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NINOMIYA-VICTOIR SCHEME : MULTILEVEL MONTE CARLO ESTIMATORS
AND DISCRETIZATION OF THE INVOLVED ORDINARY DIFFERENTIAL
EQUATIONS *

A. AL GErBI!, B. JOURDAIN! AND E. CLEMENT?

Abstract. In this paper, we recall the result about the strong convergence rate of the Ninomiya-
Victoir scheme and the properties of the multilevel Monte Carlo estimators involving this scheme that
we introduced and studied in [2]. We are also interested in the error introduced by discretizing the
ordinary differential equations involved in the Ninomiya-Victoir scheme. We prove that this error
converges with strong order 2 when an explicit Runge-Kutta method with order 4 (resp. 2) is used
for the ODEs corresponding to the Brownian (resp. Stratonovich drift) vector fields. We thus relax
the order 5 needed in [11] for the Brownian ODEs to obtain the same order of strong convergence.
Moreover, the properties of our multilevel Monte-Carlo estimators are preserved when these Runge-
Kutta methods are used.

Résumé. Dans cet article, nous commencons par rappeler le résultat de convergence de I’erreur forte
du schéma de Ninomiya-Victoir et les propriétés des estimateurs Monte-Carlo multipas utilisant ce
schéma que nous avons introduits et étudiés dans [2]. Nous nous intéressons également & l’erreur intro-
duite en discrétisant les Equations Différentielles Ordinaires qui figurent dans le schéma de Ninomiya-
Victoir lorsque leur solution n’est pas explicite. Nous montrons que l'ordre de convergence forte de
cette erreur est 2 lorsque les EDOs correspondant aux champs de vecteurs browniens (resp. a la dérive
dans Iécriture Stratonovich de I’équation différentielle stochastique) sont discrétisées avec une méthode
Runge-Kutta explicite d’ordre 4 (resp. 2). L’utilisation de ces méthodes de Runge-Kutta préserve les
propriétés de nos estimateurs Monte-Carlo multipas.

INTRODUCTION

We consider a general n-dimensional stochastic differential equation, driven by a d-dimensional standard
Brownian motion W = (Wl, RPN Wd), of the form

d .
dX, = b(X,)dt + 3 o7 (X;)dW}, t € [0,T]
j=1

X():.’EQ
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where 1o € R™ is the starting point, b : R — R” is the drift coefficient and ¢/ : R® — R",j € {1,...,d}, are
the Brownian vector fields. To introduce the Ninomiya-Victoir scheme, we consider a regular time grid, with
time step h = T/N. Let

o (t = kh)ke[[O;N]] be the subdivision of [0, 7] with equal time step h,

o AWI=W/J— Wtjw for s € (tg,tr+1] and j € {1,...,d},

o As=s—1ty, for s € (tg,tpt1]-
For V : R"® — R" Lipschitz continuous, exp(tV )z denotes the solution, at time ¢ € R, of the following ordinary
differential equation in R™

dz(t

%=V ()
x(0) = xo.

To deal with the Ninomiya-Victoir scheme, it is more convenient to rewrite the stochastic differential equation

(1) in Stratonovich form. Assuming C! regularity for the vector fields, the Stratonovich form of (1) is given by:

d ,
dX; = o%(Xy)dt + 5 o7 (Xy) o dW}
5=1

X():l'o

d
1 o . _
where 00 = b — 3 E 0olo? and 0o’ is the Jacobian matrix of o7 defined as follows

Jj=1

907 = ((907),,)

i,k€[1;n] = (awkaij)i,ke[[l;n]]'

The Ninomiya-Victoir scheme introduced in [12] to achieve weak convergence with order 2 is given by:

e starting point: Xt]XV’" =z,

o forke{0...,N—1},if mpy; = 1:
h h
NV _ 0 d _d 11 0 NV,
th+1n = exp (20 > exp (AWtHla ) ... eXp (AWtHlo ) exp <20 ) X, "
and if g4 = —1:

h h
Xt]ZX{” = exp (200> exp (AWt1k+1gl) ...exp (AWtcchgd) exp (200) Xt]ZV,n’

where n = (ni) k>1 1S a sequence of independent, identically distributed Rademacher random variables indepen-
dent of W. Under ellipticity and for smooth vector fields o;, j € {0,...,d}, Bally and Rey recently proved
convergence with order 2 in total variation distance : VS € (0,T], 3C(S) < oo,

VN >1, Vf : R" — R measurable and bounded , sup |[E[f(X} ") — E[f(Xy,)]| < C]\(f‘g).
k:itp>S
This result still holds when, in the Ninomiya-Victoir scheme, the Brownian increments (AthkH, ceey AWt‘iH)

are replaced by random variables with the same moments up to order five and the same independence structure.
Here, we do not consider such a substitution because we are interested in strong convergence properties of the
scheme. Our motivation comes from the multilevel Monte Carlo method introduced by Giles [8], the complexity
of which is more influenced by the order of strong convergence of the scheme than its order of weak convergence.
In the first section of this paper, we recall that the order of strong convergence of the Ninomiya-Victoir scheme
is in general 1/2. Then we recall the convergence properties of the multilevel Monte Carlo estimators involving
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this scheme that we introduced and studied in [2]. This motivates the study performed in the second section
about the use of integration schemes for the respective ordinary differential equations associated with the vector
fields o, j € {0,...,d} when their solutions are not available in closed-form. This topic was first addressed by
Ninomiya and Ninomiya [11] who not only consider the Ninomiya-Victoir scheme but also introduce another
scheme with order two of weak convergence where only two ordinary differential equations corresponding to
linear combinations with random coefficients of these vector fields have to be integrated on each time step. It
is not clear at all how to directly address the influence of integration schemes for ODEs on the order of weak
convergence and Ninomiya and Ninomiya rather look for sufficient conditions ensuring that the strong error and
therefore the weak error generated by these schemes converge with order two. In [11] p437 (see also Remark
2.2 p173 [10]), they claim that this is achieved when using a Runge-Kutta scheme with order five (resp. order
two) for the ODEs associated with the Brownian vector fields o;, j € {1,...,d} (resp. with the Stratonovich
drift op). Our main result in this paper is that the convergence properties are preserved when the Brownian
ODE:s are integrated using the much simpler explicit Runge-Kutta scheme with order 4. This scheme may also
be used (combined with a Runge-Kutta scheme with order 2 for o¢) in the multilevel Monte Carlo estimators
derived in Section 1.2 since convergence with strong order one and weak order two of the additional error is
enough to preserve their convergence properties.

1. STRONG CONVERGENCE AND MULTILEVEL MONTE CARLO ESTIMATORS

1.1. Strong convergence

In order to study the strong convergence properties of the NV scheme, it is convenient to introduce an
interpolation of this scheme between the grid points. Let us first introduce some more notation.

e 7, the last time discretization before s € [0,7T], ie 75 = ¢, if s € (tx, tx+1], and for s = tg = 0, we set
70 = to,

e By a slight abuse of notation, we set s = g1 if s € (tg, tpt1]-

A natural and adapted interpolation for the Ninomiya-Victoir scheme could be defined as follows:

o (B )
2 2 Tt
where AW, = (AW}, ..., AWY),
hi(s0,--,8441;%) = exp (soao) exp (sdad) ...exp (slol) exp (Sd+10'0) x,
and h_1 (S0, ...,84+1; L) = €xp (8000) exp (31(71) ...exp (sdod) exp (Sd+10’0) z.

Here, to compute the Ité decomposition of XNV the main difficulty is to explicit the derivatives of h; and
h_1. In the general case, the computation of derivatives of this function is quite complicated. For this reason,
in [2], we interpolate the Ninomiya-Victoir scheme as follows:

d d
NV, i (s i, 1 i 3 ( J 1 70, v d+1,
dXNV = ;:1: o) (XPMAW + 5 ;:1 007! (K77 dt+ 5 (0 (X77) +0° (XS] ) at
XV = g

3)
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where, for s € (tg, tr11] :

> As NV, -1,
Xgﬂ? = exp (20()) (th n]‘{nkJrl:l} + thZ11{le+1:—1}> ,

Vi€ L. d), X9 = exp (AWIo?) (XI "oy + XA =)

tht1 trt1 ==
1 As o) (gdn NV
X = €Xp 70 (th+11{7lk+1:1} + th 1{77k+1:*1}> : (4)
Although the stochastic processes (an) 017 j€{l,...,d+ 1}, are not adapted to the natural filtration of
t€[0,T
the Brownian motion W, each stochastic integral is well defined in (3). Indeed, ()_(tj’") 011 is adapted with
te[0,T

respect to the enlarged filtration (O’ (WSJ, s < t) Vo (Wf, s < T)) . Then, by independence, W/ is also
e te0,7)

¢
a Brownian motion with respect to this filtration and the stochastic integral / o (XIMdW? is well defined for

0
all t € [0,T]. Using this interpolation, we proved in [2] the strong convergence with order 1/2. More precisely:

Theorem 1.1. Assume that

e Vi€ {l.....d}.o7 € C (R"BY).

e 0% 07 and dolo? Vj € {1,...,d}, are Lipschitz continuous functions.
Then

2p

¥p>1,3Cyy € RY, YN € N*, Vap € R?, E {Sup HXt _ x NV s

t<T

) < G (14 ol ™).

1.2. Multilevel Monte Carlo estimators

The multilevel Monte Carlo method, introduced by Giles in [8], consists in combining multiple levels of
discretization, using a geometric sequence of time steps h; = % for example. Denoting by XV a numerical

scheme, with time step %, the main idea of this technique is to use the following telescopic summation to
control the bias:

L
Blr (x1)] =Bl (b)) + X[ (xF) -1 (x57)].
1=1
Then, a generalized multilevel Monte Carlo estimator is built as follows:

L

e =3 L3
Y, =N —Y"z
MLMC ar; Ml P k

where (Z,lc) 0<i<Li<k<i, € independent random variables such that, for a given discretization level [ €

{0,..., L}, the sequence (Z,i) is identically distributed and satisfies:

E[2°] =E[f(X})] and VI € {1,...,L} ,E[Z'] =E [f (X%l> i (X%’_l)] '

Assume that, for a given discretization level [ € {0, ..., L}, the computational cost of simulating one sample
Z!is C\2', where C' € R, is a constant, depending only on the discretization scheme and VI € N, \; € Q1
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is a weight, depending only on [, the computational complexity of Yarr mc, denoted by Carppe, is given by
L

Curyvc = C Y My\2'. For the natural choice
=0

2°=f(xb) and Ve {1, L}, 2= (x3) - £ (x37),

considered in [8], it is natural to take Ag = 1 and A, = 2. Indeed, the computation time of f(X%l) (resp.

f(X%lil)) is 2! (resp. 2!~!) times the computation time of f(X%}) so that the computation time of Z! is
20 + 271 = 2 % 2! times the one of Z°. According to Theorem 3.1 in [8] the optimal complexity Cj;; ¢ to

. 2
achieve a root mean square error E2 UY —Yur MC’ ] bounded by € > 0 depends on the order S of convergence

of the variance of Z! to 0 and the order a of weak convergence of the scheme :

O(e?) if B>1,
Crrare = O 2 (log (%))2) if g =1,
0 e—2+%) if B <1.

With a smooth payoff f, for the natural choice Z! = f (X%l) — f (X%l_l) with X2 and X2 driven by the

same Brownian path, 8 = 2+ where « is the order of strong convergence of the scheme. To achieve v = 1,
one has to simulate iterated Brownian integrals, for which there is no known efficient method. To get around
this difficulty, Giles and Szpruch introduced the modified Milstein scheme without Lévy areas Xg S = x¢ and
Yk e {0,...,N —1},

d d
. } 1 ) }
X8, = XG4 (XG5) (trws — )+ o7 (XG5) AW 45 D do7o™ (X% (AW, AW | = 1gjomh) |
j=1 Jjym=1

Moreover, they chose Z! as follows: Z22s=Tf (X?S’1> and Zé:s = % (f (X?S’2L> + f (ng,z’))_f (ng’zl_l)

forl e {1,...,L}. Here, X G52 ig the Giles and Szpruch scheme using a grid with time step h; = % and XG9:2'
its antithetic version obtained by swapping each successive pair of Brownian increments in the scheme. Of
course, X G527 ig the Giles and Szpruch scheme with time-step h;_; = y% and with Brownian increments
given by the sums of these successive pairs. Theorem 4.10, Lemma 2.2 and Lemma 4.6 in [9] ensure that § = 2

under some regularity assumptions on f and the coefficients of the SDE.

Proposition 1.2. Assume that f € C? (R™,R) and b,c",... 0% € C% (R™,R"™) with bounded first and second

order derivatives. Then:
c

* * 1 |2p
Vp>1,3c € R, VI e N*, E[!Zczs! ] < ool

Then, despite A, = 5 for [ > 1 (the computation time of Zfg is 2! + 2" + 2/71 = 2 x 2! times the one of
. L

7%), the optimal complexity of the multilevel Monte Carlo estimator Y7 1,0 = . J\%Zg 5 to achieve a RMSE
=0

smaller than € is O (6‘2), that is the same complexity as a Monte Carlo method with i.i.d. unbiased samples.
In [2], we succeeded in combining this idea with the suggestion of Debrabant Rossler [4], who improved the
multilevel Monte Carlo method by using, in the last level L, a scheme with high order of weak convergence to
reduce the bias and therefore the number of levels and the computation time. We first compared the Giles-
Szpruch scheme with the mean of the Ninomiya-Victoir schemes with opposite sequences of Rademacher random
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variables n = (g)r>1 and — = (=N )k>1 °

XNV,n = (XNV,n =+ XNV,—n) )

DN =

To be consistent with the interpolation (3), we interpolate the Giles-Szpruch scheme between the grid points as
follows:

t d t d t
XtGS:xo+/ b (XE9) ds+2/ o7 (XE9) de+Z/ dolol (XE%) AWIdW?
0 =170 ' =170

d t -1

1  m — _

+ §j§m_j1 /0 dola™ (XE5) AW AW where F, = ;—0: tr1 L (g 10001 (5)-
mt -

Proposition 1.3. Assume that

e b C?(R™;R"™) with bounded first and second order derivatives,
o Vje{l,...,d},o7 € C?(R";R") with bounded first and second order derivatives and with polynomially
growing third order derivatives,
o Vj,m e {l,...,d}, Oolc™ is Lipschitz continuous.
Then:
2p

Vp>1, 3C € R, YN e N*, E {sup Hj(gvvm — XG$
t<T

< C
nm = N2

We proposed two new multilevel Monte Carlo estimators. In the first one ?ﬁf&]g/, we keep ZIGS for all
levels [ but the last one [ = L and, as suggested in [4], replace ZLg by

1 ~ L - L L L -
e = (1 (RP0) 0 (0970 1 (X720 1 (53 )) (655,

Here, XNVt (resp. XNVQL’*”) is the antithetic version of the Ninomiya-Victoir scheme XNVi2hin (resp.
xN V72L’*77) obtained by swapping each successive pair of Brownian increments.
We also construct Y3y ;o by using the Ninomiya-Victoir scheme at each level and choosing 2%, =

f (XIIYV’L"> and for [ € {1,...,L}

1 ~ 1ol ~ Ul [ Ul
B = 1 825) (8879 () 337

1

_ 5 (f (XTZYV’QPI’"FI) ny (ijyv,zl—l,—nlfl)) where Vk > 1, 775;1 — 77l2k71-

Combining Propositions 1.2 and 1.3, we obtained in [2] that 8 = 2 for both Z5 gy and Zy .

Theorem 1.4. Assume that

e f€C?*(R",R) and b € C?> (R",R") with bounded first and second order derivatives,

e Vje{l,....d},o7 € C?(R",R") with bounded first and second order derivatives and with polynomially
growing third order derivatives,

o Vj,me {1,...,d}, doic™ is Lipschitz continuous.

Then:
c

Vp21,3c € R VL EN', E[|Zhs_nv|”] +E[|Z 7] < 5
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-1
This ensures that the optimal complexity of the multilevel Monte Carlo estimators Yﬁ‘z M%V = > ﬁzé st

. L
MLLZ(%S—NV and Y7 0 = 2 1 Z Yy to achieve a RMSE smaller than € is O (¢72). The numerical experi-

ments performed in [2] on the examples of the Clark-Cameron stochastic differential equation and the Heston
model confirm this complexity and show that yﬁi M%V is more efficient that both Yﬁf wme and Y]\]/[VXMC.
When the solutions to the ODEs involved in the Ninomiya-Victoir scheme are not available in closed-form,
one needs to approximate them using some discretization procedure. In the next section, we investigate the
additional error terms introduced by such a procedure and check that the convergence properties of our multilevel
Monte Carlo estimators are preserved when the ODEs associated with the Brownian vector fields o, j €
{1,...,d} (resp. Stratonovich drift vector field og) are discretized using the explicit Runge-Kutta method with

order 4 (resp. 2).

2. DISCRETIZATION OF THE INVOLVED ORDINARY DIFFERENTIAL EQUATIONS

The study of the discretization of the ordinary differential equations involved in the Ninomiya-Victoir scheme
in the last chapter of [1] aims at relaxing the boundedness assumption made on the vector fields in [11]. To
deal with the error introduced by the discretization it is convenient to keep track of the succession of ODEs
that are solved in the Ninomiya-Victoir scheme. That is why we define Xt]Z f"l = exp (%O‘O) Xt]Z Vi and for

aFz
je{l,“'ad}a

h
NV, NV,
Xt“;’j =1{p1=1) €XD (AVVtHl ) ...ExXp (AVVthrl ) exp <2 ) th n
d+2
h
+ gy 1=—1) €XD (AW&E J ydt1- J) ... exp (AVVWr1 )exp <2 ) XtIZV,n

= Lm0 (AWE,, 07 ) XYV 1, oy exp (AW o) XNV

, ty
J +1
k+arz bt T

This way, X; " = exp (Lo?) XNV The numerical approximation, denoted by XNV, of the Ninomiya-

tr41 d+1”
d+2

_ g0 (h ¥vNVn

=0 (5, %),

1

d+2

Victoir scheme is defined by )A(tjgv’" =zandfor ke {0...,N -1}, X&"

. NV, 1 NV, d+1—j d+1— NV,
for j € {1,...,d}, X! “”11 Ly, =1y W <AWtk+1,X ;) g,y W (AWtHl o l)

and XtJZVln = o (g’XtNV;E> Here, for j € {0,...,d}, ¥J : R x R® — R"™ is such that for (¢,7) € R x R",

Wi (t,x) is the approximation of exp(to;)z by some numerical scheme. The following general approximation
result is stated in Theorem 5.2.2 and Remark 5.2.3 [1].

Theorem 2.1. Assume that

o 00 is Lipschitz continuous,
e for all j € {1,...,d},07 € C' (R™",R"™) with bounded first order derivatives and do’c? is Lipschitz
continuous,
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vp e N, 3Cp € Ry, ¥(0,2) € [0,T] x R", 1+ [[9° (60,2)|| < exp (Cof) (1+ ||o)™) . (Hy)
Img € N*, Jep € RY}, 3¢ € N*, V(0,2) € [0,T] x R",

|exp (900) x— o (G,x)H < co(1+ ]z gUmot1) (H2)
. , 2
Vp € N*, 3C; € R%, ¥(6,z) € [0,T] x R", max E {1 n H\w (ng)H p} < exp (C10) (1 n ||a:\|2p) L (Ms)
1<j<d
Im e N*, ¥p e N*, 3¢; e R, 3¢ € N*, ¥(0,z) € [0,T] x R",

s [ (i) ()] < 0 bm) oo

Then Vp € N*, 3Cnv € RY,

Cn

. 2 vV 2q ) > >
Jg € N*, YN € N*, Vap € R”, E MXQJYV,n _ X%VV,nH P] < é\ﬂp (L+[lzol??) if mo > 1 and m > 3,
S (1+ llzol*) if mo > 2 and m 5.

Proposition 5.3.2 [1], ensures that (H1) (resp. (H3)) is satisfied when W (resp for j € {1,...,d}, ¥J) is any
explicit Runge-Kutta scheme. Moreover, by Proposition 5.3.3 (resp. 5.3.4) [1], (Hz2) with mo = 2 (resp. (Hq4)
with mg = 5) is satisfied when

(0, z) = 03" (0,2) with for V : R" = R", WY (0,2) = z + gV(x) + gV(x + 0V (x)) (5)

(resp. for j € {1,...,d}, ¥J) is the explicit second (resp. fifth) order Runge-Kutta scheme and o° € C? (R",R")
(resp. Vj € {1,...,d}, 07 € C° (R",R"™)) with bounded first order derivatives and polynomially growing higher
order derivatives. Hence the error introduced by applying the explicit second (resp. fifth) order Runge-Kutta
method to the ODE corresponding to the Stratonovich drift (resp. the Brownian vector fields o/, j € {1,...d})
converges to 0 with strong and therefore weak orders 2.

We did not recall the explicit fifth order Runge-Kutta scheme because we are going to prove that this property
is preserved when the Brownian ODEs are discretized using the much simpler fourth order scheme :

Vie{l,...,d}, ¥ (0,x) :\I'Zj (0, z) where for V : R" — R",

vy (0, ) =x+Z<V () +2V (:c-i— ZV(w)) +2V (x—l— gv <m+ ZV(:U)»

v (e (s 20 (s ) ) o

In order to ensure stability of this Runge-Kutta method over a random time increment with Gaussian distribu-
tion, we will assume that YV € {¢7,1 < j < d},

3Cy € R%,V(0,2,y,2,w) € R x R,

[V(z +0V(2)) + V(y) = V() = V(y + 6V (w))]| < Cv|é| (IISE =yl + @+ 1Dz - wll)- (7)

Remark 2.2. If the function V : R™ — R” is affine, then it satisfies (7). This condition also holds when the
function V belongs to C! (R™,R"), is Lipschitz and bounded and 9V is Lipschitz. Indeed, this follows from the
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equality

Vi(z+0V(2) + V(y) — V() — V(y+ 0V (w)) :g ( /O OV (z+ 0BV (2)) + OV (y + abV (w))da(V(2) — V(w))
1
+ / OV (x + abV(z)) — OV (y + eV (w))da(V(2) + V(w)))
0

Our main result is the following theorem.

Theorem 2.3. Assume that

o 0 € C1(R™,R") is a Lipschitz continuous function with first order derivatives locally Lipschitz with
polynomially growing Lipschitz constants,

e Vje{l,...,d},07 € C°(R",R") is a Lipschitz continuous function with derivatives of order 5 locally
Lipschitz with polynomially growing Lipschitz constants and satisfies (7),

e Vje{l,...,d} do’lo? is Lipschitz continuous,

and that (5) and (6) hold. Then

2p
NV.n - NV.n
XNV N H

. ¢
¥p>1, 3Cyy € R%, 3¢ € N*, YN € N*, Voo € R, E { n] < Nfg (1 + ||g;0||QQ) .

max H
0<k<N

Remark 2.4. Under the assumptions of the theorem, the order of weak convergence of XNV g 9, Moreover,
if we define ZIGS_NV and Zﬁvv like ZLg_ ny and ZY;y, but with the ODEs associated with the Brownian vector
fields (resp. Stratonovich drift vector field) discretized with the explicit fourth (resp. second) order Runge-Kutta
method, under the additional assumptions of Theorem 1.4,

* * 1 Zp A 2p c
¥p>1,3c € R}, Vi€ N, E )ZGS,NV’ +E ‘ZNV‘ < o

As a consequence, the convergence properties of our multilevel Monte Carlo estimators are preserved when
replacing ZLg_ny and Ziy by Zhe ny and ZYy.

To prove this estimation, it is not enough to combine, like in the proof of Theorem 2.1, a local error analysis
with a stability result for the Ninomiya-Victoir scheme. One needs to check that the main error introduced on
each time-step by discretizing the Brownian ODEs with the fourth order RK scheme is a martingale increment
with order N ~%/2 which after summation over all time steps leads to order VN x N=5 = N~2 by the Burkholder-
Davis-Gundy inequality whereas Holder’s inequality would lead to order N x N—%/2 = N=3/2 We summarize
in the next lemma the properties of the explicit Runge-Kutta methods that we will use in what follows.

Lemma 2.5. Assume that V : R™ — R™ is Lispchitz continuous with constant Lip(V'). Then

f|Lip(V
V0.0) € Rx R x R [0 (0.0) — 2 = 0 (0) +ol < iLip(v) (14 PR Yoy )

If moreover

o V e CH(R™,R™) with OV locally Lipschitz with polynomially growing Lipschitz constant, then

3C e RY, 3¢ € N*, V(0,2) € [0,T] x R, ||exp (V) z — WY (6,2)|| < C (1 + ||z[|) 6%, (9)
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e V € C5(R™,R"™) with derivatives of order 5 locally Lipschitz with polynomially growing Lipschitz con-
stants, then there exists a function hy € C (R™,R™) with polynomial growth such that Vp > 1, 3C € R%,

3¢ € N*, ¥(0,z) € [0,T] x R",
E {||exp (WiV)z — Y (Wha) — hv(x)(W(})5H2p} <C (1 + Hx||2q) 6% . (10)
o V satisfies (7), then 3C € R,
W0, 2,y) € R x R, ||WY(0,2) — x — 0V (z) — WY (6,9) +y+ OV(y)|| < C@O*+ 0|z —yl.  (11)

Proof. The first statement is an easy consequence of the definition (5) of WY and the Lipschitz property of the
vector field V. For the second statement, we perform second order Taylor expansions in 6 :

exp(V)z =z + V(2)0 + W%(MGQ + /9 /t OVV (exp(sV)z) — OVV (x)dsdt
0o Jo
0
UY(0,2) =2+ V(z)0+ 8‘/%(1‘)92 + g / OV (z+tV(x)) — OV (x))V (z)dt.
0

The Lispchitz property of V' and the equality exp (sV)x — x = fo (exp (rV) z)dr imply that
IC e Ry, VY(s,z) € [0,T] x R", |[exp (sV) z| < C(1 + [|z]]) and [|exp (sV)z — x| < C(1 + ||z||)s.
With the local Lipschitz property of V'V, one deduces that

V(@) o

S 0| < O+ )6

JC e Ry, 3¢ e N*, V(0,2) € [0,T] x R", ||lexp(V)x — 2 — V(x)0 —

One easily obtains the same bound for WY (8, 2) —x—V (z)60 — %(x)@? and concludes by the triangle inequality.

To check the third statement, we perform fifth order Taylor expansions of both exp(6V)(x) and ¥} (6, )
which match up to order four because of the order of the Runge-Kutta method considered here. The function
hy is obtained from the difference of the fifth order terms and the remainders are easily estimated using the
Lipschitz property of V' and the local Lipschitz property of its derivatives up to the order 5.

For the last statement, we remark that for § # 0 and z,y € R,

6 (\I/X(H, z)—x—0V(x)— WY (0,y)+y+ HV(y)) =2(V(z+6V(x)/2) —V(z

) —
0
+2(V(x+0V(x+0V(2)/2)/2) = V(z) = V(y+60V(y+0V(y)/2)/2) + V(y))
+(V(z+0V(z+0V(z+0V(x)/2)/2) = V() = V(y+60V(y+0V(y+0V(y)/2)/2)) +V(y)).

V(y+0V(y)/2) +V(y))

We conclude by applying (7) to each of the three terms in the right-hand side and using the Lipschitz property

of V.
O

We set Vj € {0,...,d}, V(0,z,y) € R x R" x R, W (0,z,y) =y + ¥/ (0, z) — 2. In order to sum the above
mentionned martingale increments without needing to consider their deformation by the flow of the Ninomiya-

Victoir scheme, we define a new process (ng_+ ; Jo<k<N-11<j<d+2 by Y, = x and for k € {0...,N — 1},
Tz

_ o (g’XtJZv,n’Ytk), and for j € {1,...,d}

. )+1{nk+1—1}‘i’d+1_j (AWiﬁ XYY )
d+2 d+2

- U J NV
}/tk-%——Jd:r_é 1{77k+1:1}\11 (AWtk+1’th+ i ’Y;:k _J

d+2 d+2
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30 [ h NV.n
and Yy, , =97 | §,X; Y o, .
“ R

Proposition 2.6. Assume that

e 00 € C'(R",R") is a Lipschitz continuous function with first order derivatives locally Lipschitz with
polynomially growing Lipschitz constants,

e Vje{l,...,d},07 € C°(R",R") is a Lipschitz continuous function with derivatives of order 5 locally
Lipschitz with polynomially growing Lipschitz constants,

o Vje{l,...,d} do’o7 is Lipschitz continuous.

Then Vp > 1, 3Cy € R, d¢ € N*,

2p
Cy
YN eN*, Voo € R", E| max [IX,'"" -V, < 14 ||ao]|
’ bt gt < H Yot 7t R g N4p ( o] )

Proof. One has for k + ﬁ'Q < N (which is a shorthand notation for k € {0,...,N —1} and j € {1,...,d+2}),

XNy, (AMg i + Ry;) where

j 4 d
b+ g4 k+ 313

for i € {1’ d} AM“ - ( {ne41= 1}hff1 NV,ﬁ )(AWZZ+1)5 + 1{ne+1:71}hod+1—i(thjv’Z )(AWd_H l) ) ’

bt Ttz a2 bt
AW/} NV, x NV NV,
and Ry; = 1{77”1:1} ( 19 (X o o ) AWZ/_H, t,, 7Z ) — hyi (XtH :7 )(AW;{H) )
d+2 d+2 d+2
AWtd+1 igd+l—i NV, gdt+1—i i NV, NV, %
gy (2T g (AW&E ) = o (5T AW,
d+2 d+2 d+2
h
and for i € {0,d+ 1}, AMy; =0, Rp; = e27 (XY ) —wg’ <,X§W=’? ) :
s 2 s
For k+ 45 < N, we set M, , Zud . For £ € {—1,1}", we denote by P¢ the conditional
12>

probability measure given 1 = § and by E¢ the correbpondmg expectation.
The discrete process (M ) bt iy <N is a P¢ martingale for the filtration

bt gis
i d+
‘/_'.]f+ d+2 =0 ((AWM+1)OSZSI€—17 (1{€k+1:1}AWtZk+1 -+ 1{§k+1:_1}AWtk+1 )1§i§j—1) . (12)
Moreover,
2p 2
max HXNV" -Y <2271 [ max HMHL ‘ +((d+2)N)¥>! Z 1Re |27
k+ 5 <N bt gtz bt hs ket gy <N a+2 ,
¥
(13)

By Lemma 2.5 [2], since the vector fields 07 (resp. do707) are Lipschitz for j € {0,...,d} (resp. j € {1,...,d}),

2q
Vg >1, 3C € R, YN € N*, V¢ € {~1,1}", Vo € R", max Eg [HXNV" <O (1+ ||lzo)®) . (14)

k+ 7t ktarz
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Combined with (9) and (10) we deduce that

C
IC € R}, Ige N, YN e N, VE € {=1, 1}V, Voo €R",  max  Ee [[[Real™] < 55 (1 + [lol*),
O FiSN- iy NOP
C(d+2
and therefore N?P~ [, Z [Reil|?P| < %(1 + [lzol*9). (15)
Z+d+2<N d+2

On the other hand, by the Burkholder-Davis-Gundy inequality,

N-1 d p N-1 d
| e [0 [ = v (3 32100t ) | < omatany 33 e 10 ?]
btz <N i =0 i=1 (=0 i=1
TSR [|W1|10p] N-1 d 2p
pfl 1 . NVsTI . NV,T]
< CBD(}(dN) —N5p 2 ;Eg Hl{55+1=1}hgt(th+di2) +1{£€+1:_1}h(;d+1—z(tirdiz) .

By the polynomial growth property of the functions h,;,1 < j < d and (14), there exist C' € R%, ¢ € N*
such that for all N € N*, all ¢ € {~1,1}¥ all £ € {0,...,N — 1} and all i € {1,...,d}, the last expectation
in the right-hand side is smaller than C(1 + ||zo]|??). We conclude by plugging the derived estimation of

2p
E¢ {maxk+(ii2<NHMk+dJ2’ ] and (15) into (13).

O

We are now ready to prove Theorem 2.3.

Proof. Using that UJ 0,7,y) —y = V(0 x) — x, we get that for k + d%-z <N,

cNVn ) T
Vst ™ Kb, = > (ADy;+ AM,,;) where

€+ d+2 <k+ d+2

h h - . N
for i € {Ovd+ l}a ADf,i = \Pgo <3Xthn ) - XtNV,n- - \I/go <vXtNVJ7- ) + XtNVﬂ and AM@,i = Oa
2 t+ars s 2 s ‘+ T3
and for i € {1,....d}, AMy; =1g,,,,—13("(X))"" )~ 0o (XNV:? )AWY, |
tare o
+1{772+1=—1}(0—d+171(XtJZV7’Z ) dJrl Z(XNVT] ))Awgill 1 Hd
+a+z s
ot YNV, NV, NV. i
AD@J = 1{77£+1:1} <\I/4 (AWte+1’ N "7 ) — Xt“_ 73 — g (Xg 7] )AWte+1
Tz =) a2

d+2

—uy (AW XNV ) 4 XNV L (XN AW
4 top1? Pt ty, i Ty, i tog1
d+2 d+2

+1{m+1:_1} (g[;f“i (AWdJrl i Xan ) Xan _ gdti- Z(XNV" )AWd+1 i

tota teta
* s ber ate ate +

d+1—i A PPN
o \I,Z AWtd+1 i XNVU + XtNVﬁ + o+l Z(XtNV’n_ )AWtd-H i
e ber at2 a2 a2 e
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Fork—i—d+2 < N, we setM :ZHdiZS,H;:é AM;; so that
NV, 2p—1 2P
max |Y;, X N <2°P~ max ‘
(A i g <kt

+ 2 k(d+2) + )P Y

v .
b g <k+ s

(16)

By (8) and (11), 3Cp € R%, VN € N*, V¢ € {~1,1}¥,

1 Cp NV, v |7
vl 7<N—7 ADl2p<—E X . 17
+d+2 - d+2’ [H el ] N?2p ¢ [H 1’+d+ té+dl2 (7
. . £ . ~ ‘
On the other hand, applying the' Burkholder-Davis-Gundy to the .7-'1€+ e -local martingale (Mk+d]2 >k+dJ2SN
under P¢, we obtain that Vk + ﬁ <N
P
e =~ max HdeiZ < Cppcke > 1AM, |
+ 7 < o+ J
d+2 d+2 £+ 1, <k+ _{/i+;

< Cppa(kd+ )7 >0 B [| AN

2 TPE [|[Wi|2P X 2p
ccmtsar (s o) L gl g |7
i< E+ 1 <k+fi+; d+2

where Lip(c?) denotes the Lipschitz constant of ¢7. Plugging this estimation together with (17) in (16), we get
the existence of a constant C' € RY such that VN € N*, V¢ € {—1, 1}V, Vk + s <N

2p O R 2p
E¢ max v, o, =XV <= xNvm XN
gy <kt || T fer ks N bt gin 7tz
A * £+di25k+h
_ 2p 2p
Cc22r—1 NV, NV,
— § : E§ t ’:? }/tz i + Ytz i 7X 77
N ) i g T a2 T a2 bey a+z
bt g <k+i
_ _ 2p
C2%r=10y C2%r-1 NV,
< e (L [lzol[*9) + Ee ||V, , — X0 " ;
NP N : . ST R
U g <k+img

where we used Proposition 2.6 for the last inequality. One easily checks by an inductive reasoning using the

2p
Lipschitz property of the vector fields 7, 0 < j < d that maxy s <N HXNV" ] < oo. With (14) and
kt gt
2p
Proposition 2.6, we deduce the finiteness of max;  ;__y E¢ ‘ Ytk+ ;o XNV . A discrete version of
arz bt FE=
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Gronwall’s lemma then ensures that

2p C
3C e R%, VN e N*, Ve € {-1,1}V, Vog e R®, E¢| max ||V, . — X7 < —— (1 + |Jzo]|?9).
i [ [T N4p
k+ 55 <N d+2 a+z
We conclude with the inequality
2p 2p 2p
max HXtNV’n_ S < 2%l max HXtNV’"_ -y . + max ‘ Y. - XNV
k+ g5 <N bt gt bt gt ktgis <N bt gts k+ 7t kgl <N || Frae bt gts
and Proposition 2.6. O
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