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NINOMIYA-VICTOIR SCHEME : MULTILEVEL MONTE CARLO ESTIMATORS

AND DISCRETIZATION OF THE INVOLVED ORDINARY DIFFERENTIAL

EQUATIONS ∗

A. Al Gerbi1, B. Jourdain1 and E. Clément2

Abstract. In this paper, we recall the result about the strong convergence rate of the Ninomiya-
Victoir scheme and the properties of the multilevel Monte Carlo estimators involving this scheme that
we introduced and studied in [2]. We are also interested in the error introduced by discretizing the
ordinary differential equations involved in the Ninomiya-Victoir scheme. We prove that this error
converges with strong order 2 when an explicit Runge-Kutta method with order 4 (resp. 2) is used
for the ODEs corresponding to the Brownian (resp. Stratonovich drift) vector fields. We thus relax
the order 5 needed in [11] for the Brownian ODEs to obtain the same order of strong convergence.
Moreover, the properties of our multilevel Monte-Carlo estimators are preserved when these Runge-
Kutta methods are used.

Résumé. Dans cet article, nous commençons par rappeler le résultat de convergence de l’erreur forte
du schéma de Ninomiya-Victoir et les propriétés des estimateurs Monte-Carlo multipas utilisant ce
schéma que nous avons introduits et étudiés dans [2]. Nous nous intéressons également à l’erreur intro-

duite en discrétisant les Équations Différentielles Ordinaires qui figurent dans le schéma de Ninomiya-
Victoir lorsque leur solution n’est pas explicite. Nous montrons que l’ordre de convergence forte de

cette erreur est 2 lorsque les ÉDOs correspondant aux champs de vecteurs browniens (resp. à la dérive
dans l’écriture Stratonovich de l’équation différentielle stochastique) sont discrétisées avec une méthode
Runge-Kutta explicite d’ordre 4 (resp. 2). L’utilisation de ces méthodes de Runge-Kutta préserve les
propriétés de nos estimateurs Monte-Carlo multipas.

Introduction

We consider a general n-dimensional stochastic differential equation, driven by a d-dimensional standard
Brownian motion W =

(
W 1, . . . ,W d

)
, of the form dXt = b(Xt)dt+

d∑
j=1

σj(Xt)dW
j
t , t ∈ [0, T ]

X0 = x0

(1)
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where x0 ∈ Rn is the starting point, b : Rn −→ Rn is the drift coefficient and σj : Rn −→ Rn, j ∈ {1, . . . , d}, are
the Brownian vector fields. To introduce the Ninomiya-Victoir scheme, we consider a regular time grid, with
time step h = T/N . Let

• (tk = kh)k∈[[0;N ]] be the subdivision of [0, T ] with equal time step h,

• ∆W j
s = W j

s −W
j
tk

, for s ∈ (tk, tk+1] and j ∈ {1, . . . , d},
• ∆s = s− tk, for s ∈ (tk, tk+1].

For V : Rn −→ Rn Lipschitz continuous, exp(tV )x denotes the solution, at time t ∈ R, of the following ordinary
differential equation in Rn {

dx(t)
dt = V (x(t))

x(0) = x0.

To deal with the Ninomiya-Victoir scheme, it is more convenient to rewrite the stochastic differential equation
(1) in Stratonovich form. Assuming C1 regularity for the vector fields, the Stratonovich form of (1) is given by: dXt = σ0(Xt)dt+

d∑
j=1

σj(Xt) ◦ dW j
t

X0 = x0

where σ0 = b− 1

2

d∑
j=1

∂σjσj and ∂σj is the Jacobian matrix of σj defined as follows

∂σj =
((
∂σj

)
ik

)
i,k∈[[1;n]]

=
(
∂xkσ

ij
)
i,k∈[[1;n]]

.

The Ninomiya-Victoir scheme introduced in [12] to achieve weak convergence with order 2 is given by:

• starting point: XNV,η
t0 = x,

• for k ∈ {0 . . . , N − 1}, if ηk+1 = 1:

XNV,η
tk+1

= exp

(
h

2
σ0

)
exp

(
∆W d

tk+1
σd
)
. . . exp

(
∆W 1

tk+1
σ1
)

exp

(
h

2
σ0

)
XNV,η
tk

,

and if ηk+1 = −1:

XNV,η
tk+1

= exp

(
h

2
σ0

)
exp

(
∆W 1

tk+1
σ1
)
. . . exp

(
∆W d

tk+1
σd
)

exp

(
h

2
σ0

)
XNV,η
tk

,

where η = (ηk)k≥1 is a sequence of independent, identically distributed Rademacher random variables indepen-

dent of W . Under ellipticity and for smooth vector fields σj , j ∈ {0, . . . , d}, Bally and Rey recently proved
convergence with order 2 in total variation distance : ∀S ∈ (0, T ], ∃C(S) <∞,

∀N ≥ 1, ∀f : Rn → R measurable and bounded , sup
k:tk≥S

∣∣∣E[f(XNV,η
tk

)]− E[f(Xtk)]
∣∣∣ ≤ C(S)

N2
.

This result still holds when, in the Ninomiya-Victoir scheme, the Brownian increments (∆W 1
tk+1

, . . . ,∆W d
tk+1

)
are replaced by random variables with the same moments up to order five and the same independence structure.
Here, we do not consider such a substitution because we are interested in strong convergence properties of the
scheme. Our motivation comes from the multilevel Monte Carlo method introduced by Giles [8], the complexity
of which is more influenced by the order of strong convergence of the scheme than its order of weak convergence.
In the first section of this paper, we recall that the order of strong convergence of the Ninomiya-Victoir scheme
is in general 1/2. Then we recall the convergence properties of the multilevel Monte Carlo estimators involving
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this scheme that we introduced and studied in [2]. This motivates the study performed in the second section
about the use of integration schemes for the respective ordinary differential equations associated with the vector
fields σj , j ∈ {0, . . . , d} when their solutions are not available in closed-form. This topic was first addressed by
Ninomiya and Ninomiya [11] who not only consider the Ninomiya-Victoir scheme but also introduce another
scheme with order two of weak convergence where only two ordinary differential equations corresponding to
linear combinations with random coefficients of these vector fields have to be integrated on each time step. It
is not clear at all how to directly address the influence of integration schemes for ODEs on the order of weak
convergence and Ninomiya and Ninomiya rather look for sufficient conditions ensuring that the strong error and
therefore the weak error generated by these schemes converge with order two. In [11] p437 (see also Remark
2.2 p173 [10]), they claim that this is achieved when using a Runge-Kutta scheme with order five (resp. order
two) for the ODEs associated with the Brownian vector fields σj , j ∈ {1, . . . , d} (resp. with the Stratonovich
drift σ0). Our main result in this paper is that the convergence properties are preserved when the Brownian
ODEs are integrated using the much simpler explicit Runge-Kutta scheme with order 4. This scheme may also
be used (combined with a Runge-Kutta scheme with order 2 for σ0) in the multilevel Monte Carlo estimators
derived in Section 1.2 since convergence with strong order one and weak order two of the additional error is
enough to preserve their convergence properties.

1. Strong convergence and Multilevel Monte Carlo estimators

1.1. Strong convergence

In order to study the strong convergence properties of the NV scheme, it is convenient to introduce an
interpolation of this scheme between the grid points. Let us first introduce some more notation.

• τ̂s the last time discretization before s ∈ [0, T ], ie τ̂s = tk if s ∈ (tk, tk+1], and for s = t0 = 0, we set
τ̂0 = t0,

• By a slight abuse of notation, we set ηs = ηk+1 if s ∈ (tk, tk+1].

A natural and adapted interpolation for the Ninomiya-Victoir scheme could be defined as follows:

hηt

(
∆t

2
,∆Wt,

∆t

2
;XNV,η

τ̂t

)
, (2)

where ∆Wt =
(
∆W 1

t , . . . ,∆W
d
t

)
,

h1 (s0, . . . , sd+1;x) = exp
(
s0σ

0
)

exp
(
sdσ

d
)
. . . exp

(
s1σ

1
)

exp
(
sd+1σ

0
)
x,

and h−1 (s0, . . . , sd+1;x) = exp
(
s0σ

0
)

exp
(
s1σ

1
)
. . . exp

(
sdσ

d
)

exp
(
sd+1σ

0
)
x.

Here, to compute the Itô decomposition of XNV,η the main difficulty is to explicit the derivatives of h1 and
h−1. In the general case, the computation of derivatives of this function is quite complicated. For this reason,
in [2], we interpolate the Ninomiya-Victoir scheme as follows:

 dXNV,η
t =

d∑
j=1

σj(X̄j,η
t )dW j

t +
1

2

d∑
j=1

∂σjσj
(
X̄j,η
t

)
dt+

1

2

(
σ0
(
X̄0,η
t

)
+ σ0

(
X̄d+1,η
t

))
dt

XNV,η
0 = x0

(3)
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where, for s ∈ (tk, tk+1] :

X̄0,η
s = exp

(
∆s

2
σ0

)(
XNV,η
tk

1{ηk+1=1} + X̄1,η
tk+1

1{ηk+1=−1}

)
,

∀j ∈ {1, . . . , d} , X̄j,η
s = exp

(
∆W j

s σ
j
) (
X̄j−1,η
tk+1

1{ηk+1=1} + X̄j+1,η
tk+1

1{ηk+1=−1}

)
,

X̄d+1,η
s = exp

(
∆s

2
σ0

)(
X̄d,η
tk+1

1{ηk+1=1} +XNV,η
tk

1{ηk+1=−1}

)
. (4)

Although the stochastic processes
(
X̄j,η
t

)
t∈[0,T ]

, j ∈ {1, . . . , d+ 1}, are not adapted to the natural filtration of

the Brownian motion W , each stochastic integral is well defined in (3). Indeed,
(
X̄j,η
t

)
t∈[0,T ]

is adapted with

respect to the enlarged filtration

(
σ
(
W j
s , s ≤ t

) ∨
k 6=j

σ
(
W k
s , s ≤ T

))
t∈[0,T ]

. Then, by independence, W j is also

a Brownian motion with respect to this filtration and the stochastic integral

∫ t

0

σj(X̄j,η
s )dW j

s is well defined for

all t ∈ [0, T ]. Using this interpolation, we proved in [2] the strong convergence with order 1/2. More precisely:

Theorem 1.1. Assume that

• ∀j ∈ {1, . . . , d} , σj ∈ C1 (Rn,Rn).
• σ0, σj and ∂σjσj ,∀j ∈ {1, . . . , d}, are Lipschitz continuous functions.

Then

∀p ≥ 1,∃CNV ∈ R∗+,∀N ∈ N∗, ∀x0 ∈ Rn, E
[
sup
t≤T

∥∥∥Xt −XNV,η
t

∥∥∥2p
∣∣∣∣η] ≤ CNV

Np

(
1 + ‖x0‖2p

)
.

1.2. Multilevel Monte Carlo estimators

The multilevel Monte Carlo method, introduced by Giles in [8], consists in combining multiple levels of
discretization, using a geometric sequence of time steps hl = T

2l
for example. Denoting by XN a numerical

scheme, with time step T
N , the main idea of this technique is to use the following telescopic summation to

control the bias:

E
[
f
(
X2L

T

)]
= E

[
f
(
X1
T

)]
+

L∑
l=1

E
[
f
(
X2l

T

)
− f

(
X2l−1

T

)]
.

Then, a generalized multilevel Monte Carlo estimator is built as follows:

ŶMLMC =

L∑
l=0

1

Ml

Ml∑
k=1

Zlk

where
(
Zlk
)

0≤l≤L,1≤k≤Ml
are independent random variables such that, for a given discretization level l ∈

{0, . . . , L}, the sequence
(
Zlk
)

1≤k≤Ml
is identically distributed and satisfies:

E
[
Z0
]

= E
[
f
(
X1
T

)]
and ∀l ∈ {1, . . . , L} ,E

[
Zl
]

= E
[
f
(
X2l

T

)
− f

(
X2l−1

T

)]
.

Assume that, for a given discretization level l ∈ {0, . . . , L}, the computational cost of simulating one sample
Zl is Cλl2

l, where C ∈ R+ is a constant, depending only on the discretization scheme and ∀l ∈ N, λl ∈ Q∗+



NINOMIYA-VICTOIR SCHEME 5

is a weight, depending only on l, the computational complexity of ŶMLMC , denoted by CMLMC , is given by

CMLMC = C
L∑
l=0

Mlλl2
l. For the natural choice

Z0 = f
(
X1
T

)
and ∀l ∈ {1, . . . , L} , Zl = f

(
X2l

T

)
− f

(
X2l−1

T

)
,

considered in [8], it is natural to take λ0 = 1 and λl = 3
2 . Indeed, the computation time of f(X2l

T ) (resp.

f(X2l−1

T )) is 2l (resp. 2l−1) times the computation time of f(X1
T ) so that the computation time of Zl is

2l + 2l−1 = 3
2 × 2l times the one of Z0. According to Theorem 3.1 in [8] the optimal complexity C∗MLMC to

achieve a root mean square error E 1
2

[∣∣∣Y − ŶMLMC

∣∣∣2] bounded by ε > 0 depends on the order β of convergence

of the variance of Zl to 0 and the order α of weak convergence of the scheme :

C∗MLMC =


O
(
ε−2
)

if β > 1,

O
(
ε−2

(
log
(

1
ε

))2)
if β = 1,

O
(
ε−2+ β−1

α

)
if β < 1.

With a smooth payoff f , for the natural choice Zl = f
(
X2l

T

)
− f

(
X2l−1

T

)
with X2l and X2l−1

driven by the

same Brownian path, β = 2γ where γ is the order of strong convergence of the scheme. To achieve γ = 1,
one has to simulate iterated Brownian integrals, for which there is no known efficient method. To get around
this difficulty, Giles and Szpruch introduced the modified Milstein scheme without Lévy areas XGS

t0 = x0 and
∀k ∈ {0, . . . , N − 1},

XGS
tk+1

= XGS
tk

+b
(
XGS
tk

)
(tk+1 − tk)+

d∑
j=1

σj
(
XGS
tk

)
∆W j

tk+1
+

1

2

d∑
j,m=1

∂σjσm
(
XGS
tk

) (
∆W j

tk+1
∆Wm

tk+1
− 1{j=m}h

)
.

Moreover, they chose Zl as follows: Z0
GS = f

(
XGS,1
T

)
and ZlGS = 1

2

(
f
(
X̃GS,2l

T

)
+ f

(
XGS,2l

T

))
−f
(
XGS,2l−1

T

)
for l ∈ {1, . . . , L}. Here, XGS,2l is the Giles and Szpruch scheme using a grid with time step hl = T

2l
and X̃GS,2l

its antithetic version obtained by swapping each successive pair of Brownian increments in the scheme. Of

course, XGS,2l−1

is the Giles and Szpruch scheme with time-step hl−1 = T
2l−1 and with Brownian increments

given by the sums of these successive pairs. Theorem 4.10, Lemma 2.2 and Lemma 4.6 in [9] ensure that β = 2
under some regularity assumptions on f and the coefficients of the SDE.

Proposition 1.2. Assume that f ∈ C2 (Rn,R) and b, σ1, . . . , σd ∈ C2 (Rn,Rn) with bounded first and second
order derivatives. Then:

∀p ≥ 1,∃c ∈ R∗+,∀l ∈ N∗, E
[∣∣ZlGS∣∣2p] ≤ c

22pl
.

Then, despite λl = 5
2 for l ≥ 1 (the computation time of ZlGS is 2l + 2l + 2l−1 = 5

2 × 2l times the one of

Z0
GS), the optimal complexity of the multilevel Monte Carlo estimator Ŷ GSMLMC =

L∑
l=0

1
Ml
ZlGS to achieve a RMSE

smaller than ε is O
(
ε−2
)
, that is the same complexity as a Monte Carlo method with i.i.d. unbiased samples.

In [2], we succeeded in combining this idea with the suggestion of Debrabant Rössler [4], who improved the
multilevel Monte Carlo method by using, in the last level L, a scheme with high order of weak convergence to
reduce the bias and therefore the number of levels and the computation time. We first compared the Giles-
Szpruch scheme with the mean of the Ninomiya-Victoir schemes with opposite sequences of Rademacher random
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variables η = (ηk)k≥1 and −η = (−ηk)k≥1 :

X̄NV,η :=
1

2

(
XNV,η +XNV,−η) .

To be consistent with the interpolation (3), we interpolate the Giles-Szpruch scheme between the grid points as
follows:

XGS
t = x0 +

∫ t

0

b
(
XGS
τ̂s

)
ds+

d∑
j=1

∫ t

0

σj
(
XGS
τ̂s

)
dW j

s +

d∑
j=1

∫ t

0

∂σjσj
(
XGS
τ̂s

)
∆W j

s dW
j
s

+
1

2

d∑
j,m=1
m 6=j

∫ t

0

∂σjσm
(
XGS
τ̂s

)
∆Wm

τ̌s dW
j
s where τ̌s =

N−1∑
k=0

tk+11(tk,tk+1](s).

Proposition 1.3. Assume that

• b ∈ C2 (Rn;Rn) with bounded first and second order derivatives,
• ∀j ∈ {1, . . . , d} , σj ∈ C3 (Rn;Rn) with bounded first and second order derivatives and with polynomially

growing third order derivatives,
• ∀j,m ∈ {1, . . . , d}, ∂σjσm is Lipschitz continuous.

Then:

∀p ≥ 1, ∃C ∈ R∗+,∀N ∈ N∗, E
[
sup
t≤T

∥∥∥X̄NV,η
t −XGS

t

∥∥∥2p
∣∣∣∣η] ≤ C

N2p
.

We proposed two new multilevel Monte Carlo estimators. In the first one Ŷ GS−NVMLMC , we keep ZlGS for all
levels l but the last one l = L and, as suggested in [4], replace ZLGS by

ZLGS−NV =
1

4

(
f
(
X̃NV,2L,η
T

)
+ f

(
X̃NV,2L,−η
T

)
+ f

(
XNV,2L,η
T

)
+ f

(
XNV,2L,−η
T

))
− f

(
XGS,2L−1

T

)
.

Here, X̃NV,2L,η (resp. X̃NV,2L,−η) is the antithetic version of the Ninomiya-Victoir scheme XNV,2L,η (resp.

XNV,2L,−η) obtained by swapping each successive pair of Brownian increments.

We also construct Ŷ NVMLMC by using the Ninomiya-Victoir scheme at each level and choosing Z0
NV =

f
(
XNV,1,η
T

)
and for l ∈ {1, . . . , L}

ZlNV =
1

4

(
f
(
X̃NV,2l,ηl

T

)
+ f

(
X̃NV,2l,−ηl
T

)
+ f

(
XNV,2l,ηl

T

)
+ f

(
XNV,2l,−ηl
T

))
− 1

2

(
f
(
XNV,2l−1,ηl−1

T

)
+ f

(
XNV,2l−1,−ηl−1

T

))
where ∀k ≥ 1, ηl−1

k = ηl2k−1.

Combining Propositions 1.2 and 1.3, we obtained in [2] that β = 2 for both ZlGS−NV and ZlNV .

Theorem 1.4. Assume that

• f ∈ C2 (Rn,R) and b ∈ C2 (Rn,Rn) with bounded first and second order derivatives,
• ∀j ∈ {1, . . . , d} , σj ∈ C3 (Rn,Rn) with bounded first and second order derivatives and with polynomially

growing third order derivatives,
• ∀j,m ∈ {1, . . . , d}, ∂σjσm is Lipschitz continuous.

Then:

∀p ≥ 1,∃c ∈ R∗+,∀l ∈ N∗, E
[∣∣ZlGS−NV ∣∣2p]+ E

[∣∣ZlNV ∣∣2p] ≤ c

22pl
.
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This ensures that the optimal complexity of the multilevel Monte Carlo estimators Ŷ GS−NVMLMC =
L−1∑
l=0

1
Ml
ZlGS +

1
ML

ZLGS−NV and Ŷ GSMLMC =
L∑
l=0

1
Ml
ZlNV to achieve a RMSE smaller than ε is O

(
ε−2
)
. The numerical experi-

ments performed in [2] on the examples of the Clark-Cameron stochastic differential equation and the Heston

model confirm this complexity and show that Ŷ GS−NVMLMC is more efficient that both Ŷ GSMLMC and Ŷ NVMLMC .
When the solutions to the ODEs involved in the Ninomiya-Victoir scheme are not available in closed-form,

one needs to approximate them using some discretization procedure. In the next section, we investigate the
additional error terms introduced by such a procedure and check that the convergence properties of our multilevel
Monte Carlo estimators are preserved when the ODEs associated with the Brownian vector fields σj , j ∈
{1, . . . , d} (resp. Stratonovich drift vector field σ0) are discretized using the explicit Runge-Kutta method with
order 4 (resp. 2).

2. Discretization of the involved Ordinary Differential Equations

The study of the discretization of the ordinary differential equations involved in the Ninomiya-Victoir scheme
in the last chapter of [1] aims at relaxing the boundedness assumption made on the vector fields in [11]. To
deal with the error introduced by the discretization it is convenient to keep track of the succession of ODEs

that are solved in the Ninomiya-Victoir scheme. That is why we define XNV,η
t
k+ 1

d+2

= exp
(
h
2σ

0
)
XNV,η
tk

and for

j ∈ {1, . . . , d},

XNV,η
t
k+

j+1
d+2

=1{ηk+1=1} exp
(

∆W j
tk+1

σj
)
. . . exp

(
∆W 1

tk+1
σ1
)

exp

(
h

2
σ0

)
XNV,η
tk

+ 1{ηk+1=−1} exp
(

∆W d+1−j
tk+1

σd+1−j
)
. . . exp

(
∆W d

tk+1
σd
)

exp

(
h

2
σ0

)
XNV,η
tk

= 1{ηk+1=1} exp
(

∆W j
tk+1

σj
)
XNV,η
t
k+

j
d+2

+ 1{ηk+1=−1} exp
(

∆W d+1−j
tk+1

σd+1−j
)
XNV,η
t
k+

j
d+2

.

This way, XNV,η
tk+1

= exp
(
h
2σ

0
)
XNV,η
t
k+ d+1

d+2

. The numerical approximation, denoted by X̂NV,η, of the Ninomiya-

Victoir scheme is defined by X̂NV,η
t0 = x and for k ∈ {0 . . . , N − 1}, X̂0,η

t
k+ 1

d+2

= Ψ0
(
h
2 , X̂

NV,η
tk

)
,

for j ∈ {1, . . . , d}, X̂NV,η
t
k+

j+1
d+2

= 1{ηk+1=1}Ψ
j

(
∆W j

tk+1
, X̂NV,η

t
k+

j
d+2

)
+ 1{ηk+1=−1}Ψ

d+1−j
(

∆W d+1−j
tk+1

, X̂NV,η
t
k+

j
d+2

)
,

and X̂NV,η
tk+1

= Ψ0

(
h
2 , X̂

NV,η
t
k+ d+1

d+2

)
. Here, for j ∈ {0, . . . , d}, Ψj : R × Rn → Rn is such that for (t, x) ∈ R × Rn,

Ψj(t, x) is the approximation of exp(tσj)x by some numerical scheme. The following general approximation
result is stated in Theorem 5.2.2 and Remark 5.2.3 [1].

Theorem 2.1. Assume that

• σ0 is Lipschitz continuous,
• for all j ∈ {1, . . . , d} , σj ∈ C1 (Rn,Rn) with bounded first order derivatives and ∂σjσj is Lipschitz

continuous,
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∀p ∈ N∗, ∃C0 ∈ R∗+, ∀(θ, x) ∈ [0, T ]× Rn, 1 +
∥∥Ψ0 (θ, x)

∥∥2p ≤ exp (C0θ)
(

1 + ‖x‖2p
)
, (H1)

∃m0 ∈ N∗, ∃c0 ∈ R∗+, ∃q ∈ N∗, ∀(θ, x) ∈ [0, T ]× Rn,
∥∥exp

(
θσ0
)
x−Ψ0 (θ, x)

∥∥ ≤ c0 (1 + ‖x‖q) θ(m0+1), (H2)

∀p ∈ N∗, ∃C1 ∈ R∗+, ∀(θ, x) ∈ [0, T ]× Rn, max
1≤j≤d

E
[
1 +

∥∥∥Ψj
(
W j
θ , x
)∥∥∥2p

]
≤ exp (C1θ)

(
1 + ‖x‖2p

)
, (H3)

∃m ∈ N∗, ∀p ∈ N∗, ∃c1 ∈ R∗+, ∃q ∈ N∗, ∀(θ, x) ∈ [0, T ]× Rn,

max
1≤j≤d

E
[∥∥∥exp

(
W j
θ σ

j
)
x−Ψj

(
W j
θ , x
)∥∥∥2p

]
≤ c1

(
1 + ‖x‖2q

)
θp(m+1). (H4)

Then ∀p ∈ N∗, ∃ĈNV ∈ R∗+,

∃q ∈ N∗, ∀N ∈ N∗, ∀x0 ∈ Rn, E
[∥∥∥XNV,η

T − X̂NV,η
T

∥∥∥2p
]
≤

{
ĈNV
N2p

(
1 + ‖x0‖2q

)
if m0 ≥ 1 and m ≥ 3,

ĈNV
N4p

(
1 + ‖x0‖2q

)
if m0 ≥ 2 and m ≥ 5.

Proposition 5.3.2 [1], ensures that (H1) (resp. (H3)) is satisfied when Ψ0 (resp for j ∈ {1, . . . , d}, Ψj) is any
explicit Runge-Kutta scheme. Moreover, by Proposition 5.3.3 (resp. 5.3.4) [1], (H2) with m0 = 2 (resp. (H4)
with m0 = 5) is satisfied when

Ψ0(θ, x) = Ψσ0

2 (θ, x) with for V : Rn → Rn, ΨV
2 (θ, x) = x+

θ

2
V (x) +

θ

2
V (x+ θV (x)) (5)

(resp. for j ∈ {1, . . . , d}, Ψj) is the explicit second (resp. fifth) order Runge-Kutta scheme and σ0 ∈ C2 (Rn,Rn)
(resp. ∀j ∈ {1, . . . , d}, σj ∈ C5 (Rn,Rn)) with bounded first order derivatives and polynomially growing higher
order derivatives. Hence the error introduced by applying the explicit second (resp. fifth) order Runge-Kutta
method to the ODE corresponding to the Stratonovich drift (resp. the Brownian vector fields σj , j ∈ {1, . . . d})
converges to 0 with strong and therefore weak orders 2.

We did not recall the explicit fifth order Runge-Kutta scheme because we are going to prove that this property
is preserved when the Brownian ODEs are discretized using the much simpler fourth order scheme :

∀j ∈ {1, . . . , d}, Ψj(θ, x) =Ψσj

4 (θ, x) where for V : Rn → Rn,

ΨV
4 (θ, x) =x+

θ

6

(
V (x) + 2V

(
x+

θ

2
V (x)

)
+ 2V

(
x+

θ

2
V

(
x+

θ

2
V (x)

))

+ V

(
x+ θV

(
x+

θ

2
V

(
x+

θ

2
V (x)

))))
. (6)

In order to ensure stability of this Runge-Kutta method over a random time increment with Gaussian distribu-
tion, we will assume that ∀V ∈ {σj , 1 ≤ j ≤ d},

∃CV ∈ R∗+, ∀(θ, x, y, z, w) ∈ R× R4n,

‖V (x+ θV (z)) + V (y)− V (x)− V (y + θV (w))‖ ≤ CV |θ|
(
‖x− y‖+ (1 + |θ|)‖z − w‖

)
. (7)

Remark 2.2. If the function V : Rn → Rn is affine, then it satisfies (7). This condition also holds when the
function V belongs to C1 (Rn,Rn), is Lipschitz and bounded and ∂V is Lipschitz. Indeed, this follows from the
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equality

V (x+ θV (z)) + V (y)− V (x)− V (y + θV (w)) =
θ

2

(∫ 1

0

∂V (x+ αθV (z)) + ∂V (y + αθV (w))dα(V (z)− V (w))

+

∫ 1

0

∂V (x+ αθV (z))− ∂V (y + αθV (w))dα(V (z) + V (w))

)
.

Our main result is the following theorem.

Theorem 2.3. Assume that

• σ0 ∈ C1 (Rn,Rn) is a Lipschitz continuous function with first order derivatives locally Lipschitz with
polynomially growing Lipschitz constants,

• ∀j ∈ {1, . . . , d} , σj ∈ C5 (Rn,Rn) is a Lipschitz continuous function with derivatives of order 5 locally
Lipschitz with polynomially growing Lipschitz constants and satisfies (7),

• ∀j ∈ {1, . . . , d} ∂σjσj is Lipschitz continuous,

and that (5) and (6) hold. Then

∀p ≥ 1, ∃ĈNV ∈ R∗+, ∃q ∈ N∗, ∀N ∈ N∗, ∀x0 ∈ Rn, E
[

max
0≤k≤N

∥∥∥XNV,η
tk

− X̂NV,η
tk

∥∥∥2p
∣∣∣∣η] ≤ ĈNV

N4p

(
1 + ‖x0‖2q

)
.

Remark 2.4. Under the assumptions of the theorem, the order of weak convergence of X̂NV,η is 2. Moreover,
if we define ẐlGS−NV and ẐlNV like ZlGS−NV and ZlNV but with the ODEs associated with the Brownian vector
fields (resp. Stratonovich drift vector field) discretized with the explicit fourth (resp. second) order Runge-Kutta
method, under the additional assumptions of Theorem 1.4,

∀p ≥ 1,∃c ∈ R∗+,∀l ∈ N∗, E
[∣∣∣ẐlGS−NV ∣∣∣2p]+ E

[∣∣∣ẐlNV ∣∣∣2p] ≤ c

22pl
.

As a consequence, the convergence properties of our multilevel Monte Carlo estimators are preserved when
replacing ZlGS−NV and ZlNV by ẐlGS−NV and ẐlNV .

To prove this estimation, it is not enough to combine, like in the proof of Theorem 2.1, a local error analysis
with a stability result for the Ninomiya-Victoir scheme. One needs to check that the main error introduced on
each time-step by discretizing the Brownian ODEs with the fourth order RK scheme is a martingale increment
with orderN−5/2 which after summation over all time steps leads to order

√
N ×N−5 = N−2 by the Burkholder-

Davis-Gundy inequality whereas Hölder’s inequality would lead to order N ×N−5/2 = N−3/2. We summarize
in the next lemma the properties of the explicit Runge-Kutta methods that we will use in what follows.

Lemma 2.5. Assume that V : Rn → Rn is Lispchitz continuous with constant Lip(V ). Then

∀(θ, x, y) ∈ R× Rn × Rn, ‖ΨV
2 (θ, x)− x−ΨV

2 (θ, y) + y‖ ≤ |θ|Lip(V )

(
1 +
|θ|Lip(V )

2

)
‖x− y‖. (8)

If moreover

• V ∈ C1 (Rn,Rn) with ∂V locally Lipschitz with polynomially growing Lipschitz constant, then

∃C ∈ R∗+, ∃q ∈ N∗, ∀(θ, x) ∈ [0, T ]× Rn,
∥∥exp (θV )x−ΨV

2 (θ, x)
∥∥ ≤ C (1 + ‖x‖q) θ3, (9)



10 ESAIM: PROCEEDINGS AND SURVEYS

• V ∈ C5 (Rn,Rn) with derivatives of order 5 locally Lipschitz with polynomially growing Lipschitz con-
stants, then there exists a function hV ∈ C (Rn,Rn) with polynomial growth such that ∀p ≥ 1, ∃C ∈ R∗+,

∃q ∈ N∗, ∀(θ, x) ∈ [0, T ]× Rn,

E
[∥∥exp

(
W 1
θ V
)
x−ΨV

4

(
W 1
θ , x

)
− hV (x)(W 1

θ )5
∥∥2p
]
≤ C

(
1 + ‖x‖2q

)
θ6p. (10)

• V satisfies (7), then ∃C ∈ R∗+,

∀(θ, x, y) ∈ R× R2n,
∥∥ΨV

4 (θ, x)− x− θV (x)−ΨV
4 (θ, y) + y + θV (y)

∥∥ ≤ C(θ2 + |θ|5)‖x− y‖. (11)

Proof. The first statement is an easy consequence of the definition (5) of ΨV
2 and the Lipschitz property of the

vector field V . For the second statement, we perform second order Taylor expansions in θ :

exp(θV )x = x+ V (x)θ +
∂V V (x)

2
θ2 +

∫ θ

0

∫ t

0

∂V V (exp(sV )x)− ∂V V (x)dsdt

ΨV
2 (θ, x) = x+ V (x)θ +

∂V V (x)

2
θ2 +

θ

2

∫ θ

0

(∂V (x+ tV (x))− ∂V (x))V (x)dt.

The Lispchitz property of V and the equality exp (sV )x− x =
∫ s

0
V (exp (rV )x)dr imply that

∃C ∈ R∗+, ∀(s, x) ∈ [0, T ]× Rn, ‖ exp (sV )x‖ ≤ C(1 + ‖x‖) and ‖ exp (sV )x− x‖ ≤ C(1 + ‖x‖)s.

With the local Lipschitz property of ∂V V , one deduces that

∃C ∈ R∗+, ∃q ∈ N∗, ∀(θ, x) ∈ [0, T ]× Rn,
∥∥∥∥exp(θV )x− x− V (x)θ − ∂V V (x)

2
θ2

∥∥∥∥ ≤ C(1 + ‖x‖q)θ3.

One easily obtains the same bound for ΨV
2 (θ, x)−x−V (x)θ− ∂V V (x)

2 θ2 and concludes by the triangle inequality.

To check the third statement, we perform fifth order Taylor expansions of both exp(θV )(x) and ΨV
4 (θ, x)

which match up to order four because of the order of the Runge-Kutta method considered here. The function
hV is obtained from the difference of the fifth order terms and the remainders are easily estimated using the
Lipschitz property of V and the local Lipschitz property of its derivatives up to the order 5.

For the last statement, we remark that for θ 6= 0 and x, y ∈ Rn,

6

θ

(
ΨV

4 (θ, x)− x− θV (x)−ΨV
4 (θ, y) + y + θV (y)

)
= 2 (V (x+ θV (x)/2)− V (x)− V (y + θV (y)/2) + V (y))

+ 2 (V (x+ θV (x+ θV (x)/2)/2)− V (x)− V (y + θV (y + θV (y)/2)/2) + V (y))

+ (V (x+ θV (x+ θV (x+ θV (x)/2)/2))− V (x)− V (y + θV (y + θV (y + θV (y)/2)/2)) + V (y)) .

We conclude by applying (7) to each of the three terms in the right-hand side and using the Lipschitz property
of V .

�

We set ∀j ∈ {0, . . . , d}, ∀(θ, x, y) ∈ R× Rn × Rn, Ψ̃j (θ, x, y) = y + Ψj(θ, x)− x. In order to sum the above
mentionned martingale increments without needing to consider their deformation by the flow of the Ninomiya-
Victoir scheme, we define a new process (Yt

k+
j
d+2

)0≤k≤N−1,1≤j≤d+2 by Yt0 = x and for k ∈ {0 . . . , N − 1},

Yt
k+ 1

d+2

= Ψ̃0
(
h
2 , X

NV,η
tk

, Ytk

)
, and for j ∈ {1, . . . , d}

Yt
k+

j+1
d+2

= 1{ηk+1=1}Ψ̃
j

(
∆W j

tk+1
, XNV,η

t
k+

j
d+2

, Yt
k+

j
d+2

)
+ 1{ηk+1=−1}Ψ̃

d+1−j
(

∆W d+1−j
tk+1

, XNV,η
t
k+

j
d+2

, Yt
k+

j
d+2

)
,
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and Ytk+1
= Ψ̃0

(
h
2 , X

NV,η
t
k+ d+1

d+2

, Yt
k+ d+1

d+2

)
.

Proposition 2.6. Assume that

• σ0 ∈ C1 (Rn,Rn) is a Lipschitz continuous function with first order derivatives locally Lipschitz with
polynomially growing Lipschitz constants,

• ∀j ∈ {1, . . . , d} , σj ∈ C5 (Rn,Rn) is a Lipschitz continuous function with derivatives of order 5 locally
Lipschitz with polynomially growing Lipschitz constants,

• ∀j ∈ {1, . . . , d} ∂σjσj is Lipschitz continuous.

Then ∀p ≥ 1, ∃CY ∈ R∗+, ∃q ∈ N∗,

∀N ∈ N∗, ∀x0 ∈ Rn, E

[
max

k+ j
d+2≤N

∥∥∥∥XNV,η
t
k+

j
d+2

− Yt
k+

j
d+2

∥∥∥∥2p ∣∣∣∣η
]
≤ CY
N4p

(
1 + ‖x0‖2q

)
.

Proof. One has for k+ j
d+2 ≤ N (which is a shorthand notation for k ∈ {0, . . . , N − 1} and j ∈ {1, . . . , d+ 2}),

XNV,η
t
k+

j
d+2

− Yt
k+

j
d+2

=
∑

`+ i
d+2≤k+ j−1

d+2

(∆M`,i +R`,i) where

for i ∈ {1, . . . , d}, ∆M`,i =

(
1{η`+1=1}hσi(X

NV,η
t
`+ i

d+2

)(∆W i
t`+1

)5 + 1{η`+1=−1}hσd+1−i(XNV,η
t
`+ i

d+2

)(∆W d+1−i
t`+1

)5

)
,

and R`,i = 1{η`+1=1}

(
e

∆W i
t`+1

σi
(XNV,η

t
`+ i

d+2

)−Ψσi

4

(
∆W i

t`+1
, XNV,η

t
`+ i

d+2

)
− hσi(XNV,η

t
`+ i

d+2

)(∆W i
t`+1

)5

)
+ 1{η`+1=−1}

(
e

∆Wd+1−i
t`+1

σd+1−i

(XNV,η
t
`+ i

d+2

)−Ψσd+1−i

4

(
∆W d+1−i

t`+1
, XNV,η

t
`+ i

d+2

)
− hσd+1−i(XNV,η

t
`+ i

d+2

)(∆W d+1−i
t`+1

)5

)
,

and for i ∈ {0, d+ 1}, ∆M`,i = 0, R`,i = e
h
2 σ

0

(XNV,η
t
`+ i

d+2

)−Ψσ0

2

(
h

2
, XNV,η

t
`+ i

d+2

)
.

For k + j
d+2 ≤ N , we set Mk+ j

d+2
=
∑
`+ i

d+2≤k+ j−1
d+2

∆M`,i. For ξ ∈ {−1, 1}N , we denote by Pξ the conditional

probability measure given η = ξ and by Eξ the corresponding expectation.
The discrete process (Mk+ j

d+2
)k+ j

d+2≤N
is a Pξ martingale for the filtration

Fξ
k+ j

d+2

= σ
(

(∆Wt`+1
)0≤`≤k−1, (1{ξk+1=1}∆W

i
tk+1

+ 1{ξk+1=−1}∆W
d+1−i
tk+1

)1≤i≤j−1

)
. (12)

Moreover,

max
k+ j

d+2≤N

∥∥∥∥XNV,η
t
k+

j
d+2

− Yt
k+

j
d+2

∥∥∥∥2p

≤ 22p−1

 max
k+ j

d+2≤N

∥∥∥Mk+ j
d+2

∥∥∥2p

+ ((d+ 2)N)2p−1
∑

`+ i
d+2≤N−

1
d+2

‖R`,i‖2p
 .

(13)
By Lemma 2.5 [2], since the vector fields σj (resp. ∂σjσj) are Lipschitz for j ∈ {0, . . . , d} (resp. j ∈ {1, . . . , d}),

∀q ≥ 1, ∃C ∈ R∗+, ∀N ∈ N∗, ∀ξ ∈ {−1, 1}N , ∀x0 ∈ Rn, max
k+ j

d+2≤N
Eξ

[∥∥∥∥XNV,η
t
k+

j
d+2

∥∥∥∥2q
]
≤ C

(
1 + ‖x0‖2q

)
. (14)
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Combined with (9) and (10) we deduce that

∃C ∈ R∗+, ∃q ∈ N∗, ∀N ∈ N∗, ∀ξ ∈ {−1, 1}N , ∀x0 ∈ Rn, max
`+ i

d+2≤N−
1
d+2

Eξ
[
‖R`,i‖2p

]
≤ C

N6p
(1 + ‖x0‖2q),

and therefore N2p−1Eξ

 ∑
`+ i

d+2≤N−
1
d+2

‖R`,i‖2p
 ≤ C(d+ 2)

N4p
(1 + ‖x0‖2q). (15)

On the other hand, by the Burkholder-Davis-Gundy inequality,

Eξ

[
max

k+ j
d+2≤N

∥∥∥Mk+ j
d+2

∥∥∥2p
]
≤ CBDGEξ

[(
N−1∑
`=0

d∑
i=1

‖∆M`,i‖2
)p]

≤ CBDG(dN)p−1
N−1∑
`=0

d∑
i=1

Eξ
[
‖∆M`,i‖2p

]
≤ CBDG(dN)p−1T

5E
[
|W 1

1 |10p
]

N5p

N−1∑
`=0

d∑
i=1

Eξ

[∥∥∥∥1{ξ`+1=1}hσi(X
NV,η
t
`+ i

d+2

) + 1{ξ`+1=−1}hσd+1−i(XNV,η
t
`+ i

d+2

)

∥∥∥∥2p
]
.

By the polynomial growth property of the functions hσj , 1 ≤ j ≤ d and (14), there exist C ∈ R∗+, q ∈ N∗
such that for all N ∈ N∗, all ξ ∈ {−1, 1}N , all ` ∈ {0, . . . , N − 1} and all i ∈ {1, . . . , d}, the last expectation
in the right-hand side is smaller than C(1 + ‖x0‖2q). We conclude by plugging the derived estimation of

Eξ
[
maxk+ j

d+2≤N

∥∥∥Mk+ j
d+2

∥∥∥2p
]

and (15) into (13).

�

We are now ready to prove Theorem 2.3.

Proof. Using that Ψ̃j(θ, x, y)− y = Ψj(θ, x)− x, we get that for k + j
d+2 ≤ N ,

Yt
k+

j
d+2

− X̂NV,η
t
k+

j
d+2

=
∑

`+ i
d+2≤k+ j−1

d+2

(∆D`,i + ∆M̂`,i) where

for i ∈ {0, d+ 1}, ∆D`,i = Ψσ0

2

(
h

2
, XNV,η

t
`+ i

d+2

)
−XNV,η

t
`+ i

d+2

−Ψσ0

2

(
h

2
, X̂NV,η

t
`+ i

d+2

)
+ X̂NV,η

t
`+ i

d+2

and ∆M̂`,i = 0,

and for i ∈ {1, . . . , d}, ∆M̂`,i = 1{η`+1=1}(σ
i(XNV,η

t
`+ i

d+2

)− σi(X̂NV,η
t
`+ i

d+2

))∆W i
t`+1

+ 1{η`+1=−1}(σ
d+1−i(XNV,η

t
`+ i

d+2

)− σd+1−i(X̂NV,η
t
`+ i

d+2

))∆W d+1−i
t`+1

and

∆D`,i = 1{η`+1=1}

(
Ψσi

4

(
∆W i

t`+1
, XNV,η

t
`+ i

d+2

)
−XNV,η

t
`+ i

d+2

− σi(XNV,η
t
`+ i

d+2

)∆W i
t`+1

−Ψσi

4

(
∆W i

t`+1
, X̂NV,η

t
`+ i

d+2

)
+ X̂NV,η

t
`+ i

d+2

+ σi(X̂NV,η
t
`+ i

d+2

)∆W i
t`+1

)
+ 1{η`+1=−1}

(
Ψσd+1−i

4

(
∆W d+1−i

t`+1
, XNV,η

t
`+ i

d+2

)
−XNV,η

t
`+ i

d+2

− σd+1−i(XNV,η
t
`+ i

d+2

)∆W d+1−i
t`+1

−Ψσd+1−i

4

(
∆W d+1−i

t`+1
, X̂NV,η

t
`+ i

d+2

)
+ X̂NV,η

t
`+ i

d+2

+ σd+1−i(X̂NV,η
t
`+ i

d+2

)∆W d+1−i
t`+1

)
.
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For k + j
d+2 ≤ N , we set M̂k+ j

d+2
=
∑
`+ i

d+2≤k+ j−1
d+2

∆M̂`,i so that

max
`+ i

d+2≤k+ j
d+2

∥∥∥∥Yt`+ i
d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p

≤22p−1 max
`+ i

d+2≤k+ j
d+2

∥∥∥M̂`+ i
d+2

∥∥∥2p

+ 22p−1(k(d+ 2) + j)2p−1
∑

`+ i
d+2≤k+ j−1

d+2

‖∆D`,i‖2p. (16)

By (8) and (11), ∃CD ∈ R∗+, ∀N ∈ N∗, ∀ξ ∈ {−1, 1}N ,

∀`+
i

d+ 2
≤ N − 1

d+ 2
, Eξ

[
‖∆D`,i‖2p

]
≤ CD
N2p

Eξ

[∥∥∥∥XNV,η
t
`+ i

d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p
]
. (17)

On the other hand, applying the Burkholder-Davis-Gundy to the Fξ
k+ j

d+2

-local martingale (M̂k+ j
d+2

)k+ j
d+2≤N

under Pξ, we obtain that ∀k + j
d+2 ≤ N

Eξ

[
max

`+ i
d+2≤k+ j

d+2

∥∥∥M̂`+ i
d+2

∥∥∥2p
]
≤ CBDGEξ


 ∑
`+ i

d+2≤k+ j−1
d+2

‖∆M̂`,i‖2


p

≤ CBDG(kd+ j)p−1
∑

`+ i
d+2≤k+ j−1

d+2

Eξ
[
‖∆M̂`,i‖2p

]

≤ CBDG(Nd)p−1

(
max

1≤j≤d
Lip(σj)

)2p T pE
[
|W 1

1 |2p
]

Np

∑
`+ i

d+2≤k+ j−1
d+2

Eξ

[∥∥∥∥XNV,η
t
`+ i

d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p
]
,

where Lip(σj) denotes the Lipschitz constant of σj . Plugging this estimation together with (17) in (16), we get

the existence of a constant C ∈ R∗+ such that ∀N ∈ N∗, ∀ξ ∈ {−1, 1}N , ∀k + j
d+2 ≤ N ,

Eξ
[

max
`+ i

d+2≤k+ j
d+2

∥∥∥∥Yt`+ i
d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p ]
≤ C

N

∑
`+ i

d+2≤k+ j−1
d+2

Eξ

[∥∥∥∥XNV,η
t
`+ i

d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p
]

≤ C22p−1

N

∑
`+ i

d+2≤k+ j−1
d+2

Eξ

[∥∥∥∥XNV,η
t
`+ i

d+2

− Yt
`+ i

d+2

∥∥∥∥2p

+

∥∥∥∥Yt`+ i
d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p
]

≤ C22p−1CY
N4p

(1 + ‖x0‖2q) +
C22p−1

N

∑
`+ i

d+2≤k+ j−1
d+2

Eξ

[∥∥∥∥Yt`+ i
d+2

− X̂NV,η
t
`+ i

d+2

∥∥∥∥2p
]
,

where we used Proposition 2.6 for the last inequality. One easily checks by an inductive reasoning using the

Lipschitz property of the vector fields σj , 0 ≤ j ≤ d that maxk+ j
d+2≤N

Eξ

[∥∥∥∥X̂NV,η
t
k+

j
d+2

∥∥∥∥2p
]
<∞. With (14) and

Proposition 2.6, we deduce the finiteness of maxk+ j
d+2≤N

Eξ

[∥∥∥∥Ytk+ j
d+2

− X̂NV,η
t
k+

j
d+2

∥∥∥∥2p
]

. A discrete version of
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Gronwall’s lemma then ensures that

∃C ∈ R∗+, ∀N ∈ N∗, ∀ξ ∈ {−1, 1}N , ∀x0 ∈ Rn, Eξ
[

max
k+ j

d+2≤N

∥∥∥∥Ytk+ j
d+2

− X̂NV,η
t
k+

j
d+2

∥∥∥∥2p ]
≤ C

N4p
(1 + ‖x0‖2q).

We conclude with the inequality

max
k+ j

d+2≤N

∥∥∥∥XNV,η
t
k+

j
d+2

− X̂NV,η
t
k+

j
d+2

∥∥∥∥2p

≤ 22p−1

(
max

k+ j
d+2≤N

∥∥∥∥XNV,η
t
k+

j
d+2

− Yt
k+

j
d+2

∥∥∥∥2p

+ max
k+ j

d+2≤N

∥∥∥∥Ytk+ j
d+2

− X̂NV,η
t
k+

j
d+2

∥∥∥∥2p
)

and Proposition 2.6. �
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