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Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction,
matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and
Hamilton–Jacobi formulations. Also mentioned are the many-worlds and transactional
interpretations. The various formulations differ dramatically in mathematical and conceptual
overview, yet each one makes identical predictions for all experimental results. ©2002 American

Association of Physics Teachers.
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I. WHY CARE ABOUT VARIOUS FORMULATIONS?

A junior-level classical mechanics course devotes a lo
time to various formulations of classical mechanics
Newtonian, Lagrangian, Hamiltonian, least action, and
forth ~see Appendix A!. But not a junior-level quantum me
chanics course! Indeed, even graduate-level courses em
size the wavefunction formulation almost to the exclusion
all variants. It is easy to see why this should be so—learn
even a single formulation of quantum mechanics is diffic
enough—yet at the same time students must wonder wh
is so important to learn several formulations of classical m
chanics but not of quantum mechanics. This article surv
nine different formulations of quantum mechanics. It is
project of the Spring 2001 offering of Oberlin College
Physics 412, ‘‘Applied Quantum Mechanics.’’

Why should one care about different formulations of m
chanics when, in the end, each provides identical predict
for experimental results? There are at least three reas
First, some problems are difficult in one formulation a
easy in another. For example, the Lagrangian formulation
classical mechanics allows generalized coordinates, so
often easier to use than the Newtonian formulation. Seco
different formulations provide different insights.1 For ex-
ample, the Newtonian and least action principles prov
very different pictorializations of ‘‘what’s really going on’’ in
classical mechanics. Third, the various formulations are v
ously difficult to extend to new situations. For example, t
Lagrangian formulation extends readily from conservat
classical mechanics to conservative relativistic mechan
whereas the Newtonian formulation extends readily fr
conservative classical mechanics to dissipative classical
chanics. In the words of the prolific chemist E. Brig
Wilson:2

‘‘I used to go to@J. H. Van Vleck# for quantum me-
chanical advice and found him always patient and
ready to help, sometimes in a perplexing flow of mixed
wave mechanical, operator calculus, and matrix lan-
guage which often baffled this narrowly Schro¨dinger-
equation-oriented neophyte. I had to learn to look at
things in these alternate languages and, of course,
was indispensable that I do so.’’

Any attempt to enumerate formulations must distingu
between ‘‘formulations’’ and ‘‘interpretations’’ of quantum
288 Am. J. Phys.70 ~3!, March 2002 http://ojps.aip.org/a
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mechanics. Our intent here is to examine only distinct ma
ematical formulations, but the mathematics of course in
ences the conceptual interpretation, so this distinction is
no means clear cut,3 and we realize that others will draw
boundaries differently. Additional confusion arises becau
the term ‘‘Copenhagen interpretation’’ is widely used b
poorly defined: For example, of the two primary architects
the Copenhagen interpretation, Werner Heisenberg m
tained that4 ‘‘observation of the position will alter the mo
mentum by an unknown and undeterminable amoun
whereas Niels Bohr5 ‘‘warned specifically against phrase
often found in the physical literature, such as ‘disturbing
phenomena by observation.’ ’’

II. CATALOG OF FORMULATIONS

A. The matrix formulation „Heisenberg…

The matrix formulation of quantum mechanics, develop
by Werner Heisenberg in June of 1925, was the first form
lation to be uncovered. The wavefunction formulation, whi
enjoys wider currency today, was developed by Erwin Sch¨-
dinger about six months later.

In the matrix formulation each mechanical observa
~such as the position, momentum, or energy! is represented
mathematically by a matrix~also known as ‘‘an operator’’!.
For a system withN basis states~where in most casesN
5`! this will be anN3N square Hermitian matrix. A quan
tal stateuc& is represented mathematically by anN31 col-
umn matrix.

Connection with experiment. Suppose the measurab
quantity A is represented by the operatorÂ. Then for any
function f (x) the expectation value for the measurement
f (A) in stateuc& is the inner product

^cu f ~Â!uc&. ~1!

Because the above statement refers tof (A) rather than to
A alone, it can be used to find uncertainties@related to
f (A)5A 2# as well as expectation values. Indeed, it can ev
produce the eigenvalue spectrum, as follows:6 Consider a set
of real valuesa1 ,a2 ,a3 ,..., andform the non-negative func
tion

g~x![~x2a1!2~x2a2!2~x2a3!2
¯ . ~2!
288jp/ © 2002 American Association of Physics Teachers
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Then the seta1 ,a2 ,a3 ,..., constitutes the eigenvalues ofA
if and only if

^cug~Â!uc&50 for all statesuc&. ~3!

The matrix formulation places great emphasis on ope
tors, whence eigenproblems fall quite naturally into its p
view. This formulation finds it less natural to calculate tim
dependent quantities or to consider the requirements
identical particles. Such problems fall more naturally into t
second quantization formulation discussed below.

Time development. The operator corresponding to the m
chanical observable energy is called the Hamiltonian
represented byĤ. Any operatorÂ(t) changes in time ac
cording to

dÂ~ t !

dt
52

i

\
@Â~ t !,Ĥ#1

]A

]t
. ~4!

The states do not change with time.
Applications. For many~perhaps most! applications, the

wavefunction formulation is more straightforward than t
matrix formulation. An exception is the simple harmonic o
cillator, where most problems are more cleanly and ea
solved through the operator factorization technique~with
raising and lowering operators! than through arcane manipu
lations involving Hermite polynomials. Similar matrix tech
niques are invaluable in the discussion of angular mom
tum. More general factorization methods~described in the
book by Green, below! can solve more general problems, b
often at such a price in complexity that the wavefuncti
formulation retains the advantage of economy.

Recommended references. Most contemporary treatment
of quantum mechanics present an amalgam of the wavef
tion and matrix formulations, with an emphasis on the wa
function side. For treatments that emphasize the matrix
mulation, we recommend
1. H. S. Green,Matrix Mechanics~P. Noordhoff, Ltd., Groningen, The

Netherlands, 1965!.
2. T. F. Jordan,Quantum Mechanics in Simple Matrix Form~Wiley, New

York, 1986!.

History. Matrix mechanics was the first formulation o
quantum mechanics to be discovered. The founding pa
are
3. W. Heisenberg, ‘‘Über die quantentheoretische Umdeutung kinema

cher und mechanischer Beziehungen,’’~‘‘Quantum-theoretical re-
interpretation of kinematic and mechanical relations’’!, Z. Phys.33,
879–893~1925!.

4. M. Born and P. Jordan, ‘‘Zur Quantenmechanik,’’~‘‘On quantum me-
chanics’’!, Z. Phys.34, 858–888~1925!.

5. M. Born, W. Heisenberg, and P. Jordan, ‘‘Zur Quantenmechanik II,’’
Phys.35, 557–615~1926!.

These three papers~and others! are translated into English in
6. B. L. van der Waerden,Sources of Quantum Mechanics~North-Holland,

Amsterdam, 1967!.

The uncertainty principle came two years after the form
development of the theory
7. W. Heisenberg, ‘‘Über den anschaulichen Inhalt der quantentheore

chen Kinematik und Mechanik,’’~‘‘The physical content of quantum
kinematics and mechanics’’!, Z. Phys.43, 172–198~1927! @English
translation in J. A. Wheeler and W. H. Zurek, editors,Quantum Theory
and Measurement~Princeton University Press, Princeton, NJ, 1983!, pp.
62–84#.
289 Am. J. Phys., Vol. 70, No. 3, March 2002
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B. The wavefunction formulation „Schrödinger…

Compared to the matrix formulation, the wavefunctio
formulation of quantum mechanics shifts the focus fro
‘‘measurable quantity’’ to ‘‘state.’’ The state of a system wi
two particles~ignoring spin! is represented mathematical
by a complex function in six-dimensional configuratio
space, namely

c~x1 ,x2 ,t !. ~5!

Alternatively, and with equal legitimacy, one may use t
mathematical representation in six-dimensional momen
space:

c̃~p1 ,p2 ,t !5
1

A~2p\!6 E2`

1`

d3x1

3E
2`

1`

d3x2e2 i (p1•x11p2•x2)/\c~x1 ,x2 ,t !. ~6!

Schrödinger invented this formulation in hopes of castin
quantum mechanics into a ‘‘congenial’’ and ‘‘intuitive
form7—he was ultimately distressed when he found that
wavefunctions were functions in configuration space and
not actually exist out in ordinary three-dimensional spac8

The wavefunction should be regarded as a mathematical
for calculating the outcomes of observations, not as a ph
cally present entity existing in space such a football, o
nitrogen molecule, or even an electric field.~See also Appen-
dix B.!

Time development. The configuration-space wavefunctio
changes in time according to

]c~x1 ,x2 ,t !

]t
52

i

\ F2
\2

2m1
¹1

2c~x1 ,x2 ,t !

2
\2

2m2
¹2

2c~x1 ,x2 ,t !

1V~x1 ,x2!c~x1 ,x2 ,t !G , ~7!

where the particle masses arem1 and m2 , and where
V(x1 ,x2) is the classical potential energy function. Equiv
lently, the momentum-space wavefunction changes in t
according to

]c̃~p1 ,p2 ,t !

]t
52

i

\ F p1
2

2m1
c̃~p1 ,p2 ,t !1

p2
2

2m2
c̃~p1 ,p2 ,t !

1E
2`

`

d3p18E
2`

`

d3p28Ṽ~p18 ,p28!

3c̃~p11p18 ,p21p28 ,t !G , ~8!

where the Fourier transform of the potential energy funct
is

Ṽ~p1 ,p2!

5
1

~2p\!6 E
2`

1`

d3x1E
2`

1`

d3x2ei (p1•x11p2•x2)/\V~x1 ,x2!.

~9!
289Styeret al.
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After the measurement of a quantity, the wavefunction ‘‘c
lapses’’ to an appropriate eigenfunction of the operator c
responding to that quantity.

Energy eigenstates. Most states do not have a definite e
ergy. Those that do9 satisfy the eigenequation

F2
\2

2m1
¹1

22
\2

2m2
¹2

21V~x1 ,x2 ,t !Ghn~x1 ,x2!

5Enhn~x1 ,x2!. ~10!

The energy spectrum may be either discrete~‘‘quantized’’! or
continuous, depending upon the potential energy func
V(x1 ,x2 ,t) and the energy eigenvalueEn .

Identical particles. If the two particles are identical, the
the wavefunction is symmetric or antisymmetric under la
interchange,

c~x1 ,x2 ,t !56c~x2 ,x1 ,t !, ~11!

depending upon whether the particles are bosons or fe
ons. A precisely parallel statement holds for the momentu
space wavefunction.

Recommended references. Most treatments of quantum
mechanics emphasize the wavefunction formulation. Amo
the many excellent textbooks are
8. L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non-Relativisti

Theory, translated by J. B. Sykes and J. S. Bell, 3rd ed.~Pergamon, New
York, 1977!.

9. A. Messiah,Quantum Mechanics~North-Holland, New York, 1961!.
10. D. J. Griffiths, Introduction to Quantum Mechanics~Prentice–Hall,

Englewood Cliffs, New Jersey, 1995!.
11. R. W. Robinett,Quantum Mechanics: Classical Results, Modern S

tems, and Visualized Examples~Oxford University Press, New York,
1997!.

History. Schrödinger first wrote down the configuration
space form of the energy eigenequation~10! in
12. E. Schrödinger, ‘‘Quantisierung als Eigenwertproblem~Erste Mittei-

lung!,’’ ~‘‘Quantization as a problem of paper values~part I!’’ !, Annalen
der Physik79, 361–376~1926!.

He wrote down the time-development equation~7! ~which
he called ‘‘the true wave equation’’! five months later in
13. E. Schrödinger, ‘‘Quantisierung als Eigenwertproblem~Vierte Mittei-

lung!,’’ ~‘‘Quantization as a problem of proper values~part IV!’’ !, An-
nalen der Physik81, 109–139~1926!.

English translations appear in
14. E. Schrödinger, Collected Papers on Wave Mechanics~Chelsea, New

York, 1978!.

C. The path integral formulation „Feynman…

The path integral formulation~also called the sum-over
histories formulation! shifts the focus yet again—from
‘‘state’’ to ‘‘transition probability.’’

Suppose, for example, that a single particle is located
point xi when the time ist i , and we wish to find the prob
ability that it will be located atxf when the time ist f . This
probability is calculated as follows:

• Enumerate all classical paths from the initial to the fin
state.

• Calculate the classical actionS5*(Lagrangian)dt for
each path.

• Assign each path a ‘‘transition amplitude’’ proportion
to eiS/\. ~The proportionality constant is adjusted to ass
normalization.!
290 Am. J. Phys., Vol. 70, No. 3, March 2002
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• Sum the amplitude over all paths.~Because there is a
continuum of paths, this ‘‘sum’’ is actually a particular kin
of integral called a ‘‘path integral.’’!

• The resulting sum is the transition amplitude, and
square magnitude is the transition probability.

For different problems—such as a particle changing fr
one momentum to another, or for an initial state that h
neither a definite position nor a definite momentum
variations on this procedure apply.

Applications. The path integral formulation is rarely th
easiest way to approach a straightforward problem in non
ativistic quantum mechanics. On the other hand, it has in
merable applications in other facets of physics and chem
try, particularly in quantum and classical field theory and
statistical mechanics. For example, it is a powerful tool
the Monte Carlo simulation of quantal systems:
15. M. H. Kalos and P. A. Whitlock,Monte Carlo Methods~Wiley, New

York, 1986!, Chap. 8.

In addition, many find this formulation appealing because
mathematical formalism is closer to experiment: the cen
stage is occupied by transition probabilities rather than
the unobservable wavefunction. For this reason it can be
fective in teaching:
16. E. F. Taylor, S. Vokos, J. M. O’Meara, and N. S. Thornber, ‘‘Teachi

Feynman’s sum over paths quantum theory,’’ Comput. Phys.12, 190–
199 ~1998!.

Identical particles. The path integral procedure genera
izes in a straightforward way to collections of several no
identical particles or of several identical bosons.~The term
‘‘path’’ now means the trajectories of the several partic
considered collectively.! Thus it mustnot generalize in the
same straightforward way to identical fermions, because
did then bosons and fermions would behave in the sa
way!

The proper procedure for identical fermions involves
single additional step. When enumerating classical pa
from the initial situation at timet i to the final situation at
time t f ~as in Fig. 1!, notice that some of the paths inte
change the particles relative to other paths.~In Fig. 1, the
particles are interchanged in paths III and IV but not in pa
I and II.! The assignment of amplitude to a fermion pa
proceeds exactly as described above except that, in addi
any amplitude associated with an interchanging path is m
tiplied by 21 before summing.~This rule is the Pauli prin-
ciple: In your mind, slide the two particles at the final timet f
towards each other. As the separation vanishes, the ampl
associated with path I approaches the amplitude assoc
with path III. Similarly, each other direct path approaches
interchange path. Because of the factor of21, the ampli-
tudes exactly cancel upon summation. Thus two fermio
cannot move to be on top of each other.!

This sign adjustment is not difficult for humans, but
poses a significant challenge—know as ‘‘the fermion s
problem’’—for computers. This important standing proble
in quantum Monte Carlo simulation is discussed in, for e
ample,
17. N. Makri, ‘‘Feynman path integration in quantum dynamics,’’ Compu

Phys. Commun.63, 389–414~1991!.
18. S. Chandrasekharan and U.-J. Wiese, ‘‘Meron-cluster solution of

mion sign problems,’’ Phys. Rev. Lett.83, 3116–3119~1999!.

Recommended references.
19. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Inte

grals ~McGraw-Hill, New York, 1965!.
290Styeret al.
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20. D. F. Styer, ‘‘Additions and corrections to Feynman and Hibbs,’’ http
www.oberlin.edu/physics/dstyer/TeachQM/Supplements.html.

21. L. S. Schulman,Techniques and Applications of Path Integratio
~Wiley, New York, 1981!.

History. This formulation was developed by
22. R. P. Feynman, ‘‘Space–time approach to non-relativistic quantum

chanics,’’ Rev. Mod. Phys.20, 367–387~1948!.

D. Phase space formulation„Wigner…

For a single particle restricted to one dimension,
Wigner phase-space distribution function is

W~x,p,t !5
1

2p\ E
2`

1`

c* ~x2 1
2y,t !

3c~x1 1
2y,t !e2 ipy/\ dy. ~12!

This function has a number of useful properties:
• It is pure real, but may be positive or negative.
• The integral over momentum gives the probability de

sity in position:

E
2`

1`

W~x,p,t !dp5uc~x,t !u2. ~13!

• The integral over position gives the probability density
momentum:

E
2`

1`

W~x,p,t !dx5uc̃~p,t !u2. ~14!

Fig. 1. If the two particles are identical fermions, then the amplitudes a
ciated with interchanging paths, such as III and IV, must be multiplied
21 before summing.
291 Am. J. Phys., Vol. 70, No. 3, March 2002
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• If the wavefunctionc is altered by a constant phase fa
tor, the Wigner function is unaltered.

• GivenW(x,p,t), one can find the wavefunction throug
a two-step process. First, find the Fourier transform

W̃~x,y,t !5
1

2p\ E
2`

1`

W~x,p,t !eipy/\ dp

5
1

2p\
c* ~x2 1

2y,t !c~x1 1
2y,t !. ~15!

Second, select an arbitrary pointx0 where W̃(x0,0,t) does
not vanish, and find

c~x,t !5A 2p\

W̃~x0,0,t !
W̃„

1
2~x1x0!,x2x0 ,t…. ~16!

The Wigner function is not a probability density in pha
space—according to Heisenberg’s uncertainty principle,
such entity can exist. Yet it has several of the same pro
ties, whence the term ‘‘distribution function’’ is appropriat

Time development.

]W~x,p,t !

]t
52

p

m

]W~x,p,t !

]x

2E
2`

1`

K~x,p8!W~x,p1p8,t ! dp8, ~17!

where the kernelK(x,p) is

K~x,p!5
1

2p\2 E
2`

1`

@V~x2 1
2y!2V~x1 1

2y!#sin~py/\! dy.

~18!

Identical particles. If the wavefunction is either symmetri
or antisymmetric under interchange, then the Wigner fu
tion is symmetric:

W~x1 ,p1 ,x2 ,p2!5W~x2 ,p2 ,x1 ,p1!. ~19!

This does not, of course, mean that bosons and ferm
behave identically in this formulation: the wave-functio
produced through Eq.~16! will exhibit the correct symmetry
under interchange. It does mean that the type of intercha
symmetry is more difficult to determine in the phase-spa
formulation than it is in the wavefunction formulation.

Applications. For anN-state system~whereN may equal
`!, the wavefunction is specified byN complex numbers
with an overall phase ambiguity, that is, by 2N21 real num-
bers. For this same system the Wigner function requiresN2

real numbers. Clearly the Wigner function isnot the most
economical way to record information on the quantal sta
The Wigner function is useful when the desired informati
is more easily obtained from the redundant Wigner form th
from the economical wavefunction form.~For example, the
momentum density is obtained from the Wigner functi
through a simple integral over position. The momentum d
sity is obtained from the configuration-space wavefunct
through the square of a Fourier transform.!

A number of problems, particularly in quantum optics, fa
into this category. See, for example, the following:
23. D. Leibfried, T. Pfau, and C. Monroe, ‘‘Shadows and mirrors: Reco

structing quantum states of atom motion,’’ Phys. Today51, 22–28
~1998!.
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24. Y. S. Kim and W. W. Zachary, editors,The Physics of Phase Spac
~Springer-Verlag, Berlin, 1987!.

Recommended references.
25. Y. S. Kim and E. P. Wigner, ‘‘Canonical transformation in quantu

mechanics,’’ Am. J. Phys.58, 439–448~1990!.
26. M. Hillary, R. F. O’Connell, M. O. Scully, and E. P. Wigner, ‘‘Distribu

tion functions in physics: Fundamentals,’’ Phys. Rep.106, 121–167
~1984!.

History. The phase space formulation was invented by
27. E. P. Wigner, ‘‘On the quantum correction for thermodynamic equil

rium,’’ Phys. Rev.40, 749–759~1932!.

E. Density matrix formulation

The density matrix corresponding to a pure stateuc& is the
outer product

r̂5uc&^cu. ~20!

Given the density matrixr̂, the quantal stateuc& can be
found as follows: First select an arbitrary stateuf&. The ~un-
normalized! ket uc& is r̂uf& ~as long as this quantity does n
vanish!.

The density matrix is more properly but less frequen
called ‘‘the density operator.’’ As with any quantum m
chanical operator, the operator is independent of b
whereas the matrix elementsr i j 5^ i ur̂u j & do depend on the
basis selected.

The density matrix formulation is particularly powerful i
dealing with statistical knowledge. For example, if the ex
state of a system is unknown, but it is known to be in one
three states—stateuc& with probability pc , state uf& with
probability pf , or stateux& with probability px—then the
system is said to be in a ‘‘mixed state’’~in contrast to a ‘‘pure
state’’!. A mixed statecannotbe represented by somethin
like

ccuc&1cfuf&1cxux&,

because this represents another pure state that is a sup
sition of the three original states. Instead, the mixed stat
represented by the density matrix

pcuc&^cu1pfuf&^fu1pxux&^xu. ~21!

All of the results that follow in this section apply to bot
pure and mixed states.

Connection with experiment. The density matrix is always
Hermitian. If the measurable quantityA is represented by the
operatorÂ, then the expectation value for the measurem
of f (A) is the trace

tr$ f ~Â!r̂%. ~22!

Time development. The density matrix evolves in time ac
cording to

dr̂~ t !

dt
51

i

\
@r̂~ t !,Ĥ#, ~23!

whereĤ is the Hamiltonian operator.~Note that this formula
differs in sign from the time-development formula in th
matrix formulation.!

Identical particles. The density matrix, like the Wigne
phase-space distribution function, remains unchanged u
interchange of the coordinates of identical particles, whet
bosons or fermions. As with the Wigner distribution, th
does not mean that symmetric and antisymmetric wavefu
292 Am. J. Phys., Vol. 70, No. 3, March 2002
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tions behave identically; it simply means that the differe
behaviors are buried in the density matrix rather than rea
visible.

Applications. For anN-state system~whereN may equal
`!, a pure-state wavefunction is specified byN complex
numbers with an overall phase ambiguity, that is,
2N21 real numbers. For this same system the density
trix requiresN real diagonal elements plusN(N21)/2 com-
plex above-diagonal elements for a total ofN2 real numbers.
Thus the density matrix isnot the most economical way to
record information about a pure quantal state. Neverthel
the ready availability of this information through the tra
operation, plus the ability to treat mixed states, make
density matrix formulation valuable in several areas of ph
ics. In particular, the formula

tr$Âe2Ĥ/kT%

tr$e2Ĥ/kT%
~24!

is something of a mantra in quantum statistical mechanic
Recommended references.

28. U. Fano, ‘‘Description of states in quantum mechanics by density m
trix and operator techniques,’’ Rev. Mod. Phys.29, 74–93~1957!.

29. K. Blum, Density Matrix Theory and Applications, 2nd ed.~Plenum,
New York, 1996!.

History. The density matrix was introduced by the follow
ing:
30. J. von Neumann, ‘‘Wahrscheinlichkeitstheoretischer Aufbau der Qu

tenmechanik,’’~‘‘Probability theoretical arrangement of quantum m
chanics’’!, Nachr. Ges. Wiss. Goettingen, 245–272~1927!, reprinted in
Collected Works~Pergamon, London, 1961!, Vol. 1, pp. 208–235.

F. Second quantization formulation

This formulation features operators that create and des
particles. It was developed in connection with quantum fi
theory, where such actions are physical effects~for example,
an electron and a positron are destroyed and a photo
created!. However, the formulation has a much wider doma
of application and is particularly valuable in many-partic
theory, where systems containing a large~but constant! num-
ber of identical particles must be treated in a straightforw
and reliable manner.

The unfortunate name of this formulation is due to a h
torical accident—from the point of view of nonrelativisti
quantum mechanics, a better name would have been the
cupation number formulation.’’

The second-quantized creation operatorac
† ‘‘creates’’ a

particle in quantum stateuc&. A one-particle state is formed
by havingac

† act upon a state with no particles, the so-call
‘‘vacuum state’’u0&. Thus the following are different expres
sions for the same one-particle state:

uc&, c~x!, c̃~p!, ac
† u0&. ~25!

Thus as far as one-particle systems are concerned, the se
quantization formulation is equivalent to the wavefuncti
formulation, although somewhat more cumbersome.

What about many-particle systems? Supposeuc&, uf&, and
ux& are orthonormal one-particle states. Then a state with
identical particles is produced by creating two particles fro
the vacuum: for exampleaf

† ac
† u0&. If the particles are

bosons, then

af
† ac

† u0&5ac
†af

† u0&, ~26!
292Styeret al.
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whereas for fermions

af
† ac

† u0&52ac
†af

† u0&. ~27!

This illustrates the general rule that bosonic creation op
tors commute:

@af
† ,ac

† #50, ~28!

whereas fermionic creation operators anticommute:

$af
† ,ac

†%50. ~29!

~The anticommutation notation means$Â,B̂%5ÂB̂1B̂Â.!
The advantages of second-quantized notation for ma

particle systems are becoming apparent. Most physic
would agree that of the two equivalent forms

af
† ac

† u0& and
1

&
@c~x1!f~x2!6c~x2!f~x1!#, ~30!

it is easier to work with the one on the left. And nearly a
physicists find it easier to work with

ax
†af

† ac
† u0& ~31!

than with the equivalent

~1/A3! !@1c~x1!f~x2!x~x3!6c~x1!f~x3!x~x2!

1c~x3!f~x1!x~x2!6c~x3!f~x2!x~x1!

1c~x2!f~x3!x~x1!6c~x2!f~x1!x~x3!#. ~32!

Yet the greatest advantage of second quantization is not m
compactness of notation. The wavefunction formulation
lows you—indeed, it almostinvitesyou—to write down ex-
pressions such as

c~x1!f~x2!,

expressions that are neither symmetric nor antisymmetric
der interchange, and hence expressions that do not c
spond to any quantal state for identical particles. Yet
wavefunction formulation provides no overt warning th
this expression is an invitation to ruin. By contrast, in t
second quantized formulation it is impossible to even w
down a formula such as the one above—the symmetriza
~or antisymmetrization! happens automatically through th
commutation~or anticommutation! of creation operators, so
only legitimate states can be expressed in this formulat
For this reason, the second quantization formulation is u
extensively in many-particle theory.

Recommended references.
31. H. J. Lipkin, Quantum Mechanics: New Approaches to Selected To

~North-Holland, Amsterdam, 1986!, Chap. 5.
32. V. Ambegaokar, ‘‘Second quantization,’’ inSuperconductivity, edited by

R. D. Parks~Marcel Dekker, New York, 1969!, pp. 1359–1366.
33. W. E. Lawrence, ‘‘Algebraic identities relating first- and secon

quantized operators,’’ Am. J. Phys.68, 167–170~2000!.

An extensive discussion of applications is
34. G. D. Mahan,Many-Particle Physics, 3rd ed.~Kluwer Academic, New

York, 2000!.

History. Second quantization was developed by Dirac
photons, then extended by Jordan and Klein to mas
bosons, and by Jordan and Wigner to fermions:
35. P. A. M. Dirac, ‘‘The quantum theory of the emission and absorption

radiation,’’ Proc. R. Soc. London, Ser. A114, 243–265~1927!.
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36. P. Jordan and O. Klein, ‘‘Zum Mehrko¨rperproblem der Quantentheo
rie,’’ ~‘‘On the many-body problem in quantum theory’’!, Z. Phys.45,
751–765~1927!.

37. P. Jordan and E. Wigner, ‘‘U¨ ber das Paulische A¨ quivalenzverbot,’’~‘‘On
the Pauli valence line prohibition’’!, Z. Phys.47, 631–651~1928!.

The Dirac and Jordan–Wigner papers are reprinted in
38. J. Schwinger, editor,Selected Papers on Quantum Electrodynam

~Dover, New York, 1958!.

G. Variational formulation

The ‘‘variational formulation’’ must not be confused wit
the more-commonly-encountered ‘‘variational method
which provides a bound on the ground state energy. Inst
the variational formulation provides a full picture describin
any state—not just the ground state—and dictating its
time evolution—not just its energy. It is akin to Hamilton
principle in classical mechanics.

The central entity in this formulation remains the wav
function c(x1 ,x2 ,t), but the rule for time evolution is no
longer the Schro¨dinger equation.~We again consider a non
relativistic two-particle system ignoring spin.! Of all possible
normalized wavefunctionsc(x1 ,x2 ,t), the correct wave-
function is the one that minimizes the ‘‘action integral’’ ove
time and configuration space, namely

E dtE d3x1E d3x2 L~x1 ,x2 ,t !, ~33!

where the ‘‘Lagrangian density’’ is

L~x1 ,x2 ,t !5\ ImH c*
]c

]t J 1
\2

2m1
“1c* •“1c

1
\2

2m2
¹2c* •¹2c1V~x1 ,x2!c* c, ~34!

and Im$z% means the imaginary part ofz. It is not difficult to
show that this minimization criterion is equivalent to th
Schrödinger time-development equation~7!.

Applications. On the practical side, this formulation is d
rectly connected to the invaluable variational method for
timating ground state energies.~Apply the principle to the
class of time-independent trial wavefunctions, and the va
tional method tumbles right out.!

On the fundamental side, we note that field variation
techniques often provide formulations of physical law th
are manifestly Lorentz invariant. This role is exploited f
electricity and magnetism in
39. J. Schwinger, L. L. DeRaad, Jr., K. A. Milton, and W. Tsai,Classical

Electrodynamics~Perseus Books, Reading, MA, 1998!, especially
Chaps. 8 and 9,

for general relativity~‘‘Hilbert’s formulation’’ ! in
40. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation ~Freeman,

San Francisco, 1973!, Chap. 21,

and for quantum field theory in
41. C. Itzykson and J.-B. Zuber,Quantum Field Theory~McGraw-Hill,

New York, 1980!.

For this reason, such variational formulations are now
preferred instrument of attack for extending physics to n
domains, for example to supersymmetric strings or me
branes:
42. E. Witten, ‘‘Reflections on the fate of spacetime,’’ Phys. Today49,

24–30~April 1996!.
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43. E. Witten, ‘‘Duality, spacetime and quantum mechanics,’’ Phys. Tod
50, 28–33~May 1997!.

However, these roles are not played directly by the form
lation discussed here which is~i! intrinsically nonrelativistic
and which~ii ! involves integration over time and configur
tion space rather than time and physical space.

Recommended reference.
44. P. M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!, pp. 314–316 and 341–344.

@Caution! This reference defines a Lagrangian density w
the opposite sign of Eq.~34!, so the Morse and Feshbac
action integral is maximized, not minimized, by the corre
wavefunction.#

History. This formulation originated in the following:
45. P. Jordan and O. Klein, ‘‘Zum Mehrko¨rperproblem der Quantentheo

rie,’’ ~‘‘On the many-body problem in quantum theory’’!, Z. Phys.45,
751–765~1927!.

~The same paper that introduced second quantization
massive bosons!!

H. The pilot wave formulation „de Broglie–Bohm…

We outline the pilot wave formulation through the e
ample of an electron and a proton~ignoring spin!. In classi-
cal mechanics this system is represented mathematicall
two points tracing out trajectories in three-dimension
physical space. In the wavefunction formulation this syst
is represented mathematically by a complex-valued wa
function evolving in six-dimensional configuration space.
the pilot wave formulation this system is represented ma
ematically byboth the two points in physical spaceand the
wavefunction in configuration space. The wavefunction
called the ‘‘pilot wave’’ and it~along with the classical po
tential energy function! provides information telling the two
points how to move.

The most frequently cited version of the pilot wave fo
mulation is that of Bohm~but see also the version by Du¨rr,
Goldstein, and Zanghı´, cited below!. In Bohm’s version, the
wavefunction is written in terms of the~real! magnitude and
phase functions as

c~x1 ,x2 ,t !5R~x1 ,x2 ,t !eiS(x1 ,x2 ,t)/\. ~35!

If one defines the state-dependent ‘‘quantum potential’’

Q~x1 ,x2 ,t !52
\2

2m1

¹1
2R

R
2

\2

2m2

¹2
2R

R
, ~36!

then the pilot wave evolves in time according to

]S

]t
52

~“1S!2

2m1
2

~¹2S!2

2m2
2V~x1 ,x2!2Q~x1 ,x2 ,t ! ~37!

and

]P

]t
1

1

m1
“1•~P “1S!1

1

m2
¹2•~P¹2S!50, ~38!

where

P~x1 ,x2 ,t !5R2~x1 ,x2 ,t !. ~39!

The first equation resembles a Hamilton–Jacobi equat
the second acts such as a continuity equation in whichP
represents a probability density.
294 Am. J. Phys., Vol. 70, No. 3, March 2002
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The two point particles move with accelerations

m1

dv1

dt
52“1V2“1Q and m2

dv2

dt
52¹2V2¹2Q.

~40!

In other words, the force is given not only by the gradient
the classical potential, but by the gradient of the quant
potential as well. The initial positions of the point particle
are uncertain: for an ensemble of systems the probab
density of initial positions is given byP(x1 ,x2,0). Thus both
the particle corresponding to the proton and the particle c
responding to the electron have a definite position an
definite momentum; however the initial ensemble unc
tainty and the quantum potential work together to ensure
any set of measurements on a collection of identically p
pared systems will satisfyDx Dp>\/2.

The quantum potentialQ(x1 ,x2 ,t) changes instanta
neously throughout configuration space whenever the wa
function changes, and this mechanism is responsible for
nonlocal correlations that are so characteristic of quan
mechanics. A rather natural mechanism prevents human
ings from tapping into this instantaneous change for the p
pose of faster-than-light communications.

Applications. To use the pilot wave formulation one mu
keep track of both trajectories and wavefunctions, so it is
surprising that this formulation is computationally difficu
for most problems. For example the phenomenon of two-
interference, often set as a sophomore-level modern phy
problem using the wavefunction formulation, requires
computationaltour de forcein the pilot wave formulation:
46. C. Philippidis, C. Dewdney, and B. J. Hiley, ‘‘Quantum interference a

the quantum potential,’’ Nuovo Cimento Soc. Ital. Fis., B52, 15–28
~1979!.

In contrast, the pilot wave formulation is effective in rai
ing questions concerning the general character of quan
mechanics. For example, John Bell’s epoch-making theo
concerning locality and the quantum theory was inspi
through the pilot wave formulation.10 And many astute ob-
servers find the pilot wave formulation intuitively insightfu
For example:
47. J. S. Bell, ‘‘Six possible worlds of quantum mechanics,’’ inPossible

Worlds in Humanities, Arts and Sciences: Proceedings of Nobel Sym
sium 65, 11–15 August 1986, edited by S. Alle´n ~Walter de Gruyter,
Berlin, 1989!, pp. 359–373. Reprinted in J. S. Bell,Speakable and
Unspeakable in Quantum Mechanics~Cambridge University Press
Cambridge, UK, 1987!, Chap. 20, pp. 181–195.

48. H. P. Stapp, ‘‘Review of ‘The Undivided Universe’ by Bohm and H
ley,’’ Am. J. Phys.62, 958–960~1994!.

Recommended references.
49. D. Bohm, B. J. Hiley, and P. N. Kaloyerou, ‘‘An ontological basis fo

the quantum theory,’’ Phys. Rep.144, 321–375~1987!.
50. D. Bohm and B. J. Hiley,The Undivided Universe: An Ontologica

Interpretation of Quantum Theory~Routledge, London, 1993!.
51. D. Dürr, S. Goldstein, and N. Zanghı´, ‘‘Quantum equilibrium and the

origin of absolute uncertainty,’’ J. Stat. Phys.67, 843–907~1992!.

History. Louis de Broglie proposed the germ of this a
proach which was discussed at, for example, the Solvay C
gress of 1927. But the substantial development of these id
began with
52. D. Bohm, ‘‘A suggested interpretation of the quantum theory in terms

‘hidden’ variables, I and II,’’ Phys. Rev.35, 166–179 and 180–193
~1952!.
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I. The Hamilton –Jacobi formulation

The classical Hamilton–Jacobi formulation systematica
finds changes of variable such that the resulting equation
motion are readily integrated. In particular, if this results in
new set of variables of the so-called ‘‘action-angle’’ form
one can find the period of a repetitive motion without ac
ally finding the motion itself.

Classical Hamilton–Jacobi theory provided important
spiration in the development of quantum mechanics.~Dirac’s
‘‘transformation theory’’ places a similar emphasis on stra
gic changes of variable, and the Wilson–Sommerfeld vers
of old quantum theory relies on action-angle variables.! But
it was not until 1983 that Robert Leacock and Michael P
dett produced a treatment extensive enough to be regard
a full Hamilton–Jacobi formulation of quantum mechanic
The central entity of this formulation is ‘‘Hamilton’s princi
pal function’’ S(x1 ,x2 ,t) such that

c~x1 ,x2 ,t !5exp@ iS~x1 ,x2 ,t !/\#. ~41!

@Caution: This function may be complex...it is not the samS
as in the pilot-wave defining Eq.~35!.# Hamilton’s principal
function satisfies the quantum Hamilton–Jacobi equation

]S

]t
5 i

\

2m1
¹1

2S2
1

2m1
“1S•“1S1 i

\

2m2
¹2

2S2
1

2m2
¹2S

•¹2S2V~x1 ,x2!. ~42!

@Caution: The name ‘‘quantum Hamilton–Jacobi equatio
is applied both to this equation and to the pilot wave eq
tion ~37!.#

If the resulting change in variables is of action-angle for
then this formulation can find the energy eigenvalues with
needing to find the eigenfunctions.

Recommended references.
53. R. A. Leacock and M. J. Padgett, ‘‘Hamilton–Jacobi/action-angle qu

tum mechanics,’’ Phys. Rev. D28, 2491–2502~1983!.
54. R. S. Bhalla, A. K. Kapoor, and P. K. Panigrahi, ‘‘Quantum Hamilton

Jacobi formalism and the bound state spectra,’’ Am. J. Phys.65, 1187–
1194 ~1997!.

55. J.-H. Kim and H.-W. Lee, ‘‘Canonical transformations and t
Hamilton–Jacobi theory in quantum mechanics,’’ Can. J. Phys.77,
411–425~1999!.

J. Summary and conclusions

We have discussed nine distinct formulations of quant
mechanics. Did we learn anything in the process? The m
profound lesson is already familiar from classical mechan
and indeed from everyday life: ‘‘There is no magic bullet
Each of these formulations can make some application ea
or some facet of the theory more lucid, but no formulati
produces a ‘‘royal road to quantum mechanics.’’ Quant
mechanics appears strange to our classical eyes, so we
ploy mathematics as our sure guide when intuition fails
The various formulations of quantum mechanics can repa
age that strangeness, but they cannot eliminate it.

Thematrix formulation, the first formulation to be discov
ered, is useful in solving harmonic oscillator and angu
momentum problems, but for other problems it is quite d
ficult. The ever-popularwavefunction formulationis standard
for problem solving, but leaves the conceptual misimpr
sion that wavefunction is a physical entity rather than
mathematical tool. Thepath integral formulationis physi-
cally appealing and generalizes readily beyond the domai
nonrelativistic quantum mechanics, but is laborious in m
295 Am. J. Phys., Vol. 70, No. 3, March 2002
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standard applications. Thephase space formulationis useful
in considering the classical limit. Thedensity matrix formu-
lation can treat mixed states with ease, so it is of spec
value in statistical mechanics. The same is true ofsecond
quantization, which is particularly important when larg
numbers of identical particles are present. Thevariational
formulation is rarely the best tool for applications, but it
valuable in extending quantum mechanics to unexplored
mains. Thepilot wave formulationbrings certain conceptua
issues to the fore. And theHamilton–Jacobi formulation
holds promise for solving otherwise-intractable bound st
problems.

We are fortunate indeed to live in a universe where nat
provides such bounty.

III. ADDITIONAL ISSUES

This section treats two interpretations of quantum mech
ics that might instead be considered formulations, then g
on to briefly discusses four miscellaneous items.

A. The many-worlds interpretation „Everett…

The many-worlds interpretation is close to the bound
between a ‘‘formulation’’ and an ‘‘interpretation’’—indeed
its founder, Hugh Everett, called it ‘‘the relative state form
lation,’’ while it is most widely known under Bryce DeWitt’s
name of ‘‘the many-worlds interpretation.’’

In this interpretation there is no such thing as a ‘‘collap
of the wavefunction.’’At the same time, the question chang
from ‘‘What happens in the world?’’ to ‘‘What happens in
particular story line?.’’ This change in viewpoint is best dem
onstrated through an example: Suppose a scientist ca
make up her mind whether to marry or to break off h
engagement. Rather than flip a coin, she sends a si
circularly-polarized photon into a sheet of polaroid. If a ph
ton emerges~linearly polarized! from the polaroid, a photo-
detector will register and an attached bell will chime. T
scientist decides beforehand that if the bell chimes, she
marry. Otherwise, she will remain single. In the Bohr versi
of quantum mechanics, the question is ‘‘What happens?’’ a
the answer is that the scientist has a 50% chance of marr
and a 50% chance of breaking her engagement. In the E
ett version, this is not the right question: There is one st
line in which the photon emerges, the bell rings, and
marriage occurs. There is another story line in which
photon is absorbed, silence reigns, and the engagemen
minates. Each story line is consistent. To find out which st
line we are living in, we simply check on the marital stat
of the scientist. If she is married, we are living in the sto
line where a linearly polarized photon emerged and the
rang. Otherwise, we live in the other story line. The quest
‘‘What happens?’’ is ill-posed—one must ask instead ‘‘Wh
happens in a particular story line?’’~Just as the question
‘‘How far is Chicago?’’ is ill-posed—one must ask instea
‘‘How far is Chicago from San Francisco?’’!

In the relative state formulation, the wavefunction nev
collapses—it merely continues branching and branchi
Each branch is consistent, and no branch is better than an
the other branches.~In the many-worlds version, one spea
of coexisting branching universes rather than of multip
story lines.! In summary, the relative state formulation plac
the emphasis oncorrelationsand avoidscollapse.

Applications. The relative state formulation is mathema
cally equivalent to the wavefunction formulation, so the
can be no technical reason for preferring one formulat
295Styeret al.
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over the other. On the other hand, some find that the con
tual orientation of the relative state formulation produces
sights in what would otherwise be fallow ground. For e
ample, David Deutsch’s 1985 paper, which founded
enormously fertile field of quantum computing, express
his opinion that ‘‘The intuitive explanation of these prope
ties places an intolerable strain on all interpretations of qu
tum theory other than Everett’s.’’
56. D. Deutsch, ‘‘Quantum theory, the Church-Turing principle and the u

versal quantum computer,’’ Proc. R. Soc. London, Ser. A400, 97–117
~1985!.

Recommended references.
57. H. Everett III, ‘‘ ‘Relative state’ formulation of quantum mechanics

Rev. Mod. Phys.29, 454–462~1957!.
58. B. S. DeWitt and N. Graham, inThe Many-Worlds Interpretation o

Quantum Mechanics~Princeton University Press, Princeton, NJ, 197!.
59. Y. Ben-Dov, ‘‘Everett’s theory and the ‘many-worlds’ interpretation

Am. J. Phys.58, 829–832~1990!.
60. B. S. DeWitt, ‘‘Quantum mechanics and reality,’’ Phys. Today23,

30–35~September 1970!.
61. L. E. Ballentine, P. Pearle, E. H. Walker, M. Sachs, T. Koga, J. Ger

and B. DeWitt, ‘‘Quantum mechanics debate,’’ Phys. Today24, 36–44
~April 1971!.

B. The transactional interpretation „Cramer…

This interpretation~or formulation! is coherent and valu
able, but it is difficult to describe in brief compass, so ma
who have inspected it only briefly consider it simply bizar
If our short description here leaves you with that misimpr
sion, we urge you to consult the recommended referenc

In the transactional interpretation sources and detector
say, electrons emit both retarded waves~moving forward in
time! and advanced waves~moving backward in time!. An
electron moving from a source to a detector involves an ‘‘
fer wave’’ ~corresponding toc! from the source and a ‘‘con
formation wave’’ ~corresponding toc* ! from the detector
which interfere to produce ‘‘a handshake acro
space–time.’’11 Destructive interference between these t
waves assures that the electron cannot arrive at the det
before it leaves its source.

Applications. According to John Cramer,12 ‘‘the transac-
tional interpretation...makes no predictions that differ fro
those of conventional quantum mechanics@that is, the wave-
function formulation#... We have found it to be more usefu
as a guide for deciding which quantum-mechanical calcu
tions to perform than as an aid in the performance of s
calculations... The main utility of the transactional interp
tation is @as# a conceptual model which provides the us
with a way of clearly visualizing complicated quantum pr
cesses and of quickly analyzing seemingly ‘paradoxical’ s
ations... It also seems to have considerable value in the
velopment of intuitions and insights into quantu
phenomena that up to now have remained mysterious.’’

Identical particles. Discussions of the transactional inte
pretation are usually carried out in the context of one-part
quantum mechanics. It is not clear to us whether, in a tw
particle system, there are two ‘‘handshakes across sp
time’’ or one ‘‘handshake across configuration-space-tim
Consequently, we cannot report on how the transactional
mulation differentiates between bosons and fermions.

Recommended references.
62. J. G. Cramer, ‘‘The transactional interpretation of quantum mechani

Rev. Mod. Phys.58, 647–687~1986!.
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63. J. G. Cramer, ‘‘An overview of the transactional interpretation of qua
tum mechanics,’’ Int. J. Theor. Phys.27, 227–236~1988!.

History. This interpretation originated in
64. J. G. Cramer, ‘‘Generalized absorber theory and the Einste

Podolsky–Rosen paradox,’’ Phys. Rev. D22, 362–376~1980!.

C. Miscellaneous items

Most physicists interested in formulations will also be i
terested in density functional theory, in decoherence, in
consistent histories interpretation, and in the possibility
continuous spontaneous localization, so these matters
briefly touched upon here.

Thedensity functional theoryof Hohenberg and Kohn is a
powerful quantum-theoretic tool, but it is not a formul
tion...it deals only with the ground state.~Admittedly, this is
the only state of interest for much of chemistry and co
densed matter physics.!
65. R. G. Parr and W. Yang,Density-Functional Theory of Atoms and Mo

ecules~Oxford University Press, New York, 1989!.

From the birth of quantum mechanics, everyone rec
nized the importance of a correct classical limit. Results s
as Ehrenfest’s famous theorem assure that some qu
states behave nearly classically. But this does not comple
answer the need: It is also true that other quantal states
have far from classically. Why do we never encounter su
states in the day-to-day world? The phenomenon ofdecoher-
enceattempts to explain this absence. The vast technical
erature is best approached through the two reviews
66. W. H. Zurek, ‘‘Decoherence and the transition from quantum to clas

cal,’’ Phys. Today44, 36–44~October 1991!.
67. S. Haroche, ‘‘Entanglement, decoherence and the quantum/clas

boundary,’’ Phys. Today51, 36–42~July 1998!.

Robert Griffiths’sconsistent historiesinterpretation is not
a formulation, but provides an interesting point of view. S
68. R. B. Griffiths and R. Omne`s, ‘‘Consistent histories and quantum me

surements,’’ Phys. Today52, 26–31~August 1999!.

The idea of continuous spontaneous localizationdeals
with wavefunction collapse and the classical limit by mod
fying the Schro¨dinger equation in such a way that extend
quantal states naturally collapse, as if under their o
weight. There are several such schemes, the most prom
of which is
69. G. C. Ghirardi, A. Rimini, and T. Weber, ‘‘Unified dynamics for micro

scopic and macroscopic systems,’’ Phys. Rev. D34, 470–491~1986!.

Finally, everyone should be aware of the two wide-rang
reviews
70. S. Goldstein, ‘‘Quantum theory without observers,’’ Phys. Today51,

42–46~March 1998! and ibid. 38–42~April 1998!.
71. F. Laloë, ‘‘Do we really understand quantum mechanics? Strange c

relations, paradoxes, and theorems,’’ Am. J. Phys.69, 655–701~2001!.

APPENDIX A: FORMULATIONS OF CLASSICAL
MECHANICS

The formulations of classical mechanics known to us
the following:

Newtonian
Lagrangian
Hamiltonian
Hamilton’s principle~called by Feynman and Landau ‘‘th
principle of least action’’!
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the Maupertuis principle of least action~also associated
with the names of Euler, Lagrange, and Jacobi!
least constraint~Gauss!
least curvature~Hertz!
Gibbs–Appell
Poisson brackets
Lagrange brackets
Liouville
Hamilton–Jacobi
These formulations are discussed to a greater or le

extent in any classical mechanics textbook. The definit
scholarly work appears to be
72. E. T. Whittaker,A Treatise on the Analytical Dynamics of Particles an

Rigid Bodies, 4th ed. ~Cambridge University Press, Cambridge, UK
1937!.

APPENDIX B: GAUGE TRANSFORMATIONS

The wavefunction plays such a central role in most disc
sions of quantum mechanics that one is easily trapped
thinking of it as a physical entity rather than a mathemati
tool. Anyone falling into this trap will be dissuaded by th
following argument. Consider a single particle of chargeq
moving in an electromagnetic field described by scalar
tential f(x,t) and vector potentialA(x,t). Then the
configuration-space Schro¨dinger equation is

]c~x,t !

]t
52

i

\ F 1

2m S 2 i\“2
q

c
A~x,t ! D 2

1qf~x,t !Gc~x,t !. ~B1!

On the other hand, we can describe exactly the same sy
using the gauge-transformed potentials:

A8~x,t !5A~x,t !1“x~x,t !, ~B2!

f8~x,t !5f~x,t !2
1

c

]x~x,t !

]t
. ~B3!

One can easily show that the wavefunction obtained us
these new potentials is related to the original wavefunct
by

c8~x,t !5eiqx(x,t)/\cc~x,t !. ~B4!

This gauge transformation has not changed the system a
and any experimental result calculated will be the same
gardless of which gauge is employed. Yet the wavefunct
has changed dramatically.~Indeed, although the probabilit
density cannot and does not change through a gauge t
297 Am. J. Phys., Vol. 70, No. 3, March 2002
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formation, the all-important phase—responsible for all int
ference effects—can be selected at will.!

ACKNOWLEDGMENTS

Professor Martin Jones of the Oberlin College Philosop
Department presented our class with a guest lecture tha
fluenced the shape of Sec. III A. Two referees made valua
suggestions and corrected some embarrassing sign erro
the manuscript.

a!Electronic mail: Dan.Styer@oberlin.edu
1To our classical sensibilities, the phenomena of quantum mechani
interference, entanglement, nonlocal correlations, and so forth—s
weird. The various formulations package that weirdness in various w
but none of them can eliminate it because the weirdness comes from
facts, not the formalism.

2E. B. Wilson, ‘‘Some personal scientific reminiscences,’’International
Journal of Quantum Chemistry: Quantum Chemistry Symposium, Proceed-
ings of the International Symposium held at Flagler Beach, Florida, 10
March 1980, Vol. 14, pp. 17–29, 1980~see p. 21!. Wilson co-authored one
of the very earliest quantum mechanics textbooks, namely L. Pauling
E. B. Wilson, Introduction to Quantum Mechanics~McGraw-Hill, New
York, 1935!.

3C. A. Fuchs and A. Peres, ‘‘Quantum theory needs no ‘interpretatio
Phys. Today53, 70–71 ~March 2000!; D. Styer, ‘‘Quantum theory—
interpretation, formulation, inspiration@letter#,’’ ibid. 53, 11 ~September
2000!; C. A. Fuchs and A. Peres, ‘‘Reply,’’ibid. 53, 14,90 ~September
2000!.

4W. Heisenberg,The Physical Principles of the Quantum Theory, translated
by Carl Eckart and F. C. Hoyt~University of Chicago Press, Chicago
1930!, p. 20.

5N. Bohr, ‘‘Discussion with Einstein on epistemological problems in atom
physics,’’ in Albert Einstein, Philosopher–Scientist, edited by P. A.
Schilpp~Library of Living Philosophers, Evanston, IL, 1949!, p. 237. Re-
printed in N. Bohr,Atomic Physics and Human Knowledge~Wiley, New
York, 1958!, pp. 63–64.

6N. David Mermin, unpublished lectures given at Cornell University.
7Schrödinger used both words in his first 1926 paper~Ref. 12 in the text!.
In the translation~Ref. 14 in the text!, ‘‘congenial’’ appears on p. 10 and
‘‘intuitive’’ on p. 9. The latter corresponds to the Germananschaulich,
which has been variously translated as ‘‘intuitive,’’ ‘‘pictorial,’’ or ‘‘visu-
alizable.’’

8See, for example, A. Pais,Inward Bound~Clarendon, Oxford, UK, 1986!,
p. 256.

9We represent arbitrary wavefunctions byc(x) or by f(x), and energy
eigenfunctions byh(x), because the Greek letterh suggests ‘‘e’’~as in
‘‘energy eigenfunction’’ and as in ‘‘eta’’!. This admirable convention was
established by D. T. Gillespie, inA Quantum Mechanics Primer~Interna-
tional Textbook Company, Scranton, PA, 1970!.

10J. Bernstein,Quantum Profiles~Princeton University Press, Princeton, N
1991!, pp. 72–77.

11Cramer, Ref. 63 in the text, p. 661.
12Cramer, Ref. 63 in the text, p. 663.
297Styeret al.


