negative binomial 

distribution of mutation counts in 1mb bins in breast cancer (BRCA) and Medulloblastoma (MB)



Page 6 of 25Zhang et al. BMC Bioinformatics          (2020) 21:474 

difference of observed and predicted value (Eq.  1), was used to assess model perfor-

mance. Consistent with previous analyses, we find that features in matched tissues usu-

ally outperform those from unmatched tissues. For example, the relative error is only 

0.128 by using breast tissue related features to predict BRCA mutation rates, which is 

noticeably smaller than an error of 0.195 when using brain related features (Additional 

file 1: Table S3). Similarly, brain related features have more predictive power compared 

to breast related ones for MB mutation rates (error of 0.135 VS. 0.183).

Specifically, we represented mutations rates in BRCA and MB as µB

i
 and µM

i
 for the ith 

bin 1mb bin. 7 genomic features in breast related features were extracted from REMC, 

including DNASeq, H3K27me3, H3K36me3, H3K4me3, H3K9me3, mRNA-seq and 

methylation data (features starting with B_ in Additional file  1: Fig. S6A), denoted by 

x
B
i,1
, . . . , xB

i,7
 . Similarly, we also used 8 features in brain related tissues for MB denoted 

by xM
i,1
, . . . , xM

i,8
 (H3K27me3, H3K27ac, H3K36me3, H3K4me1, H3K4me3, H3K9me3, 

mRNA-seq and methylation, features starting with M_ in Additional file 1: Fig. S6A). We 

found that these features were correlated both within and across tissues (as shown in the 

correlation plot in Additional file 1: Fig. S6A).

To compare the performance of regressions using (loosely) matched and unmatched 

tissues, four regression models can be run as shown in Additional file 1: Table S2. �e 

scatter plots of the observed and predicted values were given in Additional file 1: Fig. 

S6B. To compare model performance, we defined the relative error ed
i
 as

Relative errors for these four models were given in Additional file 1: Table S3.

However, biologically meaningful tissue matching remains challenging and usually is 

not an optimal process for researchers without enough domain knowledge. Specifically, 

if samples of distinct hidden subtypes were pooled together for a certain disease, tis-

sue matching would be more difficult. Furthermore, even after the optimally matched 

tissue has been identified, we frequently need to handle missing features in that tis-

sue. We noticed that many genomic features are correlated both within and across tis-

sues (correlation plot in Additional file 1: Fig. S6A), which leads to suboptimal but still 

decent regression performance (scatter plots given in Additional file 1: Fig. S6B). �is is 

extremely helpful when processing WGS from diseases without matched features. For 

example, there are no prostate related features in REMC, but features in other tissues 

still help to estimate the local mutation rates.

(B) Pooling features from multiple tissues signi�cantly improves local background mutation 

rate prediction

In light of the correlated nature of covariates, especially those epigenetic features [9, 

26], we first performed principal component analysis (PCA) on the covariate matrix to 

address the multicollinearity problem during regression. �e correlation of each prin-

cipal component (PC) with the mutation counts data varies significantly across dif-

ferent cancer types (boxplots in Additional file  1: Fig. S7B). For example, the first PC 

(1)e
d

i =

∣∣∣µd

i
− µ̂

d

i

∣∣∣

µ
d

i

.
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demonstrates a Pearson correlation of 0.653 in LICA, which is much higher than 0.352 

in PRAD. �erefore, it is necessary to run a separate regression model for each cancer 

type.

Since numerous PCs have been shown to be associated with mutation rates, we tried 

to investigate the joint effect of multiple PCs to predict the local mutation rates. Particu-

larly, for each cancer type, we first ranked the individual PCs by their correlations with 

mutation rates, and then selected the top 1, 30, and 381 PCs to estimate the local muta-

tion rate. Figure 3a shows that using more PCs can noticeably boost prediction accuracy 

in all cancer types. For example, in BRCA the Pearson correlation is only 0.472 if 1 PC 

is used in regression, but rises to 0.655 and 0.709 if 15 and 30 PCs are used respectively. 

�e correlation increases to 0.818 after using all 381 PCs. As a result, in all of the follow-

ing analyses, we used all 381 PCs for accurate local mutation rate estimation.

As shown in Fig. 3b, we achieved good prediction accuracy through regression against 

all PCs of the covariate matrix in all cancer types. �e Pearson correlations of the 

observed mutation counts and the predicted µ̂d

i
 vary from 0.668 in PA to 0.958 in LICA. 

Scatter plots are given in Additional file 1: Fig. S8.

It has been reported that many genomic signal tracks demonstrate noticeable correla-

tions across features and tissues [26]. Hence, we first centered and scaled the covariate 

matrix X and then performed PCA on it to obtain X
′

 . �e cumulative proportion of var-

iance explained by the PCs was given in Additional file 1: Fig. S7 A. As expected, there is 

lots of redundancy in the covariate table. �e first PC may explain as much as 55.69% of 

variance, and it takes up to 15 and 106 PCs to capture 90% and 99% of variance.

We also calculated the Pearson correlation of PC j with mutation counts in cancer 

type d as ρd
j  . �en the absolute correlation value 

∣

∣

∣
ρ
d
j

∣

∣

∣
 was averaged over different cancer 

types as ρ̂J to rank the PCs. �e top 20 PCs with highest ρ̂J were selected and boxplot for 

each of the PCs was given in Additional file 1: Fig. S7B.

For each cancer type, we tried to predict the local mutation rate by correcting the 

covariate matrix after PCA projection. �e Pearson correlation of the predicted and 

observed mutation rates are given in Additional file  1: Fig. S8. It is worth mentioning 

a b

Fig. 3 a Regression performance by correcting different number of PCs; b regression performance vs. total 

number of variants used in all cancer types
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that although there are no features matching prostate tissue in REMC, we can still 

achieve a very high correlation of 0.81 with the help of 381 unmatched but correlated 

features. �is indicates that our model can still provide acceptable performance even 

when somatic WGS of a disease is given without optimally matched covariates.

In addition, the number of available variants obviously affects prediction performance, 

though it is not the only factor. As shown in Fig. 3b, the limited number of variants, such 

as those in the quiet somatic genomes of pilocytic astrocytoma (PA), can usually restrict 

our prediction precision (lowest correlation at 0.668 among 7 cancer types). However, 

other factors, such as the number of effective covariates, quality of mutation calls, and 

molecular similarity of pooled samples of the same disease can also influence the predic-

tion performance considerably. For instance, although there are fewer variants in MB 

than those in BRCA, our regression for MB still outperforms that of BRCA (0.865 vs 

0.818, Fig. 3b).

Coding region calibration for NIMBus

(A) Single gene target region analysis

Since coding regions have been investigated in more detail than the noncoding regions, 

we first applied NIMBus on coding regions. First, we extracted coding regions from the 

GENCODE annotation v19 and ran NIMBus on both real and simulated datasets (details 

in Methods “Coding region annotation” and “Simulated variants for all cancer types” 

sections). We found that in all cancer types analyzed, NIMBus effectively controlled P 

value inflation compared to the method mentioned in [4]. For example, in LUAD the P 

values for real data fall on the diagonal with the uniform P values, apart from a few outli-

ers that represent the true significant signals (black dots on the right side in Fig. 4). After 

P value adjustment using the Benjamin–Hochberg method, only 11 genes are reported 

as_ENREF_4 mutated_ENREF_4 in LUAD, while none were discovered on the simulated 

data (orange dots in Fig. 4). On the other hand, the method using a constant mutation 

rate assumption reported 6023 genes to be significantly mutated, indicating severe P 

value inflation.

We also used Fisher’s method to combine P values from all cancer types. In total, 15 

genes were discovered to be significantly mutated. Twelve of them are well documented 

as related with cancer progression. �e top genes are shown in Table 1 and their PubMed 
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ID is given in the last column for reference. �ese results showed that NIMBus is able to 

find sensible mutational hotspots as cancer drivers.

(B) Mutation burden of KEGG pathways

Using the KEGG pathway dataset, consisting of 288 unique pathways, we performed a 

network mutation burden test on each pathway for each cancer type to discover signifi-

cantly mutated pathways. We found that of the seven cancer types analyzed, four can-

cer types exhibited significantly mutated KEGG pathways ( padj < 0.05 ). In particular, 

we found 5 significant pathways in BRCA, 5 in LICA, 10 in GACA, and 3 in LUAD. No 

significant pathways were found in MB, PA, or PRAD. �e significant pathways and their 

associated cancer types are seen in Table 2, as well as the Benjamin-Hochberg adjusted 

P-value. �e significant pathway list includes pathways associated with the p53 signaling 

pathway, apoptosis, and cell growth—which are known to be associated with cancer. In 

addition to these well-studied pathways, we were able to discover many novel pathways, 

Table 1 Top genes after P-value combination

Rank Gene P value Adjusted P value PubMed ID

1 TP53 4.33E−139 4.3311E−139 17401424

2 DDX3X 7.30E−18 3.64888E−18 22820256

3 KRAS 7.68E−06 2.56097E−06 19847166

4 MUC4 1.79E−05 4.46636E−06 19935676

5 CDH1 1.53E−04 3.06519E−05 10973239

6 ARID1A 1.42E−03 0.000236255 22037554

7 SMARCA4 2.64E−03 0.000377726 18386774

8 FGFR1 5.94E−03 0.000742868 23817572

9 OTOP1 3.33E−02 0.003694811 –

10 STK11 4.69E−02 0.004691876 –

11 SPOP 4.94E−02 0.004493795 –

12 PTEN 5.77E−02 0.004812088 –

13 SMO 1.65E−01 0.012684045 –

14 TAS2R31 4.76E−01 0.033983962 –

15 TBC1D29 5.14E−01 0.034276895 –

Table 2 Signi�cant pathways and P values

* P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001

KEGG ID Description LICA GACA LUAD BRCA 

04115 p53 signaling pathway **** **** – ****

04210 Apoptosis **** **** – ****

04110 Cell cycle; growth and death * – – –

04919 Thyroid hormone signaling *** **** * **

05014 Amyotrophic lateral sclerosis **** **** ** ****

04310 Wnt signaling pathway – **** – –

04722 Neurotrophin signaling – **** – ****

04010 MAPK signaling pathway – *** – –

05216 Thyroid cancer pathway – * – –

05219 Bladder cancer, urothelial tumor – * – –

04742 Taste transduction – – * –
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including other signaling and disease-associated pathways. �ese results demonstrate 

a novel way to use NIMBus as a way to conduct mutation burden tests in biologically 

meaningful networks in the genome.

NIMBus discovered a list of mutated noncoding regions from cancer WGS data

As a fair comparison to our NIMBus model, the global and local models were used on 

the same data to identify mutational hotspots. First, the global model assumes the per 

nucleotide mutation rate is constant across the genome and different individuals. Hence 

the mutation counts within the test region could be considered as a Binomial distribu-

tion. �en, the local model uses a Binomial regression against the same set of covariates 

to compensate regional mutational heterogeneity, but ignores the heterogeneity across 

individuals. On the other hand, our NIMBus model captures mutational heterogeneity 

arising from both different individuals and regions from the genome, which allows more 

flexibility of mutation counts modeling (details see the “Method" section).

We applied NIMBus on WGS variant calls for all seven cancer types to predict the 

individual somatic burden P values, and compared these results to those from global 

and local Binomial models (see Fig. 5a and details in the Methods “WGS variants data 

used” section). Similar to the results in the coding region analysis, both global and 

local Binomial models generated too many burdened regions in all noncoding annota-

tion categories, as evidenced by the poor fitting in Fig. 2b. For example, in liver cancer 

after P value correction, NIMBus identified 21 promoters as highly mutated, while 

local and global binomial models identified 79 and 641, respectively. Hence, our nega-

tive binomial assumption in NIMBus effectively captured the overdispersion and con-

trolled the number of false positives. To further demonstrate this, we provided the 

a

c

b

Fig. 5 a Number of overly mutated promoter regions in all cancer types; b Q–Q plots of P values for 

promoter regions; c total number of burdened regions in all noncoding annotations after merging P values 

from 7 cancer types. B_local: local Binomial Model, B_global: global Binomial Model, DRM: Distal Regulatory 

Module, DHS: DNase hypersensitivity site, TFBS: Transcription factor binding site, UTR: Untranslated region, 

Promoter: 2500 nucleotides (nt) upstream of the 1st nucleotide of GENCODE transcripts, TSS: Transcription 

Start Site. 100 nucleotides upstream of the 1st nucleotide of GENCODE transcripts, Ultraconserved region: 

region under positive cross-species selection in mammals, Ultrasensitive region: region with a greater than 

expected fraction of rare variants
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Q-Q plots of P values in promoter regions for all seven cancer types in Fig. 5b as a 

quality check. In theory, if no significantly burdened regions are detected, the P val-

ues should follow uniform distribution. As shown in Fig. 5b, the majority of our P val-

ues follow the uniform assumption, with the exception of a few outliers representing 

true signals, indicating reasonable P value distributions for all cancer types. BRCA 

and GACA, as well as PRAD and LUAD, have a greater number of outliers than other 

cancer types. �is may relate partially to statistical power—these cancer types have 

a greater number of mutations and more patients than those cancer types without 

the same number of outliers. In addition to the QQ plots in Fig. 5b, we also looked at 

the proportion of significantly burdened promoter regions for each cancer type. We 

found that GACA has more than twice the number of burdened promoter regions as 

other cancer types. In addition to statistical power to measure this burdening, this 

may also relate to underlying differences in tumor biology.

To summarize the mutation burdens from all cancer types, we used Fisher’s method 

to calculate the final P values for all three models. Similar to P values from a single 

cancer type, the combined P values are severely inflated in both global and local Bino-

mial models, but are rigorously controlled by NIMBus (table C in Fig. 5). For example, 

NIMBus reported only 39 transcription start sites (TSS) as burdened, compared to 

164 and 263 for the other two methods.

Additionally, out of the 39 TSS elements, several of them have been experimentally 

validated or computationally predicted in other work to be associated with cancer. 

For instance, TP53 is a well-studied tumor suppressor gene that is involved in many 

cancer types, and the combined P value for the TP53 TSS is ranked second in our 

analysis (P = 4.26 × 10−14) [27]. Another TSS element found to be significantly bur-

dened is LMO3, which  interacts with the tumor suppressor TP53 and regulates its 

function. LM03 ranked fourth in our analysis (P = 3.25 × 10−13) [28]. Similar to pre-

vious reports, we also identified the AGAP5 TSS site as a mutation hotspot, ranking 

third (P = 7.07 × 10−14) in our analysis [28]. Another important example is the TSS 

site in TERT, which ranked fifth in our results (P = 1.55 × 10−10) and has been experi-

mentally validated to be associated with multiple types of cancer progression [19–21]. 

�e discovery of such results shows that NIMBus may contribute to mutation driver 

event discovery in genetic diseases.

To further extend our analysis of non-coding mutational burdening, we examined 

transcription factor binding sites within promoter regions with evidence of func-

tional activity via co-location with DNase I hypersensitive sites (DHSs). �is analy-

sis was performed on a per-cancer type basis, with assays matched to cancer types 

(Additional file  1: Table  S5). In total, 14 cancer types were examined. For 7 of the 

cancer-types with available RNA-seq expression in ENCODE, gene expression was 

used to limit the analysis to TFs with non-negligible expression (> 1 FPKM). In total, 

after multiple-testing correction, 1450 noncoding regions were identified with signifi-

cant mutation burdening. Although significantly burdened sites were identified for 

all cancer types analyzed, certain cancer types contained disproportionate numbers 

of burdened promoter/TF sites. Skin-Melanoma (401 burdened sites), Myeloid-MPN 

(296 burdened sites), and Lymph-BNHL (274 sites), were the cancer types with the 

greatest number of non-coding promoter/TF regions identified. �e promoter/TFBS 
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regions of common cancer-associated genes were identified as overburdened, such as 

TERT in Liver-HCC and TP53 in Lung-SCC.

We compared the burdened noncoding regions identified by NIMBus to those identified 

using another method, OncodriveFML [24]. Across 14 cancers, OncodriveFML identified 

a total of 249 unique burdened noncoding regions, while NIMBus identified a total of 1380 

unique burdened noncoding regions. Twenty-three genes were shared between both meth-

ods, including STAT3 and MYC. Notably, OncodriveFML did not identify the noncoding 

regions of TERT or TP53 to be significantly burdened.

We also compared the regions identified through this method, to an independently 

derived set of non-coding driver mutations identified by the ICGC/TCGA Pan-Cancer 

Analysis of Whole Genomes Consortium [23]. �e PCAWG Consortium tested six differ-

ent types of noncoding regions (3′UTR, 5′UTR, enhancers, promoters, long non-coding 

RNA genes (lncRNA), and promoters of lncRNA genes). Overall, NIMBus found the non-

coding regions of 1380 unique genes to be burdened across 14 cancers, while the PCAWG 

Consortium’s noncoding driver analysis found a total of 29 genes to be burdened across 

12 cancers. Eighteen burdened genes were shared in both analyses, but NIMBus identi-

fied 1362 additional unique genes that the PCAWG Consortium did not. �e shared genes 

included the well-studied TERT gene. While the PCAWG Consortium found TP53 to be 

mutated in its coding region, their noncoding analysis did not find it to be mutationally 

burdened. Using NIMBus we find TP53 to be significantly burdened in both its coding and 

noncoding regions, which is supported heavily in literature [29].

We used the Cancer Gene Census as compiled by COSMIC (Catalogue of Somatic Muta-

tions in Cancer) to further analyze NIMBus’s performance [25]. Cancer genes were either 

classified as Tier 1 (possessing strong evidence) or Tier 2 (possessing developing evidence). 

Of the 18 burdened genes that were identified by NIMBus and the PCAWG Consortium, 

one gene (TERT) was identified as a Tier 1 gene and one gene (MALAT1), a lncRNA gene, 

was identified as a Tier 2 gene [30]. While NIMBus identified a total of 56 Tier 1 genes and 

13 Tier 2 genes, the PCAWG Consortium identified 2 Tier 1 genes and 1 Tier 2 gene; and 

OncodriveFML identified 37 Tier 1 genes and 1 Tier 2 gene. Among the Tier 1 genes identi-

fied by NIMBus, CXCR4 is a chemokine receptor that interacts with the chemokine mol-

ecule CXCL12 [31]. �e CXCR4/CXCL12 pathway has substantial literature support that 

establishes the role of the CXCR4 gene in cancer [32, 33]. Another Tier 1 gene identified by 

NIMBus, ERBB2, is a transmembrane tyrosine kinase receptor that is often overexpressed 

in cancer [34]. Anti-ERBB2 antibodies (under the generic name trastuzmab) can be used 

to treat breast and gastric cancer [35, 36]. Our benchmarking results are summarized in an 

Excel spreadsheet on our NIMBus Github website.

By comparing our results to those generated from well-known, previously existing meth-

ods, we find that NIMBus not only robustly pinpoints already well documented findings, 

but also identifies additional burdened genes with both developing and existing experimen-

tal support.

Discussion

�ousands of somatic genomes are now available due to the fast development of whole 

genome sequencing technologies, providing us with increasing statistical power to scru-

tinize the cancer mutation landscape. At the same time, thanks to the collaborative 
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efforts of large consortia, such as REMC and ENCODE, tens of thousands of functional 

characteristic experimental results on human genomes have been released for immedi-

ate use to the whole community. Hence, integrative frameworks are of urgent need in 

order to explore the interplay between WGS data and these functional characteristic 

data. It will not only be important to accurately search for mutational hotspots as driver 

candidates for complex diseases but also to better interpret the underlying biological 

mechanisms of diseases for clinicians and biologists.

In this paper, we proposed a new integrative framework called NIMBus to analyze can-

cer genomes. Due to the heterogeneous nature of various somatic genomes, our method 

treated the individual mutation rate as a gamma distributed random variable to mimic 

the varying mutational baseline for different patients. Resultantly, it modeled the muta-

tion counts data using a two-parameter negative binomial distribution, which improved 

data fitting dramatically as compared to previous work (Fig.  2b). It then uses a nega-

tive binomial regression to capture the effect of a widespread list of genomic features on 

mutation processes for accurate somatic burden analysis.

Unlike previous efforts, which use very limited covariates to estimate local muta-

tion rate in very qualitative way, we explored the whole REMC and ENCODE data and 

extracted 381 features that best describe chromatin organization, expression profiling, 

replication status, and context effect in all possible tissues to jointly predict the local 

mutation rate at high precision. In terms of covariate correction, NIMBus demonstrated 

three obvious advantages: (1) It incorporates the most comprehensive list of covariates 

in multiple tissues to achieve accurate background mutation rate estimation; (2) It pro-

vides an integrative framework that can be extended to any number of covariates and 

successfully avoids the high dimensionality problem of other methods [5, 7], which is 

extremely important due to the rapidly growing amount of available functional charac-

teristic data available and the drop in cost of sequencing technologies; (3) It automati-

cally utilizes the genomic regions with the highest credibility for training purposes, so 

users do not have to be concerned about performing carefully calibrated training data 

selection and complex covariate matching processes.

�e length of training bins l is an important parameter for NIMBus. On one side, 

a shorter bin size will be advantageous in the P value evaluation as it can remove the 

mutational heterogeneity across regions more effectively at a higher resolution. On the 

other side, a smaller l sometimes will result in worse mutation rate prediction perfor-

mance for two reasons. First, sensible mutation rate quantification is necessary in each 

single bin for the regression purpose. However, somatic mutations are usually sparsely 

scattered across the genome due to limited number of disease genomes available at the 

moment. In the extreme case, when l is so small that most bins have zero mutations, it 

is difficult for the regression model to capture the relationship between mutations and 

covariates. Second, some of the covariates are only reported to be functional on a large 

scale [11], so reducing l will not necessarily boost prediction precision. Optimal bin size 

selection is still a challenging problem that needs further case-by-case investigation. In 

our analysis, we used a 1 Mb bin size for all cancer types.

Noncoding regions represent more than 98% of the whole human genome, and are 

investigated less mainly due to limited knowledge of their biological functions. NIMBus 

is also designed to explore the most comprehensive collection of noncoding annotations. 
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�erefore, it collects the up-to-date, full catalog of noncoding annotations of all possible 

tissues from ENCODE and our previous efforts from the 1000 Genomes Project. Addi-

tionally, it further customizes these annotations specifically for somatic burden analy-

sis. All these integrated internal annotations of NIMBus can be either tested for somatic 

burden or used to annotate the user specific input regions.

We applied NIMBus to 649 cancer genomes of seven different types collected from 

public data and collaborators. �e burden test P values for each cancer type were 

deduced and Fisher’s method was used to calculate the combined P values. We first 

evaluated the performance of NIMBus on coding regions, which have been investigated 

with much detail by researchers. Many well-documented cancer associated genes were 

discovered by NIMBus (Table 1 and Additional file 1: Table S4). We also repeated the 

same analysis on a simulated dataset and found no significant genes. �ese results dem-

onstrate that NIMBus is able to find overly mutated genes effectively while rigorously 

controlling false positives. It should be mentioned that one limitation of this analysis is 

the limited statistical power due to a lack of WGS data. �is in turn results in appropri-

ately conservative predictions. However, with the increasing availability of more WGS 

data and advances in sequencing technology, finding a more complete list of heavily bur-

dened genes will become possible.

In addition to single gene burden analysis tests, we were able to detect significantly 

mutated KEGG pathways, including the TP53 signaling pathway and apoptosis pathway, 

both of which are implicated in cancer progression. We also examined the burdening 

of TFBS located in promoter regions that intersect with DHSs. 1450 TFBS/promoter 

regions were identified with disproportional mutation rates. A subset of these regions 

was also found to affect downstream gene expression when mutated. �is approach 

identified novel, gene-regulatory regions that may affect cancer development and also 

provides an example of how the NIMBus method may be extended to examine gene 

networks. �e adaptability of NIMBus to analysis of gene networks may prove useful 

in determining significantly mutated regions of the genome that are not physically adja-

cent. �ough NIMBus is able to determine some well-known cancer associated path-

ways that are heavily burdened, there still remains some challenges in interpreting other 

pathways. One reason may be due to constrained availability of pathway annotations, 

which may result in false positives. Future work could be done here to build and validate 

other pathways. Additionally, when using Fisher’s method, it is possible that the P-values 

of the regions or genes in a pathway that are combined are not entirely independent, 

which could result in some false positives, since we do not know the exact joint distribu-

tion of the P-values. �is may be an area of future study.

Furthermore, numerous noncoding elements were also reported as significantly 

mutated (Table C in Fig. 5). Included were some well-known regions, such as the TP53, 

LMO, and TERT TSS, proving the effectiveness of NIMBus in identifying disease-asso-

ciated regions.

To some degree somatic variants can be considered as the limit of extremely rare ger-

mline variants because they are almost private variants to particular cells. On the con-

trary, common germline variants have somewhat different characteristics from rare 

germline ones as they often have low functional impact and are linked to other variants. 

As the germline variant becomes more rare, the linkage decreases and the functional 
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impact usually increases up to what we observe for somatic variants. �us, we would 

expect the methods here to work well for rare germline variants (e.g. de novo ones and 

those confined to small populations).

Scanning the TFBS within regulatory elements allowed us to gain more power than 

simply analyzing whole regulatory regions. Some identified burdened genes were shared 

with the PCAWG Consortium, however we also identified a number of additional genes 

that are classified by COSMIC as possessing strong experimental evidence.

Conclusions

In summary, NIMBus is the first method that integrates comprehensive genomic fea-

tures to analyze the mutation burdens of disease genomes. Such external data does not 

only help to better estimate the background mutation rate for successful false positive 

and negative control, but also provides the most extensive noncoding annotations for 

users to interpret their results. It serves as a powerful computation tool to accurately 

predict driver events in human genetic diseases and potentially identify biological tar-

gets for drug discovery.

Methods

WGS variants data used

We collected 649 whole genome variant calls from public resources and collaborators. 

�is data set contains a broad spectrum of 7 different cancer types, including breast can-

cer (BRCA, 119 samples), gastric cancer (GACA, 100 samples), liver cancer (LICA, 88 

samples), Lung adenocarcinoma (LUAD, 46 samples), prostate cancer (PRAD, 95 sam-

ples), Medulloblastoma (MB, 100 samples), and Pilocytic Astrocytoma (PA, 101 sam-

ples) (Additional file 1: Figure S1, Table S1). GACA samples were from Wang et al. [37] 

and PRAD samples were obtained from our collaborators. �e remaining comes from 

samples published by Alexandrov et al. [38].

Local background mutation rate estimation

(A) Feature selection

Numerous studies showed many genomic features severely affect the mutation process, 

and such covariate effect should be removed for somatic burden analysis [7, 11]. We first 

collected all the signal track files from major histone modification marks, chromatin sta-

tus, methylation, and mRNA-seq data from the REMC. Signal files were processed in 

bigWig format at 20nt resolution. Multiple replicates were averaged if available. Since 

replication timing has been proved to be associated with mutation rate in several articles 

[5, 7, 11], we also collected 8 replication timing bigWig files from the ENCODE project. 

Lastly, as researchers have observed elevated mutation rates in regions wither lower GC 

content in certain diseases, we also include the GC percentage files in our covariate list 

and generated its corresponding bigWig files.

(B) Human genome gridding and covariate matrix calculation

Different from the calibrated training data selection mentioned in [17], we divided the 

whole genome into bins with fixed length l, such as 1 mb, 100 kb, 50 kb, etc. Only autosomal 
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chromosomes and chromosome X were included in our analysis to remove the gender 

imbalance in the mutation data or covariates.

Repetitive regions on the human genome are known to generate artifacts in high through-

put sequencing analysis mainly due to their low mappability. We downloaded the mappa-

bility consensus excludable table used in the ENCODE project from https ://hgdow nload 

.cse.ucsc.edu/golde npath /hg19/encod eDCC/wgEnc odeMa pabil ity/wgEnc odeDa cMapa bilit 

yCons ensus Exclu dable .bed.gz. Any fixed length bins that overlap with this table would be 

removed from the training process. We also downloaded the gap regions of hg19 from the 

UCSC genome browser, which include gaps from telomeres, short_arms, heterochromatin, 

contigs, and scaffolds. �e fixed length bins that intersect with these gap regions were also 

removed in our analysis. Together these are known as the blacklist regions.

�en, 381 features are extracted from both REMC and ENCODE, and the average signal 

in the bins is calculated. All the bigWig files generated in step one were used to calculate the 

average signal using the bigWigAverageOverBed tool for each fixed length bin we gener-

ated above. When calculating the GC percentage, if the sequence information is not avail-

able at a certain position (such as the Ns), such position will be excluded in the averaging 

process. In the end, we summarized all the covariates values in each bin into a covariate 

table, with columns indicating different features and rows representing different training 

bins. We let xi,j denote the average signal strength for the ith bin and jth covariate, where 

i = 1, . . . , n and j = 1, . . . ,m.

(C) Use negative binomial distribution to handle mutation count overdispersion

Suppose there are d = 1, . . . ,D different diseases (or disease types) in the collected WGS 

data, and s = 1, . . . , sd unique samples, for example different patients, for each disease (or 

disease type such as liver cancer or lung cancer) d . Let yd,si  and �d,s
i

 denote the observed 

mutation count and rate for the ith bin defined above for sample s in disease d . In previous 

efforts, scientists assume that mutation rate �d,s
i

 is constant across different regions of the 

human genome, samples, and diseases, so they have that �d,s
i

� � for ∀i, d, s . Hence yd,si  fol-

lows a Poisson distribution with the probability mass function (PMF) given in Eq. (2).

However, somatic genomes are heterogeneous because mutation rates vary considerably 

among various diseases, samples, and regions of the same genome, severely violating the 

assumption in Eq. (2). As a result, fitting of yd,si  is usually very poor because overdispersion 

is often observed [5]. Simply assuming a constant mutation rate will generate numerous 

false positives. Instead, in our model we assume that different �d,s
i

 are random variables that 

follow a Gamma distribution with probability density function (PDF).
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where cd
i

> 0 and υd

i
> 0 . In Eq. (3), cd

i
 and υd

i
 are the shape and scale parameters respec-

tively. Assume that �d
i

=

∑sd
s=1

�
d,s

i
 is the overall mutation rate from all samples in bin i 

of disease d . Its distribution can be readily obtained through convolution as

If we let ydi =

∑sd
s=1

yd,si  represent the total mutation counts in region i from all disease 

samples, d , then the conditional distribution of ydi  given �d
i
 can be written as

By integrating (4) into (5), the marginal distribution of ydi  can be denoted as a negative 

binomial distribution ([39], page 50 in [40]).

Equation (6a) is the PDF of a negative binomial distribution with E
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 . �en Eq. (6a) can be rewritten as (6b).

�e mean and variance of ydi  from (6b) can be described as µd
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 and µd
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respectively. Our model in Eq. (6b) is convenient due to its explicit interpretability. First, 

it assumes that the individual mutation rates are heterogeneous by modeling �d,s
i

 as i.i.d. 

Gamma distributed random variables. Unlike the constant mutation rate assumption 

where Var
(

ydi

)

= E
(

ydi

)

 , our model captures the extra variance of ydi  due to population 

heterogeneity. Our model in (6b) also clearly separates the two main parameters µd

i
 and 

σ
d

i
 with physically interpretable meanings: the mean and overdispersion, respectively. 

Here a larger σ d

i
 indicates a more severe degree of overdispersion, which is usually due 

to larger differences in mutation rates.

(D) Accurate local background mutation rate estimation by regression

After modeling ydi  with a negative binomial distribution, we then estimate the local muta-

tion rate by correcting the covariate matrix X described above. Again xi,j denotes the aver-

age signal strength in the ith bin and jth covariate, where i = 1, . . . , n and j = 1, . . . ,m . 

Because the genomic features in the covariate matrix are correlated and may introduce 

multicollinearity if directly used in regression, we first apply principal component analysis 
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(PCA) to matrix X . We define X
′

 to be the covariate matrix after PCA and x
′

i,j as each ele-

ment in X
′

.

A generalized regression scheme is used here. Suppose g1 and g2 are two link functions. 

We then use linear combinations of covariate matrix X
′

 to predict the transformed mean 

parameter, µd

i
 , and overdispersion parameter, σ d

i
 , as

Here we use a log link function for both g1 and g2 , so the regression model in (7) is a 

negative binomial regression. Note that X contains 381 genomic features in all available tis-

sues. In the following analysis, we use all features to run the regression in (7) to achieve 

better performance. �e GAMLSS package in R is used to estimate the parameters in (7) as 

α̂d
0
, · · · , α̂d

m, β̂
d
0
, · · · , β̂d

m . Generally, there are biological reasons to explain how µd

i
 changes 

with covariates. For example, single-stranded DNA in the later replicated regions usually 

suffers from accumulative damage resulting in larger µd

i
 . It is more difficult to interpret 

such a relationship with σ d

i
 . Hence, we simplify Eq. (7) by assuming σ d

i
 is constant in our 

real data analysis, meaning the overdispersion parameter σ , was modeled as a constant 

across all bins ( σ d
i

= constant) for i = 1, . . . , n.

After the training process through Eq.  (7) in the main manuscript, the estimates of 

parameters for negative binomial regression can be represented by α̂d
0
, . . . , α̂d

m, β̂
d
0
, . . . , β̂d

m. 

To obtain the optimal local mutation rate for test region k , which may be either an internal 

noncoding annotation such as enhancer or a user-defined element, we should first extend 

this region into the training bin length l centered at the center of test region k (blue parts in 

Additional file 1: Fig. S2). �en the covariates values after PCA projection in this extended 

bin should be calculate as 
(

x
′

k ,1
, . . . , x

′

k ,m

)

 . Hence in this scheme, the local mutation param-

eters should be calculated as

However, in real data analysis there are usually millions of regions to be tested and for 

each region it needs to process 381 features. Hence, the above optimal scheme is usually 

computational expensive. Here we proposed an approximation scheme to calculate µ̂d

k
 and 

σ̂
d

k
 . Instead of using covariates for the extended bin centered at target region k , we used the 

values for the nearest training bin 

(

∼

x

′

k ,1, . . . ,
∼

x

′

k ,m

)

(magenta parts in Additional file 1: Fig. 

S2), and burden tests are performed after length adjustment. Since 

(

∼

x

′

k ,1, . . . ,
∼

x

′

k ,m

)

 has 

already been pre-calculated during the training process, our approximation scheme signifi-

cantly reduced the computation burden for tests.
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Somatic burden tests using local background mutation rate

(A) Background mutation rate calculation for target regions

Suppose there are K  regions to be tested. We use the local mutation rate to evaluate 

the mutation burden. For the kth target region ( k = 1, . . . ,K  ), one way of calculating 

the covariates is to extend it into length l  (illustrative figure given in Additional file 1: 

Fig. S2). �en we calculate the average signal for feature j as xk ,j , j = 1, · · ·m for this 

extended bin, and after PCA projection let x
′

k ,j represent the value for the jth PC. �e 

local mutation parameters µ̂d

k
 and σ̂ d

k
 in the extended bin for the kth target region can 

be calculated as:

In real data analysis, the length of the kth test region lk is much shorter than the 

length of the training bins (up to 1 Mb). Hence µ̂d

k
 needs to be adjusted by a factor of 

lk/l . �en σ̂ d

k
 and the adjusted µ̂d

k
 can be used to calculate the disease specific P value, 

pdk  . �is above scheme is usually computationally expensive because there are usually 

millions of target regions to be tested. �erefore, we also propose an approximation 

method to replace the optimal µ̂d

k
 and σ̂ d

k
 in our analysis (details under Supplemental 

Additional file 1: Fig. S2).

(B) Combining P values for multiple disease types

Sometimes it is necessary to analyze several related diseases (or disease types) to pro-

vide a combined P value. One typical example is in pan-cancer analysis. In the above 

section, we calculated the P value for disease/disease type d as pdk  for test region k . 

Fisher’s method can be used to combine these P values. Specifically, the test statistic 

is

Here Tk follows a centered chi-square distribution with 2D degrees of freedom, 

where D is the total number of diseases/disease types. �e final P value, pk , can be 

calculated from Tk . To better illustrate how NIMBus works, Fig. 1 gives its workflow.

As a fair comparison to our NIMBus model, the global and local Poisson models 

were used on the same data to identify mutational hotspots. �e global Poisson model 

assumes the observed mutation counts follow a Poisson distribution and the Poisson 

rate is constant across the genome and across individuals. �e local Poisson model 

also ignores the mutation rate heterogeneity across patients. However, it uses a Pois-

son regression against the same set of covariates as the NIMBus model to compensate 

large-scale mutational heterogeneity across the genome.
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Global and local Binomial models

In [4], after pooling samples from a certain disease, a constant mutation rate was 

assumed at each single nucleotide over the genome. Hence, the number of mutations 

ydi  within a given region with length li follows a Binomial distribution as

where pdi  is the mutation rate at a single nucleotide. In a global Binomial model, pdi ≡ p 

is assumed, and p is calculated in a genome-wide way. To remove the covariate effect, we 

may also assume a local Binomial model by using different pdi  for different regions. Spe-

cifically, pdi  can be approximated by the length normalized µd

i
 in NIMBus.

In order to check the degree of overdispersion in the mutation counts by Binomial 

assumption, we compared the observed and fitted mutation count data by Binomial 

distribution and provided the KS statistic in each cancer type. Specifically, we counted 

the number of mutations ydi  in n 1mb bins generated in the Methods “Local background 

mutation rate estimation: (B)” section. �en the maximum likelihood estimate of muta-

tion rate �̂d per position under the constant mutation rate assumption is calculated for 

cancer type d . �en we randomly generated n simulated mutation counts 
′

y
i

d with �̂d and 

calculated the KS statistic. We repeated the above process 100 times and plot the cumu-

lative density function (C.D.F) of these KS statistics. A large KS statistic near 1 indicates 

larger overdispersion in the mutation count data. From Additional file  1: Fig. S3, we 

showed that in all 7 cancer types, Binomial model provides poor fitting.

Coding region annotation

We first extracted all the coding regions from the GENCODE v19 annotation. For anno-

tation accuracy, we only selected the protein coding genes with gene_status labeled as 

“KNOWN” from the annotation. �en all the protein coding transcripts of the selected 

genes were selected. We merged multiple transcripts to get the final protein coding gene 

annotation as shown in Additional file 1: Fig. S9. In total, 19,291 known protein-coding 

genes haven been used in this analysis.

Noncoding annotations

We collected the full list of noncoding annotations to the best of our knowledge and cus-

tomized it suitable for burden analysis. �is list includes promoter regions, transcription 

start sites (TSS), untranslated regions (UTR), transcription factor binding sites (TFBS), 

enhancers, ultra-conserved, and ultra-sensitive sites. Promoters and TSS sites of known 

protein coding genes were defined as the 2500 and 100 nucleotides (nt) before the tran-

scripts annotated by GENCODE v19. We also collected all the TFBS and enhancers from 

all tissues that are uniformly processed through the ENCODE pipeline. In addition, the 

ultra-conserved and ultra-sensitive sites were defined as those under positive selection 

during transcription regulations in our previous method FunSeq [41].

Simulated variants for all cancer types

For each variant in a set of whole genome sequencing data, we tried to find a new posi-

tion in a 100 kb neighboring region (50k and 50k up and downstream each). �en we 

(11)P
{

Y d
i = ydi

}

=

(

ni

pdi

)

(

pdi

)ydi
(

1 − pdi

)ni−ydi
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tested all the coding genes defined above on the original and simulated data set. Since 

the permuted size 100  kb is relatively large as compared to the test region, a better 

method is supposed to give less or even no positives on the permuted data set. �e Q-Q 

plots of P values of protein coding genes in both real and simulated data were given in 

Additional file 1: Fig. S10.

Mutation burden test for networks in the genome

In addition to testing single target regions, it is useful to extend our analysis to testing of 

networks. We took the KEGG pathway as a natural biological application of our network 

analysis [42]. Each coding gene represents a target region in the genome, and the gene 

set that makes up a pathway represents a network of genes. Since a KEGG pathway may 

consist of genes that are located on different chromosomes or regions of the genome, the 

mutation burden for a pathway will be heterogeneous. We assume that these heteroge-

nous mutation burden levels are independent due to the disjoint, discontinuous associa-

tion of each region. �erefore, for each pathway, we first determine the P-value of each 

coding gene in the pathway list using the local mutation burden calculations from NIM-

Bus, and then combine them using Fisher’s method for a pathway associated P-value. 

�is example can be seen in Fig. 6.

In our analysis, given a network of regions consisting of M ( m = 1, . . . ,M ) individual 

regions, each with ym mutations, we can determine the P-value ( pm ) associated with 

Fig. 6 Schematic plot of network analysis: The associated values of µm , γm are extracted from NIMBus for 

each of the m genes, potentially located on different chromosomes. A single P-value, pm , is obtained for each 

gene. Fisher’s method is used to combine all of the P-values into a final P-value for the network, pnetwork
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each individual region based on µm and γm , and then combine these P-values to produce 

a single P-value ( pcomb ) associated with the network. To do this, we use Fisher’s method 

for combining P-values.

We took the KEGG pathway as a natural biological application of our network analy-

sis. Each coding gene represents a target region in the genome, and the gene set that 

makes up a pathway represents a network of genes. Since a KEGG pathway may consist 

of genes that are located on different chromosomes or regions of the genome, the muta-

tion burden for a pathway will be heterogeneous.

Identi�cation of predicted functional TF Motifs

Transcription Factor Binding Sites (TFBSs) that fall within DHS regions and also within 

a promoter region were identified in a cancer-type-specific manner. First, transcription 

start sites (TSSs) were identified upstream of both coding and non-coding transcripts 

using the GENCODE Hg19 annotation. Promoter regions were defined as the region of 

1.5k BP upstream and 1k BP downstream of a TSS. Second, in order to map transcrip-

tional activity, DHS signal tracks from ENCODE were intersected with these promoter 

regions in order to identify areas of likely functional significance. �is mapping was 

completed in a cancer-cell-type-specific manner for a total of 14 cancer types with whole 

genome sequencing from PCAWG and corresponding cancer cell lines from ENCODE 

(Additional file 1: Table S5). �ird, TFBSs from ENCODE were identified that intersect 

with these promoter and DHS regions. As further screening step, RNA-seq expression 

data was used to limit TFs analyzed to those with non-negligible expression. 7 cancer 

types had associated RNA-seq data in ENCODE (Tier 1 annotation—Myeloid-MPN, 

Lung-SCC, Liver-HCC, Panc-AdenoCA, Breast-AdenoCa, Cervix-AdenoCA, Skin-

Melanoma), 7 did not have matched RNA-seq data (Tier 2 annotation—Lymph-CLL, 

Lung-AdenoCA, Lymph-BNHL, ColoRect-AdenoCA, Myeloid-AML, Prost-AdenoCA, 

CNS-Medullo). For Tier 1 cancer types with RNA-seq data, the matched RNA-seq data, 

TFs analyzed were limited to those with average FPKM > 1 across replicates. 750 TFs 

were analyzed, 702 of which had RNA-seq-based expression level data available. For Tier 

2 cancer types lacking this RNA-seq data, all 750 TFs were analyzed. �e TFBSs identi-

fied were then aggregated at the gene level and carried forward to subsequent burdening 

analysis with NIMBus using the PCAWG variant call set.

Benchmarking NIMBus

We first benchmarked our noncoding results by comparing them to those derived by 

using OncodriveFML (v. 2.1.3) [24]. OncodriveFML was run via command line in a 

Python 3.5 environment with the BBGLab bgparsers package (v. 0.7). In total, running 

our annotations and variants using OncodriveFML used 881.12 GB and took 43 h. Sig-

nificant results were identified using the Q value < 0.05.

(12)

pm = Pr
{

Ym ≥ ym|µm, γm
}

T = −2

M
∑

m=1

ln(pm),Tχ2
2M

pnetwork = Prχ2
2M

{T ≥ t}
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Secondly, we benchmarked our results to the driver genes independently identi-

fied by the PCAWG Consortium [23]. Two cancers (Cervix-AdenoCA and Myeloid-

AML) that were analyzed by NIMBus were not available for direct comparison in the 

PCAWG Consortium data (Additional file 1: Text S2). Additionally, we used the well-

known Cancer Gene Census COSMIC database to classify burdened genes according 

to their existing literature support. We downloaded the most current list from https 

://cance r.sange r.ac.uk/cosmi c/downl oad. More details can be found in Additional 

file 1: Text S2, and our complete results can be found in the Additional file 2: Supple-

mental Results file.

Supplementary information
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