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ABSTRACT

We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP)
mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations
of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce
the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic
microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in
detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated
template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-
reduced CMB maps are presented. We now implement an optimal C~! weighting to compute the temperature angular
power spectrum. The WMAP mission has resulted in a highly constrained ACDM cosmological model with precise
and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are
combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big
bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino
species (Negg = 3.84 & 0.40). The model fit also implies that the age of the universe is #p = 13.772 &+ 0.059 Gyr,
and the fit Hubble constant is Hy = 69.32 & 0.80 km s~! Mpc~'. Inflation is also supported: the fluctuations
are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity,
reported earlier by the WMAP team, now has high statistical significance (n; = 0.9608 £ 0.0080); and the universe
is close to flat/Euclidean (Q = —0.0027*4%%). Overall, the WMAP mission has resulted in a reduction of the
cosmological parameter volume by a factor of 68,000 for the standard six-parameter ACDM model, based on
CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor
117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces
the cosmological parameter volume even further. With no significant anomalies and an adequate goodness of fit, the
inflationary flat ACDM model and its precise and accurate parameters rooted in WMAP data stands as the standard
model of cosmology.
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1. INTRODUCTION

Since its discovery in 1965, the cosmic microwave back-
ground (CMB) has played a central role in cosmology. The
discovery of the CMB (Penzias & Wilson 1965) confirmed a
major prediction of the big bang theory and was difficult to
reconcile with the steady state theory. The precision measure-
ment of the CMB spectrum by NASA’s Cosmic Background

Explorer (COBE) mission (Mather et al. 1990, 1994) confirmed
the predicted CMB blackbody spectrum, which results from
thermal equilibrium between matter and radiation in the hot,
dense early universe. The COBE detection of CMB anisotropy
(Smootetal. 1992; Bennettetal. 1992; Kogut et al. 1992; Wright
et al. 1992) established the amplitude of the primordial scalar
fluctuations and supported the case for the gravitational evolu-
tion of structure in the universe from primordial fluctuations.
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While COBE mapped the full sky anisotropy on angular scales
>7°, greater than the horizon size at decoupling, Wilkinson Mi-
crowave Anisotropy Probe (WMAP) mapped the full sky CMB
anisotropy on both superhorizon and subhorizon angular scales.
WMAP provided independent replication and confirmation of
the COBE maps on angular scales >7° as well as the deter-
mination of precision cosmological parameters from fits to the
well-established physics of the observed sub-horizon acoustic
oscillations.

This paper together with its companion paper on cosmological
parameter determination (Hinshaw et al. 2013) mark the nine-
year and final official data release of the WMAP mission.
WMAP was designed to make full sky maps of the CMB in
five frequency bands straddling the spectral region where the
CMB-to-foreground ratio is near its maximum.

The overall WMAP mission design was described by Bennett
et al. (2003a). The optical design was described by Page et al.
(2003b) with the feeds and pre-flight beam patterns described by
Barnes et al. (2002). The radiometer design and characterization
was presented by Jarosik et al. (2003b).

The WMAP Science Team previously issued four major data
releases, each with an accompanying set of publications. The
first-year results included a presentation of the full sky maps
and basic results (Bennett et al. 2003b), on-orbit radiometer
characteristics (Jarosik et al. 2003a), beam profiles and win-
dow functions (Page et al. 2003a), Galactic emission contam-
ination in the far-sidelobes of the beams (Barnes et al. 2003),
a description of data processing and systematic measurement
errors (Hinshaw et al. 2003a), an assessment of foreground
emission (Bennett et al. 2003c), tests of CMB Gaussianity
(Komatsu et al. 2003), the angular power spectrum (Hinshaw
et al. 2003b), the temperature-polarization correlation (Kogut
et al. 2003), cosmological parameters (Spergel et al. 2003),
parameter estimation methodology Verde et al. (2003), impli-
cations for inflation (Peiris et al. 2003), and an interpretation
of the temperature—temperature and temperature—polarization
cross-power spectrum peaks (Page et al. 2003c).

The three-year WMAP results included full use of the po-
larization data and improvements to temperature data analysis.
The beam profile analysis, data processing changes, radiome-
ter characterization, and systematic error limits were presented
in Jarosik et al. (2007). An analysis of the temperature data
carried through to the angular power spectrum was described
by Hinshaw et al. (2007), and the corresponding polarization
analysis was presented by Page et al. (2007). An analysis of the
polarization of the foregrounds was presented by Kogut et al.
(2007). The cosmological implications of the three-year results
were summarized by Spergel et al. (2007).

The five-year WMAP results included updates on data pro-
cessing, sky maps, and the basic results (Hinshaw et al. 2009),
and updates on the beam maps and window functions (Hill et al.
2009). The five-year results also included improvements to char-
acterizing the Galactic foreground emission (Gold et al. 2009)
and the point source catalog Wright et al. (2009). The angular
power spectra (Nolta et al. 2009), likelihoods and parameter
estimates (Dunkley et al. 2009), a discussion of the cosmolog-
ical interpretation of these data (Komatsu et al. 2009), and a
Bayesian estimation of the CMB polarization maps (Dunkley
et al. 2009) completed the five-year results.

The seven-year WMAP results comprised sky maps, system-
atic errors, and basic results (Jarosik et al. 2011), observations
of planets and celestial calibration sources (Weiland et al. 2011),
Galactic foreground emission (Gold et al. 2011), angular power
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spectra and cosmological parameters based only on WMAP data
(Larson et al. 2011), cosmological interpretations based on a
wider set of cosmological data (Komatsu et al. 2011), and a dis-
cussion of the goodness of fit of the ACDM model and potential
anomalies (Bennett et al. 2011).

All of the WMAP data releases have been accompanied
by an up-to-date Explanatory Supplement, including this final
nine-year release (Greason et al. 2012). All WMAP data are
public along with a large number of associated data products;
they are made available by the Legacy Archive for Microwave
Background Data Analysis (LAMBDA).!®

Each WMAP release improved cosmological constraints
through three types of advances: (1) the addition of WMAP
data from extended observations, (2) improvements in the anal-
ysis of all of the WMAP data included in the release, including
more optimal analysis approaches and the use of additional sea-
sons of data to arrive at improved experiment models (e.g., by
trending), and (3) improvements in non-WMAP cosmological
measurements that are combined into the WMAP team’s com-
bined likelihood analysis.

This paper is organized as follows. The data process-
ing changes from previous analyses are described in Sec-
tion 2. Beam patterns and window functions are discussed in
Section 3. Temperature and polarization sky maps are presented
in Section 4. In Section 5 updated masks and an updated point
source catalog are presented in addition to several different ap-
proaches to diffuse foreground evaluation, which are compared.
Angular power spectra are given in Section 6. An analysis of
the model goodness of fit and a discussion of anomalies are
in Section 7. Cosmological implications are then presented in
Section 8. Conclusions are given in Section 9. The accompany-
ing paper (Hinshaw et al. 2013) presents an in-depth analysis of
cosmological parameter solutions from various combinations of
data and models and offers cosmological conclusions.

2. DATA PROCESSING: OVERVIEW AND UPDATES

In this section we summarize changes in the WMAP data
processing since the previous (seven-year) data release.

2.1. Time-ordered Data
2.1.1. Data Archive Definition

The full nine-year WMAP archive of nominal survey data
covers 00:00:00 UT 2001 August 10 (day number 222) to
00:00:00 UT 2010 August 10 (day number 222). Individual
year demarcations begin at 00:00:00 UT on day number 222 of
ayear and end at 23:59:59 UT on day 221 of the following year.
In addition to processing improvements, the WMAP nine-year
release includes new data accumulated during mission years 8
and 9. Flight operations during those final two years included
five scheduled station-keeping maneuvers, a lunar shadow
passage, and special commanding procedures invoked within the
last mission year to accommodate a compromised battery and
transmitter. Overall, WMAP achieved a total mission observing
efficiency of roughly 98.4%. The bulk of data excluded from
science analysis use are dominated by time intervals that do not
exhibit sufficient thermal stability.

2.1.2. Battery-driven Thermal Effects

The WMAP solar arrays were exposed to constant sunlight
so the battery was trickle charged for almost a decade. This

18 http://lambda.gsfc.nasa.gov/


http://lambda.gsfc.nasa.gov/

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 208:20 (54pp), 2013 October

activated an internal battery design imperfection and caused
battery voltage fluctuations in the final months of the mission
(Greason et al. 2012). The resulting thermal variations were
beyond what had been experienced earlier in the mission.
A detailed analysis of time-ordered data (TOD) with sky
signal subtracted showed no detectable dependence on thermal
variations associated with battery events, and thus preservation
of data was preferred to excision. Out of an abundance of
caution, time sequences that contained some of the more
egregious temperature excursions were flagged as suspect and
omitted from use in the nine-year data processing even though
there was no specific evidence of adverse effects.

2.1.3. Pointing

For each observation, sky pointings of individual WMAP
feed horns are computed using boresight vectors in spacecraft
body coordinates coupled with the spacecraft attitude solution
provided by on-board star trackers. After the first mission year,
it was discovered that the apparent attitude computed by the
trackers includes small errors induced by thermal flexure of the
tracker mounting structure, as described by Jarosik et al. (2007).
The amplitude of the flexure is time-dependent and driven by
spacecraft temperature gradients. The spacecraft temperature
responds both to solar heating and internal power dissipation,
and is monitored by thermistors mounted at different locations
on the spacecraft (Greason et al. 2012).

Telemetered spacecraft quaternions from the star trackers are
corrected for this thermal effect at the very beginning of ground
processing, when the raw science archive is created. Originally,
we adopted a simple linear model, assuming a fixed angular
rate of elevation change in units of arcsec per unit temperature
change. As the mission progressed and additional data was used
to improve the accumulated thermal profile history, the model
has evolved to include angular corrections both in elevation
(the dominant term) and azimuth. The nine-year quaternion
correction model updates the rate coefficients in both azimuth
and elevation, and uses readings from two separate thermistors
to characterize the spacecraft temperature gradients. A more
detailed description is provided by Greason et al. (2012). The
residual pointing error after applying of the correction algorithm
is computed using observations of Jupiter and Saturn. The upper
limit of the estimated error is 10”.

Beam boresight vectors have been updated based on the full
nine-year archive. The largest difference between the seven-
year and nine-year line-of-sight (LOS) vectors is 3”. Both
the calibrated and uncalibrated WMAP archive data products
include documentation of these LOS vectors.

2.1.4. Calibration

Calibration of TOD from each WMAP radiometer channel
requires the derivation of time-dependent gains (responsivity,
in units of counts mK~') and baselines (in units of counts)
that are used to convert raw differential data into temperature
units. Algorithmic details and underlying concepts are set forth
in Hinshaw et al. (2007). Jarosik et al. (2011) outline the
calibration process as consisting of two general steps. The first
step determines baselines and preliminary gains on an hourly
or daily basis via an iterative process that combines a skymap
estimation with a calibration solution that updates with each
iteration. Baselines and gains are computed by fitting sky-
subtracted TOD to the dipole anisotropy induced by the motion
of the WMAP spacecraft with respect to the CMB rest frame.
The second calibration step determines absolute gain and fits
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a parameterized gain model to the dipole gains derived in the
first step.

The form of the parameterized gain model is based on a
physical understanding of radiometer performance, and uses
telemetered measures of instrument temperatures and the radio
frequency (RF) biases. The model provides a smooth charac-
terization of the responsivity with time and allows higher time
resolution than provided by the dipole-fit gains. For the nine-
year analysis, we augment the gain model by adding a time-
dependent linear trend term, mAf + ¢, to the parameterized form
presented in Jarosik et al. (2007). Here At is an elapsed mission
time in days, and m, ¢ are additional fit parameters. Physically,
the linear trend can be thought of as a radiometer aging term.
Without the addition of this term, model fits to the nine-year
dipole gain measurements exhibited small systematic deviations
from zero-mean residuals for nine of the 40 WMAP channels.
The four Kal channels were most affected; the inclusion of the
gain model aging term prevents an induced total gain error of
about 0.1% in this band. Of the 40 WMAP radiometer channels,
W323 alone has shown poor convergence in the iterative pro-
cedure that determines dipole-fit gains. Upon investigation we
found that this problem is peculiar to the iterative algorithm and
not the data itself. The W323 calibration has not been substan-
tially affected in previous releases, but for the nine-year analysis
the diverging mode was identified and we disallowed it in the
gain model fit.

We continue to conservatively estimate an absolute calibra-
tion uncertainty of 0.2% (1o, based on end-to-end gain recov-
ery simulations. The overall change in calibration for the nine-
year processing relative to the seven-year release is —0.031%,
+0.048%, —0.005%, +0.041%, and +0.025% for K-, Ka-, Q-,
V-, and W-bands respectively; a positive change indicates that
features in the nine-year maps are slightly larger than those in the
equivalent seven-year maps (i.e., a slight decrease in nine-year
absolute gain compared to seven-year).

2.1.5. Transmission Imbalance Factors

The transmission efficiencies of sky signals through the
A-side and B-side optical systems into each WMAP radiometer
differ slightly from one another. This deviation from ideal
behavior is characterized in map-making and data analysis
through the use of time-independent transmission imbalance
factors. The method by which these factors are determined
from the WMAP data was described by Jarosik et al. (2007).
The determination improves with additional data. These factors
have been updated for the nine-year analysis and are presented
in Table 1. The nine-year values compare well against the
previously published seven-year values (Jarosik et al. 2011)
within the quoted uncertainties.

2.2. Map-making
2.2.1. Standard Map-making

The standard WMAP map-making procedure is unchanged
from the previous release and the resulting maps are used for
the core cosmological analyses. Progress has been made on
the algorithm for estimating the noise properties of the maps.
The Stokes I noise levels (o0p) are now more self-consistent
between maps at angular resolution r9 and r10' than they had
been previously. Another difference from previous analyses is

19 The map resolution levels refer to the HEALPix pixelization scheme
(Gorski et al. 2005) where r4, r5, 19, and r10 refer to Ngjqe values of 16, 32,
512, and 1024, respectively.
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Table 1
Nine-year Fractional Transmission Imbalance
Radiometer Xim Uncertainty Radiometer Xim Uncertainty
K11 —0.00067  0.00017 Ki2 0.00536  0.00014
Kall 0.00353  0.00014 Kal?2 0.00154  0.00008
Q11 —0.00013  0.00046 QI2 0.00414  0.00025
021 0.00756  0.00052 Q22 0.00986  0.00115
Vil 0.00053  0.00020 Vi2 0.00250  0.00057
V21 0.00352  0.00033 V22 0.00245  0.00098
Wil 0.01134  0.00199 wi2 0.00173  0.00036
w21 0.01017  0.00216 w22 0.01142  0.00121
W31 —0.00122  0.00062 w32 0.00463  0.00041
w41 0.02311  0.00380 w42 0.02054  0.00202

Notes. The fractional transmission imbalance, xim, and its uncertainty is
determined from the nine-year observational data. The fractional transmission
imbalance is defined as xj, = (€4 —€p)/(€4+€p), where €4 and € g are the input
transmission coefficients for the A- and B-side optics (Jarosik et al. 2003a). For
an ideal differential radiometer, x;, = 0.

that this procedure now determines the noise in the polarized
maps from the Stokes Q and U year-to-year differences while
including a spurious (“S”) map term, and a mean monopole is
subtracted from each S map, as is done separately for Stokes
I in the temperature map analysis. A detailed discussion is in
Section 4.1.

Data are masked in the map-making process when one
feed observes bright foregrounds (e.g., in the Galactic plane)
while the corresponding differencing feed observes a far fainter
sky. This masking prevents the contamination of faint pixels.
Previous WMAP data analysis efforts used a single processing
mask, based on the K-band temperature maps, to define which
pixel-pairs to mask for all of the frequency bands. In the current
processing we have changed to masking based on the brightness
in each individual band.

2.2.2. Beam Pattern Determination

The standard maps are used to subtract the background from
Jupiter observations to create beam maps, as has been done in
previous processing. We correct three seasons of Jupiter maps
in the latter part of the mission for the proximity of Uranus and
Neptune to Jupiter. Two-dimensional profiles from the newly
updated beam map data are now also used as inputs for the new
beam-symmetrized map-making procedure, described below.

2.2.3. Beam-symmetrized Map-making

In addition to the standard map-making, a new map-making
procedure, described in Section 4.2, effectively deconvolves
the beam sidelobes to produce maps with the true sky signal
convolved by symmetrized beams. As a result of this new
procedure, the previously reported map power asymmetry,
which we speculated was due to the asymmetric beams and
not cosmology (Bennett et al. 2011) has indeed been mitigated
in the new beam-symmetrized maps.

In this paper we use the beam-symmetrized maps for diffuse
foreground analysis (Section 5.3), but not for estimating the
angular power spectrum and cosmological parameters. This
is because the deconvolution process introduces correlations
in the pixel noise on the beam scale and it is impractical to
track these correlations at the full pixel resolution. Diffuse
foreground analyses, on the other hand, used maps smoothed to
a 1° scale. Appendix B of Hinshaw et al. (2007) demonstrated
that the cosmological power spectrum, Cj, is insensitive to beam
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asymmetry at WMAP’s sensitivity level. (It is the 4-point bipolar
power spectrum, not the 2-point angular power spectrum, that is
sensitive to beam asymmetry.) Use of the beam-symmetrized
maps for high-/ angular power spectrum estimation would
invoke the need for high resolution noise covariance matrices,
along with far greater computational and storage demands than
are now feasible. Given that dense r9 noise covariance matrices
are computationally undesirable and the cosmological power
spectrum is insensitive to beam asymmetry, we do not use beam-
symmetrized maps for cosmology.

3. BEAM MAPS AND WINDOW FUNCTIONS

The WMAP full beams are considered as a combination of
main beams and sidelobes. These are treated separately in the
data processing. The sidelobe beam patterns were determined
from early mission observations of the moon together with
pre-flight ground-based measurements, as described in Barnes
et al. (2003). Potential contamination from sidelobe pickup
was computed and removed from the calibrated TOD prior to
map-making (Hinshaw et al. 2009). In this section, we address
the main-beam response; treatment of the sidelobes remains
unchanged from the seven-year release.

WMAP beams are measured using observations of the planet
Jupiter that occur during the normal course of full-sky observing.
Two Jupiter observing seasons of ~50 days each occur every
395-400 days. In the nine-year WMAP mission, a total of 17
seasons of Jupiter data were obtained. Time intervals for the four
observing seasons occurring during the last two mission years
are presented in Table 2; those for seasons 1-13 are presented
in Table 1 of Weiland et al. (2011).

The beams enter into CMB data analysis primarily through
the 10 beam transfer functions, b;, which give the beam response
in spherical harmonic space for each differencing assembly
(DA). Beam response on the sphere is measured in a coordinate
system fixed to the WMAP spacecraft (Barnes et al. 2003), and a
computation of several steps is required to generate b;. The nine-
year beam analysis follows the process described previously by
Hill et al. (2009) and Jarosik et al. (2011).

For a given DA, Jupiter is observed with only one feed at a
time, so initially the A- and B-side beams are mapped separately.
After correction for the static sky background, the data are
coadded in a planar grid surrounding each of the 20 A- and
B-side boresights. A physical optics code® is used to compute
beam models, which are optimized by x> minimization using a
modified conjugate gradient algorithm. Two minor refinements
were added to this process for the nine-year analysis: first, a more
rigorous treatment of the removal of the Galactic signal was
adopted by including the common-mode loss imbalance term;
in practice this is a small effect since strong Galactic signals are
masked from use in the beam archive. Second, computation of
the interpolated beam model utilized an increase in secondary
mirror samplings from 200 x 200 to 235 x 235; this produced
a smoother far-field tail for the W2 and W3 DAs.

Standard processing nominally rejects from analysis those
Jupiter observations whose sky positions lie within a 7° radius
of other planets. Table 2 shows the seasonal range of projected
sky separations between Jupiter and planets that lie within the
exclusion radius for the last three observing seasons. Based
on projected proximity to Uranus or Neptune, application of
nominal exclusion criteria would have excised these three

20 DADRA: Rahmat-Sahmi et al. (1995, YRS Associates,
rahmat@ee.ucla.edu).
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Table 2

WMAP Jupiter Observing Seasons (2008-2010)
Season?® Begin End Nearby Planet? Projected Separation® % Excessd
14 2008 Aug 21 2008 Oct 6
15 2009 May 17 2009 Jul 3 Neptune 004-224 0.4-0.2
16 2009 Sep 26 2009 Nov 10 Neptune 3°8-6°8 0.08-0.0
17 2010 Jun 24 2010 Aug 10 Uranus 0°5-3°1 0.9-0.4
Notes.

% An observing season is defined as a contiguous time interval during which an object is in the WMAP viewing
swath. Observing seasons 1-13 are listed in Weiland et al. (2011).

b Jupiter sky coordinates are in proximity to those of the planet listed.

¢ Seasonal range of projected separations between Jupiter’s position and that of the other planet.

d Estimated excess integrated beam response, in %, that would have been contributed to the Jupiter beam by
contaminating planet, if no correction had been applied. Provided as a range; the first number is for K-band, the
last is for W-band; other frequencies are between these two values.

Jupiter seasons from use. To preserve the ability to characterize
the beam response during the latter part of the mission, we
chose instead to correct the last three seasons of Jupiter data
for excess contributions from Uranus and Neptune. Excess
response from these planets is computed and removed from each
Jupiter observation assuming that the response to Uranus and
Neptune may be modeled using a symmetrized beam template
with peak response inferred from Weiland et al. (2011). An
estimate of the magnitude of the correction is provided in the
last column of Table 2, provided as a percentage contribution in
excess of the uncontaminated integrated Jupiter beam response
for each season. Observations which occur when Jupiter’s sky
coordinates lie within the confines of a spatial “Galaxy mask”
are also excluded from use in the analysis (Weiland et al.
2011). During observing season 14, the Galactic latitude of
Jupiter is ~—18°, close enough to the Galactic plane that
some observations are rejected based on the masking criterion.
Masking is frequency dependent: roughly 30% of season 14 K-
band observations are excluded, decreasing to 17% for Ka, 13%
for Q and less than 0.1% for V- and W-bands.

For each DA, the Jupiter data for sides A and B are combined
with the best-fit models in a “hybrid” beam map, which is
used to construct the symmetrized radial beam profile, b(0). A
Legendre transform gives b;. The beam hybridization procedure
is described in detail by Hill et al. (2009). Essentially, the
process edits the Jupiter TOD by replacing faint, noisy Jupiter
samples with noise-free predicted values taken from the two-
dimensional beam model. This process is controlled by one
parameter for each DA, the threshold gain, Bypesh: all observed
beam samples with gain lower than By, are replaced with
their counterpart model values. This test is applied to the model
samples, rather than the observed ones, in order to avoid bias
from observational noise. Byesn 18 Optimized statistically for
each DA using a Monte Carlo method, whereby uncertainty
belonging to the beam model is traded against the noise in the
observed data points. The figure of merit to be minimized is
the uncertainty of the resultant solid angle in the hybridized
beam. For this purpose, the error in the model is assumed to be
a 100% uncertainty in the overall scaling of the low-sensitivity
“tails,” which is the only portion of a beam model that is used
in the hybrid. For the nine-year data, By is set 1 dB lower
than for the seven-year data; values are 2, 3, 5, 6, and 9 dBi for
K- through W-bands, respectively.

Hill et al. (2009) give the procedure for transforming the
hybrid beam profiles into beam transfer functions. This com-
putation also yields main-beam solid angles and estimates of
the temperature of the Jupiter disk. Beam-related quantities are

summarized in Table 3. The last three columns list quantities
that are valid for a point source with spectral index o = —0.1
(flux F, ox v*), typical of sources in the WMA P point source cat-
alog. They were determined as described in Jarosik et al. (2011),
except a small correction for bandpass drift was included in the
calculation of effective frequency for K-, Ka-, O-, and V-bands
as described in Appendix A.

The nine-year and seven-year b; are consistent with each
other, although the b; for W4 is about 0.6% higher in the nine-
year analysis than in the seven-year analysis for ! > 100, a shift
that is at the edge of the error band.

The error bands for b; are computed using Monte Carlo
simulations of the beam map hybridization; details of the
simulations follow the description provided in Hill et al. (2009).
As Jupiter observations have accumulated over the WMAP
mission lifetime, the contribution of the model tails to the hybrid
beam has become less important. The nine-year hybrid beams
are data dominated: for each of the ten beams, less than 0.25% of
the integrated hybrid beam response is attributable to the model
tails.

4. MAP-MAKING
4.1. Standard Map Processing
4.1.1. Individual Band Processing Masks

The algorithm used to reconstruct sky maps from differential
data masks selected observations to minimize artifacts associ-
ated with regions of high foreground intensity. (Jarosik et al.
2011). Observations for which one of the telescope beams is in
a region of high foreground intensity gradients while the other
is in a low gradient region are only applied to the pixel in the
high foreground region as the map solutions are generated. This
“asymmetric” masking suppresses map reconstruction artifacts
in the low foreground emission regions used for CMB analysis.
These artifacts arise from small variations in the power sam-
pled by the telescope beams for different observations that fall
within the same map pixel. The variations result from a com-
bination of the finite pixel size and beam ellipticity that both
couple to spatial intensity gradients. A processing mask is used
to delineate the regions of high foreground intensity gradients.
Previous data releases used a common processing mask for all
frequency bands based on the K-band temperature maps, even
though the foreground intensities vary greatly by band. The cur-
rent release uses different masks for each frequency band and
therefore utilizes the data more efficiently.
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Table 3
WMAP Nine-year Mainbeam Parameters
4,
DA %,.° N I A ol rie
(sr) (%) (%) (dBi) (GHz) (sr) (K Iy
For 10 Maps
K1 2.469 x 1074 0.5 0.1 47.07 22.69 2,522 x 1074 250.6
Kal 1.442 x 1074 0.4 0.0 49.40 32.94 1.465 x 1074 204.9
01 8.815 x 1072 0.5 -02 51.54 40.72 8.934 x 107° 219.7
02 9.113 x 1073 0.5 —0.1 51.40 40.51 9.234 x 1073 214.8
V1 4.164 x 107 0.4 —0.1 54.80 60.09 4226 x 1077 213.3
V2 4.236 x 1077 04 0.1 54.72 60.96 4283 x 1077 204.5
w1 2.038 x 107 04 -0.2 57.90 92.87 2.040 x 107 185.0
w2 2.204 x 1075 0.4 0.2 57.56 93.43 2.203 x 1073 169.2
w3 2.135 x 1073 0.5 -0.2 57.70 92.44 2.135 x 1073 178.4
w4 1.994 x 1073 0.5 —0.6 57.99 93.22 1.997 x 1073 187.6
For 5 Maps

K 2.469 x 1074 0.5 0.1 47.07 22.69 2.522 x 1074 250.6
Ka 1.442 x 1074 0.4 0.0 49.40 32.94 1.465 x 1074 204.9
0 8.964 x 1073 0.5 -0.2 51.47 40.62 9.084 x 1073 217.2
14 4.200 x 1073 0.4 0.0 54.76 60.52 4.255 x 1073 208.9
w 2.093 x 1073 0.5 -0.2 57.78 92.99 2.094 x 1073 180.0
Notes.

2 Solid angle in azimuthally symmetrized beam.

b Relative error in Q5.

¢ Relative change in Q5 between nine-year and seven-year analyses.

4 Forward gain = maximum of gain relative to isotropic, defined as 477/QS. Values of G,, in Table 2 of Hill et al. (2009) were
taken from the physical optics model, rather than computed from the solid angle in the table, and therefore are slightly different.

¢ The effective center frequency for a point source with flux spectral index « = —0.1. The estimated uncertainty, due to
uncertainties in the pre-flight passband response measurements, is 0.1% for all DAs.
f The effective beam solid angle for a point source with flux spectral index « = —0.1. The uncertainties are estimated as 0.5%,

0.4%, 0.5%, 0.4%, and 0.5% for K-, Ka-, Q-, V-, and W-band DAs, respectively. These include contributions from uncertainty
in the beam solid angles, A(Qg 2/ QS (column 3), and uncertainty in the correction of pre-flight forward gain measurements for
scattering described in Jarosik et al. (2011).

& Conversion factor to obtain flux density from the peak WMAP antenna temperature, for a point source with flux spectral index
o = —0.1. Uncertainties in these factors are estimated as 0.6%, 0.4%, 0.5%, 0.5%, and 0.7% for K-, K a-, Q-, V-, and W-band
DAs respectively. These include contributions from uncertainty in the beam solid angles, A(Qg yr)/ Q5 (column 3), uncertainty
in the pre-flight passband response measurements, and uncertainty in the correction of pre-flight forward gain measurements for
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scattering described in Jarosik et al. (2011).

Masks for each frequency band are generated using an
algorithm that estimates the magnitude of processing artifacts
in each r4 pixel given the WMAP scan pattern, a candidate
processing mask and the seven-year map of the sky temperature
in that band. The magnitude of artifacts, £, in a resolution
r4 pixel, p4, is modeled as proportional to the mean magnitude
of the temperature gradients within all the reference pixels used
in the observations contributing to the original pixel,

n) o~ — ) - .
E(p4, n) Nt pa, ) p/%::mw (peNIVT (pp())] 2
02(p4) = ZP9€p4 9% /Nobs(Pg)
1 k]

) wa(paG)IVT (A | () 2 en

pe(i)=p4
No(pam) =Y wapp@)+ Y wa(pa@). ()
pa(i)=ps pe(i)=pa

Here pa(i) and pp(i) are the r4 pixel indices for the A- and
B-side beams for TOD observation i, w,, represents a candidate
processing mask with n pixels masked, and the sums are over

observations for which the A-side beam and B-side beam point
to pixel p4. The proportionality constant « was evaluated as
the amplitude of the response for each telescope beam as it
was rotated about its axis while viewing a uniform temperature
gradient, yielding values from 02032 to 0°087 for the different
beams. The magnitude of the temperature gradient in each
r4 pixel is approximated as the standard deviation of the 19
pixels comprising each r4 pixel

IVT (pa)| = B - [var(po € ps) — o2 (p)]'?,  (3)

“)

where the last term in Equation (3) removes the bias introduced
by the radiometer noise, oy is the noise for one observation
and Ngps(po) is the number of observations in 19 pixel py. The
constant 8 ~ 1.1deg™"' for r4 pixels.

Figure 1 shows a map of &£(p4, 0) for the Kal DA with
no pixels masked in the candidate processing mask (n = 0).
The highest value areas in this map correspond to regions
that are ~140° from the Galactic center corresponding to
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Figure 1. Estimated level of artifacts (£) that would have occurred in the Ka-
band map if no processing mask had been used. Band-dependent processing
masks were used and tailored to minimize these artifacts when converting from
time-ordered to sky map data. This map is in Galactic coordinates and the high
intensity regions arise from observations when one of the beams is near the
Galactic center and the processing mask is not used. (See Figure 17 to compare
with the analysis sky cuts.) Since bright artifacts originate primarily from beam
crossings of bright Galactic plane regions, the nature of the unmasked artifact
pattern is similar for all DAs. Although the patterns are similar for all bands,
the highest amplitude artifacts occur in K- and Ka-bands because these have
the brightest foregrounds. To prevent significant artifacts, processing masks are
constructed for each band by growing the number of pixels in the mask until
& is sufficiently reduced. The estimated mean residual level of artifacts (£) is
given in Table 4. We required £ < 5 uK for all but K-band. Construction of the
K-band mask is more complex (see text) yet still achieves £ < 8 uK.

(A color version of this figure is available in the online journal.)
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Figure 2. Plots of the maximum and mean magnitude of the estimated map
artifacts (§) for Ka-band vs. the number of pixels masked by the processing
mask. The vertical line indicates the adopted mask which is the smallest mask

for which max(§) < 1.15 £ as described in the text.

the spacing between the WMAP A-side and B-side telescope
beams. Processing masks for each frequency band are generated
iteratively starting from an empty mask, n = 0. The r4 pixel
added to the candidate mask w, at each step is that which
produces the greatest reduction in the mean value of &(p4, n)
for the current value of n. The value of & is then recalculated
with the updated candidate mask, w,+1, and the process repeated.
Figure 2 displays how the maximum and mean value of §(p4, 1)
vary as pixels are added to the mask. The mean and maximum
values decrease rapidly as n increases and asymptotes to an
approximately constant value for large n. The maximum value
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Table 4
Map Generation Masking Parameters

Masked Pixels & Planet Exclusion Radii (in ©)

Band (of 3072 Total) («K) Mars Jupiter Saturn Uranus Neptune
K (yr#2) 312 7.12 2.0 3.0 2.0 2.0 2.0
K (yr=2) 270 759 2.0 2.5 2.0 2.0 2.0
Ka 212 446 1.5 2.5 1.5 1.5 1.5
0 201 431 1.5 2.5 1.5 1.5 1.5
% 125 378 1.5 22 1.5 1.5 1.5
w 98 366 1.5 2.0 1.5 1.5 1.5

of £ in the asymptotic region is calculated as

EM(n) = H}gXS(m, n), (5)

N = EmX(n), 180 > n > 360. 6)
These steps are executed for each DA and masks for the
Ka-, O-, V-, and W-band DAs are selected by choosing

the smallest value of n for which §™*(n) < 1.1557%.

This criterion was selected by requiring that £ < 5uK for
Ka-, Q-, V-, and W-bands and that the resulting Q-band mask
have approximately the same number of excluded pixels as the
mask used in earlier data releases. The mask created in this
manner for the Kal DA is the final processing mask. Masks for
frequency bands with multiple DAs are formed by merging the
individual DA masks such that if a pixel was masked in either of
the DA masks it is masked in the combined mask. The K-band
processing mask requires special treatment due to the brightness
of the foregrounds. Applying the criterion above yields a very
large sky mask that leaves many pixels with few or no observa-
tions causing convergence problems in the conjugate gradient
map solution. The adopted K-band processing mask is the largest
w, formed with K-band inputs for which the sky map solution
converges for all years except year 2. Year 2 is particularly prob-
lematic due to the location of Jupiter. Achieving convergence
requires selection of the w79 mask and reduction of the Jupiter
exclusion radius to 2°5. Even with these special considerations
the size of the processing mask is still substantially larger than
used in previous data releases and should result in reduced arti-
facts. Table 4 summarizes the mask sizes and planet exclusion
radii for the nine-year maps.

4.1.2. Summary of Standard Map-making

The TOD, d, for a differential radiometer sensitive only to a
Stokes I signal may be written as

d=Mt+n. (N

Here M is a sparse N; x N, matrix that contains information
about the scan pattern and transforms the input sky signal array,
t, into a sequence of differential observations, d. The number of
time-ordered observations is given by »;, the number of pixels
in array t is N, and n is an N, element array representing the
radiometer noise. For the standard map processing each row
of M contains two non-zero elements representing the weights
given to the input map pixels nearest the A- and B-side telescope
LOSs. The first step in generating a sky map is evaluation of the
“iteration zero” map,

=ML N4, ®)
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Figure 3. Nine-year temperature sky maps in Galactic coordinates shown in a
Mollweide projection. Maps have been slightly smoothed with a 0°2 Gaussian
beam.

(A color version of this figure is available in the online journal.)

where M is the transpose of a masked version of the obser-
vation matrix, and N~! is the inverse of the radiometer noise
covariance matrix,

N~ = ("), 9

with the angle brackets representing an average. The masking
contained in M prevents contamination of regions of the map
with low foreground emission that can occur when one of the
telescope beams is in a region of high foreground emission. (See
Section 4.1.1.) The reconstructed sky map, t, is then calculated
by solving

= (MLN"'M) . (10)

The form of matrix M described above ignores the effects of
the finite WMAP beam sizes since each observation is modeled
using only the value of the input sky signal nearest the LOS
direction. The actual radiometric data is an average of the
input sky signal spatially weighted by the beam response.
Each row of M should therefore contain additional non-zero
elements describing the signal contribution from the off-axis
beam response. If the beam response was the same for the A-
and B-side beams and azimuthally symmetric about the LOS, the
observation matrix including the off-axis signal contributions,
M, could be written in the form

M, = MC, an

where C is an N, x N, element matrix that performs a
convolution by the symmetric beam pattern. Substituting M
for M in Equation (7) shows that in this limit the sky map
reconstructed using Equation (10) is the input map convolved
by the symmetric beam pattern, f. = Ct.

Following the approach discussed above, we present the nine-
year temperature (Stokes /) full sky maps in Figure 3. The
corresponding Stokes Q and Stokes U full sky maps are shown
in Figures 4 and 5, respectively. Figure 6 shows the nine-year
polarized intensity maps of P = (Q? + U?)*> with superposed
polarization angle line segments where the signal-to-noise ratio
exceeds unity.
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Figure 4. Nine-year Stokes Q polarization sky maps in Galactic coordinates
shown in a Mollweide projection. Maps have been smoothed to an effective
Gaussian beam of 2°0. The smooth large angular scale features visible in
W-band, and to a lesser extent in V-band, are the result of a pair of modes
that are poorly constrained in map-making, yet properly de-weighted in the
analysis.

(A color version of this figure is available in the online journal.)
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Figure 5. Nine-year Stokes U polarization sky maps in Galactic coordinates
shown in a Mollweide projection. Maps have been smoothed to an effective
Gaussian beam of 2°0. The smooth large angular scale features visible in
W-band, and to a lesser extent in V-band, are the result of a pair of modes that
are poorly constrained in map-making, yet properly de-weighted in the analysis.

(A color version of this figure is available in the online journal.)
4.1.3. Noise Characterization of the High Resolution Maps

The noise in the 19 and r10 maps is described assuming the
radiometer noise distribution is stationary, has a white spectrum
and is normally distributed. With these assumptions it can be
shown that the noise component of a Stokes I sky map, t,,, is
given by (Jarosik et al. 2011)

t,=M"™)"' - MTn, (12)

where M is the mapping matrix as described in Section 4.1.2
and n is a vector of normally distributed random numbers that
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Figure 6. Nine-year polarized intensity (P) sky maps in Galactic coordinates
shown in a Mollweide projection; P = (0% +U?%)%5 where Q and U are Stokes
parameters. Maps have been smoothed to an effective Gaussian beam of 2°0.
Plotted line segments show polarization angles for HEALPix nside = 16 pixels
where the signal-to-noise exceeds 1.

(A color version of this figure is available in the online journal.)

characterizes the radiometer noise,

(m) =0, (mn") =041, (13)
where the brackets indicate an ensemble average and op de-
scribes the noise amplitude. The pixel-pixel noise correlation
matrix is then
(tat])
Yy =

2
)

=M™)" L. (14)

Ideally the value of oy is obtained by evaluating
09 Npix = (tTZ7't,,), (15)

where N,ix is the number of map pixels, but such a calculation
is intractable with high resolution maps. In practice only the
diagonal elements of Equation (15) are evaluated. Since

> ' =M™ (16)

the diagonal elements of £~! are simply the number of obser-
vations?! of each pixel, Nyps. Each data sample from a WMAP
differential radiometer is a measure of the temperature differ-
ence between the sky locations at the A- and B-side telescope
boresights. Reconstructing a map from differential data involves
two different pixels for each observation, a pixel that is being
updated and a reference pixel. The noise in each pixel therefore
has contributions both from the noise in the radiometric data
for each sample and noise in the value of the reference pixel.
If oy represents the radiometer noise for an individual sample,
the noise contribution from the reference pixel is approximately
00/+/ Nobs(P), Where Nops(p) is the number of observations used
to calculate the value of the reference pixel, p. As the map res-
olution increases the mean value of Ny, decreases, making the

21 The small correction terms arising from transmission imbalance in the
radiometers, 1 £ xjn, are omitted from this equation for simplicity, but appear
in the next, modified equation.
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reference pixel noise more significant relative to the radiometer
noise. The omission of the off-diagonal terms in the evaluation
of Equation (15) ignores the contribution to the noise from the
reference beam pixels in the evaluation of oy. This effect is evi-
dent when the oq values for r9 and r10 versions of the Stokes /
sky maps are compared. The oy values from the r10 maps have
values from 0.3% (W-band) to 1.5% (K-band) higher than those
obtained form the corresponding r9 sky maps. The low sampling
rate of the K-band radiometer results in lower Ny values and
hence the largest effect.

A more accurate determination of oy can be made by equating
the diagonal elements of Equation (14) since these quantities are
directly measurable from the sky maps. The diagonal elements
of X may be calculated relatively simply given two well justified
assumptions: (1) The sky map noise is uncorrelated between
pixels; and (2) The reference pixels associated with each main
pixel are distinct. With these assumptions diagonal elements of
¥ are estimated as

B . (1+xim)2
T, = | Z_ w(PB(l))m
i,pai)=y

-1
. (11— -)Cim)2
PR ey vt IR

i,pp(i)=y

where i is a sample index of the TOD and the sums are over
observations for which the A-side and B-side beams observe
pixel y. The processing mask is represented by w, which has
value zero in masked pixels and unity elsewhere. The 1 %+ xjp,
factors are corrections arising from the transmission imbalance
factors and Ngps represents the number of observations con-
tained in the reference beam pixel of the sky map. The 1/Nops
terms in the denominators increase the value of X, , to account
for the additional noise arising from the reference beam pixels.
In the limit where N,y is very large for all observations the
value of X, is simply 1/Nops(y) = 1/2;;. The values of oy
obtained from r9 and r10 Stokes / maps, evaluated using diago-
nal elements of Equation (14), agree to ~0.05% with the worst
discrepancy being ~0.1%. This is a significant improvement
relative to the former method.

The Nobs fields of the nine-year 19 and r10 sky maps now
contain the reciprocals of the diagonal element of the ¥ matrix
as it is now considered a more accurate measure of the pixel
noise. This change allows the map noise in each pixel to still
be calculated as N = a/+/ Nobs providing that the values of oy
published with the nine-year analysis are used. Because the oy
values computed from r10 maps differ by less than 0.1% from
those computed from r9 maps, the r9 values are adopted for all
WMAP nine-year analysis.

These methods have been extended and applied to the
Stokes Q and U maps and the spurious response map S. This
change improved the agreement between the o values for the
temperatures and polarization maps to ~0.5% from ~1.1% in
earlier data releases. Table 5 gives the nine-year oy values by DA
for temperature (Stokes /) and polarization (Stokes Q, Stokes
U), and spurious response S.

4.2. Beam-symmetrized Map Processing

The WMAP telescope beams display varying degrees of asym-
metry about the LOS direction, with the amount of asymmetry
related to the position of the feed horn relative to the center
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Table 5

Noise per Observation in Nine-year Maps

DA oo(l) 00(Q, U) 00(Q, U)
Uncleaned Template Cleaned

(mK) (mK) (mK)
K1 1.429 1.435 NA
Kal 1.466 1.472 2.166
01 2.245 2.254 2.710
02 2.131 2.140 2.572
Vi 3.314 3.324 3.534
V2 2.949 2.958 3.144
w1 5.899 5912 6.157
w2 6.562 6.577 6.850
w3 6.941 6.958 7.246
w4 6.773 6.795 7.076

of the focal plane (Page et al. 2003a). The largest asymmetries
appear in the lower frequency channels since their feed horns
are furthest from the center of the focal plane. WMAP observes
each map pixel a large number of times at various azimuthal
orientations (rotations about the LOS direction). The degree to
which the beam asymmetry is manifest in the final sky maps
depends on both the intrinsic beam asymmetry and the distribu-
tion of azimuthal beam orientations used to observe each pixel.
A uniform set of finely spaced azimuth angles will result in a
symmetric effective beam, while any deviations from a uniform
distribution will couple some of the beam asymmetry into the
sky map.

The WMAP scan pattern causes pixels near the ecliptic
poles to be sampled relatively uniformly over a wide range of
azimuthal angles, while pixels near the ecliptic plane are only
sampled over a® +22°5 range. This results in the effective beam
shape varying with sky position; regions near the ecliptic poles
have more symmetric effective beam shapes than those near the
ecliptic plane. Each pixel is observed roughly the same number
of times with the A-side and B-side beams, further symmetrizing
the effective beam shape since the axis of asymmetry for the
A- and B-side beams project to different sky directions.

The WMAP window functions are calculated from sym-
metrized beam profiles generated by azimuthally averaging
beam maps obtained from observations of Jupiter. All WMAP
data releases have window function uncertainties incorporated
into the WMAP likelihood code. As described in Appendices A
and B of Hinshaw et al. (2007), these are dominated by uncer-
tainties in the shape of the symmetrized beam profile.

The effects of asymmetric beams (Page et al. 2003a; Hinshaw
et al. 2007) were confirmed in numerical simulations by Wehus
et al. (2009). More recently it was found with high statistical
significance that the hot and cold spots near the ecliptic plane
have a preferred ellipticity, while the angle-averaged small-scale
power spectrum near the ecliptic plane is equal to the angle-
averaged power spectrum near the ecliptic pole (Groeneboom
& Eriksen 2009; Hanson et al. 2010). Hanson et al. (2010) and
Bennett et al. (2011) suggested that this was likely due largely
to the spatially varying effective beam shape and in this paper
we confirm that hypothesis.

Figure 7 displays the supernova remnant Tau A as it appears
in the year 1 K-band sky map. Tau A is compact relative to the
K-band beam size (0?82 FWHM) and relatively isolated, so it
approximates a point source for the purpose of mapping the
effective beam shape. The beam asymmetry is clearly seen
in both the sky map and in the residual map after removal
of the best-fit symmetrized beam profile. The symmetrized
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Figure 7. K-band images of supernova remnant Tau A (3C 144), at [J2000.0]
position (05"34m315,22°01") from the first year of WMAP observations. The
left panels display the total intensity and right the residuals after removal of a
best-fit circularly symmetric beam profile. The maps generated with the new
partial deconvolution processing (bottom) display significantly reduced beam
asymmetry compared with those generated with the standard processing (top). In
other words, the apparent asymmetry in Tau A seen in the top left is a result of the
asymmetric K-band beam and is not intrinsic to Tau A. The degree of a source’s
apparent asymmetry is dependent on its sky position and the WMAP frequency at
which it is observed: the effect is most pronounced for bright K-band sources at
low ecliptic latitudes (Section 4.2). As such, we display the K-band observations
of Tau A to demonstrate the effectiveness of the deconvolution in a worst case
of beam asymmetry in the normally processed maps.

(A color version of this figure is available in the online journal.)

beam profile was fit to the map with six free parameters, three
characterizing a baseline (x-slope, y-slope and offset), and three
specifying the beam (x-position, y-position, and amplitude).

The WMAP nine-year data release includes a new set of
Stokes I maps that have been processed to reduce the asymmetry
of the effective beam. The processing deconvolves only the
asymmetric portion of the beam from the data resulting in
a sky map containing the true sky signal convolved with the
symmetrized beam profile.

A more accurate representation of the signal component of
WMAP’s TOD utilizes an observation matrix, My, parameteriz-
ing the total beam response, written as the sum of a component
axisymmetric about the beam LOS, My, and a non-axisymmetric
component, M;,,

d = Mt, (18)

M, = M, + M, (19)

Using Equation (11) the observation matrix may be expressed
as

M, = M +M,C HC. (20)
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Given this form of the TOD it is possible to solve for the input
sky map convolved by the axisymmetric beam response, f., by
evaluating
t.=Ct=[MIN'M+M,CH] . 1)
The beam-symmetrized maps contain the input sky signal
convolved with the symmetrized beam profile independent of
sky position. Figure 7 displays a map of the Taurus A region
from a map processed in this manner. The improvement in
the beam symmetry is evident in both the raw image and the
residuals after removing the best-fit symmetrized beam profile.
These maps significantly improve the symmetry of the effective
beam, but also have a larger window function uncertainty
caused by the limited resolution and signal-to-noise ratio of the
beam maps and numerical approximations needed to make their
computation practical. Therefore, beam-symmetrized maps are
generated only for Stokes / and are not intended for the precise
fitting of cosmological parameters, but should prove useful
in foreground fitting, studying regions of compact emissions,
and certain tests of non-Gaussianity. It should also be noted
that deconvolving the asymmetric beam shape from the maps
necessarily introduces additional pixel-pixel noise correlations
above those contained in the standard maps. No year-to-year
correlations are introduced, so power spectra calculated from
year-to-year cross spectra remain unbiased, but the uncertainty
of the spectra cannot be accurately calculated based on the
number of observations (Nys) of each map pixel alone.

4.2.1. Processing Details

The beam-symmetrized maps are generated by solving
Equation (21) iteratively using a stabilized bi-conjugate gra-
dient method (Barrett et al. 1994). In this procedure the product

M! N'M+M,Ch -1, (22)
is evaluated repeatedly and the solution .; updated after each
iteration, i, driving the value of this expression to to. The
product (22) is evaluated by looping through the TOD; each
observation corresponds to multiplying one row of M + M, C~!
by the current iteration of the solution, f.;. The first term in
each multiplication, Mf,;, is the weighted sum of the map
pixels values nearest the LOS directions of the two beams,
corresponding to the differential sky signal smoothed by the
axisymmetric beam response. Each row of the matrix M contains
two non-zero elements with values (1 + xj,) and (—1 + xjy),
the weight factors for the A- and B-side beams. (The x;,, term
(Jxim|] <« 1) accounts for a small imbalance in radiometer
response to beam filling signals from the A and B sides.)

The second term in the product of Equation (22), MnC_lfc, i
corresponds to the differential signal from the non-axisymmetric
beam response for the current LOS and azimuthal beam orien-
tations. The nonzero elements in each row of M, are the pixel
weights of the non-axisymmetric beam response of the two
beams, also weighted by the (+1 + xj,) factors. To keep the
computation time tractable only contributions within a radius
rs1 (30 mrad for K-, Ka-band, 26 mrad for Q-, V-, and W-band)
of the LOS of each beam are used. The circular regions con-
tributing to the signal for the A and B beams do not overlap, so
their contributions may be calculated separately then summed.

The matrix C~! performs a deconvolution by the symmetrized
beam pattern. It is therefore rotationally symmetric and the
product M,,C~! may be evaluated once for each beam, forming
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convolution kernels K, and Kg. The contribution of MHC’lfc, i
for each beam is then evaluated by mapping these kernels to
the corresponding pixels of f.; for the LOS and azimuthal
orientation for each observation and summing their products.

Figure 8 illustrates the steps used in forming the kernel for
the Q1 A-side beam. First (in panel a) a map of the non-
axisymmetric beam response, M, is formed on a Cartesian grid
by subtracting the best-fit symmetrized beam profile from the
total beam profile in Equation (19). Next the product M,C~!,
is evaluated by performing a Wiener deconvolution of M;. A
Wiener deconvolution is used to minimize the impact of noise on
the deconvolved map. (In performing the Wiener weighting the
signal component of the result was assumed to be proportional
to the input, M, while the noise was assumed to be white and its
magnitude obtained from portions of the beam map far from the
LOS direction.) Even using the Wiener weighting, some noise
remains in the deconvolved maps at relatively large radii from
the LOS direction. A cosine apodization function is therefore
introduced to smoothly taper the value of the kernel to zero at
radial distance rg from the beam LOS. This procedure eliminates
artifacts in the maps that would be caused by a sharp cutoff of
the kernel noise at the radius rg. The fidelity of the kernel
is demonstrated in Figures 8(e) and (f) that show the kernel re-
convolved with the symmetrized beam. After re-convolution the
majority of the non-axisymmetric beam response is recovered
without the introduction of excessive noise.

Ideally the kernel weights representing the non-axisymmetric
beam response sum to zero for each observation. This is only
approximately true in practice since the HEALPix pixelization
used for the solution Ec,l and the Cartesian grid of the kernel are
incommensurate, resulting in slightly different combinations of
weights being used for different LOS directions and azimuthal
beam orientations. This results in small variations of the total
weight for observation of different points on the sky.

The mean value of a map generated by ideal differential data
is unconstrained. The non-idealities in the radiometers parame-
terized by the transmission imbalance factors, xjy,, weakly con-
strain the mean value of the maps, but occasionally maps solu-
tions with relative large mean values are generated. The spatially
varying total weights described above can couple to these mean
values resulting in small spurious map features. This problem
is remedied by subtracting the sum of the kernel weights used
for each observation from the value in M corresponding to the
weight of the LOS pixel, resulting in a uniform weight for each
observation. This choice insures that the total weight of the A-
and B-side observations are (1 +xiy,) and (— 1 +x;;,) respectively,
guaranteeing that the beam-symmetrized maps agree with the
normal maps at angular scales larger than the characteristic size
of the convolution kernels.

Figure 9 displays the ratio of the TT power spectra of the
beam-symmetrized maps to those of the normally processed
maps and ratios as predicted in Hinshaw et al. (2007). The
spectra from the different map processings agree exactly at low
[ as expected and agree with the predictions within 2% in regions
of adequate signal-to-noise ratios.

5. FOREGROUND FITS
5.1. Overview

In this section we examine the nature of the Galactic and
extragalactic foreground emission. These foregrounds are im-
portant to understand so as to achieve an appropriate separation
of CMB anisotropy from foreground emission, to elucidate the
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Figure 8. Plots illustrating the formation of the kernel used to generate the symmetrized beam maps for the Q1 DA. The x- and y-axes are in units of degrees centered
on the beam LOS. The z-axis represents weight and panels (a), (¢), and (f) use the same scale. (a) The residual (non-axisymmetric) component of the beam obtained
by subtracting the best-fit axisymmetric beam from the total beam map. (b) The residual beam after Wiener deconvolution. (c) The cosine apodization function.
(d) The convolution kernel used to generate the symmetrized beam maps consisting of the cosine weighted Wiener deconvolved residual map. (e) The convolution
kernel reconvolved with the axisymmetric beam. (f) The difference between the residual beam map (a) and the map making kernel convolved with the axisymmetric

beam (e).

underlying astrophysical emission processes, and to transfer the
precise WMAP calibration to astronomical emission sources that
can be used by other observers for calibration purposes.

The separation of CMB anisotropy from foregrounds depends
critically upon their different spectra. This is illustrated in
Figure 10 where a model-free three-color display of WMAP
data clearly differentiates the (pink) diffuse and point source
foreground emission from the (gray) CMB anisotropy. Likewise,
WMAP maps in different frequency bands can be convolved to a
common angular resolution and subtracted to form a CMB-free,
foreground emission-only map. Three such difference maps, in
turn, can be combined into a three-color display that highlights
the spectral differences of the foregrounds across the sky. An
example of this is shown in Figure 11. Figure 12 provides an
orientation of the microwave emission sources on the sky.

This section is divided into two major subsections: point
source analyses are presented first in Section 5.2, followed by
diffuse foregrounds in Section 5.3. The point source subsection
begins with a discussion of WMAP observations of the plan-
ets Jupiter and Saturn (Section 5.2.1). For Saturn we separate
the emission into a disk and ring component. In Section 5.2.2
we describe two techniques to identify other point sources and
we provide point source catalogs in Appendices B and C. We
then go on to discuss our analysis of the diffuse foregrounds.
In Section 5.3.2 we describe the approach taken to mask and
clean diffuse foregrounds for the purpose of carrying out the
cosmological analysis of the CMB, such as the angular power
spectra. In Section 5.3.3 we present the new nine-year internal
linear combination (ILC) map. Since ILC error characterization
is dependent on a knowledge of the foregrounds, a deeper ILC
discussion is deferred until after a foreground characterization
analysis. To identify the nature of the foregrounds we describe
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three different fitting techniques: the maximum entropy method
(MEM) in Section 5.3.4; Markov Chain Monte Carlo (MCMC)
in Section 5.3.5; and x? fitting in Section 5.3.6. We conclude
this section with a synthesis based on these analysis efforts.
Section 5.3.7.1 includes an intercomparison of results from
the three fitting techniques and a comparison of foreground
component maps averaged over the three fits with the corre-
sponding template maps used in foreground cleaning. Finally,
Sections 5.3.7.2 and 5.3.7.3 discuss ILC errors. Estimates are
presented of residual foreground bias in the ILC map and ILC er-
ror due to CMB-foreground covariance. Appendix A describes
small variations in WMAP bandpasses that occurred over the
nine-year mission, which are taken into account in our fore-
ground analyses. They have no significant effect on the CMB or
cosmology analysis.

5.2. Point Sources
5.2.1. Planets and Celestial Analysis

A detailed analysis of WMAP seven-year observations of
planets and selected celestial calibrators is given by Weiland
etal. (2011), including intercomparisons with relevant results in
the literature. Here we concentrate on updated nine-year WMAP
results for some of these sources.

5.2.1.1. Jupiter. Mean nine-year Jupiter temperatures are
derived from the / = 0 component of the unnormalized beam
transfer functions B;. The symmetrized beam response to Jupiter,
TpkQpeam, may be directly derived from By. As described
in Weiland et al. (2011), all Jupiter observations have been
corrected to a fiducial solid angle Q}ffp = 2.481 x 1078 sr. Mean
Jupiter temperatures Ty, are thus computed using the relation

Tip = TpiLbeam /Q}i;. These temperatures are presented in
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Figure 9. Verification of effects of asymmetric beams on the power spectrum.
Given beam measurements, the formalism in Appendix B of Hinshaw et al.
(2007) analytically quantifies the beam asymmetry effect on the power spectrum.
This is plotted as a fractional deviation between an ideally deconvolved power
spectrum (Cldec"“") and the power spectrum of a normally processed map (Cl“p)
with no correction for beam asymmetries. These “predictions” of fractional
deviations are plotted per DA in the light colored solid lines. The Q-band
effects become significant at [ ~ 400, but Q-band is not used in the WMAP
cosmological power spectrum. V-band effects become significant at / ~ 1000,
however, V-band is de-weighted compared to W-band at high / because of its
larger beam size. W-band effects from the asymmetric beams can be seen to
be <1%. While Hinshaw et al. (2007) provides an analytic prediction, we
have explicitly deconvolved the maps in pixel space, allowing for a direct
inter-comparison of the analytic with the numerical approach. The dark red,
green, and blue solid lines are the fractional deviations in power spectra for Q-,
V-, and W-bands from the directly deconvolved maps. A comparison between
the light and dark colored lines per frequency band shows close agreement up
to a multipole moment where we expect the spectra derived from the beam-
symmetrized maps to break down because the prediction does not account for
correlations introduced by the deconvolution. The O-band deviations occur after
the window function has dropped below 2.5% and the V-band deviations below
1.5%. The vertical dashed lines indicate where window functions are at 1%
of their maximum value. The close agreement between the predictions and
explicit deconvolution verifies our understanding of asymmetric beam effects
and allows us to conclude that the spectrum from the normally processed (i.e.,
not deconvolved) maps differs from the ideally deconvolved spectrum by <1%.
Thus the final WMAP power spectrum is based on the normally processed V-
and W-band maps.

(A color version of this figure is available in the online journal.)

Figure 10. False color image representing the spectral information from multiple
WMAP bands. Q-band is red, V-band is green, and W-band is blue. In this
representation, a CMB thermodynamic spectrum appears as gray.

(A color version of this figure is available in the online journal.)

Table 6. Quoted uncertainties are a quadrature sum of estimated
beam solid angle errors from Table 3 and the uncertainty in
the absolute calibration. The mean Jupiter temperatures derived
from the five-year, seven-year, and nine-year data releases are
consistent with each other within the quoted uncertainties.
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Figure 11. False color image derived from a combination of WMAP band
differences chosen to highlight differing spectral components. Red (W—V)
highlights regions where thermal emission from dust is highest. Blue (Q—W) is
dominated by free—free emission. Green (K — Ka) — 1.7(Q — W)) illustrates
contributions from synchrotron and spinning dust.

(A color version of this figure is available in the online journal.)

Table 6

Nine-year Mean Jupiter Temperatures
Band vfj a AP T* o(T)d

(GHz) (mm) (K) (K)
Per DA
K1 22.82 13.1 136.1 0.75
Kal 33.07 9.1 147.1 0.68
01 40.88 7.3 153.9 0.78
02 40.67 7.4 154.7 0.76
Vi 60.37 5.0 164.9 0.71
V2 61.24 4.9 165.9 0.68
w1 93.25 32 172.5 0.84
w2 93.73 32 173.4 0.85
w3 92.72 32 173.1 0.87
w4 93.57 32 172.3 0.86
Per band
K 22.82 13.1 136.1 0.75
Ka 33.07 9.1 147.1 0.68
0 40.78 7.3 1543 0.59
Vv 60.81 49 165.4 0.54
w 93.32 32 172.8 0.52
Notes.
4 Nine-year values; see Appendix A.
b= /R,

¢ Brightness temperature calculated for a solid angle Qper = 2.481 x 1078 sr at
a fiducial distance of 5.2 AU. Temperature is with respect to blank sky: absolute
brightness temperature is obtained by adding 2.2, 2.0, 1.9, 1.5, and 1.1 K in
bands K, Ka, Q, V, and W respectively (Page et al. 2003a). Jupiter temperatures
are uncorrected for a small synchrotron emission component (see Weiland et al.
2011).

4 Computed from errors in Qp (Table 3) summed in quadrature with absolute
calibration error of 0.2%.

The stability of Jupiter emission over the nine-year baseline
is evaluated by computing seasonal temperatures per DA and
comparing them to their nine-year means. We compute AT /T
as the mean deviation of all DAs from their nine-year mean
values, and include a 1o standard deviation as a measure of
coherency. These results are listed in Table 7. From the seven-
year analysis, Weiland et al. (2011) placed an upper limit on
variability of 0.2% £ 0.4%. Although consistent with this value,
the Jupiter observations from the last two seasons introduce
the statistically weak (probability to exceed, PTE = 14%)
possibility of a decreasing trend in temperature with time.
Given our measurement uncertainties, a constant temperature
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Figure 12. Microwave emission near the Galactic plane is traced by a K-band minus W-band difference map, which eliminates CMB anisotropy. A log scale is used
for the color region and blue circles represent the positions of the brightest point sources, as seen by WMAP.

(A color version of this figure is available in the online journal.)

Table 7
Jupiter Temperature Changes by Season
Season® Start End AT/T (%)
Mean® Scatter®

1 2001 Oct 8 2001 Nov 22 0.33 0.26
3 2002 Nov 10 2002 Dec 24 —0.01 0.33
4 2003 Mar 15 2003 Apr 29 —0.14 0.51
5 2003 Dec 11 2004 Jan 23 0.17 0.22
6 2004 Apr 15 2004 May 30 0.12 0.23
7 2005 Jan 9 2005 Feb 21 0.13 0.35
8 2005 May 16 2005 Jul 1 0.07 0.37
9 2006 Feb 7 2006 Mar 24 0.32 0.33
10 2006 Jun 16 2006 Aug 2 0.18 0.47
11 2007 Mar 10 2007 Apr 24 0.53 0.34
12 2007 Jul 19 2007 Sep 3 —0.04 0.44
13 2008 Apr 11 2008 May 27 —0.05 0.34
14 2008 Aug 21 2008 Oct 6 —0.11 0.30
15 2009 May 17 2009 Jul 3 —0.46 0.61
16 2009 Sep 26 2009 Nov 10 —0.39 0.34
17 2010 Jun 24 2010 Aug 10 —0.47 0.27
Notes.

# Season 2 omitted from analysis because Jupiter is aligned with the Galactic
plane.

b Mean of the percentage temperature change among the DAs for each season,
relative to the nine-year mean.

¢ 1o scatter in the percentage temperature change among the DAs for each
season.

is a very good fit to the data and that is what we use in our
analysis.

Out of caution, we examined the hypothesis that there might
be instrumental or calibration issues contributing to slightly
lower Jupiter temperatures computed for the last few seasons of
data. To determine if there might be a systematic calibration
error within the last two years of the mission, yearly flux
values for celestial sources Cas A, Cyg A, and Tau A were
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computed and compared against seven-year trends; no evidence
for any calibration inconsistency was found. Since Jupiter is not
a steep-spectrum source, bandpass center frequency variations
are also not an important factor; we expect an effect of less
than £0.05% over the 9 years in the K- through V-bands. In
terms of Jupiter itself, there is no clear temperature trend with
Sun-Jupiter distance or sub-WMAP latitude.

5.2.1.2. Saturn. As seen by the WMAP satellite, the spatially
unresolved microwave brightness of Saturn varies with orbital
phase as the projected area of the ring system and oblate plan-
etary spheroid changes aspect. Weiland et al. (2011) developed
an empirical, geometrically motivated model to predict Saturn’s
apparent brightness at WMAP frequencies, based on the first
seven years (14 seasons) of observations. The available range
of observable ring opening angles during this seven year inter-
val falls in the range —28° < B < —6°. Weiland et al. (2011)
found that parameter covariance and potential systematics in
their model fit permitted a determination of Saturn’s disk tem-
perature to within roughly 3—4 K, but noted that the inclusion
of lower inclination observations in the fit should decrease the
uncertainty in the derived model parameters. WMAP observa-
tions from the last two mission years include four new Saturn
observing seasons, numbered 15 through 18. Since the Sat-
urn ring system presented an “edge-on” configuration in early
2009, these four new seasons span the cross-over from viewing
the rings from below (negative B) to viewing them from above
(positive B) as seen in Table 8. These new observations at low B
provide the opportunity to better constrain the predictive model
for WMAP frequencies.

We apply the analysis methods of Weiland et al. (2011) to
the nine-year compendium of Saturn observations to derive
mean apparent temperatures of the Saturn system per DA per
observing season, presented in Table 8. The analysis can be
summarized as a three-step process. First, a time-ordered archive
of Saturn observations is created, and sky signals arising from
the Galaxy and CMB are removed, either through use of sky
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Table 8
Derived Saturn Temperatures per Observing Season per DA
Season® WwRID®  B° T (K)¢
K Ka 01 02 Vi V2 w1 w2 w3 w4

1 217250 —26 1335+15 141012 1456+ 14 1492+14 1569+12 1567 +1.1 1642+£1.1 1644+14 1662+ 14 1659+£13
2 2302.56 —26 133.6+1.6 1426+ 13 1457+14 1479+13 1549+12 1564+1.1 1614+£12 1655+14 1643 +£14 163.8+13
3 255127 —26 1309+1.6 141.6+12 1492413 1499+13 158.1+12 1574+1.1 1659+£12 1669+14 1640+14 1643 +£13
5 292895 —25 1312415 1384+12 1441+13 146113 1534+£12 1534+£1.1 161.2+12 1620£14 1605+£14 159.8=+13
7 3305.67 —22 1258+ 15 1353+12 1402+13 140.1£13 1472+ 1.1 1479+ 1.1 1540+t 1.1 1542+14 1542+14 1532+£1.2
8 3437.14 —24 1299+1.6 1378+ 13 141.0+15 141.7+14 1479+13 1502+1.1 1550+£12 1593 +£15 1598+ 15 1569+13
9 368529 —17 1214+15 1306+12 1348+13 1341+£13 1409+12 1413+1.1 1462+1.1 1469+14 147.1+14 1463 +£13
10 379429 —20 125.14+2.0 1313+1.6 1345+35 1328+4.1 1434+1.6 1422+14 1500+£15 1500=£2.1 148.7+£22 150.7+ 1.7
11 406148 —12 1229+15 1299+12 131.5+13 1373+13 139.8+1.2 1404+ 1.1 1419+ 1.1 144614 143.1+14 1432+12
12 4189.02 —15 121.5+2.0 132.1+£1.7 1314+14 1355+14 1404+£15 1408+ 14 143.1+1.5 143.7+13 143.1+13 1424 +1.7
13 4436.82 —7 128.1+1.6 131.5+£12 1353+14 1378+ 13 1403+£12 1399+ 1.1 143.0+12 1462+14 141.3+14 1448+ 13
14 457098 —10 1228+ 1.6 129.7+13 1323+13 133.0£13 1399+12 141.1£1.1 140.0+12 1414+14 1414+14 1401+ 14
15 481477 —1 130.6+1.6 1372+£13 139.1+14 1394+14 1445+£12 1472+ 1.1 1466+ 12 149415 1468+t 1.5 1465+ 1.3
16 494958 —4 1274+1.6 131.5+£12 1380+13 1399+13 142.6+£1.2 1424+ 1.1 1448+12 143715 1449+15 1461+ 1.3
17 5191.93 5 1259+1.7 1326+13 1369+14 1369+14 1414+12 141.6+1.1 1435+12 1450+15 1460+ 15 1442+13
18 5326.82 2 1288+1.7 1347+13 1385+14 137614 1439+12 1457+£1.1 1452+12 1465+ 15 1446£15 1480+ 14
Notes.

2 Seasons 4 and 6 omitted from analysis because Saturn is aligned with the Galactic plane.
b Approximate mean time of observations in each season: wRJD = Julian Day —2,450,000.

¢ Approximate mean ring opening angle for each season, degrees.

4 Brightness temperature calculated for a solid angle Qe = 5.096 x 10~° sr at a fiducial distance of 9.5 AU. A correction for planetary disk oblateness has not been
applied, as that is accounted for in modeling. Temperature is with respect to blank sky: absolute brightness temperature is obtained by adding 2.2, 2.0, 1.9, 1.5, and

1.1 Kin bands K, Ka, Q, V, and W, respectively (Page et al. 2003a).

subtraction or masking. Second, the individual observations
from this background subtracted archive are binned to form
mean radial Saturn response profiles for each season and DA.
Finally, the WMAP beam radial profile per DA (as determined
from Jupiter observations) is fit to the Saturn radial response for
that DA and an apparent temperature is derived. Temperature
entries for the first 14 seasons listed in Table 8 may be directly
compared against those in Table 9 of Weiland et al. (2011).
There are small differences of order 0.5 to 1 o between some
of entries in common between the seven-year analysis and the
nine-year analysis presented here. Differences of this nature
are expected and can be traced to small variations in calibration,
beam characterization and data masking between the seven-year
and nine-year processing.

The temperatures in Table 8 may be fit with an empirical
model that predicts Saturn’s unresolved microwave brightness
T as afunction of ring opening angle and frequency. We adopt the
same model formulation as in the seven-year analysis of Weiland
et al. (2011), which employs a simple geometrical summation
of emission from the unobscured planetary disk, emission from
the ring system and emission from those portions of the disk
obscured by the rings:

;
T, B) = Tysk(v) [ Aua + Y _ e 1Pl Ay
i=1
;
+ Tring(0) Y Ari. (23)

i=1

At a given frequency v, a single temperature is assumed for
the planetary disk, Tgisk(v). The model allows for seven radially
concentric ring divisions. All rings are characterized by the same
temperature Tiing(v), but each of the seven ring sectors has its
own ring-normal optical depth 7o ;, with 1 < i < 7. Each 7y ;
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is assumed to be both constant within its ring and frequency
independent. Ayq, Aog; and A, ; are the projected areas of the
unobscured disk, the portion of the disk that is obscured by ring
i, and ith ring, respectively. These areas are normalized to the
total (obscured+unobscured) disk area. Model fit parameters are
the five Saturn uniform disk temperatures and five mean ring
temperatures (one for each WMAP frequency). The geometrical
ring boundaries and relative ratios 7y ;/To.max are constrained
as per Table 10 of Weiland et al. (2011), where tp max 1S the
ring-normal optical depth for the most optically thick ring (ring
3, i.e., the outer B ring). For the nine-year fit, the value of 7 max
was also allowed to be a fit parameter, although in practice its
inclusion makes very little difference in the fit results.

The nine-year model fit returns a reduced x? of ~1.04 for
~150 degrees of freedom; the model fit and residuals per WMAP
frequency are shown in Figure 13. On average, the rms of
the residuals is ~1% per frequency; the value for Q-band is
somewhat higher (1.3%) and that for V-band is lowest (0.7%).
Model parameters and their formal errors oy, are presented in
Table 9. By construction, the Ty;s and 71, model parameters are
anti-correlated. The covariance between these parameters allows
the possibility of systematic errors not accounted for in the fitting
formalism. Although the mean disk temperature is reasonably
well constrained by the new WMAP observations from seasons
15-18, hemispheric temperature gradients or local hot spots
would negate the assumed symmetry of the empirical model,
and would affect the derived mean ring temperatures. The nine-
year baseline unfortunately does not extend far enough toward
positive B to assess the limits of the symmetry assumption.
Additionally, the model’s assumed ring optical depth profile
may not be accurate. As with the seven-year analysis, we use
a model variant to estimate systematic differences between
models which return similar values of x2. Our worst case
estimate allows for differences of 0.9 K in Ty and 0.7 K
in Tine; We add these to the formal fitting errors in Table 9
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Figure 13. Modeling results for Saturn. Left: brightness temperatures based on unresolved Saturn observations as a function of ring inclination B are shown in black
for each WMAP frequency band. Where there are multiple differencing assemblies per frequency, multiple points are plotted at each inclination. An empirical model
including both ring and disk components (see text) is plotted in red. The temperature of the planetary disk predicted by the model occurs at B = 0°, when the rings are
viewed edge-on. The model is symmetric about B = 0°. Right: residuals (data-model) of the model fit to the data are plotted as a function of the ring opening angle.

(A color version of this figure is available in the online journal.)

Table 9
Nine-year Saturn Model Fit Parameters®

Freq Disk Rings
Band Taisk Ofit Oadopted Tring Ofit Oadopted

X) X X X) X) X
K 132.2 0.8 1.7 8.0 0.8 1.5
Ka 137.8 0.6 1.5 10.6 0.7 1.4
0 141.6 0.5 14 11.9 0.6 1.3
1% 146.6 0.4 1.3 14.5 0.5 1.2
w 147.3 0.3 1.2 18.9 0.3 1.0

Note. * A frequency independent maximum ring-normal optical depth, 7o max
is also a fit parameter. Its fit value is 2.1, with a statistical error o, = 0.3; the
seven-year model used a fixed value of 2.0.

to produce the tabulated adopted error, 0adopted- The Tgisk and
Tring parameters are plotted along with their adopted errors in
Figure 14. Within the conservative adopted errors, the nine-year
derived disk and ring temperatures are in agreement with those
from the seven-year fit; the nine-year adopted errors for Ty are
roughly half those quoted for the seven-year fit.
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5.2.2. Point Source Catalogs

As for the seven-year analysis, two separate methods have
been used for the identification of point sources from WMAP
maps and two separate point source tables have been produced.
Both methods are largely unchanged from the seven-year
analysis (Gold et al. 2011). Since the use of beam-symmetrized
maps would result in only minor changes to the recovered source
fluxes and since there is benefit to continuity with previous
WMAP point source analyses, we have generated the source
catalogs from maps that are not deconvolved. The first method
searches for point sources in each of the five WMAP wavelength
bands. The nine-year signal-to-noise ratio map in each band is
filtered in harmonic space by b;/(b?C{™ + CP°*¢), where b; is
the transfer function of the WMAP beam response, ClCmb is the
CMB angular power spectrum, and C;*** is the noise power
(Tegmark & de Oliveira-Costa 1998; Refregier et al. 2000). The
filtering suppresses CMB and Galactic foreground fluctuations
relative to point sources. For each peak in the filtered maps that
is >50 in any band, the unfiltered temperature map in each
band is fit with the sum of a planar base level and a beam
template formed by convolving an azimuthally symmetrized
beam profile with a skymap pixel. (This method was previously
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Figure 14. Saturn model parameters derived from the nine-year analysis. Left: disk temperatures for five WMAP frequencies. Right: ring system temperatures. Adopted
errors for the nine-year analysis have been reduced compared to those in Weiland et al. (2011); errors for Tyisk are smaller by a factor of two.

used by Weiland et al. (2011) for selected celestial calibration
sources and is more accurate than the Gaussian fitting that was
used for the seven-year and earlier point source analyses.) The
peak temperature from each beam template fit is converted to
a source flux density using the conversion factor I" given in
Table 3. The flux density uncertainty is calculated from the 1o
uncertainty in the peak temperature, and does not include any
additional uncertainty due to Eddington bias. Uncertainty due to
beam asymmetry effects has been found to be negligible, about
0.1% or less, by comparing results from beam template fits to
the normally processed K-band map with those to the beam-
symmetrized K-band map for Tau A, Cas A, and Cyg A. Flux
density values are entered into the catalog for bands where they
exceed 20 and where the source width from an initial Gaussian
fit is within a factor of two of the beam width. A point source
catalog mask is used to exclude sources in the Galactic plane
and Magellanic cloud regions. This mask has changed from the
seven-year analysis in accordance with changes in the KQ85
temperature analysis mask. A map pixel is outside of the nine-
year point source catalog mask if it is either outside of the diffuse
component of the nine-year KQ85 temperature analysis mask
or outside of the seven-year point source catalog mask. The new
catalog mask admits 83% of the sky.

The second method of point source identification is the CMB-
free method originally applied to one-year and three-year V- and
W-band maps by Chen & Wright (2008) and to five-year V- and
W-band maps by Wright et al. (2009). The method used here is
that applied to five-year Q-, V-, and W-band maps by Chen &
Wright (2009) and to seven-year Q-, V-, and W-band maps by
Gold et al. (2011). The V- and W-band maps are smoothed to Q-
band resolution. An ILC map (see Section 5.3.3) is then formed
from the three maps using weights such that CMB fluctuations
are removed, flat-spectrum point sources are retained with
fluxes normalized to Q-band, and the variance of the ILC map is
minimized. The ILC map is filtered to reduce noise and suppress
large angular scale structure. Peaks in the filtered map that are
>50 and outside of the nine-year point source catalog mask are
identified as point sources, and source positions are obtained by
fitting the beam profile plus a baseline to the filtered map for each
source. For the nine-year analysis, the position of the brightest
pixel is adopted instead of the fit position in rare instances where
they differ by >0°1. Source fluxes are estimated by integrating
the O, V, and W temperature maps within 1225 of each source
position, with a weighting function to enhance the contrast of the
point source relative to background fluctuations, and applying

17

a correction for Eddington bias due to noise (sometimes called
“deboosting”™).

We identify possible 5 GHz counterparts to the WMAP
sources found by both methods by cross-correlating with the
GB6 (Gregory et al. 1996), PMN (Griffith et al. 1994, 1995;
Wright et al. 1994, 1996), Kiihr et al. (1981), and Healey et al.
(2009) catalogs. A 5 GHz source is identified as a counterpart
if it lies within 11’ of the WMAP source position (the mean
WMAP source position uncertainty is 4’). When two or more
5 GHz sources are within 11, the brightest is assumed to be the
counterpart and a multiple identification flag is entered in the
catalog.

The nine-year five-band point source catalog is presented
in Appendix B and the nine-year QVW point source catalog
is presented in Appendix C. The five-band catalog contains
501 sources, the QVW catalog contains 502 sources, and the
two catalogs have 387 sources in common. As noted by Gold
et al. (2011), differences in the source populations detected
by the two search methods are largely caused by Eddington
bias in the five-band source detections due to CMB fluctuations
and noise. At low flux levels, the five-band method tends to
detect point sources located on positive CMB fluctuations and
to overestimate their fluxes, and it tends to miss sources located
in negative CMB fluctuations. Other point source detection
methods have been applied to WMAP data and have identified
sources not found by our methods (e.g., Scodeller et al. 2012;
Lanz 2012; Ramos et al. 2011, and references therein).

5.3. Diffuse Foregrounds
5.3.1. Introduction to Diffuse Foreground Analysis

In this section we evaluate the diffuse foreground emission
both for the purpose of separation from the CMB anisotropy
and for characterizing the nature of the foreground components.
As a prelude to our cosmological analyses we fit and remove
external foreground template map data from the WMAP maps
and we mask remaining regions estimated to be significantly
contaminated. We discuss this temperature and polarization
cleaning, and the masks, below. To elucidate the characteristics
and nature of the diffuse foregrounds we implement four
techniques: ILC technique; MEM; MCMLC fits; and x?2 fits.

Our analysis of the diffuse foregrounds generally uses the
five bands of WMAP data in conjunction with other data sets.
WMAP was designed to observe in the spectral region where
the ratio of the CMB to the foregrounds is at its maximum.
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This minimizes the amplitude of contamination and needed
corrections or masking, which is good for cosmology. To achieve
an improved signal-to-noise ratio of the foregrounds themselves,
it is sometimes useful to use external data where the foreground
emission is weak.

Foreground analyses are done using 1° smoothed beam-
symmetrized nine-year temperature maps in the five WMAP
bands. As in our previous foreground studies, the zero level of
each map is set such that a fit to the ILC-subtracted map of the
form T(|b]) = T, csc|b|+c, over the range —90° < b < —15°,
yields ¢ = 0. This assumes a plane-parallel slab model for
the Galactic emission. Formal 1o uncertainties in the map zero
levels (calculated as the quadrature sum of (1) the uncertainty
in the fit intercept ¢ and (2) the difference in intercepts from
southern and northern Galactic hemisphere fits) are 7.2, 5.9, 3.6,
1.8, and 0.76 uK in thermodynamic units for K-, Ka-, Q-, V-,
and W-bands respectively. The South Galactic pole brightness T,
from the fitting is 77.9+£1.5,30.1£0.6,17.7£0.4, 8.6+0.2, and
9.4+0.3 uK in thermodynamic units for K-, Ka-, Q-, V-, and W-
bands respectively. The Stokes Q and U maps have well-defined
zero levels and no monopole corrections are applied to them.

Previous WMAP team analyses have used the Finkbeiner
(2003) He map corrected for extinction as a template for
free—free emission (Bennett et al. 2003c). The Finkbeiner
map is a composite of the Virginia Tech Spectral line Survey
(Dennison et al. 1998), the Southern H-Alpha Sky Survey Atlas
(Gaustad et al. 2001), and the Wisconsin H-Alpha Mapper
survey (Haffner et al. 2003). The extinction correction assumes
that Ho emission and extinction are uniformly mixed along each
LOS,

I (Hot)exinction-corrected = I(Hat) T/(1 —e™ 7). (24)
Here 7 is the dust optical depth at the wavelength of He and
was calculated from the E(B — V) map of Schlegel et al.
(1998) as

T=22E(B-V), (25)

which assumes an extinction law for Ry = 3.1, characteristic
of the diffuse interstellar medium.

Recent studies of selected dust clouds at 20° < |b| < 40°
have shown that scattered Ho can make a significant contribution
to the observed Ho brightness for some LOSs (Mattila et al.
2007; Lehtinen et al. 2010; Witt et al. 2010). Here we apply
an approximate correction to our previous Ho template for the
contribution of scattered Ho, based on correlations between
Ho and 100 um emission found by Witt et al. (2010) for four
selected clouds and by Brandt & Draine (2012) for Sloan Digital
Sky Survey blank sky regions at intermediate to high Galactic
latitudes. Brandt and Draine noted that /(100 um) varies in
proportion to the product of the dust column density and the
radiation field that heats the dust. If the spatial variation of the
illuminating He radiation field in the Galaxy is similar to that
of the radiation responsible for dust heating, /(100 xm) may
be a good tracer of scattered Ho. The scattering correction we
adopt is

I (H“)scatlering—correcled = I (Ha)extinction-corrected—0.11 1(100 M(nzl%’)
where I(He) is in Rayleighs, 7(100 um) is the Schlegel et al.
(1998) 100 um map in MJy sr~!, and the 7(100 pum) coefficient
is a mean of the values of 0.129 #+ 0.015 R/(MJy sr~') found
by Witt et al. (2010) and 0.090 #+ 0.017 R/(MIJy sr™!) found
by Brandt & Draine (2012). These correlation slopes were
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Figure 15. Foreground evaluation is generally based on a combination of the
data from the five WMAP bands and external observations where the CMB
contamination is negligible. The external observations used for foreground
fitting and template removal are shown. These provide approximate probes
of the synchrotron, free—free, spinning dust, and thermal dust emission.

(A color version of this figure is available in the online journal.)

measured for regions with T < 1, but we apply Equation (26)
over the entire sky. This assumes that the Equation (24)
extinction correction is valid for the scattered component (i.e.,
the scattered Ho emissivity and the dust extinction are uniformly
mixed along each LOS) and it neglects effects of multiple
scattering that may be important for LOSs with high optical
depth. The Ho template is made by applying the corrections
for extinction and scattering to version 1.1 of the Finkbeiner
Ha map, smoothing from 6/ FWHM to 1° FWHM, and setting a
small number of negative pixels to zero. The resulting Ho-based
microwave template is shown in Figure 15 as the “Free—Free
Template.”

Uncertainties in both the extinction correction and the scat-
tering correction are large for high t, but we find that results of
our analyses using the template are not sensitive to these uncer-
tainties. For the foreground cleaning of the temperature maps,
the mask used in template fitting is chosen to minimize the com-
bined effects of template error and foreground-CMB covariance
(Section 5.3.2). For the MEM foreground fitting, the free—free
prior is formed from the Ho template, but for high ¢ LOSs
the observed brightness in the WMAP bands is great enough
that the MEM results are not strongly affected by the free—free
prior.

Prior to the nine-year analysis, the Haslam map used in
the MCMC fitting and as a prior in the MEM fitting was the
Fourier-filtered version available from LAMBDA. This version
mitigates scan striping in the Haslam map, but also removes
many strong point sources. Removal of the point sources
affected the quality of some foreground fits for pixels in the
Galactic plane. For this reason, the unfiltered Haslam map (also
available on LAMBDA) is now used for these applications and
its projection to K-band is shown in Figure 15.

5.3.2. Template Cleaning and Masks

All-sky templates of Galactic foregrounds or combinations
of foregrounds which are “CMB-free” are fit in a least-squares
sense to the WMAP sky maps to construct a foreground model
at each frequency. The foreground model is subtracted from the



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 208:20 (54pp), 2013 October

WMAP sky maps to produce reduced foreground, or “cleaned”
maps, which are used in turn for power spectrum analysis. The
cleaning is applied to sky maps from the standard map-making
procedure, not to beam-symmetrized sky maps. Cleaning of
temperature and polarization maps is treated independently.
5.3.2.1. Temperature cleaning. A limited set of all-sky fore-
ground templates is available for use in modeling potential con-
tributions from synchrotron, free—free and dust emission. After
testing a number of different template combinations, we con-
tinue to adopt a foreground model map, M (v, p), of the form

M@, p) = clW[Tk(p) — Tka(p)] + c2(W) 5 (p)
+ CSMdusl(p),

where p indicates the pixel, the frequency dependence is entirely
contained in the coefficients c;, and the spatial templates are the
WMAP K—Ka temperature difference map in thermodynamic
mK (Tx — Tk,), an He map (1) in units of Rayleighs, and dust
model 8 from Finkbeiner et al. (1999) evaluated at 94 GHz in
units of mK antenna temperature (Mgyys). The K—Ka template
is formed using standard (not beam symmetrized) maps. The
values of the coefficients ¢ are such that the model map M (v, p)
is in thermodynamic mK.

However, although the form of the model is the same as that
used in previous WMAP analyses, there are modifications in the
details of its application. As described in Section 5.3.1, the nine-
year extinction corrected Ha template incorporates a scattering
correction, a refinement not present in the seven-year analysis.
Also, in recognition of the possible contribution of spinning dust
to the Galactic emission and the uncertain synchrotron behavior
with frequency, spectral and coefficient positivity constraints are
no longer imposed in the template fitting. This allows maximum
freedom in the fit, but makes physical interpretation of model
coefficients more difficult.

There has also been a change in the portion of sky used in
computing the foreground model fit. Derived model coefficients
are dependent on the fraction of the sky which is fit: a full
sky fit minimizes the covariance of the templates with the
CMB signature in the WMAP data, but maximizes potential
template cleaning residuals (bias) by including sky regions
where the templates are more uncertain (generally close to the
Galactic plane). For example, the extinction correction applied
to the Ho map is only approximate and this template is an
imperfect tracer of free—free emission in optically thick regions.
In general, as more sky is excluded from the fit, CMB-template
covariance increases, while template cleaning bias decreases.
The “optimal” sky cut for template fitting may be determined
by examining these two competing errors as a function of sky
cut, and choosing the mask for which the sum of the two errors
is a minimum. For this purpose, several simulated five-band
Galaxy models of differing complexity were constructed. Each
model is added to a CMB realization, and then cleaned using
the algorithm in Equation (27) and a chosen sky cut. This is
performed for 100 CMB realizations per sky cut; the mean bias
is the template cleaning error and the variance is the CMB
covariance. We have used the “KpX” series of Galactic masks,
described by Bennett et al. (2003a) as a graduated set of sky cuts.
The masking in the “KpX” series is based on K-band intensity:
higher values of X indicate a smaller portion of bright sky is
cut. For each simulation, the sum of both errors were plotted
as a function of sky cut and a rough minimum chosen. Prior to
the nine-year analysis, we had used the Kp2 mask for template
fitting. However, the simulations indicated a more conservative
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Table 10
Template Cleaning Temperature Coefficients
DA? c b ch ‘.3b
(uK/R™Y

01 0.284 0.890 0.231
02 0.284 0.898 0.226
V1 0.0630 0.554 0.686
V2 0.0567 0.541 0.716
w1 —0.0179 0.351 1.609
w2 —0.0182 0.349 1.617
w3 —0.0146 0.342 1.587
w4 —0.0153 0.345 1.594
Notes.

? WMAP has two differencing assemblies (DAs) for the
Q- and V-bands, and four for the W-band; the high signal-to-
noise total intensity allows each DA to be fit independently.
® The c; coefficients produce model maps in thermodynamic
mK.

choice would employ a smaller sky cut. The Kp8 mask was
adopted for the nine-year cleaning.

Template cleaning coefficients derived using the updated
procedure are shown in Table 10 for the Q, V, and W DAs. As
noted previously, the ability of the fit to trade freely among the
three templates makes physical interpretation difficult. Monte
Carlo simulations have shown that the negative coefficients
c; derived for W-band result from template covariance with
the CMB. The change of template cleaning method from the
seven-year to the nine-year analysis has little effect on power
spectrum analysis. There is a slight change in the evaluated
low-I power spectrum. For 2 < [ < 16, using the Monte Carlo
Apodised Spherical Transform EstimatoR (MASTER) method
with the KQ85y9 mask, the absolute value of the change in
[(I+1)/(2m)C; due to the change in template cleaning is typically
4% of cosmic variance per .

5.3.2.2. Polarization cleaning. The polarization cleaning
method is unchanged from the seven-year analysis. The nine-
year Stokes Q and U maps are degraded to low resolution
(Ngde = 16) and the data for pixels outside of the Q-band
processing mask are fit to a linear combination of low resolution
templates. The fit has the form

[QW), UM =a([Q, Ulk +ax(W)[Q, Ulas.  (28)
The template used for synchrotron is the nine-year WMAP K-
band polarization, [Q, U]k. The template for dust, [Q, U]qus,
is constructed from the Finkbeiner et al. (1999, hereafter FDS)
dust model 8 evaluated at 94 GHz together with a polarization
direction map derived from starlight measurements and a
geometric suppression map to account for the magnetic field
geometry, as described in Page et al. (2007). The coefficients of
the fit to the nine-year data are listed in Table 11 and plotted
against frequency in Figure 16.

Full-resolution (Ngge = 512) foreground-reduced Stokes Q
and U maps were produced using the coefficients in Table 11
with full-resolution versions of the K-band and dust polarization
templates smoothed to 1° FWHM. In making the full resolution
dust template, the starlight polarization map used to determine
polarization direction was upgraded to full resolution using
nearest neighbor sampling. Smoothing of the templates to 1°
FWHM potentially leaves artifacts in the foreground-reduced
maps due to small-scale power or beam asymmetries, but
previous analyses have found no sign of these effects (Gold
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Table 11
Template Cleaning Polarization Coefficients

Band a Bs(vk, v)° a* Ba(v, vw)°
Ka 0.3204 —3.13 0.0145 1.41

0 0.1682 —3.13 0.0182 1.50

1% 0.0594 —2.97 0.0364 1.41

w 0.0398 —2.43 0.0758 e
Notes.

2 The a; coefficients are dimensionless and produce model maps in thermody-
namic mK.
b The spectral indices refer to antenna temperature.

et al. 2011). Data sets for all templates are available on the
LAMBDA website.

The spectrum of K-band polarization template coefficients
flattens significantly with increasing frequency, which is unex-
pected for synchrotron emission. This flattening can be under-
stood if, due to shortcomings of the dust polarization template,
some fraction of the dust polarization is traced by the K-band
template. We illustrate this using a simple model. The polariza-
tion maps are modeled as a sum of synchrotron and thermal dust
components,

[Q(), UW)] = [QW), UW)Isynen + [Q(V), U(W)aust-  (29)

Assuming the synchrotron polarization has a power law spec-
trum and is traced exactly in all bands by the K-band polarization
template, the synchrotron component is

Bsynch
&<1) 0.Ulk,  (30)

glvg) \vk

[O(), U(V)]synch =

where the antenna temperature to thermodynamic temperature
conversion factors g are needed because the polarization maps
and K-band template are in thermodynamic units. Assuming the
dust polarization has a power law spectrum and is traced by a
combination of the dust polarization template and the K-band
polarization template, with the relative contributions of the two
templates independent of frequency, the dust component is

gv)

(L>ﬁdusl
glvw) \vw

x (filQ, Ulast+ 2[Q, Ulk), (31)

[QW), UW)]aust =

where f| and f, are constants. Inserting Equations (30) and (31)
in Equation (29) and comparing with Equation (28) gives
expressions for the template fit coefficients,

ﬂsynch ﬂdus!
ar(w) = 2V (i) + f SO <i> (32)
glvg) \vk glvw) \vw
and p
ar(v) = fi 8(v) (L> . (33)
glvw) \vw

Fitting these expressions to the a;(v) and a,(v) values in Ta-
ble 11 gives Byneh = —3.13, Bus = 1.44, fi = 0.076,
and f, = 0.024. The fits are shown by the curves in Fig-
ure 16. They match the template coefficients very well with
no need for an additional emission mechanism such as spinning
dust or magnetic dust polarization. In this simple model, the
K-band template component contributes about 1/3 of the rms
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Figure 16. Polarization template coefficients, scaled to produce model maps in
antenna temperature, as a function of frequency. The curves show the predictions
of a simple model with synchrotron and thermal dust polarization in which about
2/3 of the dust polarization is traced by the dust template and about 1/3 is traced
by the K-band template.

dust polarization and the dust template component contributes
about 2/3.

This suggests that there is room for improvement in the dust
polarization template. Some alternate dust templates were tested
in fitting the polarization maps, but none of them gave signif-
icant improvement in x2. These include a template based on
K-band polarization directions instead of directions from
starlight measurements, a template based on a geometric sup-
pression map calculated from the ratio of observed K-band po-
larized intensity to K-band synchrotron total intensity from the
seven-year MCMC shifted spinning dust model (Gold et al.
2011), and two templates from O’Dea et al. (2012) based on
different Galactic magnetic field models.

5.3.2.3. Masks. Sky masks for CMB temperature analysis are
generated as described by Gold et al. (2011). The process begins
with K- and Q-band maps smoothed to 1 deg resolution, from
which an estimate of the CMB is subtracted to leave maps that
effectively consist of foreground emission alone. The CMB is
estimated using the ILC method (Hinshaw et al. 2007). Both
the K and the Q maps are masked at a flux contour that leaves
either 75% or 85% of the sky unmasked. The K and Q-band
sky masks for each cut level are combined so that any pixel
excluded by either cut is excluded by the combination. The
resulting combinations, dominated by diffuse Galactic emission,
are called KQ75 and KQ85, labeled by the admitted sky fraction
(fsky) of the input masks.

These masks are intended primarily to be applied to the
foreground-cleaned versions of the sky maps for power spectrum
and non-Gaussian analysis. They are made more effective for
this purpose by extending them to include regions where the
cleaning algorithm is subject to possible systematic error. A
x? analysis is done using differences Q—V and V—W between
cleaned band maps at a reduced HEALPix resolution of Ngjge =
32 (Gorski et al. 2005), or “res 57 in WMAP terminology.
Regions of four or more contiguous pixels with x2 higher than
four times that of the polar caps are used to define the mask
extensions, after 3° smoothing and cleanup steps to remove
small “islands” caused by noise.

A point source mask is added to each of the diffuse sky masks.
The point source mask from the seven-year analysis is updated
to include newly detected WMA P point sources and the 100 GHz
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Figure 17. Comparison of nine-year masks to seven-year masks. At the top
KQ75y7 and KQ75y9 are compared, and at the bottom KQ85y7 and KQ85y9.
Green regions are masked in both the nine-year and seven-year masks, yellow
regions are newly masked in the nine-year masks, and red regions are masked
in the seven-year masks but no longer in the nine-year masks.

(A color version of this figure is available in the online journal.)

sources in the Planck early release compact source catalog. An
exclusion radius of 192 is used for sources stronger than 5 Jy
in any band and an exclusion radius of 026 is used for weaker
sources.

The nine-year versions of the final KQ85 and KQ75 sky
masks, called KQ85y9 and KQ75y9, respectively, are compared
to the seven-year versions in Figure 17. Changes in the fore-
ground cleaning residuals have altered the morphology of the
mask in the vicinity of the Gum Nebula, the Large Magellanic
Cloud, and the Galactic center, with the largest relative changes
occurring in the KQ85 mask. For KQ75, fy is decreased from
70.6% to 68.8%, a difference of 1.8% of the sky, and for KQ85,
Sy 1s decreased from 78.2% to 74.8%, a difference of 3.7% of
the sky.

The sky mask for CMB polarization analysis is generated
using cuts in K-band polarized intensity and a model of polarized
dust emission, together with masking of point sources, as
described by Page et al. (2007) and Gold et al. (2009). The nine-
year polarization mask is the same as the seven-year version
except that three additional point sources were added using a 1°
exclusion radius—Hydra A, HB89 1055+018, and BL Lac.

5.3.3. Internal Linear Combination (ILC)

The ILC method seeks to produce a map of the CMB
anisotropy from a linear combination of the five WMAP fre-
quency bands. A first application of the method is described by
Bennett et al. (2003c). The algorithm was revised slightly by
Hinshaw et al. (2007); we refer to this version of the algorithm
as the “classic ILC,” it has remained unchanged throughout
subsequent WMAP data releases. As described in Hinshaw et al.
(2007), the algorithm divides the sky into 12 regions—a larger
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Table 12
ILC Coefficients per Region®
Region K-band Ka-band Q-band V-band W-band
0 0.1555 —0.7572 —0.2689 2.2845 —0.4138
1 0.0375 —0.5137 0.0223 2.0378 —0.5839
2 0.0325 —0.3585 —0.3103 1.8521 —0.2157
3 —0.0910 0.1741 —0.6267 1.5870 —0.0433
4 —0.0762 0.0907 —0.4273 0.9707 0.4421
5 0.1998 —0.7758 —0.4295 2.4684 —0.4629
[§ —0.0880 0.1712 —0.5306 1.0097 0.4378
7 0.1578 —0.8074 —0.0923 2.1966 —0.4547
8 0.1992 —0.1736 —1.8081 3.7271 —0.9446
9 —0.0813 —0.1579 —0.0551 1.2108 0.0836
10 0.1717 —0.8713 —0.1700 2.8314 —0.9618
11 0.2353 —0.8325 —0.6333 2.8603 —0.6298

Note. * The ILC temperature (in thermodynamic units) at pixel p of region n
is T,(p) = Z?zlfn,iTi(P)’ where ¢ are the coefficients above and the sum is
over WMAP’s frequency bands. In addition (and as has been done before), the
region smoothing from Hinshaw et al. (2007) has been applied and an ILC bias
has been subtracted.

high latitude region and 11 smaller regions spread across the
galactic plane. Use of the smaller regions along the plane allows
for spatially varying foreground complexity. For each of these
smaller regions, five band-weights are computed by minimiz-
ing the temperature variance in the region, under the constraint
that common-mode CMB signal is unaffected. Weights for the
larger high latitude region are computed in a similar manner, but
using pixels from locations near the outer-Galactic plane. Exact
definitions of these regions are provided on LAMBDA.

We compute the nine-year classic ILC using the coadded
deconvolved band maps which have been smoothed to a FWHM
of 1°. The weights applied to the 5 frequency maps for each of
the 12 sky regions are shown in Table 12. Values for the weights
change slightly compared to previous WMAP releases as pixel
noise, calibration and beam profiles have been refined.

To the eye, the ILC presents a reasonably foreground-free
image of the CMB anisotropy. The beauty of the algorithm is that
it is relatively independent of assumptions about foregrounds.
However, assessing the underlying uncertainty in the resultant
anisotropy map is a difficult problem which heavily relies on
knowledge of the Galactic foregrounds. In subsequent sections,
we will discuss efforts to improve the classic ILC, as well as
characterize the level to which foreground residuals remain.

5.3.4. Maximum Entropy Method (MEM)

A MEM-based approach originally developed by Bennett
et al. (2003c) and Hinshaw et al. (2007) is used to model the
Galactic foreground emission spectrum in the WMAP bands on
a pixel-by-pixel basis. Spatial templates of different emission
components from external data are used as priors, and the model
is designed to revert to the priors in regions of low signal-to-
noise ratio. Thus the analysis is of most interest for separating
and characterizing the different emission components in high
signal-to-noise regions. The model foreground maps that are
produced have complicated noise properties so they are not
useful for foreground removal in cosmological analyses.

The nine-year MEM analysis differs from previous analy-
ses (Bennett et al. 2003c; Hinshaw et al. 2007; Gold et al.
2009; Gold et al. 2011) in that spinning dust emission is
treated as a separate emission component. Previously, syn-
chrotron emission and spinning dust emission were treated
together as a single component and an iterative method
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was used to solve for the spectrum of this component for
each pixel.

The analysis is done using 1° smoothed beam-symmetrized
nine-year sky maps in the five WMAP bands, with the ILC
map subtracted from each map and conversion to antenna
temperature applied. The zero level of each map is set such
that a csc |b| fit, for HEALPix Ngjq. = 512 pixels at b < —15°
and outside of the KQ85 mask, yields a value of zero for the
intercept. The maps are degraded to HEALPix Ngge = 128
pixelization, and a model is fit for each pixel p by minimizing
the function

T,
H=x+x(p) Y T(p)n [ ()

ePc(p)] ‘

Here T, and P, are the model brightness and template prior
brightness for foreground component c (e is the base of natural
logarithms). The form of the second term ensures positivity of
the solution 7, for each component, which alleviates degeneracy
between the components. The parameter A controls the relative
weight of the data and the priors in the fit. As in previous
analyses, we base A(p) on the foreground signal strength:
Mp) = 0.6 [Tx(p)]™'?, where Tx(p) is the K-band ILC-
subtracted map in mK antenna temperature.

The MEM foreground model is a sum of synchrotron,
free—free, spinning dust, and thermal dust components. The
adopted spectra for synchrotron, free—free, and thermal dust
emission are fixed power laws with § = —3.0, —2.15, and
+1.8, respectively. The adopted synchrotron spectral index is
consistent with measurements of K- to Ka-band spectral index
from WMAP polarization data, for which free—free and spinning
dust contributions are expected to be negligible. For spinning
dust emission, we adopt a spectral shape predicted by the model
of Ali-Haimoud et al. (2009) and Silsbee et al. (2011). The
top panel of Figure 18 compares predictions of this model for
different interstellar environments. We adopt the spectral shape
for their nominal cold neutral medium conditions. The bottom
panel shows that the predicted shape does not vary much for
different conditions if a multiplicative frequency shift is allowed
for. The MEM model includes a frequency scale factor for the
spinning dust spectrum for pixels where the spinning dust prior
is brighter than 0.1 mK. This is constrained such that the peak
frequency is in the range from 10 to 30 GHz. For other pixels,
the peak frequency is fixed at 14.4 GHz, a typical value found
for the Galactic plane region.

The adopted priors are shown in Figure 15. The synchrotron
prior is based on the 408 MHz map of Haslam et al. (1982). We
use the original version of this map; our previous MEM analyses
used a filtered version in which striping and point sources are
suppressed. We add a zero level offset of 3.9 K, as suggested
by Tartari et al. (2008) based on absolute measurements of sky
brightness at 600 and 820 MHz. We subtract the 2.725 K CMB
monopole and an extragalactic contribution of 12.96 K, from the
analysis of ARCADE 2 and other data by Fixsen et al. (2011).
The 408 MHz map is then scaled to form the prior in K-band
using a spectral index of —2.9. (The ARCADE 2 extragalactic
background is used instead of a source count based value such
as 2.6 K from Gervasi et al. (2008) because it gives a prior that
is more consistent with the csc b normalized K-band map at
high latitudes.) The free—free prior is the scattering-corrected,
extinction-corrected Ho template described in Section 5.3.1,
scaled to free—free brightness temperature in K-band using
11.4 4K R™! (Bennett et al. 2003c). The spinning dust prior
is the temperature-corrected dust map of Schlegel et al. (1998),
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Figure 18. Top panel shows spinning dust emissivity spectra predicted by the
model of Ali-Haimoud et al. (2009) and Silsbee et al. (2011) for the nominal
physical conditions that they adopted for different ISM environments—cold
neutral medium (CNM), warm neutral medium (WNM), warm ionized medium
(WIM), molecular cloud (MC), photodissociation region (PDR), reflection
nebula (RN), and dark cloud (DC). The spectra were calculated using version
2.01 of the code SpDust provided by the authors, for the case where dust grains
are allowed to rotate around non-principal axes. The spectra are in units of
brightness temperature per H column density. The bottom panel shows the same
spectra normalized to a peak of unity and scaled to a common peak frequency
(that of the CNM spectrum, 17.8 GHz). The predicted spectral shapes for the
different environments are similar. We adopted the CNM case for the shape of the
spinning dust spectrum in our foreground fitting. We used this as an externally
provided spectral template in our fits, usually with our own arbitrary amplitude
and frequency scaling. The fit results in no way imply that the underlying
physical mechanisms or the line-of-site conditions have been established.

(A color version of this figure is available in the online journal.)

scaled to spinning dust brightness temperature in K-band using
9.5 K MIJy~! sr. This is the slope of the correlation between
the dust map and a map of spinning dust brightness from fits to
Haslam et al. (1982) 408 MHz, Duncan et al. (1995) 2.4 GHz,
and ILC-subtracted WMAP data in the Galactic plane. The
thermal dust prior is the prediction of model 8 of Finkbeiner et al.
(1999) at 94 GHz. All of the prior maps have been smoothed to
1° FWHM.

The adopted model provides good fits to the data without
iterative adjustment of the synchrotron component spectrum
as used in previous analyses. For pixels at |b| < 5°, absolute
residuals are typically less than 0.01%, 0.34%, 1.2, 2.1%, and
0.7% in K-, Ka-, Q-, V-, and W-bands, respectively. Maps of
the foreground components and peak frequency of spinning dust
from the MEM analysis are shown in Figure 19.
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Figure 19. Parameter maps from the MEM model fit. The top four maps are shown on logarithmic scales and the others are on linear scales.

(A color version of this figure is available in the online journal.)

5.3.5. Markov Chain Monte Carlo Fitting

We again perform a pixel-based MCMC fitting technique to
the five bands of WMAP data. Our method is similar to that of
Eriksen et al. (2007), but we focus more on Galactic foregrounds
rather than CMB. The fit results of the prior releases have been
reproduced, with the “base” model, which uses three power-
law foregrounds, producing virtually the same reduced yx? per
pixel. We have again also included the 408 MHz map of Haslam
et al. (1981) with a zero-point determined using the same csc ||
method as for the WMAP data.

There are two main changes from the previous release.
The first is that the MCMC fit now uses the spinning dust
spectrum for grains in a “cold neutral medium” as computed by
Silsbee et al. (2011), with an optional frequency shift parameter
described below. This change was made so that the MCMC fit
uses the same spinning dust spectrum as the rest of the nine-year
analysis. The second significant change is that the spinning-dust
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model is now run with the synchrotron spectral index as a free
parameter. This was done to improve the quality of the fit, also
discussed below.

The MCMC fit is performed on 1° smoothed maps down-
graded to HEALPix Ngg. = 64. A MCMC chain is run for each
pixel, where the basic model is

b \BW NN b \Pi
TWw)=T; <—> +Ty (—) +a(W)Temy + Ty (—)
Vg Vg Yw
(35)

for the antenna temperature. The subscripts s, f, d stand for
synchrotron, free—free, and dust emission, v and vy are the
effective frequencies for K- and W-bands (22.5 and 93.5 GHz),
and a(v) accounts for the slight frequency dependence of
a 2.725 K blackbody using the thermodynamic to antenna
temperature conversion factors found in Bennett et al. (2003c).
The fit always includes polarization data as well, where the



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 208:20 (54pp), 2013 October

BENNETT ET AL.

Table 13
Reduced x? per pixel of MCMC Fits

Dataset Model Galactic Plane Outside Galactic Plane Full-sky Average
WMAP five-band (a) base 2.38 1.17 1.29

(b) sd096 1.00 1.06 1.05
WMAP and 408 MHz (c) base 2.46 1.13 1.25

(d) sd096 6.27 1.42 1.88

(e) sd070 1.76 1.33 1.37

(f) bsfree sd084 1.24 1.03 1.05

(g) bsfree Strong sd084 1.05 1.01 1.01

model is

v AW v\ P
0v) = QO <—> + 04 (—) +a()Qemp  (36)
VK Vw

v Bs(v) v Ba
U@) = U <_> + Uy <_> +a(W)Ucmp 37
VK Vw

for Stokes Q and U parameters. Thus there are a total of 15
pieces of data for each pixel (7, Q, and U for five bands).

As for the previous two releases, the noise for each pixel at
Nsige = 64 is computed from maps of Nyps at Ngge = 512. To
account for the smoothing process, the noise is then rescaled by a
factor calculated from simulated noise maps for each frequency
band. The MCMC fit treats pixels as independent, and does not
use pixel-pixel covariance, which leads to small correlations in
x? between neighboring pixels. This has negligible effect on
results as long as goodness of fit is averaged over large enough
regions.

K-band is used as a template for the polarization angle of
synchrotron and dust emission, so U and U, are not independent
parameters, identical to the previous analyses. All models also
fix the free—free spectral index to By = —2.16, the same as in
the seven-year release.

Results from the models discussed below are listed in
Table 13; see the LAMBDA Web site for further details. The
“base” model uses three power-law foregrounds, where the syn-
chrotron spectral index S(v) is taken to be independent of fre-
quency but may vary spatially, and the dust spectral index S, is
allowed to vary spatially. We assume the same spectral indices
for polarized synchrotron and dust emission as for total intensity
emission. This model has a total of 10 free parameters per pixel:
TS’ Tfa Td’ Tcmb’ ,Bs’ :Bda Qsa Qd, Qcmba and Ucmb-

For models with a spinning dust component, another term is
added to Equation (35)

Tsa(v) = Ta(vk)Ssa(v), (38)
Where S;,;(v) parameterizes the shape of the spinning dust
spectrum, and is interpolated from values for the “cold neutral
medium” spectrum given by Silsbee et al. (2011). An optional
shift parameter can be used to rescale the frequency dependence
before interpolation. This shift parameter applies to the full sky
and does not vary per pixel. After shifting and interpolation,
the spectrum S;,(v) is normalized to unity at K-band, leaving
T;4(vk) as the only spinning dust parameter for each pixel.
Independent fits were performed to determine the best-fit shift
parameter, which for the averaged sky was found to be 0.84.
Inside the Kpl12 mask (within a few degrees of the galactic
plane) the preferred shift parameter may be somewhat lower
(0.77), but the evidence is not strong.
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The spinning dust component is assumed to have negligible
polarization, as theoretical expectations for the polarization
fraction are low compared to synchrotron radiation (Lazarian &
Draine 2000), and polarization data thus far show no evidence
that such a component is necessary (Section 5.3.2; Loépez-
Caraballo et al. 2011; Dickinson et al. 2011; Rubifio-Martin
et al. 2012). This model then has 11 free parameters per pixel:
the 10 parameters of the base model, plus the spinning dust
amplitude.

MCMC fits for the nine-year release were performed with
the addition of the 408 MHz data compiled by Haslam et al.
(1981). The error on the zero point for this data was estimated
in that work to be +3 K, with an overall calibration error of
10%. As the MCMC method treats all input maps equally, for
consistency we estimate and subtract a nominal zero point offset
of 7.4 K, as determined by the same csc |b| method we use for
the WMAP sky maps. For comparison, Lawson et al. (1987) used
a comparison with 404 MHz data to find a uniform (presumably
extragalactic) component with a brightness of 5.9 K.

We find that to best fit the 408 MHz data, the spinning dust
spectrum needs to have its peak frequency adjusted downward
by approximately 15%, similar to the case in the previous
release. We also find that a much better fit is achieved in the
plane by varying the synchrotron spectral index, which for that
region allows a x2 = 1.24 versus x2 = 1.76 with fixed index,
for 8.5 effective degrees of freedom. The mean spinning dust
fraction inside the KQ85 mask is somewhat lower than in the
seven-year fit, at 10% of 22 GHz flux compared to 18% in the
seven-year fit.

We also find that the fit is improved by taking into ac-
count some mild steepening of the synchrotron spectrum
from 408 MHz to WMAP’s frequency range. Strong et al.
(2011) have compared mid-latitude synchrotron measurements
and estimates from 22 MHz to 94 GHz with predictions
of cosmic ray propagation models based on cosmic ray and
gamma ray data. We adopted their best-fit pure diffusion model
(“galdef_ID_54_z04LMPD_g0_1.3_withsecS”) to compute an
effective synchrotron spectral index between 408 MHz and
23 GHz (WMAP K-band), as well as the index from 23 GHz to
94 GHz over which range it remains nearly constant. We calcu-
late the difference in these two indices to be —0.12. Our model
g (hereafter MCMCg, and listed on the last line of Table 13)
then uses this difference, so that while the model parameter S
is used as the synchrotron index for the WMAP bands, the value
Bs+0.12 is used to extrapolate the synchrotron component down
to 408 MHz for comparison to the map of Haslam et al. The
parameters from this fit are shown in Figure 20.

5.3.6. Six-band Minimal Prior Chi-Squared Fitting

In this section we attempt to find a best-fit foreground model
that is consistent with both the WMAP data and Haslam. This is
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Figure 20. Parameter maps from the MCMCg model fit. The top four maps are shown on logarithmic scales and the others are on linear scales. Accurate determination
of the CMB close to the Galactic plane is inhibited by CMB-foreground covariance. The map for § synchrotron is evaluated at 40 GHz.

(A color version of this figure is available in the online journal.)

intended to be a faster fit than was done with the MCMC method
in Section 5.3.5, and so it allows us to experiment with models
more rapidly. Because this method simply finds the maximum
likelihood point of the foreground model, it does not provide
errors bars as the MCMC method does. Also, we avoid priors in
the form of foreground component sky maps, which were used
in the MEM fitting in Section 5.3.4. The priors we use in this
section are mostly in the form of the foreground spectral shapes
(relative antenna temperature as a function of frequency) instead
of in the form of sky maps. This is a complementary form of
analysis to the MEM fitting.

5.3.6.1. Data and noise. Our data consists of maps smoothed
to a common resolution of 1° FWHM, which we pixelize at r6.
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We use six maps: 408 MHz and the five WMAP bands. We use
the original Haslam map (408 MHz) as in Section 5.3.4 with the
same offsets, except in this case we do not use the ARCADE
extragalactic background. Instead of subtracting 12.96 K, we
subtract 2.6 K (Tartari et al. 2008), so the Haslam map used in
this section is 10.36 K brighter in antenna temperature in all
pixels. The rms noise in each pixel of the 408 MHz map is taken
to be 10% of the antenna temperature, added in quadrature with
a 0.6 K uncertainty in zero point (Haslam et al. 1982; Tartari
et al. 2008).

We consider three noise components for the WMAP bands
in this foreground fitting: the 0.2% overall gain uncertainty,
the 0¢/+/Nops instrument noise, and the uncertainty in the
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Table 14
%% Minimal Prior Fits of Foreground Models

Model Synchrotron® Aﬂsyncb ffc Bust SD¢ SD Peak® vf X 2 /pixel® fbﬂdh

1 Power 0 Yes 1.8 No 4 6.1 37%

2 Power Vary Yes 1.8 No 5 2.5 11%

3 Power Vary Yes 1.6-2.0 No e 6 2.3 9.5%

4 Power Vary Yes 1.8 Yes 15.1 6 1.5 4.4%

5 Power Vary Yes 1.8 Yes 12.5-17.8 7 0.64 0.59%
6 Strong 0 Yes 1.8 Yes 15.1 5 54 30%

7 Strong 0 Yes 1.8 Yes 12.5-17.8 6 4.1 20%

8 Strong Vary Yes 1.8 Yes 15.1 6 1.2 2.1%

9 Strong Vary Yes 1.8 Yes 12.5-17.8 7 0.60 0.48%
Notes.

2 Whether the synchrotron is treated as a pure power law or modeled according to a model from Strong et al. (2011).

b For both power law and Strong et al. synchrotron models, we either set the spatial variation in spectral index Afsync to
zero or allow it to vary: —0.5 < ABsyne < 0.5. In the case of a power law, AByyc is a perturbation added to Bgync = —3.0.
¢ The free—free spectrum is given by Oster (1961); we use an electron temperature of 8000 K.

d Whether a spinning dust spectrum in the shape of the cold neutral medium is used.

¢ Range of available peak frequencies for the spinning dust spectrum, in GHz. This is either fixed at 85% of the peak
frequency 17.8 GHz for the cold neutral medium (which is 15.1 GHz), or allowed to be a range from 70% to 100% of the
CNM peak frequency (which is 12.5 GHz to 17.8 GHz).

f Degrees of freedom in the model. Most degrees of freedom are constrained: foreground amplitudes must all be positive,
for example. The highly constrained CMB amplitude is included as a degree of freedom.

2 The mean x? per pixel, averaged over the whole sky (for temperature only, not polarization), where x? values greater
than 10 are set to exactly 10 so that a few extremely bad pixels do not throw off the whole fit. This x2 value includes
deviations of the model from Haslam and WMAP bands, but not deviations from the ILC prior. Since there are six
measurements in each pixel (and an ILC prior) and 4 < v < 7 degrees of freedom in the model, we would expect
x?%/pixel & 6 — v for a good fit if we had unconstrained variables.

b The fraction of the pixels where x2 > 10. This is an estimate of the sky fraction where the fit is bad. Again, the x 2 used
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here includes the difference of the model from the six bands, but does not include deviations from the ILC prior.

diffuse foreground monopole corrected with the csc |b]| offsets,
discussed previously. Because our fitting is done on a per-pixel
basis, we approximate these errors as uncorrelated between
pixels, and we add them in quadrature.

The instrument noise can be treated carefully to account for
the smoothing to 1° FWHM. Typically it is inaccuracies in the
foreground model that cause x? to be large and not the details of
the noise. However, a detailed treatment of the noise smoothed
to 1° in r6 pixels is given in Appendix D. Again, because we fit
on a per-pixel basis, we ignore the correlations in noise between
nearby pixels.

5.3.6.2. Foreground models. We start with a simple fore-
ground model consisting of several simple power laws, and
progressively add complexity to the model to improve the fit.
The foreground model we use involves temperature only; we did
not try to fit polarization. The sequence of foreground models
we use is listed in Table 14, and details are discussed below.

The synchrotron spectrum is either taken to be a pure power
law in antenna temperature, T4 v or derived from
assuming the spectral index curve from Strong et al. (2011),
Figure 6, upper right corner. This is the curve for a low-energy
electron injection index of 1.3 and is the same spectrum as used
in the MCMC fitting. To this spectral index curve we optionally
add an offset in Bgyne, —0.5 < ABgyne < 0.5 independent of
frequency. We numerically integrate this spectral index curve to
obtain synchrotron antenna temperature.

The free—free spectrum is the slightly curved model given by
Oster (1961) and rearranged for antenna temperature by Bennett
et al. (2003c). This is

1+0.2218 In(7, /8000 K) — 0.1479 In(v/41 GHz)

TWMAP
PG (v/41 GH2)2(T, /8000 K)!/2

(39)
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For simplicity we use an electron temperature of 8000 K.
We expect variations in electron temperature, but these do not
strongly affect the shape of the spectrum.

The dust spectrum is given by a pure power law, typically
with a fixed spectral index of B, = 1.8.

Finally, we add a spinning dust component. This is an
antenna temperature spectrum from the Silsbee et al. (2011)
model prediction for cold neutral medium (CNM) conditions,
with an optional frequency scale factor. If the spectrum is
plotted as antenna temperature as a function of log frequency,
the frequency scale factor simply shifts the spectrum left or
right. However, instead of quoting the frequency scale factor,
we instead quote the peak frequency, when the spectrum is
measured in antenna temperature as a function of frequency.
The peak frequency of the CNM spectrum is 17.8 GHz.

All of these foregrounds are assumed to have a positive
scale factor associated with them. Synchrotron, free—free, and
spinning dust are normalized to K-band antenna temperature,
and dust is normalized to W-band antenna temperature.

The CMB is modeled as a blackbody with constant thermo-
dynamic temperature. To make the CMB fit look statistically
isotropic, we add a prior that the CMB must be within 5 ©K
rms of the nine-year ILC. Without this prior, the data do not
constrain the CMB very tightly in the galactic plane, and we
find the CMB preferring values lower than —250 K.

To approximate the finite width of the WMAP bandpasses,
we calculate these spectra at three frequencies per band and
determine the WMAP response from a weighted average, as
described in Appendix E.

5.3.6.3. Fitting code. Fitting the foregrounds is a least squares
problem. However, we modify the simple linear least squares
problem in two ways: we constrain the coefficients, and we allow
nonlinear foreground spectra. Constraining the coefficients
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Figure 21. Parameter maps from the Model 9 fit. The top four maps are shown on logarithmic scales and the others are on linear scales. The map for 8 synchrotron is

evaluated at 40 GHz.
(A color version of this figure is available in the online journal.)

is essential, because we know the foregrounds are always
positive. Unconstrained least squares fitting will frequently
give a very negative and therefore unphysical foreground.
Secondly, we allow nonlinear foregrounds, in the sense that
the total foreground is not simply a linear combination of fixed
foreground spectra. We allow the spectra to vary, for example
by allowing the synchrotron spectral index to be a fit parameter,
or by allowing the peak frequency of spinning dust to be a fit
parameter.

There are several codes which can be used to solve this
problem. We have not made a thorough search of all available
software, and we only considered code in IDL since that is the
language in which much of our other software is written. We
have found two codes to be useful: a bound variable least squares
routine and a Levenberg—Marquardt solver.

We found a bound variable least squares (BVLS) routine®?
to be very fast, but it is restricted to linear foreground models
and so it cannot solve for varying spectral indices or spinning
dust frequency scale parameters. Because of this constraint we
do not use it to report results in this paper. However, this code
does have the advantage that parameters can be constrained to
be positive, so it can provide physically reasonable fits.

22 pyls.pro, available from http://www-astro.physics.ox.ac.uk/~mxc/idl/.
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For the results reported in this section (in Table 14) we use the
mpfitfun.pro routine,”® which uses the Levenberg—Marquardt al-
gorithm and was written by Craig Marquardt, for the constrained
nonlinear least squares fitting. This is somewhat slower than the
BVLS code because it cannot use the assumption that the x>
function is precisely quadratic in all of the fit coefficients. The
ability to calculate foreground spectra quickly is an important
factor in the speed of these calculations. We discuss a useful
rapid method of calculating the integral over the WMAP band-
passes in Appendix E.

5.3.6.4. Results. The results of this simple foreground fitting
are shown in the last columns of Table 14. Additionally, maps
from the Model 9 fit are shown in Figure 21. A set of three
fixed power laws in Model 1 does not fit the data well. Allowing
spatial variation of the synchrotron power-law spectral index in
Model 2 substantially improves this, but 11% of the sky is still fit
very poorly. Allowing spatial variation of the dust spectral index
in Model 3 does not substantially improve the number of well
fit pixels, so we fix the dust spectral index to 8 = 1.8. Adding
a spinning dust component with peak frequency of 15.1 GHz
(which is 0.85 times the CNM peak frequency of 17.8 GHz)
does improve the fit, and allowing that peak frequency to

23 Available from http://cow.physics.wisc.edu/~craigm/idl/idl.html.
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Table 15
Summary of Foreground Decomposition Model Assumptions

Parameter MEM MCMCg x2 Model 9
Bsync* —3.0, fixed Strong, [AB] < 0.5 Strong, |AB] < 0.5
Bdust +1.8, fixed Free +1.8, fixed
Bre —2.15, fixed —2.16, fixed —2.09 to —2.17, fixed®

;‘jakc 10-30, constrained 14.95, fixed 12.5-17.8, constrained
CMB ILC subtracted Free ILC prior
Polarization data fit No Yes No
External foreground spatial priors Haslam, SFD, FDS, Ha¢ No No

Notes.

2 Synchrotron is assumed to be a power law with a fixed spectral index, Bsyne, or a variable power law based on a Strong
et al. (2011) model, with a best-fit value of A added to the spectral index.

Y The free—free spectrum for the x> Model 9 fit is given by Oster (1961) with a fixed electron temperature T, = 8000 K.
The spectral index, Bif = —2.14 at K-band and —2.17 at W-band. It increases to —2.09 at 408 MHz.

¢ A spinning dust cold neutral medium spectral shape is used with an allowed range of a peak frequency shift, specified

in GHz.

4 Haslam: the 408 MHz survey of Haslam et al. (1982); SFD: the temperature-corrected dust map of Schlegel et al.
(1998); FDS: thermal dust model 8 from Finkbeiner et al. (1999); Ho: Ha all-sky mosaic from Finkbeiner (2003).

vary between 12.5 GHz and 17.8 GHz helps even more. See
Models 4 and 5.

Because it is probable that the synchrotron is not a pure power
law and because we use the Haslam data at 408 MHz, which is
much lower in frequency than the WMAP data, we test a curved
synchrotron model from Strong et al. (2011). If we do not allow
the spectral index to vary, we again get bad fits in Models 6
and 7. However, a varying spectral index combined with a
spinning dust component produces results that are fractionally
better than a pure power law with the same spinning dust
components, as can be seen by comparing models 5 and 9,
and comparing models 4 and 8.

None of these fits is perfect. Even in Model 9, there remain a
few pixels that are not fit well. These are primarily in Ophiuchus,
the galactic plane, and the Gum nebula.

5.3.7. Diffuse Foreground Results

5.3.7.1. Cross-comparison of foreground fits. Maps of param-
eters from the MEM, MCMCg, and six-band X2 Model 9 fits are
shown in Figures 19, 20, and 21. A summary of the parameter
treatment for each of these three models is provided in Table 15,
and a high-latitude consensus decomposition is in Figure 22.

Results from these three models are a sampling of the possible
parameter space which can be used to produce a total foreground
model in each WMAP band. Each of these models possesses
strengths and weaknesses, which can be used to offset one
another. Included in these considerations are the treatment of
the CMB component, the use of spatial priors, and the use of
spectral constraints.

Treatment of the CMB. Both the MEM and Model 9 make
use of the ILC as the CMB estimator: the MEM subtracts the
ILC from the WMAP data before fitting, and Model 9 uses
the ILC as a strong prior. As discussed in Section 5.3.7.2, the
ILC is an imperfect estimate of the true CMB, containing a
residual foreground bias signal. MCMCg, on the other hand,
treats the CMB as a free parameter in its fit solution. While this
is a strength for MCMCg at high latitudes, CMB-foreground
covariance is strongest in the Galactic plane, and MCMCg does
not separate the CMB and foregrounds well there. Use of the
ILC provides a better constraint in that case.

Use of spatial priors. The MEM uses spatial templates to
constrain its fitting solution at high latitudes where signal-to-
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Figure 22. Spectra of CMB and foreground anisotropy. The foreground
anisotropy results are averages over the three foreground models (MCMCg,
MEM, and Model 9). The upper curve for each foreground component shows
results for pixels outside of the KQ85 mask, and the lower curve shows
results outside of the KQ75 mask. The different foreground models are in
good agreement for the total foreground anisotropy. Results for the individual
foreground components depend on model assumptions discussed in the text, and
typically differ among the three models by 5% to 25%.
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(A color version of this figure is available in the online journal.)

noise is lower than in the Galactic plane. This produces a less
noisy parameter solution at high latitudes when compared to the
MCMCg and Model 9 x? fit. This is valuable to the extent that
one trusts those priors, both in terms of zero levels and spatial
structure.

Use of spectral constraints. The synchrotron spectral index
is a pivotal parameter in model fitting, since its behavior influ-
ences the model allocation between synchrotron, free—free and
spinning dust. The MEM assumes a constant value of g, = —3
at WMAP frequencies. Model 9 and MCMCg allow each pixel
to fit for this parameter independently, within the constraints of
a Strong et al. (2011) spectral dependence. Positional gradients,
including a latitudinal gradient, are probably closer to physical
reality than a constant value (Kogut et al. 2007). However, with
this degree of freedom comes the possibility for degeneracies
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Figure 23. Results from foreground degeneracy analysis for six-band Model 9 fitting. The contour plots illustrate the degeneracy between model parameters for a
representative single pixel foreground spectrum. Each panel shows the change in x2 as the selected pair of parameters are varied from their best-fit values while
marginalizing over the other parameters. Contours are shown for Ax? values of 0.2, 1, 3, and 10, except values of 0.5, 3, and 10 are used for Bgync vs. synchrotron
amplitude. There are significant degeneracies between parameter pairs that include either synchrotron amplitude or synchrotron spectral index, except for those that

include thermal dust amplitude.

with the free—free and spinning dust parameters. In Figure 23 we
show results from a foreground degeneracy analysis for a repre-
sentative pixel in the six-band Model 9 fit. There are significant
degeneracies between parameter pairs that include either syn-
chrotron amplitude or B;. (A similar result was presented by
Gold et al. (2009) for the five-year MCMC analysis, although
that lacked a spinning dust component). We believe degenera-
cies are a factor in the appearance of the MCMCg and Model
9 Bs maps, which show a strong latitudinal gradient and a dust-
like morphology in some regions, e.g., extending south of the
plane over 150° < [ < 190° and in the north celestial pole
H1 loop that extends north of the plane over 120° < [ < 150°
(Meyerdierks et al. 1991). All three models share a common
spectral shape for the spinning dust spectrum. This shape is al-
lowed to shift peak frequencies for MEM and Model 9, while
MCMCg adopts a fixed peak frequency. Although the use of a
common shape seems well motivated (see Figure 18), there is
no guarantee that it is correct for all pixels. This is an additional
source of uncertainty in the fits, as observational deviations
from this shape will be distributed primarily among free—free
and synchrotron components. We note an apparent power deficit
in the Model 9 free—free map, present to a lesser extent in the
MCMCg result, which is dust-like in signature. Finally, we note
that all models assume a fixed B¢, and only MCMCg allows for
a free Baust. These are less uncertain values, but errors in fixed
values can ripple into other components.
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It is nevertheless possible to find relative agreement among
these models, especially at higher latitudes. The high latitude
foreground spectral components in the WMAP bands are shown
in Figure 22 and all of the fitting techniques support this spectral
decomposition of the foregrounds.

The actual foregrounds, especially at low Galactic latitudes,
are clearly more complex than our parameterizations allow,
since variations in physical conditions exist along any LOS.
There are some sky locations that were not well fit even with
all of the degrees of freedom allowed by the x? fitting, such as
in Ophiuchus. Given the complexity of the foreground emission
mechanisms sampled by the WMAP bands, separating the CMB
from the total observed foreground is a more straightforward and
reliable process than the decomposition of that total foreground
into physical components. Although we have found imperfec-
tions in the dust and free—free templates we use for foreground
cleaning, those imperfections are primarily confined to regions
which are masked from use in the cosmological analysis, and the
use of foreground cleaned maps in the power spectrum analysis
is robust.

A remaining item of interest is the microwave “haze.” The
first claim of a haze (Finkbeiner 2004) suggested an excess
of free—free emission compared to the expectation from He,
and was dubbed a “free—free haze.” No longer believed to be
free—free emission, its exact shape and attribution has evolved
in the literature. In general the haze is described as an excess
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Figure 24. Left: thermal dust amplitude at W-band averaged over the MCMCg,
MEM and Model 9 fits minus the thermal dust model 8 from Finkbeiner et al.
(1999). Right: free—free amplitude at K-band averaged over the same three
models, minus the free—free template estimated from Ha observations.

(A color version of this figure is available in the online journal.)

extended diffuse emission near the Galactic center. This excess
appeared as a residual from the decomposition of WMAP K,
Ka, and Q maps using external templates (Finkbeiner 2004;
Dobler & Finkbeiner 2008). The templates most often used for
this purpose are the Haslam 408 MHz map, a de-extincted form
of the Finkbeiner (2003) He all-sky mosaic and the Finkbeiner
et al. (1999) thermal dust models.

While the excess compared to external templates is clear, the
attribution to a physical mechanism associated with Galactic
emission is not. One interesting possibility characterizes the
haze as a separate hard spectrum synchrotron component asso-
ciated with the gamma-ray bubbles (Planck Collaboration IX
2013; Dobler et al. 2010). Planck Collaboration IX (2013) uses
a Gibbs sampler to fit a foreground model outside a Galactic
mask that assumes separate hard and soft power-law spectra.
The cut-sky maps with these spectra are further decomposed,
using external templates, into emission components with a dis-
tinct residual identified as a By ~ —2.55 synchrotron haze. It
is also possible to find reasonable models which adequately de-
scribe the data without the invocation of a haze component, as
in e.g., Dickinson et al. (2009). In these cases, the haze excess
is absorbed and distributed amongst other low frequency Galac-
tic components. For example, a typical K-band haze intensity
at roughly £20° latitude near the Galactic center is ~100 uK
(Planck Collaboration IX 2013), whereas K-band residuals in
those locations for the MEM, MCMCg, and Model 9 models
are roughly zero with a 1o deviation of a few uK. Existence of
the haze as a separate spatial component is model dependent. It
depends on foreground spectral assumptions, which affect the
emission allocation between the CMB and the decomposition of
the Galactic foregrounds into physical components. Because the
haze is easily absorbed into other model components if not ex-
plicitly accounted for, and a number of remaining uncertainties
exist in the morphology and behavior of low-frequency emis-
sions in general (e.g., spinning dust), we feel this is a topic
which remains open. Additional observations would be benefi-
cial, especially at frequencies below K-band.

Although the thermal dust and free—free parameter ampli-
tudes differ between the models presented here in details, there
are clear common-mode similarities when they are compared
against their externally derived equivalents (which we have
used in Section 5.3.2 for template cleaning). Figure 24 illustrates
these common-mode features by taking the mean parameter am-
plitudes from three models presented in this paper (MCMCg,
MEM and chi-square fitting Model 9), and differencing them
against their template counterparts. On the left in Figure 24 is
the mean thermal dust amplitude at W-band minus the 94 GHz
estimate derived from /RAS and COBE data by Finkbeiner et al.
(1999). We have chosen to difference against their model 8, but
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Figure 25. Ratio of W-band predicted thermal dust emission (Finkbeiner et al.
1999, model 8) to the mean over three models (MCMCg, MEM, Model 9) as a
function of longitude for |b| < 5°. Error bars are derived from the rms scatter
of the three models about the mean. A line is a plotted at 1.0 to guide the eye.
Modeled emission shows systematic variations from the FDS prediction by up
to 20%.

a similar result is obtained for their other two-component dust
model, model 7. In the Galactic plane, all of the three WMAP
models show more emission in the outer plane and less in the
inner plane than that predicted from the FDS models. A more
quantitative representation of the planar differences is shown in
Figure 25. Correlations between MEM, MCMCg, and Model
9 have roughly unity slopes, whereas correlations against FDS
model 8 indicate FDS is brighter by up to ~20% in high intensity
regions in the inner Galaxy.

The right-hand image in Figure 24 shows the difference be-
tween a mean K-band free—free emission estimate from the same
three models in this paper and that from scattering-corrected de-
extincted Ho using a conversion factor of 11.4 4K R™!. Scat-
ter between models in the plane generally disallows a defini-
tive free—free mapping there. However, differences between the
free—free emission predicted from Ho and the free—free model
estimates in this paper consistently indicate that the Ho pre-
diction is higher by roughly 20%-30% in the Gum and Orion
regions. Free—free differences for the Gum away from the plane,
where the optical depth is <1, can be explained by a low elec-
tron temperature for this region (Dickinson et al. 2003; Woer-
mann et al. 2000). Differences for other regions are most likely
due to errors in the extinction correction, since the assumption
of uniformly mixed dust and gas may not be valid. Although
W-band Galactic emission is primarily either from thermal dust
or free—free, linear combinations of the FDS dust model and Ho
predicted free—free have consistently been unable to describe the
WMAP data in the plane; these apparent errors in both templates
are consistent with those fitting errors.

5.3.7.2. ILC errors. Here we consider two types of error in the
ILC: error due to CMB-foreground covariance, and error due
to an incorrect estimate of the bias. See for example Hinshaw
et al. (2007). These are errors which leave residual foreground
signatures in the ILC estimate of the CMB.**

The bias correction is directly related to the foreground
model. To determine the ILC bias, we take maps of our

24 The ILC also has the three types of errors in the band maps mentioned in
Section 5.3.6.1: gain calibration error, instrument noise, and csc |b| foreground
monopole errors. These can be propagated through to the ILC using the ILC
regions and the weights given in Table 12.
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Figure 26. Estimates of foreground bias error remaining in the ILC map, on a scale of £15 uK. Top left: bias map from the three-year analysis of Hinshaw et al.
(2007). The map is zeroed outside the Kp2 cut. Top right and middle: bias estimates resulting from the application of the nine-year ILC coefficients to the Galaxy
models from MEM, Model 9, and MCMCg analysis. The bias map from the MCMCg analysis is overestimated in the plane (see text). Bottom left: ILC error from
foreground-CMB covariance. Within the Kp2 cut, this error and the foreground bias are of comparable magnitude. Bottom right: an estimate of the potential magnitude
of ILC foreground bias outside the Kp2 cut, based on the various model results, with heavy weight given to the MCMCg model. Bias errors of 10 uK or less are

indicated.

(A color version of this figure is available in the online journal.)

foreground-only estimate (without CMB) in each of the five
WMAP bands and construct an ILC directly. The specific attribu-
tion of the foregrounds to individual components (synchrotron,
free—free, etc.) is not needed in this step; we only require maps
of the total foreground in each band. If the foregrounds are suf-
ficiently complex (if they are not a linear combination of 4 or
fewer spectra in each region), then there will be residuals in this
foreground-only ILC, and this is the ILC bias. The ILC bias
consists of foregrounds that cannot be removed by any set of
ILC weights. With enough diversity in foreground spectral com-
ponents, we can find a linear combination of foreground spectra
that mimics the CMB, and we cannot remove the CMB signa-
ture from the ILC by construction, because the ILC weights must
sum to 1. To deal with the ILC bias, we construct a foreground
model, compute the ILC bias, and subtract it directly from the
ILC. Inaccuracies in the foreground model will translate to an
incorrect subtraction of the ILC bias.

An estimate of the ILC bias was computed by Hinshaw
et al. (2007) from simulations and three-year data. We revisit
the bias computation using the Galactic emission estimates in
the five WMAP bands from Model 9, MEM, and MCMCg. If
these models perfectly describe the total Galactic emission at
WMAP frequencies, then a bias map can easily be constructed
by applying the flight ILC weights (given in Table 12) to these
foreground maps. Such an application is shown in Figure 26.
For comparison, Figure 26 also shows the bias correction from
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the three-year analysis, which is non-zero within the Kp2 mask
and zero everywhere outside the mask.

Close to the Galactic plane, the bias computed from the
MCMCg model is larger than that for the other two models.
Removal of this bias from the uncorrected WMAP data ILC
shows a clear negative residual in the plane for || < 120°,
indicating over-correction. In addition, ILC regional weights
computed for the MCMCg model are sufficiently different from
flight data values to render the model “goodness” suspect near
the plane within the Kp2 cut. This is in part due to poorly
constrained apportionment between CMB and Galactic signals
in the plane. In particular there is an inverse correlation between
CMB and dust spectral index, resulting in higher fractional
residuals in portions of the plane for the MCMCg fit to V-band.
V-band typically has the highest ILC weight, so these residuals
lead to a higher bias for this model. Within the Kp2 cut, both
Model 9 and the MEM bias maps show similar behavior to the
three-year bias map, although details vary. Both models also
return foreground ILC regional weights similar to data values,
with the MEM showing the closest correspondence. Bias levels
within the Kp2 cut are estimated from these two models as near
20 uK or less. These levels are either of similar magnitude or
smaller compared to those computed for the CMB-foreground
covariance in the same location (see below).

Estimating the foreground bias at higher latitudes is more
difficult than for the Galactic plane regions. Since classic ILC
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weights are primarily determined using sky pixels within the
Kp2 cut (even for the high latitude region 0), correspondence
between derived model and data weights is only a useful
diagnostic for pixels within the Kp2 mask. In addition, both the
MEM and Model 9 results are ILC dependent: MEM subtracts
the ILC from the data as a prelude to foreground fitting, and
the six-band x2 Model 9 fit relies on the ILC as a strong
prior. Since the classic ILC algorithm applies no bias correction
outside the Kp2 cut, it is possible for any existing high-latitude
ILC foreground bias to either remove or add power to the high
latitude sky which is being fit to a Galaxy model. Since Galactic
signals are generally weaker here than in the plane, the fractional
error is potentially higher. Here the MCMC method provides the
most objective model for estimating high latitude bias, since the
CMB contribution is determined independently as part of the
fitting process. We have used an amalgam of the three model
bias maps to construct a very crude estimate of ILC bias outside
of the Kp2 cut, giving the most weight to the MCMCg result.
All three bias maps show a common characteristic dust-like
excess in the outer Galaxy near the edges of the Kp2 cut. Two of
the three bias maps show a low-level inner Galaxy deficit with
a synchrotron-like signature. Noise in the bias maps makes a
clear determination of the morphology difficult; we have used
templates to represent the spatial structure, but the fine structural
detail of the templates should not be taken as truth. Our rough
estimate of the high latitude ILC bias is shown at the bottom
right of Figure 26. High-latitude ILC bias is estimated at 10 uK
or less.

The CMB-foreground covariance was discussed in Hinshaw
et al. (2007). Because the ILC weights are constructed by
minimizing the variance in a region, the weights adjust to allow
foreground fluctuations to cancel CMB fluctuations as much as
possible. This is more of a problem for small regions. Because
the total foreground level is well measured in the plane (even
if we allow complete uncertainty in the CMB for an error term
of o ~ 70 uK, the foregrounds are bright enough to make
this term small), we can estimate how much the foregrounds
could correlate with a random CMB sky with a given power
spectrum. This estimate will not change substantially with
different foreground models (different estimates of how much
of the WMAP data is CMB and how much is foreground)
because it only requires knowledge of the total foreground level,
which is well constrained by the data. We can experimentally
determine the CMB-foreground covariance by generating many
CMB simulations, adding a foreground model to each CMB
simulation, making a bias-subtracted ILC, and forming an
error map by subtracting the true CMB from the ILC in each
simulation. This gives us an ensemble of error maps, which
span a 48 dimensional space. Since the CMB simulation is
perfectly subtracted by any set of weights that add to 1, our
error maps contain no CMB from the simulation. They only
contain errors from residual foregrounds. Since there are 60
weights (going into the 12 regions of the ILC) and 12 constraints
where sets of weights must add to 1, there are 48 degrees of
freedom in the ILC error. As with the ILC bias, the results
do depend on foreground model, but not nearly as strongly, as
mentioned above.

We construct the 48 maps showing the ILC foreground-CMB
covariance modes at res 6 as follows. We take the foreground
Model 9 from Section 5.3.6 and prograde it directly to r9 (with
no extra smoothing), where the ILC regions are defined. Then
we form ILCs by the usual method, except that we do not smooth
between regions as described in Equation (18) of Hinshaw
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Figure 27. Top map is the nine-year ILC. The bottom sky map displays the part
of the ILC error in each pixel due to foreground-CMB covariance, using the
Model 9 foreground estimate from Section 5.3.6. This shows the square root
of the diagonal of the covariance matrix, on a linear color scale. Therefore it
shows the standard deviation of expected error fluctuations, marginalizing over
correlations between pixels. The color scale range was chosen because the r6
ILC map has a CMB standard deviation of 66 1 K. Thus, full scale on this map
has equal variance with the CMB, and at the halfway point on this color scale
the foreground-CMB error variance is down to a quarter of the CMB variance.

0 T(uK)

(A color version of this figure is available in the online journal.)

et al. (2007) because we next degrade back to r6, which has a
similar effect. We do this for 1000 CMB realizations, and form
a 49152 x 1000 matrix of the maps, of which we take a singular
value decomposition to determine the most common modes,
taking care to normalize properly. There are only 48 singular
values that are not effectively zero; we use the 1000 simulations
to better sample these 48 modes and better determine their
eigenvalues.

These modes provide the eigenvalues with nonzero eigen-
vectors of the foreground-CMB covariance error matrix. We
compute the square root of the diagonal elements of this matrix
to provide a visual estimate (that ignores correlations) of this
error. The nine-year ILC map and this error map are shown in
Figure 27.

We demonstrate the use of this error description by propa-
gating the foreground-CMB error to the quadrupole—octupole
alignment, which we describe in Section 7.4.

5.3.7.3. ILC considerations. The primary difficulty with any
method of extracting the CMB from the data is determining
how much of the temperature in each pixel is foreground and
how much is CMB. The data only constrain the sum of these
two, and we must make other assumptions in order to separate
them.
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Figure 28. Dominant power law in a pixel, combined with information about
whether the data in that pixel look like a pure power law, over the WMAP
bands. This image was generated by individually specifying the hue, saturation,
and value (HSV) for each pixel. The hue, shown in the color scale, describes
which power law best fits the data. It is labeled with values of 8, where the
power law in antenna temperature is T (v) o< v, The saturation describes how
well the data fit a power law, so that desaturated (white, gray, black) pixels
are not well fit by any power law. Specifically, let n4 be a five-vector of the
WMAP thermodynamic temperatures, rescaled to be a unit vector, and let 7,
be a five-vector of the best-fit power law in antenna temperature, converted to
thermodynamic and then also rescaled to be a unit vector. Then the saturation
isna - np, which is just the cosine of the angle between these two vectors. The
scale is from 0.995 (unsaturated) to 1.0 (completely saturated), so if the two
five-vectors are more than 5273 apart, the pixel is unsaturated. The value in the
HSV color space is the magnitude of the data five-vector, so it is the square
root of the sum of the squares of the WMAP thermodynamic temperatures, on
a scale of 0-2 mK. Therefore blacker pixels have less emission in all bands;
lighter pixels have more emission. The nine-year ILC was subtracted from the
WMAP data, before computing the above image.

(A color version of this figure is available in the online journal.)

The ILC specifically assumes that the CMB has a blackbody
spectrum while the foregrounds do not. In addition, the ILC
assumes that while the foregrounds may change amplitude
across a region, an individual foreground does not change its
spectral shape (proportional to antenna temperature as a function
of frequency), so that a set of ILC weights can null a given
foreground everywhere in a region. Along with this, the ILC
assumes that there are four or fewer foreground spectral shapes,
since if there were more, we would not be able to remove them
all with only the five bands of WMAP data. If there were five
foreground spectra, some linear combination of them would be
able to mimic a blackbody spectrum, which the ILC has been
designed to keep.

Figure 28 is one way to visualize the foreground complexity
of the WMAP data. It shows in color the regions that are
approximate power laws, and it shows in grayscale regions that
are not well fit by a single power law. The ILC methodology can
handle more than a single power law foreground (it can remove
up to four of them), so this is not directly a map of where the
ILC will work well. However, this figure does show the varying
nature of foreground spectra across the sky.

Choosing the ILC region size is a trade-off between fore-
ground complexity and foreground-CMB covariance. By choos-
ing small regions, we give the foregrounds less chance to
vary their shape over a region (such as by changing a syn-
chrotron spectral index). But small regions are more susceptible
to foreground-CMB covariance, as discussed in Hinshaw et al.
(2007), which suppresses the variance of the ILC to the extent
that the foregrounds and CMB correlate.

We could, for example, take minimum variance to be our
figure of merit for an ILC map and allow arbitrary gerryman-
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dering of the regions on a pixel-by-pixel basis. This could be
done with a simulated annealing algorithm adjusting some small
number of regions (e.g., 4) within a galactic mask. However,
this would result in an ILC with variance inside the mask well
below the expected CMB variance, because the regions opti-
mize the foreground-CMB covariance to artificially suppress
the ILC fluctuations. More knowledge than just the ILC vari-
ance is needed for intelligent region selection.

The foreground-CMB covariance can be estimated moder-
ately well, since it only depends on an approximate foreground
model and knowledge of the CMB power spectrum. We es-
timate this error in Section 5.3.7.2 and propagate it to the
quadrupole—octupole alignment in Section 7.4. Other errors,
such as those due to foregrounds changing spectral shape over
a region or more than 4 foreground spectra in a region (these
cause the ILC bias), are harder to estimate because they require
an accurate separation of CMB from foregrounds in the first
place. The demands on this foreground model accuracy depend
on the amplitude of the foregrounds. For a pixel dominated by
CMB, a slight foreground correction need not be extraordinar-
ily accurate in a fractional sense. Yet for an extremely bright
foreground location on the plane (say, a bright Hir region),
the foreground model must have supreme fractional accuracy
to distinguish meaningfully a tiny CMB contribution from the
dominating foregrounds.

A more accurate ILC would require either a better bias
subtraction or better region selection designed to minimize
the needed bias correction; both of these require a highly
accurate foreground model. A foreground model that separates
out different components (such as synchrotron, free—free, etc.)
is not needed, only a model that gives the total foreground in
each band. The ILC bias can be directly calculated by making
an ILC of this foreground-only data set, and regions could be
selected to minimize the bias correction needed in each region.
However, if we already have an accurate separation of the CMB
from foregrounds, then the ILC method is no longer necessary,
since we already have a map of the CMB.

6. NINE-YEAR ANGULAR POWER SPECTRA

In this section we present the nine-year WMAP intensity and
polarization angular power spectra. We describe changes in
methodology from earlier analyses, and discuss the new results.

The nine-year temperature-temperature (TT) power spectrum
computation uses the full set of V-band and W-band cross-
power-spectra. For 2 < I < 32 the TT power spectrum relies
on the Gibbs sampled pixel likelihood, as was the case with the
five-year and seven-year data releases. New for this nine-year
analysis, the 32 < / < 1200 TT power spectrum is calculated
using unbiased and optimal C~! estimation. Earlier releases
provided power spectra computed using the MASTER method,
an unbiased but non-optimal quadratic estimator (Hivon et al.
2002). As was the case for the seven-year WMAP analysis,
the polarization power spectra continue to be computed using
MASTER.

Forthe 2 < I < 32 Gibbs sampling, we use a slightly different
ILC map than we have in the past. We use a bias-corrected one-
region ILC map. The same weights are used for the whole
sky; these weights are chosen to minimize the variance of the
ILC outside of the combination of the first-year Kp8 mask and
the seven-year point source mask. The data used for this low-
resolution analysis are the deconvolved one-degree-smoothed
nine-year maps for K- through W-bands. The coaddition over
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nine years was done using a slightly older version of N that
was available at the time we did the calculation; this has a small
effect on the final nine-year temperature maps.

The bias correction for this ILC requires a foreground model.
We determine the foreground model by fitting four one-degree
smoothed templates and a monopole term to the one-degree
smoothed W-band data. We do the fit outside the combination
of a Kp22 mask and seven-year source mask, to avoid requiring
that the templates be highly accurate in the brightest portion
of the galactic plane. The four templates are as follows. We
use the FDS model 8, evaluated at 94 GHz, as described
in Section 5.3.2.1; a de-extincted Ha map with scattering
correction applied, described in detail in Section 5.3.1; a dust
model emission “delta correction” map, computed as FDS
model 8 multiplied by (Taust — (Tqust))/ (Taust), Where Taug 1S
the dust temperature map from SFD and the average dust
value (Ty,s) Was calculated outside the Kp2 mask; and a map
of discrete Hir region emission (primarily along the plane),
evaluated at 2.7 GHz and 1 degree beam width using data
from the Paladini et al. (2003) catalog of 1442 Galactic Hut
regions. This last map was scaled to 93 GHz assuming an
optically thin free—free spectrum for each source. After removal
of these foregrounds from the W-band map, we consider the
remainder to be a pure CMB map. To obtain our foreground
model of the galaxy, we subtract this CMB estimate from each
band of the flight data. Our foreground model therefore has
information about how much temperature comes from the CMB
and how much from foregrounds, but it does not break the
foreground temperature into physical components, since this is
not necessary to estimate ILC bias.

The ILC bias can then be calculated as the error in an ILC
map, averaged over many CMB realizations but using the same
foreground model. It can be directly computed by making an
ILC of the foreground-only data, without adding in a CMB
simulation. We subtract this ILC bias from the one-region ILC
described above.

We do use CMB simulations to determine the foreground-
CMB covariance error modes. Using a power spectrum from
a set of seven-year simulations, we generate 100 CMB real-
izations, add our foreground model, and generate a one-region
ILC as above. There are four error modes, since we generate
the ILC from five weights with the single constraint that they
must sum to 1. We determine these modes from the covariance
matrix of errors. We find that one mode is negligible outside of
the KQ85y9 mask that is used for Gibbs sampling, so we only
marginalize over the three most important CMB-foreground co-
variance modes in the Gibbs sampler.

We smooth the ILC map to 5° FWHM before any masking;
this is the map over which we Gibbs sample. Since the ILC
is already smoothed to 1° FWHM, this requires an additional
smoothing by +/24 2 4°9. We then degrade the map to r5, and
add 2 uK rms noise per pixel to the r5 ILC, as was done in the
five-year and seven-year data releases. The Gibbs sampler uses
a mask based on degrading the KQ85y9 mask to 15, and leaving
unmasked only those 15 pixels for which >50% of the 19 pixels
are unmasked. The KQ85y9 mask allows through 2353196 out
of 3145728 pixels, or 74.8% of the sky. After degrading to r5
by the above method, the mask lets through 9496 out of 12288
pixels, or 77.3% of the sky. According to our newly estimated
ILC errors, the pixels near the edge of this mask may fluctuate
randomly up to about ~11 uK, so residual foregrounds are a
small fraction of the CMB variance when the masked ILC is
used.
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6.1. High | TT Summary

The optimal (i.e., minimum variance) power spectrum esti-
mator has been known for many years (Tegmark 1997; Bond
et al. 1998) but has appeared to be computationally intractable
for a large (=10° pixel) experiment such as WMAP. As a result,
standard practice is to use estimators that do not achieve op-
timal statistical errors, in exchange for reduced computational
cost. For the nine-year WMAP data, we replace the MASTER
power spectrum estimator by the optimal unbiased quadratic
estimator. This optimal estimator has now been implemented
in a computationally affordable way. We report the first WMAP
power spectrum with optimal error bars on the TT spectrum
across the entire observed range of scales 2 < [ < 1200.

The basic building block is a fast algorithm (Smith et al. 2007)
for multiplying a temperature map (thought of as a length-Np;x
vector x) by the Npyix-by-Npix inverse covariance matrix c.
Here, the covariance matrix C = S + N consists of signal and
instrumental noise contributions, and incorporates the Galactic
mask, the instrument beam size, and marginalization over the
monopole and dipole. The multigrid algorithm from Smith et al.
(2007) allows a single multiplication operation of the form
x — C~'x to be performed for WMAP in ~10 core-minutes,
although it is impossible to compute (or even store) the matrix
C~! in dense form. This means that all computations involving
C~! must be formulated so that they are based on a (reasonably
small) number of multiplications of the form x — C~'x. .

In practice, we need to modify the optimal estimator C; by
removing auto-correlations, which are highly sensitive to the
instrumental noise model. For an all-sky experiment such as
WMAP the noise must be known to 50.1% to avoid a statistically
significant additive bias to C;. This level is impractical to
achieve, but sensitivity to the noise model can be mitigated
by constructing a modified estimator, CIX, that only includes
terms calculated from cross-spectra.

The unnormalized estimator written out for a single map d is

= g T -1
&gld] = Ed C AIA'Cd (40)
where A is the a;,-to-map operator that includes beam convo-
lution, and II; projects out all modes not at a given multipole /.
The optimal power spectrum estimator C; is constructed from

Cild] = F; & ld] — Ny, (41)

where A is the noise bias and the Fisher matrix Fj; is given by

1 T -1 T -1

Fll’ = ETI'(A C A H[ A'C AH]/). (42)
We also construct a cross-correlation-only power spectrum
estimator C;° with zero noise bias, by only keeping cross-
correlations between maps with independent noise. More specif-
ically, we divide the data into maps d, , where o« = (c, y) indexes
a combination of a DA ¢ = V1, V2, W1, W2, W3, W4 and a
specific single year of WMAP data, y. The unnormalized estima-
tor & defined in (40) can then be written as a double sum over
pairs («, B); we simply keep the terms with o # B to define an
unnormalized cross-correlation estimator Z‘l\‘ (In implementa-
tion, it is more computationally efficient to subtract the terms
with @ = B.) We then define the cross-correlation estimator C;*
by ax = (F,f,)’la,x, where F);; is an appropriately modified
Fisher matrix.
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The WMAP C~! TT pipeline provides a power spectrum
estimate and an estimate for the covariance matrix Cov(Cy, Cy).
To account for the slight non-Gaussianity of the likelihood at
| > 32, our likelihood remains the combination of a Gaussian
and offset log-normal distribution in 4™, as discussed in Verde
et al. (2003). Discussion of the log-normal distribution for
cosmological likelihoods is also in Bond et al. (2000) and Sievers
et al. (2003). We use a noise estimate to provide the offset in our
offset log-normal distribution, .4;. This is the error in the power
spectrum due to instrument noise, in the form of [({+1)C;/(27).
Additional variables to describe the likelihood include

~ I+ DG
2 (+ DG

I+ nHck
= th = T B 4
! 2 @ 2 “3)
=G+ M) 2= (6" +.4) (44)
Dy = (6" + M) Qu (€' + M), (45)

where Qy is the inverse covariance matrix of the power
spectrum estimate %; provided by the optimal estimator. Finally,
we write the WMAP likelihood as a combination of a Gaussian
and offset log-normal distribution.

In LGauss = —% Z (Cgfh - %)Qu/ (%,Ih - %) + const.  (46)
w

1 — —~
In%Nn= — 5 Z (leh - Zz)c@U/ (th/h - Z[/) (47)
T
1 2
In Lwmar = 3 In LGauss + 3 In AN (48)

6.2. The C~! Pipeline

We first applied the new C~! pipeline to the seven-year
WMAP data after its publication. We performed end-to-end tests
to arrive at the first WMAP power spectrum that is optimal for
all values of /. We then compared the new power spectrum
with the pseudo-C; MASTER spectrum from the WMAP seven-
year release. We did not propagate the optimal power spectrum
to cosmological parameter constraints for the seven-year data.
Based on the seven-year power spectrum comparisons, we
decided to implement the C~! power spectrum for what are
now the nine-year WMAP results.

The WMAP seven-year data C~! evaluation used foreground-
cleaned maps from the six V- and W-band DAs, further sub-
divided by individual year data y = 1,2,...7, for a total
of 42 cross-correlations. We masked regions of high Galac-
tic foreground emission and bright point sources by using the
KQ85 mask (Gold et al. 2011). We report a power spectrum to
Imax = 1200, but we ran the pipeline to /;,,x = 1500 to avoid
edge artifacts near the maximum multipole of the reported power
spectrum.

Unless otherwise specified, all results are based on the
power spectrum estimator C;°, which only contains cross-
correlations. After estimating the power spectrum, we subtract
an estimate of the bias due to unresolved point sources, assuming
a single population of radio sources with frequency dependence
gant(v) o v™2% in antenna temperature, or equivalently

hv ) 2 (exp(hv/kToms) — 1) 200
kTCMB eXp(h U/ k TCMB)

g(v) < (49)
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in thermodynamic temperature units, where / is Planck’s con-
stant, £ is the Boltzmann constant, and Tcyp is the CMB
monopole temperature.

6.2.1. C~'! Pipeline Tests

In our power spectrum pipeline, we precompute three quan-
tities: a transfer matrix Fj; that represents the mean response of
the unnormalized estimator at multipole / to CMB power at mul-
tipole I’; the bias of the power spectrum estimator due to unre-
solved point sources; and the noise bias, for the auto-correlation
estimator C; (but not for the cross-correlation estimator C;*).
In Figure 29, we present end-to-end Monte Carlo tests of these
precomputations using three simulated ensembles: CMB-only
simulations, point source simulations, and noise-only simula-
tions. In all cases the ratio of the recovered power spectrum
(averaged over many Monte Carlo realizations) to the expected
power spectrum is consistent with unity.

Our pipeline uses interpolation in / to estimate transfer
matrices, noise bias, and point source bias. We did an end-
to-end test of the interpolation accuracy as follows. We reran
the pipeline with half the interpolation step size, treated the
difference between the two estimates as a power spectrum bias,
and then we did a Fisher matrix forecast to determine whether
the resulting bias was statistically significant. In all three cases,
we found that the resulting bias is <0.020, i.e., much too small
to be important.

We _estimate the power spectrum covariance matrix
Cov(C/*, C;') using Monte Carlo simulations. A direct Monte
Carlo estimation of a 1200 1200 covariance matrix would re-
quire a prohibitive number of simulations, but this can be sped up
using computational tricks: (1) the covariance Cov(Cy, Cy) of
the auto-estimator is equal to the inverse Fisher matrix F,',
so we only need Monte Carlos for the estimator difference
(C — Cp); (2) we only estimate variances and assume that
off-diagonal covariances are given by appropriately rescaling
Fisher matrix elements; and (3) we smooth the variance es-
timates in . These tricks allow the covariance matrix to be
accurately estimated from a small number of simulations. As an
end-to-end convergence test, we compared covariance matrices
Cys6, Cs12 constructed using 256 and 512 Monte Carlo simula-
tions respectively. We found that all matrix entries were nearly
identical in that all Karhunen—Logve eigenvalues of the matrix
pair (Css6, Cs12) are between 0.999 and 1.001.

6.2.2. C~! versus MASTER Comparison

In Figure 30, we show the binned power spectrum estimates
for the seven-year WMAP data obtained using the optimal
pipeline, described above, with the sub-optimal MASTER
results used in the seven-year WMAP release (Larson et al.
2011) shown for comparison. The agreement is excellent; the
two estimators agree to better than 1o in every /-bin, as expected
when comparing an optimal and near-optimal analysis of the
same data.

To compare the two estimators more closely, in the left panel
of Figure 31 we show the difference between the optimal and
sub-optimal estimators, before and after smoothing in /. No sys-
tematic trends are seen, as expected if the difference is pure
statistical scatter. There is a small region near / = 50 where
the optimal estimator fluctuates to a lower value of C; than
the sub-optimal estimator. This fluctuation slightly shifts the
best-fit value of the spectral index n;, as discussed by Hinshaw
et al. (2013). This appears to be the most important differ-
ence between the two estimators for purposes of cosmological
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Figure 29. End-to-end Monte Carlo pipeline tests. The gray lines are individual I’s and the black lines are boxcar smoothed with Al = 50. In all four cases, the ratio of
the Monte Carlo estimated power spectrum and the predicted value is consistent with unity. Top left: ratio (C | dsig/ ciid ;¢ between mean estimated power spectrum of
CMB-only simulations and the fiducial input spectrum. Top right: same as top left panel, but using the auto-correlation estimator C; instead of the no-auto estimator
Cr |- Bottom left: ratio between mean estimated power spectrum of noise-only simulations and the predicted noise bias, using the auto-estimator c 1. Bottom right: ratio
between mean estimated power spectrum of point source simulations and predicted bias.
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Figure 30. Binned WMAP7 power spectrum estimates using the optimal pipeline

from this paper (left/black error bars), with the estimates from the WMAP7

release (Larson et al. 2011) shown for comparison (right/gray error bars).
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parameter estimation, aside from the effective sensitivity im-
provement discussed below.

The right panel of Figure 31 shows the ratio between the
power spectrum variance Var(C;) obtained using the optimal
and sub-optimal estimators. The optimal estimator improves
the variance by 7%—17% depending on the value of /. This level
of improvement is roughly comparable to the improvement in
going from seven-year to nine-year data (which varies from no
improvement at low [ to a factor of 9/7 = 1.28 in C; at high [).

6.3. WMAP Power Spectra

The nine-year TT angular power spectrum is shown in
Figure 32. The cosmic variance curve on the power spectrum
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has been adjusted to more accurately reflect cosmic variance.
In the past, the value of f, that we used to expand the error
bars was generated by the MASTER code, and it was roughly
the geometric area of the observed sky, which was not optimal.
With the C~! method of estimating the power spectrum, such
as was used in the Gibbs sampler, one can reconstruct the low
[ multipoles on the full sky more accurately than one might
naively expect. Doing so makes fyy,; close to unity at very
low /. In Figure 32, we use the value of fq; generated by the
high-/ C~! code, which is applicable at all lower /.

The shaded region represents the 1o error bar from cosmic
variance, which is the region where 68 % of binned power spectra
that are randomly sampled from the theory curve would appear.
We form the error bars around the 68% with highest probability
density per unit C;. These are determined by sampling 10°
power spectra from the theory spectrum and binning them.
At each multipole /, the value of the power spectrum is

sampled from a sz distribution (which has a mean of v) with
v=Q2l+1)f2 oy, degrees of freedom. The spectrum is then
scaled by [(I + I)Cl /(2 v) to give it the correct mean. Sampling
from the x?2 distribution rapidly is done by choosing random
numbers in the interval [0, 1] and then using an interpolated
cumulative density function to determine the value of x 2. After
binning the power spectra, we determine the location of the error
bars for each bin by finding the pair of samples that enclose 68%
of the other samples in the bin and are closest together.

After determining the bin error bars, we consider how to
plot the cosmic variance error bar for a binned angular power
spectrum. Due to the abrupt change in binning, from a bin size
of 1 at/ = 2,3 to a bin size of 2 for the bin containing / = 3
and / = 4, the cosmic variance error bar drops significantly.

Despite using a binning scheme, we opt to plot the theory
power spectrum as a curve at each /, instead of a binned quantity.
Recall that for the random distribution of /(I + 1)C; /(27) values,
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Figure 31. Detailed comparison between WMAP7 optimal power spectrum
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Figure 32. Nine-year WMAP TT angular power spectrum. The WMAP data are
in black, with error bars, the best-fit model is the red curve, and the smoothed
binned cosmic variance curve is the shaded region. The first three acoustic peaks
are well-determined.

(A color version of this figure is available in the online journal.)

the mean of the theory spectrum values in a bin is the mean of
the binned cosmic variance samples. Binning the mean of the
distribution at each [ gives the mean of bin. (This is not true for
the median or the mode.) Likewise, we want to put an unbinned
error bar on the curve with the height of the upper error bar as
the height of the upper error bar on the binned value. In this way,
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Figure 33. TE spectrum. The WMAP data points and error bars are in black. The
red theory curve is fit to the full WMAP data, including the TT angular power
spectrum data. Note that the vertical axis on these spectrais (I+1)C; /(27 ) instead
of I(l + 1)C; /(2m); this vertical scale differs from that of the TT spectrum plot
by a factor of /. The lowest / TE bin where 2 </ < 7 has been adjusted using a
pixel likelihood code.
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(A color version of this figure is available in the online journal.)

the average height of the cosmic variance curve over the bin is
the correct upper error bar for that bin. We then use a spline
interpolation of the upper and lower error bars between each bin
center. This makes the above statement fractionally less true,
but prevents abrupt changes in the height of the cosmic variance
curve at the bin edges. The measurements are cosmic variance
limited for [ < 457 and have a signal-to-noise ratio above unity
for I < 946.

The change of the template cleaning method from the seven-
year to the nine-year analysis results in a slight change in the
low-I power spectrum. For 2 < [ < 16, using the MASTER
method with the KQ85y9 mask, the absolute value of the change
in I(l + 1)/(27)C; due to the template cleaning is typically 4%
of cosmic variance per /.

Figure 33 shows the temperature cross-power spectrum with
the E-mode polarization (TE) spectrum. This angular cross-
power spectrum is computed using the MASTER likelihood
code, with the lowest 2 < I < 7 bin determined using the
more accurate pixel likelihood code. This was conditioned on
the maximum likelihood power spectrum, and varied the value
(I + 1)C®/(27r) = Br—. The value B, is independent of /.

To maintain the requirement that C;'* < ~/CFEC]T for a given
bin value B,—7, we adjust the CFF spectrum upward from the
best-fit theory only as much as needed, on an [/ by [ basis.
As we vary B,_;, the error bar is based on the minimum x>
value, and where Ax? = 1 in either direction. This gives an
asymmetric error bar. Note that this would be a 1o error bar for
a Gaussian distribution, but it does not necessarily contain 68%
of the likelihood due both to conditioning on the higher / TT, TE
and EE power spectra, as well as to the non-Gaussian shape of
the power spectrum meaning that Ay? = 1 does not correspond
exactly to a 68% confidence interval.

Figure 34 shows the temperature cross-power spectrum with
the B-mode polarization (TB) spectrum. This angular cross-
power spectrum is computed using the MASTER likelihood
code. The TB angular power spectrum is expected to be zero
and the data are consistent with this expectation. The 2 < / <
7 EE power spectrum is shown in Figure 35. The 2 <1 < 7 BB
power spectrum is shown in Figure 36.

For running chains, we update the Sunyaev Zel’dovich
spectrum template to the spectrum given by Battaglia et al.
(2012). Their thermal SZ spectrum is multiplied by 3.61
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to scale from 150 GHz to V-band (61 GHz). To convert
from 150 to 148 GHz for ACT, we multiply by 1.05. The
kinetic SZ spectrum does not need to be rescaled. The sum
of kinetic and thermal spectra is used as the SZ template, for the
frequency corresponding to each experiment; it is this sum that
is multiplied by the SZ amplitude which is varied in the Markov
chains.

7. POWER SPECTRUM GOODNESS OF FIT
AND MAP ANOMALIES

7.1. Goodness of Fit

The likelihood code we release comes with a test code that
runs on the WMAP nine-year best-fit ACDM power spectrum
(with no extra priors). This splits up the likelihood into several
parts. We first look at each part and then combine the results for
an overall estimate of goodness of fit. The high-/ TT spectrum
in the  range 33-1200 has 1168 degrees of freedom, and a x>
value of 1200. This gives a reduced x? value of 1.027, and the
probability to exceed this is 25.1%, which indicates a good fit to
the data. The high-/ TE spectrum in the / range 24-800 has 777
degrees of freedom and a x? value of 815.4 for the same model.
The probability to exceed this x2 value is 16.5%, which again
indicates a good fit. The low-/ polarized pixel-based likelihood
contains 585 unmasked res 3 pixels each with a Q and U Stokes
parameter, for 1170 degrees of freedom. The x2 value for this
part of the likelihood is 1321. The probability to exceed this x>
value is 0.13%, which is unusually low.

We have not yet mentioned the low /! TT and TE spectra.
Recall that the low [ polarized pixel likelihood decorrelates the
temperature and polarization maps of the sky using the ILC and
TT and TE spectra, as described in Appendix D of Page et al.
(2007). After doing this, one obtains a x 2 for the pixelized QU
likelihood that incorporates information about TE, which is why
we do not have a separate TE X2 value for / < 23.Thel < 32
TT likelihood is computed by a Blackwell-Rao estimator, based
on Gibbs samples. This code does not naturally generate a
value comparable to a x> quantity. However, it does provide
a likelihood function which can be applied to any low [ TT
spectrum, and in the process of doing the sampling one obtains
many spectra (not smooth, typically) which have been sampled
from this likelihood function. One can look at the distribution of
likelihoods resulting from these spectra and determine whether
our best-fit spectrum creates an unusually low likelihood. We
do this and find that our best-fit power spectrum generates an
acceptable likelihood value.
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Figure 35. Individual likelihood functions of the low ! EE polarized power
are shown for / = 2 through 7. When fitting at a particular /, we set C; at all
other values of / to the value in the best-fit WMAP power spectrum. In addition,
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black diamonds denote the best-fit WMAP EE power spectrum. These likelihood
functions include sample variance.
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Figure 36. Low [ BB spectra. Other C; values are fixed to the best-fit WMAP
power spectrum.

Adding the three x> values mentioned above gives 3115
degrees of freedom with a total x? value of 3336.4. The
probability to exceed this x2 value is 0.3%, which is still
unusually low. This is driven completely by the low [ polarized
likelihood.

We investigated the origin of the excess x2 in the low-I po-
larization data. To see if there is any evidence for systematic
effects in difference maps, we computed x> from six combi-
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nations of difference maps involving Ka-, Q-, and V-bands:
Ka—Q, Ka—V, Ka—QV, OQ—V, Q—KaV, and V—KaQ, where
QV,KaV, and KaQ are the corresponding weighted-averages
of maps in two different frequency bands. We find that none
of these combinations show an anomalous x 2. The average and
standard deviation of x? is 1180 = 47 for 1170 degrees of free-
dom. The largest value of x? is 1236 from Ka—QV, and the PTE
is 8.8%. We then computed the optical depth, 7, from Ka—QV,
finding that it is consistent with zero (the maximum likelihood
value lies in T < 0.002, well below the 68% CL statistical un-
certainty of §t = 0.014). Therefore, we conclude that the low-/
polarization data pass the null test, and any residual systematic
error we do not detect in difference maps has a negligible impact
on our estimation of t. This null test also shows that the residual
polarized synchrotron emission in Ka, if any, has a negligible
impact on t.

To get an idea of how much additional noise we would need to
include in the noise covariance matrix of the co-added KaQV
map to explain the x2, we add an uncorrelated noise variance
to each r3 pixel (Ngge = 8), N;j — N;; + 038;;. We find
0,3 = 0.27 uK brings the reduced x? to unity. The instrumental
noise per r3 pixel of the co-added KaQV map ranges from
0.43 to 1.57 uK, with the average and standard deviation of
0.86 £ 0.17 uK. Therefore, an additional noise variance, ar23,
required to explain the excess x? is an order of magnitude
smaller than a typical instrumental noise variance per 13 pixel
of the co-added Ka QV map.

Next, we computed the tensor-to-scalar ratio, r, from the
low-I/ B-mode polarization data only. We found that r was
consistent with zero, with the 95% CL upper bound of r < 2.0.
The maximum likelihood value occurs at »r = 0.40, which
is already ruled out by the limit from the CMB temperature
power spectrum, r < 0.17 (95% CL); thus, it cannot be due
to inflationary B-modes. For r = 0.4, the low-/ B-mode power
spectrum amplitude is less than the scalar E-mode amplitude by
a factor of six, and thus it is a small signal (and is consistent
with zero).

We next examined residual foregrounds. By enlarging the
edges of the polarization PO6 mask by 1, 2, and 3 pixels, we
found that the PTE increased from 0.1% to 0.9%, 5%, and 12%,
respectively. While this may suggest the presence of residual
foregrounds in the polarization data, this may also be partly due
to the reduction of degrees of freedom (the degrees of freedom
decrease from 1170 to 850, 582, and 344, respectively), as fewer
degrees of freedom are more forgiving for larger values of the
reduced y . Indeed, changes in the values of the reduced x? are
modest: it drops from 1.13 to 1.12, 1.10, and 1.09, respectively.

Therefore, we conclude that the excess X2 likely to be at least
partially due to residual foregrounds, which we do not include in
the noise covariance matrix. These foregrounds may not mostly
be from the regions near the mask edges. However, the effect on
our estimation of t is negligible compared with the statistical
uncertainty.

7.2. Power Spectra Goodness of Fit with Even—Odd Multipoles

The analysis of the even excess effect seen in the seven-year
TT power spectrum (Bennett et al. 2011) has been repeated
using the nine-year data. The even excess statistic compares the
mean C; at even values of [ with the mean C; at odd values of [
within a defined / domain. More formally, we define

(ClObs B Clth)even B ( lObS B Clth)odd
")

] =
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Figure 37. Top: even excess & in the observed power spectrum, in bins of

Al = 50, compared to the mean and scatter from 512 Monte Carlo realizations.
Bottom: & as in the top plot, converted to significance units by normalizing to
the Monte Carlo scatter in each bin. Only the [ = 250-299 and ! = 300-349 bins
show a significance greater than 1o . Black: nine-year results; blue: seven-year
results from Bennett et al. (2011).

(A color version of this figure is available in the online journal.)

where C; = I(I + 1)C;/2m, the superscript “obs” refers to the
observed power spectrum, and the superscript “th” refers to a
fiducial theoretical power spectrum used for normalization. In
this paper, as before, we bin & by Al = 50.

The seven-year analysis used a set of more than 11000 Monte
Carlo CMB simulations to probe the significance of the even
excess. This large set was computationally inexpensive because
the TT power spectra were estimated using MASTER (Hivon
et al. 2002). However, in the nine-year analysis, the TT power
spectra are computed using a new estimator weighted using the
C~! matrix, and the Monte Carlo realizations are much slower.
Consequently, we now use a smaller set of 512 simulations of
the full nine-year C~'-weighted power spectrum.

Figure 37 shows & as a function of / within bins of Al = 50.
Results from the nine-year analysis are shown in black, and those
from the seven-year analysis are shown in blue (see Bennett
et al. 2011, Figure 9). The overall trend of the results with [ is
similar in the nine-year analysis to what it was in the seven-year
analysis, except that the rise in & over the domain 50 < [ < 350
is no longer monotonic. Also, in the nine-year analysis, two of
the three negative values of &, which denote excess power at
odd values of [, have higher absolute value than in the seven-year
analysis.

Bennett et al. (2011) examined a combined / bin for 250 <
I < 350 as an example of a posteriori analysis. The value
of & in this bin was 0.0446, as compared to a Monte Carlo
scatter of o = 0.0155, for a 2.90 level of significance. The
equivalent values for the nine-year analysis using the C ~! power
spectrum estimator are & = 0.0381, with a Monte Carlo scatter
of o = 0.0144, for a reduction in the level of significance
to 2.60.

The de-biased & test described by Bennett et al. (2011) has
also been repeated for the nine-year analysis. This test chooses
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Figure 38. Likelihood of the true value of (! + 1)CIT/(27) = 6CTT /(27) for
[ = 2, based on our measured sky. This is computed using the Blackwell-Rao
estimator run on Gibbs samples, and it marginalizes over all other values of CITT.
The maximum likelihood point is shown as the pink line; 1o and 2o regions are
shown as blue and green lines. The best-fit ACDM theory spectrum computed
on WMAP nine-year data only is shown in red.

(A color version of this figure is available in the online journal.)

the maximum value of the bin-by-bin statistical significance
&1 /o (&) from the [ bins being considered, rather than focusing
on only one bin, so that the a posteriori character of the test is
weakened (see Bennett et al. 2011, Figure 11). We use bins of
width Al = 50 for 50 </ < 600. The nine-year test gives simi-
lar results to the seven-year test, but at a reduced significance. In
the seven-year test, the de-biased &; test gave a PTE of 5.11% for
the observed spectrum as compared to the Monte Carlo distribu-
tion, whereas in the nine-year test, the PTE is 14.3%, equivalent
to a 1.1o result. Similarly, bins with a high value of the odd
excess (—&) were less frequent than expected in the seven-year
power spectrum, with a PTE of 98.9% in the de-biased test.
This effect is also weaker in the nine-year power spectrum,
which gives a PTE of 90.2%, equivalent to a 1.30 result.

The even-odd effect in the observed power spectrum does
not appear to be an artifact of the power spectrum estimator,
since it is seen both with the MASTER method (seven years)
and with the C~! method (nine years). However, in the nine-
year analysis, the superficial test for 250 < [ < 350 yields a
result with reduced significance as compared to nine years, and
the de-biasing strategy further reduces the significance of both
the even power excess and the odd power deficit to ~1o. The
conclusion of Bennett et al. (2011) that the even-odd effect is
probably a statistical fluke stands, and indeed is strengthened,
after the nine-year tests.

7.3. Quadrupole Amplitude

Since the first-year WMAP data release there has been
speculation about the low value of the / = 2 quadrupole
moment. As concluded in the Bennett et al. (2011) seven-
year results paper, while the quadrupole amplitude is below the
mean expected amplitude for the model, it is not surprisingly
or disturbingly low. Figure 38 illustrates the likelihood of the
true value of /(I + I)CITT/(Zn) = 6C2TT/(271) for | = 2, based
on our measured sky. A Blackwell-Rao estimator run on Gibbs
samples and marginalized over all other values of C/T results
in the maximum likelihood quadrupole amplitude shown by the
pink line. The 1o and 20 regions are shown as blue and green
horizontal bands. The best-fit ACDM theory spectrum computed
on WMAP nine-year data only is shown in red. We conclude
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Figure 39. Cosmic variance probability distribution for the quadrupole, given
the theory power spectrum. This assumes we know [(I + l)C[TT/(27r) =
6Cgvr /(2) = 1109 uK? (red line) and plots the distribution of quadrupole
power values we could measure for random Hubble volumes. Note that
6C}T /(2m) is the mean of the distribution; due to the skewness of the X2
distribution, the peak of the distribution is substantially lower. 1o and 20 regions
are shown. The quadrupole cosmic variance distribution has v =2l +1 =5
degrees of freedom. Assuming fsy ~ 0.99, we plot a x? distribution based on
v=_2I+1) fiy ~ 4.9 degrees of freedom. The peak of the distribution is then

3000

lower than the mean by a factor of (v — 2)/v, putting it at 656 uK?.
(A color version of this figure is available in the online journal.)

from this that the theoretically expected quadrupole amplitude
(based on a ACDM fit to the full angular power spectrum is well
between 1o and 20, hardly an unlikely event.

Looked at the other way, we can ask the relative probability
of observing the particular quadrupole value given the mean
expected value based again on a ACDM fit to the full angular
power spectrum. This is shown in Figure 39. Again, one can see
that the distribution is far from Gaussian and that the peak of the
likelihood function is well displaced from its mean, such that
the single most likely value for the expected quadrupole is close
to half of the mean value. The observed quadrupole value is a
relative probability of 40%, more than 1o but less than 20 away
from expectations. The quadrupole value thus cannot be said
to be anomalously low; it is well within the expected statistical
variance.

7.4. Alignment of the Quadrupole and Octupole

The quadrupole and octupole, expected to have independent
and random orientations, were aligned to <025 in the seven-
year ILC map (Bennett et al. 2011). In the nine-year ILC map,
we find that the orientations of the quadrupole and octupole
differ by ~3°. Most of this change is due to the fact that
the nine-year ILC map has been improved by the use of the
asymmetric beam deconvolution described in Section 4.2. Other
minor changes are due to small improvements of the gain model
and window functions from two years of additional data, as
well as the updated foreground mask (which slightly changes
the csc B fits and hence the monopole offset in each ILC region).
A nine-year ILC made without the beam deconvolution has a
quadrupole—octupole misalignment of ~1°, confirming that the
improvement of the use of deconvolution is the dominant source
of the change from seven to nine years of data.

We now address the significance of ~3° octupole—quadrupole
alignment in the nine-year map by examining its sensitivity to
the separation of the CMB from the foregrounds. To do this, we
use the error description of the CMB-foreground covariance,
discussed in Section 5.3.7.2. The CMB-foreground covariance
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in the ILC is described in terms of 48 error modes (computed
at r6), which provide the eigenvectors with nonzero eigenvalues
of the 49152 x 49152 pixel space covariance matrix. We first
change bases from pixel space into the 12-dimensional space
spanned by the quadrupole and octupole modes (5 for the
quadrupole, 7 for the octupole). This results in a 12 x 12
covariance matrix for the error in the quadrupole and octupole
ay, coefficients. For convenience, we use real-valued harmonics
and so we have a real-valued covariance matrix. Then, we
generate many Gaussian random realizations of perturbations
to the quadrupole and octupole (i.e., realizations of CMB
quadrupole and octupole errors) based on this covariance matrix.
We add these to the quadrupole and octupole from the nine-year
ILC, and check the alignment for each, using the same method
as described in Bennett et al. (2011).

Among these realizations, we find the median quadrupole—
octupole misalignment to be 6°. The probability of a <6°
alignment is 0.55%. This means that the significance of the
octupole—quadrupole alignment is <30, i.e., it is not significant.
Occasional perturbations to the ILC realign the quadrupole and
octupole perfectly, and about 5% of the perturbations misalign
them by more than 20°. Note also that this encompasses only
one of the types of error in the ILC. Including an estimate of
the ILC bias error will further degrade the significance of any
observed alignment.

We conclude that our ability to remove foregrounds is
the limiting factor in the measurement of the cosmological
quadrupole—octupole alignment. The already low statistical sig-
nificance (<30) of the estimated alignment must be further
degraded by the posterior selection made to examine this par-
ticular quantity. Given that there is no evidence of experimental
systematic effects, and that the foreground-CMB separation con-
tributes substantially to the alignment uncertainty, the estimated
alignment appears to be a low-significance chance occurrence.

8. COSMOLOGICAL RESULTS AND IMPLICATIONS

We have seen that the WMAP power spectrum is well fit by
only six parameters. The quadrupole amplitude is not anoma-
lously low, and the quadrupole—octupole alignment cannot be
considered anomalous as it is within the range allowed by cos-
mic variance and foreground subtraction uncertainties.

The bipolar power spectrum of the final nine-year maps
shows a large signal similar to the one we reported in the
seven-year results. This signal exhibits a strong ecliptic latitude
dependence, in both the seven and nine-year data. The bipolar
power spectrum of the new beam-symmetrized (deconvolved)
maps shows that this signal has largely gone away, but there
now appears a high-/ signal with the opposite sign. This is
expected since the deconvolution process correlates pixel noise
in a way that we do not correct for in the estimation process.
Our primary motivation was to check that the latitude-dependent
signal at low-/ was due to beam asymmetry, and we believe that
is now well established. There is little motivation to correct
the side-effects at high-/, since doing so would be non-trivial,
and there was no hint of an anomaly there to begin with.
In summary, our new analysis demonstrates that the latitude
dependent signal in the bipolar power spectrum seen in both the
seven and nine-year non-deconvolved maps was real and caused
by WMAP’s beam asymmetry. Further, since beam asymmetry
has negligible effect on the angular power spectrum, C;, we
adopt the simpler non-deconvolved maps for power spectrum
estimation and cosmological parameter studies.
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The power spectrum contains all of the cosmological informa-
tion in the map if, and only if, the fluctuations are Gaussian with
random phases across the non-masked portion of the map. In this
section we show that this is indeed the case within the estimated
measurement and analysis uncertainties. We then summarize
the cosmological parameter discussion of Hinshaw et al. (2013)
with cosmological parameters derived using only WMAP data
and derived when combined using external data as well.

8.1. Non-Gaussianity

The simplest model of inflation, namely single-field slow-
roll inflation with canonical kinetic term and a nearly flat
potential V(¢), predicts that the initial adiabatic curvature ¢ (k)
has only tiny deviations from Gaussianity (Acquaviva et al.
2003; Maldacena 2003). However, alternate models of the
early universe predict several possible types of deviations from
Gaussian statistics, making the search for non-Gaussianity in
the CMB a powerful, multifaceted probe of the early universe.

8.1.1. floc, 24 and form

We will limit our search for non-Gaussianity to the three-point
function or bispectrum, and parameterize it by

(Tk Ca Cis) = (1N Broc(kt, ko k3) + fid Beg(k1, Ko, Ke3)

+ R Born(k ko, k) )6 (Y ki) (50)

~ [ .
where £, fats [ are free parameters to be estimated, and

the local, equilateral, and orthogonal template bispectra are
defined by

6
Bioc(ki, k2. k3) = =(Pc(ki) Py (k) + 2 perm.)  (S1)

3
Beg(kr ko, k3) = S (6P (k1) Py (k2)*3 P (k3)'/?

— 3P, (k) Pe (k) — 2P (k1)* Pp (ko)*" Py (k3)*? + 5 perm.)
(52)

3
Bomn(ky, ka, k3) = §<18P;(k1)P;(W”P;(ks)”

— 9P, (k1) Py (ka) — 8P (k1)*? P (ko)™ P (k3)* + 5 perm.).
(53)

The { £, fais /o) basis for the three-point function is large
enough to encompass a range of interesting models. Local-
type non-Gaussianity is generic to some multi-field inflation
models, for example curvaton models (Linde & Mukhanov
1997; Lyth et al. 2003) and variable reheating models (Dvali
et al. 2004; Zaldarriaga 2004), and also to some alternatives
to inflation, such as “new” ekpyrosis (Creminelli & Senatore
2007; Buchbinder et al. 2007) and cyclic (Lehners & Steinhardt
2008a, 2008b) models. Also, there is a theorem (Creminelli
& Zaldarriaga 2004) that implies that no single-field model
of inflation can generate detectable fg{’f Equilateral-type and
orthogonal-type non-Gaussianity can be generated in single-
field models, and generically appear when there are non-
negligible interaction terms in the inflationary Lagrangian.

We constrain the fyp parameters using the optimal (i.e.,
minimum variance unbiased) bispectrum estimator imple-
mented in Smith et al. (2009), which builds on previous work
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(Komatsu et al. 2005; Creminelli et al. 2006; Smith & Zaldar-
riaga 2011). The estimator optimally combines channels with
different noise maps and beams by filtering the data with the in-
verse signal+noise covariance C “I'=(S+N)7!, and includes a
one-point term (in addition to a three-point term) which reduces
the variance. Unless otherwise specified, we use the V-band and
W-band DAs from WMAP (six maps total), remove regions of
high Galactic foreground and point source emission using the
nine-year KQ75 mask, and marginalize three foreground tem-
plates corresponding to synchrotron, free—free, and dust emis-
sion. With foreground marginalization enabled, the same fni,
estimates are obtained on raw and template-cleaned maps.

Our “bottom line” constraints on non-Gaussianity are as
follows:

flee=372£19.9 (=3 < fi% < 77at95% CL)

NL=514+136 (—221 < fy <323at95% CL)

=-245+£100 (—445 < fa™ < —45at95% CL).
(54)

orth
NL

The f5¢ constraint includes a correction for the ISW-lensing
contrlbutlon to the bispectrum, which arises from the large-scale
correlation between the CMB temperature and the CMB lensing
potential. We find that the ISW-lensing bispectrum biases the
fi%e estimator by Afie® = 2.6; this bias has been subtracted
from the estimate in Equation (54). The ISW-lensing bias was
computed using the Fisher matrix approximation, but this has
been shown to be an excellent approximation to the exact result
(Hanson et al. 2009; Lewis et al. 2011).

The constraint on each fyp parameter in Equation (54)
assumes that the other two fyi parameters are zero. For a joint
analysis of all three parameters, we need the bispectrum Fisher
matrix:

2525 1.06 —2.39

F=|106 054 020 |x10™* (55)
—2.39 020 1.00

loc cq orth

where the ordering of the rows and columns is f, fxi» /NL -
The statistical error on each fyp parameter in Equation (54),
with the other two fyi. parameters fixed to zero, is (F;;)~'/2, and
the correlation between two estimators in Equation (54) is equal
to the rescaled off-diagonal matrix element Fj;/(F;; F; j)l/ 225
An example of a two-parameter joint analysis is shown in
Figure 42 below.

8.1.2. fo™ Diagnostic Tests and Interpretation

The most striking result in Equation (54) is the estimate for
orth which is non-zero at 2.450 . The (two-sided) probability of
obtaining a value with this statistical significance in a Gaussian
fiducial cosmology is 1.4%. This is not significant enough by
itself to consider it a detection, but even further caution is
required. When interpreting this probability, it must be kept

in mind that we look for multiple deviations from the vanilla

25 This estimator covariance is appropriate for our convention that each fnr.
estimator is defined to be the optimal estimator assuming that the other two
/NL parameters are zero. There is an alternate definition in which each fnr
estimator is defined with the other two fni, parameters marginalized; in this
case the estimator covariance matrix would be the inverse Fisher matrix
(F71y, ;- The two definitions are linear combinations of each other, and
therefore give identical results in a joint analysis, provided that the
off-diagonal correlations are properly incorporated.
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ACDM model, so it is statistically unsurprising that one such
deviation is at this significance level. The rest of this section
will be devoted to consistency checks and interpretation of the
£ regult.

One possible source of systematic error is contamination by
residual foregrounds. Since we marginalize over synchrotron,
free—free and dust templates in our bispectrum estimator, any
foreground contribution that is a linear combination of these
spatial templates does not contribute to foh However, since
the templates are not perfect, there will be residual contributions
at some level. A simple procedure that gives the rough order
of magnitude is to disable template marginalization in the
estimator, and compute the foreground contribution to fN"Eh
an ensemble of simulated raw maps without any foreground
cleaning. We simulate raw maps using random CMB and noise
realizations, and a fixed dust realization given by model 8 of
Finkbeiner et al. (1999). We do not include synchrotron and
free—free foregrounds since dust dominates in W-band and
is a significant fraction of the V-band foreground. In each

simulation, we compute the difference (A £™) between the £

estimate obtained from the raw map, and the £ estimate that

would be obtained from the CMB+noise contribution alone. We
find that the mean value of (A fN"{fh) is 1.1 and the RMS scatter is
5.2. This presumably overestimates the dust contribution since
we are not attempting to remove foregrounds at all. Since the
shift (A fﬁfh) seen in these simple simulations is much smaller
than the statistical error o (fy orth) we conclude that residual
foregrounds are unlikely to be a significant contaminant.

As a first test for instrumental systematic effects, we check
for consistency between different angular scales by splitting
the f3r. orth estimator in I-bands. Our procedure is as follows: we
write the fi oth egtimator as a sum over triangles, restrict the
sum to trlangles whose maximum multipole max(ly, I, [3) is in
a given bin (/iyin, Imax ), and then appropriately normalize so that
the band-restricted sum is an unbiased estimator of f". This
prescription for binning the f' orth estimator has the property that
if we combine f&™ estimates in all bins up to some multipole
Imax, the result agrees with simply rerunning the fg' orth estimator
with maximum multipole Zyx. It also has the property that £
estimates in different /-bands are nearly uncorrelated.

In Figure 40, we show the f{[' orth astimate in [-bands, with the
cumulative best-fit value £ = —245 shown for comparison.
Each bin is consistent W1th the cumulative best-fit value at
20, and the overall x2 of the fit to a constant N orth yalue
is good (x? x~ = 8.8 with seven degrees of freedom). We
therefore conclude that there is no evidence for scale-dependent
systematic contamination.

As asecond test for systematics, we can ask whether estimates
of £ in different parts of the sky are consistent. The
blspectrum estimator is naturally written as an integral over
position on the sky, so a convenient way to visualize the
position dependence is to simply plot the integrand as a skymap
(Figure 41). This skymap is in units of “f "Irfh per steradian”
and has the property that its integral over the whole sky is
precisely equal to the estimated ;" = —245. If we restrict the
integral to a subregion  of the sky, the value of the integral
will roughly equal the value that would be obtained if we re-
ran the estimator using masking to isolate the subregion 2

26 A partial list includes the three fxi. parameters, the spatial curvature Qg
tensor-to-scalar ratio r, running of the spectral index (dn,/d log k), dark energy
equation of state w, isocurvature amplitudes o, «—1, and neutrino mass m,,.
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Table 16
A Test for Consistency between Channels

Channels fN"‘L‘h Discrepancy in “Sigmas”

Vw Vv w V1 V2 w1 w2 w3 w4
All VW channels —245.54+£99.6 2.20 1.50 1.50 2.10 0.70 140 1.1o 220
All V-band channels —1259 £ 112.7 220 e 2.30 0.1o 0.70 0.40 0.30 0.1o l.lo
All W-band channels —3202 £ 112.1 1.50 230 e 2.10 2.50 1.70 220 2.00 320
V1 only —-1193 +£129.1 1.50 0.1o 210 0.30 0.50 0.30 0.1o 1.00
V2 only —91.3+ 1242 2.10 0.70 2.50 0.30 s 0.80 0.00 0.20 0.80
W1 only —172.1 & 140.1 0.70 0.40 1.70 0.50 0.80 e 0.70 0.50 140
W2 only —88.1 £152.2 l4o 0.30 220 0.30 0.00 0.70 s 0.20 0.70
W3 only —111.0 & 154.2 l.lo 0.1o 2.00 0.1o 0.20 0.50 0.20 e 0.90
W4 only —5.7+£147.7 220 1.1o 320 1.00 0.80 140 0.70 0.90

Notes. The first two columns show f]{}Eh

estimates obtained from different subsets of WMAP channels. The matrix on the right shows

the level of discrepancy between each pair of channel subsets, in “sigmas” after comparing to an ensemble of Monte Carlo simulations.

500 : : : : :
ok ]
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E 1 0.80 0.60
SE -500 | .
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-1000 | —170 ]
-0.80
—-1500 L L L L .
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Multipole moment [
Figure 40. Test for scale-dependent systematics: flfl’ﬁh estimates in /-bands,
with cumulative best-fit value ffﬁ_‘h = —245 shown by the dotted horizontal

line. Each error bar is labeled with the statistical significance of the deviation
from the cumulative best-fit value (not the deviation from zero). No evidence
for scale-dependent systematics is seen.

(appropriately rescaled by the area of Q). Visual inspection of
the skymap is a convenient way to look for an unexpected feature
(e.g., alarge contribution near the Galactic plane would suggest
foreground contamination), although it might be difficult to
assess the statistical significance of an a posteriori feature if
found. Our interpretation of Figure 41 is that no visually striking
features are seen; the skymap looks qualitatively similar to
skymaps obtained from Gaussian simulations.

As a more quantitative test for consistency between different
parts of the sky, we estimated f" in the portions of the
following regions that lie outside the KQ75 mask: the northern
Galactic hemisphere, the southern Galactic hemisphere, within
30° of the ecliptic plane, and the ecliptic poles (>30° from
the ecliptic plane). We find that for any pair of these regions,

the estimated fi™ values are consistent at 20, relative to an
orth estimates in

ensemble of Monte Carlo simulations. The fJi'
these four subregions are —1394+139, —361+£142, —132+144,
and —336 £ 138, respectively.

As a final test for systematics, we can compare £ estimates
from different channels, or combinations of channels. In the first
two columns of Table 16, we show the result of applying the

.

-1500 -1000 -500

Figure 41. Visual test for sky location dependent systematics: skymap showing the contribution of different parts of the sky to the fg;" estimator, in units of

per steradian.” We do not detect any significant localized features in this map.
(A color version of this figure is available in the online journal.)
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INL orth estimator for several combinations of channels. To assess
whether the fﬁrﬁh estimates from a given pair of rows are statisti-
cally consistent, we subtract the two estimates, and compare the
result to the same quantity (the difference of two fi' orth estimates)
evaluated in an ensemble of Monte Carlo simulatlons This way
of assessing consistency fairly incorporates the correlation be-
tween flﬁ}f}‘ estimates that arises because the CMB realization
(and the noise realizations, if the two rows have channels in
common) is shared. The matrix in the rightmost columns of
Table 16 shows the result of doing this consistency test for all
pairs of rows in the table.

This “two-way” null test can be generalized to an N-way
null test that tests mutual consistency between fo" estimates
obtained in all N rows of the table. We represent the fJi' orth
estimates as a length-N vector f;, and compute the N- by-N
covariance matrix Cj; using Monte Carlo simulations with
shared CMB and noise realizations. We then compute an overall
best-fit f"“h value F which minimizes 2 = (f; — F)Ci;l(fj —
F). If the N estimates are mutually consistent, then the value of
%2 at the minimum will be distributed as a x> random variable
with (N — 1) degrees of freedom.

We find that the channel-channel null tests are marginal. The
N-way null test gives x> = 16.3 with 8 degrees of freedom,
corresponding to one-sided probability p = 0.038. The most
discrepant pair of rows in Table 16 is (W, W4), which differ
by 3.20 relative to Monte Carlo simulations. This statistical
significance should not be taken at face value since there are
36 matrix entries in Table 16, and we have chosen the most
anomalous one. However, if we construct the same matrix for
each member of an ensemble of simulations, we find that the
probability that at least one pair of rows is discrepant by >3.2¢0
is 2.6%. Finally, we observe that the discrepancy between V-
band and W-band channels, which is in some sense the most
natural split, is 2.30, corresponding to probability p = 0.021.

We conclude that there is some tension in the channel—-channel
null tests, with p-value around a few percent depending on
which test is chosen. Since we have also considered null tests
that pass cleanly (i.e., the tests based on scale dependence
and sky location), our interpretation is that one failure at the
few-percent level does not indicate systematic contamination,
although the discrepancy between V-band and W-band is of
some concern. We therefore cautiously proceed to discuss the
physical implications of the non-Gaussianity constraints.

We opt to work in the context of single-field inflation, and
use the effective field theory developed in Cheung et al. (2008a,
2008b). The EFT provides a master Lagrangian which is general
enough to describe almost all single-field models of inflation.
See also Gruzinov (2005); Chen et al. (2007). The action consists
of a standard kinetic term, plus small interaction terms whose
coefficients parameterize allowed non-Gaussianity:

o= or 0 oo
S a
5 1—c§ (8w A 3
+(MpH) = " +C—2n +.--] (56)
N N

Non-Gaussianity is parameterized by a dimensionless sound
speed c;, and a dimensionless parameter A that represents the
ratio between the coefficients the operators of 73 and 7 (8;)>.
We treat c; and A as free parameters, but specific models will
make predictions. For example, in DBI inflation (Alishahiha
et al. 2004), ¢, is a free parameter (but related to the tensor-to-
scalar ratio) and A = —1.
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The coefficients in the action (56) can be related to the
parameters fy;, fN(’fh by calculating the bispectra generated by
the cubic operators 77> and 77(9;7)?, and projecting them onto
the basis of template bispectra (Senatore et al. 2010). The result
is:

eq 1 — C%
L = —5(=0.276 + 0.0785A)
_S 6‘2
orth (0.0157 — 0.0163A) (57)

CS

where the numerical coefficients are specific to the nine-year
WMAP results and have been computed using the exact Fisher
matrix, including CMB transfer functions and WMAP noise
properties. For generic values of A, fyj is larger than foh
(by an order of magnitude) and equilateral non-Gaussianity is
generated. However, there is an order-unity window of values
(roughly 3.1 < A < 4.2) where f™ is larger than fy], and
orthogonal non-Gaussianity is generated.

Since single-field models that produce 3™ are also expected
to produce fy; at some level, it is natural to analyze joint con-
straints in the two-parameter space { fx; , fio Orth} To set up a joint
analysis, we define notation as follows. Let f; = ( fNL, INL orth)
be a two-component vector containing model parameters, let

fi = (51, —245) be the values of the associated estimators (i.e.,
the last two rows of Equation (54)), and let F; be the associated
2 x 2 Fisher matrix (i.e., the lower right corner of Equation (55).
Then for given model parameters f;, we define a X2 statistic,
=> fiF;
ij

jfi— 2ZF,,f,f,+Zf,F,,F . (58)

We threshold this x> to obtain confidence regions in the
(fats 19 Orth) plane. These confidence regions are shown in the
left panel of Figure 42. We note that the point ( fNL, fihy =0
is just outside the 20" contour, which means that it is just barely
a >20 event when fy; is included in the parameter space.
More precisely, the relevant Ax? is 7.16 with two degrees of
freedom; the probability of getting a Ax 2 this large in a Gaussian
cosmology is 2.8%.

In the right panel of Figure 42, we change variables to
show confidence regions in the parameter space (cy, A). These
confidence regions were obtained under the assumption that the
single-field bispectra are well-approximated by the equilateral
and orthogonal template shapes. However, we have checked
that nearly identical confidence regions are obtained if the exact
tree-level bispectra for the operators 77 and 77(9;7)* are used
throughout the analysis.

8.2. Cosmological Parameters

Hinshaw et al. (2013) examine various versions of cosmologi-
cal models fit to select combinations of cosmological data. These
combinations are all rooted in WMAP data, which strongly lim-
its possible cosmological models. There is, however, a narrow
ridge of geometric degeneracy that applies to CMB measure-
ments. This is seen in Figure 43. Assuming a flat geometry
breaks the degeneracy and forces a precise value for the Hubble
constant. Alternatively, non-CMB cosmological measurements
generally also break the CMB degeneracy and also result in
a precise value for the Hubble constant. The fact that these
Hubble constant values are consistent within their uncertainties
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Figure 42. WMAP nine-year constraints on non-Gaussianity in single-field
inflation. Upper panel: 68%, 95%, and 99.7% confidence regions in the
fffﬂ, fﬁﬂh plane, defined by threshold XZ values 2.28,5.99, 11.62, as appropriate

for a x? random variable with two degrees of freedom. (f;i, ﬁﬁh) = (0,0)
is consistent with the data to within 99% CL. Lower panel: confidence regions
on the dimensionless sound speed ¢, and interaction coefficient A (defined in
Equation (56)), obtained from the upper panel via the change of variables in
Equation (57). The upper bound on fﬁi gives a lower bound on ¢y, which is
consistent with ¢y = 1.

is equivalent to concluding that the universe is flat within the
measurement eITors.

Table 17 gives the cosmological values for a six parameter
flat ACDM model and a list of derived parameters that follow
from it. Also tabulated are results from an additional seventh
parameter added to the model. For example, if the number of
relativistic degrees of freedom is allowed to vary beyond the
standard three neutrinos, if tensor modes are allowed, or if the
universe is allowed to deviate from a flat geometry. In addition,
we summarize select constraints on non-ACDM models, such as
deviating from a cosmological constant by allowing for a dark
energy equation of state parameter w # 1.

In the last column of Table 17 we provide values for the same
parameters described above but now arrived at by combining
WMAP data with data from finer scale CMB measurements from
ACT and SPT (extended CMB, or “eCMB”), baryon acoustic
oscillation (BAO) data, and data from the direct measurements
of the Hubble constant (Hy). If we assume that all of these data
sets are well-described by their published uncertainties, then
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Figure 43. Constraints on curvature. Flat universes fall on the Q,, + Qy = 1
line. Allowed regions are shown for WMAP, CMB, and CMB combined with
BAO and H) data, all with a hard prior of Hy < 100km 57! Mpc*1 . WMAP data
is represented by 290,000 Markov chain points, colored by their value of Hy.
The WMAP data follow a geometric degeneracy ridge represented by the slightly
curved line, a parabola with equation Q5 = 0.0620 Q,zn —0.825Q,,+0.947. The
most likely point in the WMAP-only chain has Q, = 0.721 and Q,, = 0.279,
which is flat to three significant figures, even though this constraint was not
enforced. The WMAP data alone require Q4 > 0.58 at 68% CL and Q, > 0.22
at 95% CL. The contours show constraints when adding high-/ CMB data (blue)
and BAO and H, data (black). These constraints are consistent with those from
WMAP alone, with the tightest constraint being Qi = 1.0027’:%%%3389 (Hinshaw
etal. 2013). )

(A color version of this figure is available in the online journal.)

these parameters provide a precise and accurate description of
our universe.

In an effort to provide a quantitative estimate of the overall
impact of nine years of WMAP data on cosmological parameters,
we compare the final WMAP nine-year likelihood with pre-
WMAP CMB data. A paper entitled “Last Stand Before WMAP”
(Wang et al. 2003) provides a likelihood using only CMB data,
just prior to WMAP’s initial 2003 results. We find that the
six parameter cosmological volume determined by WMAP data
alone is a factor of 68,000 times smaller than the allowed volume
before WMAP. To compute this factor, we take the cosmological
volume to be proportional to the square root of the determinant
of the covariance matrix of the parameters. Since the optical
depth to last scattering was ill-constrained before WMAP, we
assign to it a constraint of T < 0.3. We ensure that the parameter
distributions are well-sampled by the WMAP nine-year and
pre-WMAP parameter chains by running over a half million
points in all of the relevant chains and verifying convergence,
so the chains sample the likelihoods well. We use six parameters
in our volume-determining covariance matrix and those same
six parameters are sampled in Markov chains. With flat priors
on each, the six parameters are: Qph2, Q.h%, Qu, 10°A%, ny,
and 7. (Technically, we also include Agz in both the pre-WMAP
and WMAP chains and the covariance matrix. Agz is largely
unconstrained by both data sets and is instead constrained by
the hard prior of 0 < Asz < 2, so it has negligible effect on the
parameter volume and is only included so we can marginalize
over it.) Overall, we conclude that 99.9985% of the allowed
pre-WMAP six-parameter ACDM models have been ruled out
by WMAP data alone. Only 0.0015% remain. In addition to
the large improvement in CMB measurement precision, the
accuracy improvement arising from the reduction in systematic
error afforded by WMAP is considerable.
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Table 17
Cosmological Parameter Summary
Parameter Symbol WMAP? WMAP+eCMB+BAO+H (™
Six-parameter ACDM fit parameters®
Physical baryon density Qh? 0.02264 £ 0.00050 0.02223 £ 0.00033
Physical cold dark matter density Q.h? 0.1138 £ 0.0045 0.1153 £ 0.0019
Dark energy density (w = —1) Qup 0.721 £ 0.025 O.7135t%%%9956
Curvature perturbations (kg = 0.002 Mpc~!)¢ 10°A2, 241 £0.10 2.464 %+ 0.072
Scalar spectral index ng 0.972 £ 0.013 0.9608 £ 0.0080
Reionization optical depth T 0.089 £ 0.014 0.081 £ 0.012
Amplitude of SZ power spectrum template Asz <2.0 (95% CL) <1.0 (95% CL)
Six-parameter ACDM fit: derived parameters®
Age of the universe (Gyr) to 13.74 £ 0.11 13.772 £ 0.059
Hubble parameter, Hy = 1004 (km s~! Mpc™!) Hy 70.0 £2.2 69.32 + 0.80
Density fluctuations @ 8 2~ (Mpc) oy 0.821 £ 0.023 0.820%‘%1134
Velocity fluctuations @ 8 h! (Mpc) 689%5 0.434 + 0.029 0.439 + 0.012
Velocity fluctuations @ 8 A~! (Mpc) o5 Q06 0.382 + 0.029 0.387 £ 0.012
Baryon density /critical density Qy 0.0463 £ 0.0024 0.04628 £ 0.00093
Cold dark matter density/critical density Q 0.233 £ 0.023 0.2402+¢0088
Matter density/critical density (Qc + Q) Q, 0.279 £ 0.025 0.286510.00%,
Physical matter density Q,,h? 0.1364 £+ 0.0044 0.1376 £+ 0.0020
Current baryon density (cm~3)f np (2.542 4 0.056) x 1077 (2.497 4+ 0.037) x 1077
Current photon density (cm™3)2 ny 410.72 £ 0.26 410.72 £ 0.26
Baryon/photon ratio n (6.19+0.14) x 10710 (6.079 & 0.090) x 1010
Redshift of matter-radiation equality Zeq 3265’:1]%% 3293 £47
Angular diameter distance to zeq (Mpc) da(Zeq) 14194 + 117 14173“:6665
Horizon scale at zeq (h/Mpc) keq 0.00996 £ 0.00032 0.01004 £ 0.00014
Angular horizon scale at zeq leq 139.7 £ 3.5 1407+ 1.4
Epoch of photon decoupling Zx 1090.97+985 1091.64 + 0.47
Age at photon decoupling (yr) 1y 376371t‘2111151 3749,’)5f11773219
Angular diameter distance to z, (Mpc) da(z) 14029 £ 119 14007+
Epoch of baryon decoupling Zd 1020.7 £ 1.1 1019.92 £ 0.80
Co-moving sound horizon, photons (Mpc) rs(24) 1458 + 1.2 145.65 £ 0.58
Co-moving sound horizon, baryons (Mpc) rs(zq) 1523 +£13 152.28 £ 0.69
Acoustic scale, 0, = rg(z4)/da(z4) (deg) Ox 0.5953 +0.0013 0.59578 4 0.00076
Acoustic scale, I, = /6, L 302.35 £ 0.65 302.13193%
Shift parameter R 1.728 £ 0.016 1.7329 £ 0.0058
Conformal time to recombination Trec 2839+24 2832+ 1.0
Redshift of reionization Zreion 10.6 £ 1.1 10.1 £ 1.0
Time of reionization (Myr) treion 453’:6634 482t6667
Seven-parameter ACDM fit parameters'
Relativistic degrees of freedom’ Nesr > 1.7 (95% CL) 3.84 +0.40
Running scalar spectral index* dng/dInk —0.019 £ 0.025 —0.023 £0.011
Tensor to scalar ratio (kg = 0.002 Mpc*l ) r <0.38 (95% CL) <0.13 (95% CL)
Tensor spectral index! ny >—0.048 (95% CL) >—0.016 (95% CL)
Curvature (1 — Qi)™ o7 —0.037+%04, —0.0027+%,095%
Fractional Helium abundance, by mass YHe <0.42 (95% CL) 0.299 + 0.027
Massive neutrino density" Q,h? <0.014 (95% CL) <0.0047 (95% CL)
Neutrino mass limit (eV)" > my <1.3(95% CL) <0.44 (95% CL)
Limits on parameters beyond ACDM
Dark energy (const.) equation of state® w —1.71 < w < —0.34 (95% CL) 71.0731%%%%
Uncorrelated isocurvature modes o <0.15 (95% CL) <0.047 (95% CL)
Anticorrelated isocurvature modes o <0.012 (95% CL) <0.0039 (95% CL)

Notes.

4 Unless otherwise stated, the values given are the mean of the parameter in the Markov chain, and the 1o region determined by removing

the lowest and the highest 15.87% probability tails of the Markov chain to leave the central 68% region.

® The WMAP+eCMB+BAO+H) data set (Hinshaw et al. 2013) includes the following. The Hy data consists of a Gaussian prior on the
present-day value of the Hubble constant, Hy = 73.8 & 2.4 km s~! Mpc~' (Riess et al. 2011).
¢ The six parameters in this section are the parameters varied in the chain. A seventh parameter, Asz, is also varied but is constrained
to be between 0 and 2. The WMAP data do not strongly constrain Asz, which is why the 95% CL interval simply returns the prior. The
eCMB data set does constrain the SZ effect, and prefers lower amplitudes of the SZ template. We call this a 6-parameter fit because
only 6 parameters are needed to fit the data well; the Agz parameter is used only to marginalize over the SZ effect and therefore include
it in the error bars. All parameters varied in the Markov chains have flat priors, and in this chain only the Asz parameter requires hard

constraints limiting how much it can fluctuate.
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Table 17
(Continued)

4k =0.002 Mpc™! «— Legr & 30.

¢ These additional parameters are determined by the parameters being varied in the Markov chain. Because these are not the parameters
directly being sampled, we are not necessarily assuming flat priors on these parameters.

f Baryon density is given in units of proton masses per cubic centimeter.

& Tcmp = 2.72548 £0.00057 K, from Fixsen (2009). This parameter 7, is not varied in the Markov chains; the error bar is determined

BENNETT ET AL.

directly from the error in CMB temperature.
" Comoving angular diameter distance.

i The parameters reported in this section place limits on deviations from the simple six-parameter ACDM model. A complete listing of
all parameter values and uncertainties for each of the extended models studied is available on LAMBDA.

J Allows Nt number of relativistic species, with the prior 0 < Neg < 10.

k Allows running in scalar spectral index but no tensor modes.

! Allows tensor modes but no running in scalar spectral index. We constrain the tensor to scalar ratio at k = 0.002 Mpc~! to be r > 0,

and the tensor spectral index is related to the tensor to scalar ratio by n;

™ Allows non-zero curvature, ;. # 0.
" Allows a massive neutrino component, Q, > 0.

—r/8.

© Allows w # —1, but constrains it to be —2.5 < w < 0 and assumes w is constant with redshift and Q; = 0.

Departing from the simplest ACDM model, we consider
a ACDM model with tensors, by adding the tensor-to-scalar
ratio, r. For this seven-parameter model, the reduction of the
cosmological volume is a factor of 117,000.

Of course, when WMAP data are combined with a rich array
of other significant cosmological data the stress-test for ACDM
has been extraordinary. It is notable that only six parameters are
required to achieve a sufficient fit to all cosmological data and
that the underlying ACDM has not broken. Quite the contrary,
a set of precise and accurate parameters now form a standard
model of cosmology within the framework of the big bang theory
(an expanding and cooling universe) and inflation (an underlying
tilted power spectrum of primordial Gaussian-random adiabatic
fluctuations).

9. CONCLUSION

1. We have updated the raw data archive to include the full
nine years of WMAP data. We have updated the pointing,
calibration, and transmission imbalance factor solutions.

2. We have updated our beam maps and window functions
based on the full nine years of WMAP data. We have made
full sky maps of the five-band data in temperature and
polarization, and we characterize the noise.

3. In addition to the standard map-making, we have imple-
mented a new beam-symmetrized set of maps designed to
reduce the effects of the asymmetric beams. These maps
reduce the latitude dependence of the power spectrum and
thus we confirm that the power asymmetry was largely due
to the asymmetric beams, as expected. This has no effect on
the overall power spectrum and cosmological parameters,
but is important to the notion of statistical isotropy, which
is now more rigorously supported. The beam-symmetrized
maps are not used for most cosmological analyses due to
the complexity of the resulting noise, but they are used in
foreground analysis.

4. We solve for new calibrations of Jupiter and Saturn, and
we improve our model that separates the Saturn spheroid
and ring components. The final two years of WMAP
observations include Saturn data with the rings nearly
edge-on.

5. We provide new point source catalogs, using previous
methods. One is based on filtering all five WMAP bands,

47

and the other is based on removing the CMB from the Q-,
V-, and W-band maps and then searching for peaks.

(a) Our analysis of the diffuse foregrounds generally
uses the five bands of WMAP data in conjunction
with other data sets. WMAP was designed to observe
in the spectral region where the ratio of the CMB
to foreground anisotropy is at its maximum while
not allowing strong spectral lines to fall within any
WMAP bandpass. It is clear that the choice of WMAP
frequencies succeeded in reaching these goals. The five
widely spaced WMAP bands and especially the low-
frequency K-band radiometer have been invaluable in
characterizing foregrounds.

(b) For most cosmological analyses we apply a Galactic
cut and make a small correction for remaining emis-
sion using templates, but the ILC method is helpful
and effective in separating the full sky CMB from
foregrounds. This separation can be done more ac-
curately than the separation of foreground emission
components from each other, for which there are de-
generacies. We present a new ILC map. For the first
time we now also provide an error estimate for this map
that includes bias and foreground-CMB covariance.

(c) To elucidate the characteristics and nature of the dif-
fuse foreground components, we implement the MEM,
MCMC fits, and x? fits. These are implemented with
differing assumptions and priors. Each of these meth-
ods has strengths and weaknesses, but the combination
provides insight. Methods with less reliance on exter-
nal templates make for noisier fits with greater degen-
eracy between emission components. Methods with
greater reliance on external templates help to reduce
noise and break degeneracies, but introduce errors, be-
cause the templates are not of the same quality as the
WMAP data.

(d) We decompose the foreground emission into syn-
chrotron, free—free, spinning dust, and thermal dust
components. The peak of the spinning dust spectrum
lies below the K-band frequency (the lowest frequency
WMAP radiometer) and is generally a sub-dominant
emission component. The theoretically predicted Cold
Neutral Medium (CNM) peak is at 17.8 GHz, but



we solve for a peak frequency scale factor of ~0.85
that places the fitted peak frequency near 15 GHz.
The physical parameters that define the CNM are cer-
tainly only approximate, and their variation across the
Galaxy is almost certainly responsible for complex
spectral shape variations beyond just an amplitude and
frequency shift. (Throughout this paper we use the
term “spinning dust” without regard to the accuracy
of the implied underlying physical model, but simply
as the origin of a spectral template form to fit, where we
allow both frequency and intensity adjustments. The
actual physical emission mechanism(s) of this compo-
nent may not yet be fully understood.)

(e) Free—free emission is generally strong in the WMAP
bands and the dominant foreground at high latitude in
Q- and V-bands, but free—free emission is not as well
traced by Ho emission maps as one might have hoped
or expected. This is true even when the He emission is
corrected for reflection and optical depth effects.

(f) We find a systematic Galactic plane discrepancy at
the 20% level between the thermal dust template map
based on a model fit to /RAS and COBE data and
extrapolated to the WMAP bands, compared with our
WMAP thermal dust fits with an inner plane/outer
plane error morphology. At high Galactic latitude the
thermal dust template appears to be reasonable. The
dust spectral index appears to be ~1.8 (for antenna
temperature).

(g) We find strong evidence that the synchrotron emission
spectral index varies across the sky and is generally
flatter in the plane and steepens with Galactic latitude.
In addition, the synchrotron spectral index appears to
steepen with frequency. Within the WMAP bands the
spectra of free—free, synchrotron, and spinning dust
(which generally peaks at about 15 GHz and steepens
at K- and Ka-bands) are far from orthogonal. Yet,
there is no spinning dust emission in the Haslam
408 MHz map, so that radio map is helpful for
removing degeneracies. The foreground contributions
at K-band are roughly 50% synchrotron, 35% free—free,
and 15% for a spinning dust like component. Free—free
emission dominates in Q- and V-bands, and thermal
dust emission dominates in W-band.

(h) The original claim of discovery of a “haze” of free—free
emitting gas with diminished Ha (Finkbeiner 2004)
has been ruled out. Evidence of a distinct synchrotron
haze feature depends on model choices in fitting, and
no WMAP model requires a haze component to provide
a good fit to the data. WMAP MCMCg and Model 9
foreground fits show a general hardening (flattening) of
the synchrotron spectral index from the Galactic poles
to the plane, without a distinct haze feature. K-band fit
residuals in the haze region are <10% of the brightness
identified by the Planck Collaboration IX (2013) as a
By ~ —2.55 synchrotron haze. However, a real haze
could have been inappropriately absorbed into other
components of the WMAP decomposition, which has
degeneracies. Likewise, the Planck haze could result
from modeling assumptions, which are different from
the assumptions of each of the three WMAP models.
Based on currently available data, we conclude that
the existence of a distinct localized haze depends on
the fitting and analysis methods used. Additional data,
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particularly at frequencies below K-band, would help
constrain model degeneracies.

(i) We define a Galactic cut for fitting and removing
template-traced emission for the high latitude sky and
then a small additional cut for safety. The remaining
high latitude sky is used for power spectrum calcula-
tion and parameter determination. This portion of the
template-corrected sky is strongly dominated by CMB
anisotropy.

We implemented a new unbiased and optimal estimation
of the TT power spectrum that uses C~! weighting, as
opposed to the unbiased MASTER quadratic estimator. We
also present the TE, EE, TB, and BB power spectra. A six
parameter flat ACDM model is fit to these power spectra.

. We examined the goodness of fit of the ACDM model

to the power spectrum data. The x2? of the high-I TT
power spectrum is dominated by an even-/ versus odd-/
effect, as seen in the seven year analysis. This is notable
since the seven-year power spectrum was determined by
MASTER and the nine-year by C~'. Therefore the even-
odd effect cannot be an artifact of the computation method.
We continue to believe that the effect is not significant as
we have made posterior choices to select and examine the
effect (such as a particular range of multipole moments)
and there exists no known theory to produce it, especially
since even sharp features in k-space do not remain sharp in
l-space.

. The quadrupole amplitude is below of the median expec-

tation of the best-fit power spectrum by <20, so it is not
anomalously low. No new theory could be significantly
preferred (i.e., by more than 20) based on the quadrupole
value alone. The quadrupole—octupole alignment remains
approximately the same in the nine-year as seven-year data,
but a new estimate of the uncertainties based on the under-
lying ILC map indicates that we cannot reliably remove
foregrounds to the level needed to demonstrate a signifi-
cant alignment. Having addressed the quadrupole value, the
quadrupole—octupole alignment, and the general goodness
of fit, we find no convincing evidence of CMB anomalies
beyond the normal statistical ranges that should be antici-
pated to occur in a rich dataset.
An analysis of the CMB maps find no compelling evidence
for deviations from Gaussianity. We find fg{’f = 37.2+19.9,
with =3 < f¢ < 77 at 95% CL. We also find fy] =
51 £ 136, with =221 < fy; < 323 at 95% CL, and
oth — 2454100, with —445 < £ < —45at95% CL.
We do not find any of these quantities differ significantly
from zero. It should be noted that three quantities are
computed, increasing the chance of an otherwise less likely
outcome.
Cosmological models are fit to the power spectrum
(Hinshaw et al. 2013). A six parameter flat ACDM model
continues to fit all of the WMAP data well. These param-
eters also appear to be consistent with a wide range of
other cosmological data as well. The six parameter cos-
mological volume determined by WMAP data alone is a
factor of 68,000 times smaller that the CMB constraints be-
fore WMAP as assessed by the “Last Stand Before WMAP”
paper of Wang et al. (2003). (Since the optical depth to
scattering was not constrained at all in that assessment, we
assigned to it a constraint of T < 0.3 in carrying out the
volume calculation.) Adding a seventh parameter suggests
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a reduction of the cosmological volume by even more, a
factor of 117,000.

When WMAP data are combined with a rich array of other
significant cosmological data the stress-test for ACDM
is extraordinary. It is notable that only six parameters
are required to achieve a sufficient fit to all cosmolog-
ical data and that the underlying ACDM has not bro-
ken. Quite the contrary, a set of precise and accurate
parameters now form a standard model of cosmology
within the framework of the big bang theory (an ex-
panding and cooling universe) and inflation (an underly-
ing tilted power spectrum of primordial Gaussian-random
adiabatic fluctuations). General relativity combined with
the Friedmann-Lemaitre—Robertson—Walker metric leads
to the Friedmann equation, which provides the background
cosmology. Inflation can provide the initial conditions,
including the generation of primordial perturbations via
fluctuations of the inflaton and gravitational fields. In-
flation predicts that the universe is nearly flat. We find
Q = —0.00317%%58 and |Q| < 0.0094 at 95% con-
fidence, within 0.95% of flat/Euclidean. If restricted to
€ > 0 (a negative curvature open universe) as suggested
by the creation of our universe from the landscape, then
Q; < 0.0062 at 95% CL. A small deviation from flatness
is expected and is worthy of future searches. Inflation is
also strongly supported by the observed features that the
fluctuations are adiabatic, with Gaussian random phases.
The detection of a deviation of the scalar spectral index
from unity reported earlier by WMAP now has high statis-
tical significance (n; = 0.9608 £ 0.0080). The CMB has
been central to posing the horizon, flatness, and structure
problems for which inflation and general relativity provide
solutions.

Within the horizon, acoustic waves modify the primordial
perturbations in a manner that depends on the values of the
cosmological parameters. The sub-horizon CMB measure-
ments drive the determination of the cosmological param-
eters and the degeneracies are broken with the addition of
other cosmological observations, such as measurements of
the Hubble constant and the baryon acoustic oscillations as
afunction of redshift determined from large galaxy surveys.
Using this fact, we find that big bang nucleosynthesis is well
supported and there is no compelling evidence for a non-
standard number of neutrino species (N = 3.84 £ 0.40).

The requirement for both cold dark matter, which gravitates
but does not interact with photons, and a substantial mass-
energy component consistent with a cosmological constant,
which causes an accelerated expansion of the universe
as characterized by Type la supernovae measurements,
is unavoidable because of the precision of the available
data and the multiple methods of measurement. The CMB
fluctuations require dark matter and dark energy. The
inability to predict a value for vacuum energy was a
pre-existing physics problem, but particle physics has no
problem positing massive particles that do not interact
with photons as candidates for the CDM. If the massive
particles do not decay or annihilate, their identity makes
little difference to cosmology. It may well turn out that
the dominant mass-energy component of our universe is
a cosmological constant arising from vacuum energy, and
that the vacuum energy is fundamentally not a specifically
predictable quantity. It will be exciting to see how current
theories develop, and especially fascinating how well these
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theories can be tested with data. The CMB is a unique
remnant of the early universe which has been our primary
cosmological observable. It continues to be imperative to
learn all that we can from it.
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APPENDIX A
BAND CENTER FREQUENCIES

Figure 44 shows small year-to-year variations of Galactic
plane brightness measured from yearly maps in K-, Ka-, Q-,
and V-bands. Each yearly map was correlated against the nine-
year map for pixels at |b| < 10°. A linear slope and offset was fit
to each correlation, and the slope values are shown in Figure 44.
Results for W-band are not shown because the scatter in the
yearly slopes is large and no significant variation was detected.
Analysis of DA maps has shown that the measured variation is
consistent in Q1 and 92, andin V1 and V2.

The K—Q band brightness variations were previously pre-
sented for the seven-year data in Jarosik et al. (2011), where
they were described as variations in the WMAP calibration. Fur-
ther analysis has shown that the CMB signal in yearly maps
does not show such variation. Yearly variations of the CMB
dipole amplitude in year 1-7 maps are less than +0.025% for
many DAs. We have also found that the Galactic plane bright-
ness variations depend on spectral index, with greater variation
for regions of steeper spectral index, so we conclude that they
are caused by variations in the effective center frequencies of
the WMAP bandpasses over the mission. As the observatory’s
thermal control surfaces age, a gradual warming of the WMAP
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Figure 44. Top: measurements of the year-to-year fractional brightness variation
of the Galactic plane in WMAP skymaps, obtained by correlating Galactic plane
signal in each single year map with Galactic plane signal in the nine-year map.
There is a small dependence of these variations on spectral index, which shows
that they are caused by variations in effective WMAP band center frequencies
over the mission. Bottom: the year-to-year fractional variation of WMAP band
center frequency derived from Galactic plane brightness variations measured
for selected spectral index bins.

(A color version of this figure is available in the online journal.)

instrument’s physical temperature occurs (Greason et al. 2012).
Given the instrument amplifier fixed voltage bias scheme, an in-
crease in temperature (or device aging) can induce correspond-
ing changes in the drain current and gain, and an associated
perturbation in the effective bandpass.

We determine the fractional variation in center frequency
for each band as follows. Assuming the sky signal in a given
pixel p can be characterized by a power law spectrum with
thermodynamic temperature spectral index f,, the measured
sky brightness for a given year i is

Vi ﬂp
Ti(p)=TO(P)<v_0> ; (A1)

where Ty(p) is the sky brightness at a fiducial frequency vy and v;
is the effective frequency for year i. We assume Ty(p) is constant
in time. For small frequency drifts, Av; /vy = (v; — vp)/vy K 1,
it is useful to work with the linearized form,

Ti(p) = To(p)[1 + B,(Avi/vo)]. (A2)

If we choose vy = (v;), where the mean is over years i, then
To(p) = (T;(p)) and the fractional variation in frequency is

Av; Ti(p) )
= (2R g
(vi) <<Ti(p)> /P

For each band and each year, we calculate the pixel averaged
T; /(T;) for Galactic plane pixels in selected spectral index
ranges as the T;(p) versus (T;(p)) correlation slope. Spectral

(A3)
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index was calculated using the neighboring WMAP band or
bands, e.g., B(K — Ka) was used for K-band and the mean
of B(K — Ka) and B(Ka — Q) was used for Ka-band. Each
spectral index bin for a given band gives a result for the variation
of Av;/(v;) over the mission. These results were found to be
consistent with each other, and an average (excluding bins with
high scatter) was adopted for the variations shown for each band
in Figure 44.

No correction for bandpass drift is applied in our map-
making. Since the WMAP observations are made simultaneously
in the different bands, the map-making always forms band maps
that have a common epoch, and each band map can be treated
as having a single effective band center frequency valid for that
epoch. Our previously published band center frequencies (see
Table 4 of Jarosik et al. (2011) for point sources and Table 11
of Jarosik et al. (2003b) for diffuse emission) are based on pre-
flight measurements, so presumably are valid for year 1 of the
flight data. For nine-year data, a correction based on Figure 44
should be applied. The correction is a reduction of the pre-flight
center frequency by 0.13%, 0.12%, 0.11%, and 0.06% for K-,
Ka-, O-, and V-band, respectively. This correction is included
in the center frequencies for point sources listed in Table 3.

APPENDIX B

WMAP NINE-YEAR FIVE-BAND
POINT SOURCE CATALOG

The nine-year five-band point source catalog is presented in
Table 18.

APPENDIX C

WMAP NINE-YEAR CMB-FREE QVW
POINT SOURCE CATALOG

The nine-year QVW point source catalog is presented in
Table 19.

APPENDIX D
SMOOTHED NOISE

We use maps that have been smoothed to a common resolution
for several WMAP analyses. This appendix discusses how
much the smoothing reduces the random instrument noise. This
smoothing also correlates the noise between pixels. Here, we
only calculate the diagonal elements of the noise covariance
matrix in pixel space; the correlations are beyond the scope of
this appendix. Also, the noise calculated here should be added
in quadrature to the 0.2% WMAP calibration error.

For discussing beam smoothing, we use the same notation as
Equation (4) of Hill et al. (2009):

1

B, = Qpb, = 27r/ b(B)Pi(cosB) d cosb. D1
~1

In this case, we use the beam to describe the additional
smoothing that we apply to the map to bring the total smoothing
up to 1 degree FWHM.

The pixel temperature value, T;"“V"l, in a convolved map is a
weighted sum of the nearby pixel values,

Ty = wi, i, (D2)
i



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 208:20 (54pp), 2013 October

BENNETT ET AL.

Table 18

WMAP Nine-year Five-band Point Source Catalog
R.A. Decl. D K Ka 0 Vv w o 5 GHz ID
(hms) (dm) dy) dy) dy) dy) dy)
00 04 08 —4743 0.6 +£0.02 0.7 +£0.04 0.5+ 0.05 0.5+ 0.08 e —0.1+£0.3 PMN J0004-4736
00 06 06 —0623 060 22 +£0.04 1.6 £0.05 1.8 £0.07 1.9+£0.1 1.3+£02 —-0.3+0.1 PMN J0006-0623
001033 1101 0.8 +£0.03 1.0 £ 0.05 1.2 +£0.06 1.6 £0.1 1.1+£02 0.5+0.2 GB6J0010+1058
00 12 46 —3953 202 1.3 £0.03 1.1 £0.04 1.1 +£0.05 0.9 £0.09 —-03+0.2 PMN J0013-3954
002524 —2603 0.9 +£0.03 0.8 £ 0.05 0.6 £+ 0.06 e e —04+03 PMN J0025-2602%
0026 06 —3510 0.7 £0.03 0.9 £0.05 0.9 £0.05 0.8 £0.09 09+0.2 02+£02 PMN J0026-3512
002933 05 54 1.1 +£0.03 1.2 +£0.05 1.2 +£0.06 09+0.1 1.4+02 0.1 +£0.2 GB6 J0029+0554B*
0038 15 —2501 0.8 £0.03 0.8 £0.05 0.7 £ 0.06 0.8 +£0.1 —0.1+0.2 PMN J0038-2459
003833 —02 08 0.7 £ 0.03 0.2 £ 0.05 0.7 £ 0.06 e —-02+04 PMN J0038-0207
0043 12 5209 1.4 +0.03 0.7 £0.04 0.8 £0.05 0.5 £0.09 —-1.24+0.2 GB6 J0043+5203
Notes.

2 Indicates the source has multiple possible identifications.

b Source J0322-3711 (Fornax A) is extended, and the fluxes listed were obtained by aperture photometry.

¢ Source J1356+7644 is outside of the declination range of the GB6 and PMN catalogs. It was identified as QSO NVSSJ135755+764320 by S. A. Trushkin
(2006, private communication).

4 Source J1632+8227 is outside of the declination range of the GB6 and PMN catalogs. It was identified as NGC 6251 by Trushkin (2003).

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 19

WMAP Nine-year CMB-free QVW Point Source Catalog
R.A. Decl. ID 0 Vv w 5 GHz ID
(hms) (dm) dy) dy) dy)
00 04 29 —47 35 04 +£0.1 0.5£02 —-03+03 PMN J0004-4736
0006 14 —06 25 060 20+£02 1.7£0.2 0.7+04 PMN J0006-0623
001029 1059 1.0+£0.2 1.2+£02 0.8+£0.3 GB6J0010+1058
001323 4055 0.6 £0.2 0.5+0.2 09+0.3 GB6J0013+4051
00 19 41 2558 0.6 £0.2 0.3+£02 04+£0.3 GB6 J0019+2602
0026 07 —-3512 1.3+0.2 0.6 £0.2 0.6 £0.3 PMN J0026-3512
0029 44 05 54 0.8+£0.2 04£02 09+0.3 GB6 J0029+0554B
003813 —02 05 0.6 £0.2 04+£0.2 0.7+£0.3 PMN J0038-0207
003820 —24 59 0.6 £0.2 1.0+£0.2 0.8+0.3 PMN J0038-2459
0042 40 5209 0.5+0.2 0.2+0.2 —-05+£03 GB6 J0043+5203

Notes. ? Indicates the source has multiple possible identifications.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding

its form and content.)

where w;, , gives the weight that each original pixel with index
i gives to convolved pixel p. The weights w; , define the beam
used for smoothing. From this formula and a noise estimate
in the original pixels, we propagate errors directly, assuming
uncorrelated noise in the original pixels.

0,2 (T;OI'IVOI) — Z wi%pGZ(n), (D3)

where Uz(T[fO‘“’Ol) is the noise variance in the convolved pixel p

and o>(T;) is the noise variance in the original pixel i.

The noise in each convolved pixel can be rapidly computed
by smoothing a map of unsmoothed noise variance values,
ooz/Nobs,,-. However, the smoothing must be done using the
squared weights, which requires determining the Legendre
transform of the beam once it has been squared in real space,
b(6)*: 1

Qb =2n / b*(0) P(cos 0) d cos . (D4)
-1
The values for the required beam smoothing, b, can be
computed numerically by calculating 5(8) on a one-dimensional
finely spaced grid in 6, squaring it, and computing the above
integral as a sum.
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The above description of smoothed noise assumes it will
be reported in a map with a pixel size much smaller than the
beam size. In the opposite case, where the final pixel size is
much larger than the beam size, the noise can be averaged down
ignoring the beam, since the effect of the beam will be small.
However, there is an intermediate case where the pixel size
and beam size are comparable, such as with r6 maps of 1 degree
smoothed data. In this case, a more careful treatment of the pixel
window function could be useful. Instead of approximating the
pixel window function as an azimuthally symmetric beam, we
take a more brute-force approach, outlined below.

We have r9 maps of N ;. Suppose we want to know the noise
properties of the corresponding temperature map smoothed to
1 degree FWHM and then degraded to r6. To determine this, we
calculate the real-space smoothing function needed to bring the
beam smoothing up to 1 degree; we call this b(0). This will be a
1 degree FWHM beam b, divided by the WMAP instrument
beam b; for that DA. We approximate b(6) numerically by
finding the Legendre transform of the needed smoothing, b; =
b} /b, on a one-dimensional list of angles 6. Then, for each
16 pixel, we find all r9 pixels within 2 degrees of the r6 pixel
center. We determine the weights w; ,, where i is an index over
19 pixels within 2 degrees of the r6 pixel center, and p is an
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index over 19 pixels inside the r6 pixel. As before, we have
w;,p = b(0;,p) (D5)

where 6; ,, is the angle between the centers of pixels i and p, and
the weights have been rescaled so that ), w; , = 1. The radius
of two degrees was chosen so that noise outside of that circle
would be negligibly averaged into the r6 pixel, given our beam
smoothing size.

Since the noise for the r9 pixels of the smoothed map is
averaged into an r6 pixel, we must account for this in our error
propagation. We assume flat weighting for the degrade from r9
to 16, in the following description. There are 64 r9 pixels in an
r6 pixel. The temperatures (pixels with index p) are averaged
into an r6 pixel (with index g) as

1
degraded _ T
Tt = 2 2 2w (D6)
P i
The formula for propagation of errors is
Z(Tdegraded) _ Z aﬂ : 2(T) (D7)
o q - ' 8Tl o i)s
which then becomes
2
2 Tdegraded _ 1 UO2 D8
rrey =3 (L) A o
i » obs,i
Alternatively, we can quote an effective Ngg‘; , Value for a
16 pixel as
1 1 ’ 1
—_— = —_— w;, — . (D9)
v = ()

Since this is the number more commonly reported in our data
files, we use this.

There appear to be artifacts in these N, g’{,{ o, maps. This is most
readily visible when a simple binned version of Ny, which
ignores the effects of smoothing is divided out. In this case, the
above noise propagation predicts what appears to be suppressed
noise levels (greater Nqps) near the edges of the base tiles in the
polar cap regions of the HEALPix pixelization.

These results can be verified by creating white noise real-
izations at r9, smoothing them, binning them to r6, and then
checking the variance of the noise in each pixel. When this
comparison is done, some of these artifacts remain in these sim-
ulations as well, so it appears the pixelization (slightly varying
pixel shapes) is causing a real effect in the smoothed noise. The
fluctuations that appear to be due to the HEALPix pixelization
are on order of 10% in Ny 4 in all bands.

The median values of Ny 4 over the whole sky for the two
approaches (white noise sims versus the above propagation of
errors) differ by about 5% at K-band (where the additional
smoothing is smallest), and roughly 1% in other bands. The
above propagation of errors appears to underestimate the noise
slightly (overestimate Nops 4 ).

APPENDIX E
BANDPASS INTEGRATION

In this section we first discuss the full integration over the
bandpass based on data from Jarosik et al. (2003b), and then
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we discuss a useful approximation to that integration based on
three frequencies in each band. This is the approximation used
for foreground fitting in Section 5.3.6.

The full integration of different foreground spectra over
the WMAP bandpasses can be done as follows, based on
the description of the radiometers in Jarosik et al. (2003b).
After computing rue(v;) from Equation (46) of that paper
using the discretized bandpass measurements, we combine the
measurements as if we were doing an unweighted average of
the maps in thermodynamic temperature, as follows. First, we
normalize the bandpass for each radiometer so that

Z ravg(vi) =1

We note the small shift in bandpass that we describe in
Appendix A. Then, we interpolate the foreground spectrum
onto the specific frequencies at which the WMAP bands were
measured, v;, average the frequency over the spectrum, and
convert from antenna to thermodynamic temperature. The mea-
sured foreground thermodynamic temperature response to a
foreground spectrum f(v) given in antenna temperature, av-
eraged over all the radiometers in one WMAP band, is

ravg,j(vi) )
Z—w’(vi) f)

i

(ED)

Nradiometers

Toanal f (V)] =

E2

N, radiometers i—1 ( )

j=

where w’(v) is as defined in Jarosik et al. (2003b): it is

the derivative of the single-polarization Planck spectrum with

respect to temperature, divided by kg to make it unitless. It

depends on both CMB temperature and frequency, but the
derivative is taken with respect to CMB temperature.

) hv hv (E3)
V) = X =
v e —1 ksT
‘W 1 dw(v) x2e* (E4)
w = |— = —
kg dT T=Tews (ex —1)?

Note that this assumes an unweighted average of the maps. If
we were to do an optimal weighted average, the total bandpass
would have some small spatial dependence with pixel, as the
number of observations varies between DAs.

In practice, it is the complexity and shape of the foregrounds
that limits the foreground fitting. The detailed bandpass discus-
sion above is more accurate, but fast approximations are useful.
Jarosik et al. (2003b) provides a useful approximation given by
Equation (50) of his paper for spectra that are power laws in
antenna temperature. This allows one to determine the effective
frequency of the bandpass and therefore rapidly calculate the
measured antenna temperature from the power law. However,
power laws are always concave upward on a plot of antenna
temperature as a function of frequency with both axes linear.
Since we also want to fit a spinning dust spectrum which is
concave downward, we invent another approximation.

Instead of doing the full integration discussed above for each
band, this approximation only requires a weighted average of
the antenna temperature at three frequencies. The thermody-
namic temperature measured by WMAP in a specific band is
approximated as

AT & a0
=——> w;T4(v;
AT, & 4

(E5)
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Table 20

Interpolation Data® for T = (AT /AT,) ZL L wiTa(vi)
Band v vy vsP wi wy w3 AT /AT 4¢
K 20.6 228 249 0.332906 0.374325 0.292768 1.013438
Ka 304 33.0 35.6  0.322425 0.387532 0.290043 1.028413
(0] 37.8 40.7 43.8 0.353635 0.342752 0.303613  1.043500
Vv 55.7 60.7 66.2 0.337805 0.370797 0.291399  1.098986
w 87.0 93.5 100.8 0.337633 0.367513 0.294854 1.247521
Notes.

2 As stated in the text, the frequencies shown here have an arbitrariness that
prevents them from being a meaningful representation of the center frequency or
width of the WMAP bandpasses. The weights w; account for this arbitrariness;
they make the overall approximation accurate. The weights and conversion
factors are given to a precision of about 6 significant figures. Our approximation
is not that accurate; we provide this precision to allow people to more easily
reproduce our results and to make round-off error negligible.

b Frequencies are given in GHz.

¢ This is the antenna to thermodynamic conversion for an unweighted average
of radiometers, which should be used for this approximation.

where T4(v;) is the antenna temperature foreground spectrum
measured at frequencies v;, and AT /ATy is the conversion from
antenna to thermodynamic temperature. The frequencies and
weights used are in Table 20. The weights are chosen so that
any spectrum that is a second order polynomial in antenna
temperature will have its integral evaluated exactly (to the
accuracy with which the bandpasses were measured). These
weights are therefore including information about the full shape
of the bandpass. We do not expect to have spectra that are second
order polynomials; most of the antenna temperature spectra are
either power laws (rarely with powers of precisely 0, 1, or 2) or
special fitting functions, but they can typically be approximated
well as a smooth quadratic over the width of the WMAP
bandpasses. The fitting frequencies are somewhat arbitrary.
They were chosen by taking a canonical center frequency for
each band and two frequencies about 9% higher and lower. Then
they were adjusted by hand so that the weights were roughly
equal and so the frequencies were multiples of 0.1 GHz. Further
adjustment could be done, but the current numbers appear to
work well. Because of this arbitrariness of the frequencies
in Table 20, they should not be taken to be a meaningful
representation of the center or width of the bandpass.

The error in this approximation is typically less than the
WMAP calibration error of 0.2%, for smooth spectra such as
power laws. In Q band, for low frequency scale factors, the
error in the spinning dust spectrum can be on order of 1%.
However, it is not clear that we know the shape of the spinning
dust spectrum to that accuracy. This is intended to be a rapid and
reasonably accurate way of integrating over the WMAP bands.
If more accurate methods are needed, such as for very steep
spectra or for spectra with emission lines, then a full integration
over the bandpass should be done.
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