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The band structure of the prototypical charge-transfer insulator NiO is computed by using a combi-

nation of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-

Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find

excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy.

This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain

the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the

context of low-energy model theories.
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The quantitative explanation of the electronic structure

of transition-metal oxides (TMOs) and other materials with

correlated electrons has been a long-standing challenge in

condensed matter physics. While the basic concept ex-

plaining why materials such as NiO are insulators was

formulated by Mott a long time ago [1], the development

of an appropriate, material-specific computational scheme

proved to be a formidable task. The electronic structure of

the late TMOs, including the cuprate superconductors, is

not only affected by the electronic correlations, it is further

complicated by the hybridization between the transition-

metal d states and O p bands located between the lower

and upper Hubbard bands formed by the transition-metal d
orbitals. For such materials Zaanen, Sawatzky, and Allen

[2] introduced the term ‘‘charge-transfer insulator’’, a pro-

totypical example of which is NiO. In principle, the simple

crystal structure of NiO allows for a straightforward com-

parison between theory and experiment. However, a theo-

retical description of the NiO band structure is made

difficult by the competition between the local many-body

effects, due to strong Coulomb interaction between Ni d
electrons, and the band dispersion, due to the lattice peri-

odicity, both observed with the angle-resolved photoemis-

sion spectroscopy (ARPES) [3,4].

In this Letter we use a combination of a conventional

band structure approach, based on the local density ap-

proximation (LDA), and the dynamical mean-field theory

(DMFT) [5] to investigate the band structure of NiO. No

adjustable parameters enter. While the application of the

LDA� DMFT [6] framework has proven successful for

the early TMOs, the charge-transfer materials were rou-

tinely avoided due to the additional complexity arising

from the presence of p bands. In the present work the O

p orbitals and their hybridization with Ni d orbitals are

explicitly included, thus allowing for a unified description

of the full spectrum. Our results reveal a nontrivial effect of

the p-d hybridization in strongly correlated systems

studied so far only in terms of simple models [7–9].

The application of the standard band structure theory to

NiO is marked by the failure of LDA to produce an in-

sulating groundstate [10]. The antiferromagnetic (AFM)

solution within LDA [11], despite rendering NiO an insu-

lator, still underestimates the band gap severely, does not

reproduce the experimental single-particle spectrum and

also many ground state quantities are outside the usual

LDA margin (e.g., too low magnetic moment). Theoreti-

cal approaches beyond LDA followed several different

paths. The LDA�U [12] and SIC-LDA theories [13],

although different in details and reasoning, enforce energy

separation of the occupied and unoccupied Ni-d orbitals,

which leads to the opening of a gap. This is sufficient to

largely improve the ground state properties such as the

local moment or the lattice constant [14]. However, the

description of photoemission spectra is not satisfactory, in

particular, the d spectral weight is located mostly in the

high-energy satellite (Hubbard band), in striking contrast

to a strong d contribution at the low excitation energy (top

of the valence band) observed experimentally. This failure

can be traced to the static character of the theories, which

also restricts their success to the insulating stoichiometric

NiO (in contrast to doped metallic) and the broken sym-

metry phase (AFM order). Some improvement in descrip-

tion of the photoemission spectra was achieved by

including three-body corrections [15]. A different ap-

proach to the electron-electron correlations in NiO is pro-

vided by GW approximation [16,17]. While the dispersion

of d bands at the top of the valence band and the band gap

compare quite well to the experiment, Aryasetiawan and

Gunnarsson [16] have shown and explained why the high-

energy satellite, which contains almost 50% of the d
spectral weight, is completely missing in the GW ap-

proach. The exact diagonalization study on NiO small

PRL 99, 156404 (2007)
P H Y S I C A L R E V I E W L E T T E R S week ending

12 OCTOBER 2007

0031-9007=07=99(15)=156404(4) 156404-1  2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.156404


we presented an important advance in a long-standing

problem—the computation of the full valence band struc-

ture of a charge-transfer insulator. We obtained a very good

agreement with the ARPES data of Shen et al. [3,4]

without adjustable parameters. While a detailed compari-

son to ARPES data is still restricted by the lack of dipolar

matrix elements in the theory, the key problem of the NiO

spectrum, distribution of d-spectral weight between the

high-energy satellite and the low-energy bands, was re-

solved. The uppermost valence band is found to have a

strongly k-dependent orbital composition, which follows

the behavior expected of Zhang-Rice bands. Our results

clearly demonstrate the capability of DMFT to treat, upon

explicit inclusion of p-d hybridization, the late transition-

metal oxides and charge-transfer systems in general.
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FIG. 3 (color online). Detail of the uppermost valence band

along the �-K (right) and �-X (left) lines. The top panels show

the O-p contribution App�k; !�, while Ni-d contribution

Add�k; !� Add�k; !� of the eg symmetry is shown in the bottom

panels.
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The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be
governed by strong electron correlations. Here we report benchmark density-functional calculations in the

spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped
CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in
the GGA� U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only

orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.

DOI: 10.1103/PhysRevLett.99.036402 PACS numbers: 71.15.Mb, 71.27.+a, 75.10.�b, 75.47.Lx

In mixed-valence compounds, a transition-metal (TM)
element such as Mn would have a fractional ‘‘valence’’ or
‘‘formal oxidation state’’ unless one distinguishes two
species of different integral oxidation states. Examples
are the manganites (RxA1�xMnO3, where R is a trivalent
and A is a divalent ion, e.g., La and Ca, respectively),
where the nominal Mn valence is 4� x. These materials
exhibit complex behavior, including colossal magnetore-
sistance, phase separation, and spatial ordering of two
inequivalent Mn atoms [1–5]. This spatial ordering occurs
typically for x � 0:5. It is attributed to Mn

�3 and Mn
�4

oxidation states and is generally interpreted as charge
ordering. This phenomenon and accompanying structural
distortions and magnetic ordering are widely believed to be
manifestations of strong electron correlations. In recent
years, however, the presence of physical-charge ordering
has been challenged [6–10].

Density-functional theory (DFT) [11,12] is generally
viewed as inadequate for transition-metal oxides. Alter-
native theories such as the local spin-density approxima-
tion augmented by a Hubbard U (LSDA� U) [13],
GGA� U, and dynamical mean-field theory (DMFT)
[14] that include local correlations in the form of a
‘‘Hubbard U’’ are viewed as more suitable alternatives
[15–19].

DFT is a ground-state theory. Ground-state properties
constitute the real test of the applicability of DFT to mixed-
valence compounds. A careful examination of the litera-
ture, however, reveals a lack of systematic tests of DFT
predictions of ground-state properties to establish bench-
marks for discrepancies to be addressed by theories that
incorporate additional electron correlations. In this Letter,
we report such systematic tests for RxCa1�xMnO3 for x
from 0 to 0.5 and establish the following: the predicted
structural, electronic, and magnetic ground-state properties
are in excellent agreement with all available data for R �

La and R � Bi, obviating strong electron correlations. In
addition, inclusion of strong local correlations by the
GGA� U scheme impairs the agreement with the data.

The generality of these results is discussed in the context of
available data and calculations of ground-state properties
for other mixed-valence compounds and in the context of
theories for energy gaps.

The LaxCa1�xMnO3 (LCMO) system has been widely
studied by experiments and theory. Experimental studies of
BixCa1�xMnO3 (BCMO) were recently reported by some
of the present coauthors [20]. Electron-energy loss spectra
(EELS) demonstrated that the structural ordering of in-
equivalent Mn atoms is accompanied by ordering of their
‘‘formal oxidation states,’’ as extracted from L23 ratios (the
ratios of the areas under the initial peak of the L2 and L3

spectra) [20]. At first glance, this direct evidence of
oxidation-state ordering adds further to the controversy
as it appears to contradict the data that find no charge
ordering [6,7,9]. The theoretical results to be presented
here resolve the apparent conflict and elucidate the under-
lying physics.

Density-functional calculations were performed using
spin-polarized generalized-gradient approximation (GGA)
and the projector augmented-wave (PAW) method as im-
plemented in the VASP code [21,22]. Convergence tests for
k points and energy cutoff were performed to ensure nu-
merical accuracy. For doped CMO, the calculations were
based on ‘‘generic doping’’ by introducing extra electrons
compensated by a uniform positive background (the ap-
proximation is justified by the experimental fact that the
dopants are randomly distributed [20]). Calculations using
real dopants should in principle be done in large supercells
with different dopant arrangements followed by averaging
over such arrangements. Such an undertaking is not prac-
tical. However, for 50% doping, we performed calculations
for ordered La0:5Ca0:5MnO3, which confirmed the validity
of generic doping. Atomic-orbital occupancies were ob-
tained from the eigenvalues of the on-site density matrix as
implemented in the VASP code based on the PAW approach
[21,22]. For GGA� U calculations, the results of which
are reported at the end of the Letter, we also used the VASP

implementation with U � 8:0 eV on the Mn 3d orbitals
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from GGA� U have larger bandwidth energies, in dis-
agreement with photoemission data (Fig. 1). The predicted
magnetic ordering obtained from GGA� U for CMO at 0,
33%, and 50% doping is shown in Fig. 2 for two different
values of U. Clearly, U pushes the crossing point farther
away from the experimental value.

The present results call for an assessment of systematic
DFT=GGA benchmarks and the extent of discrepancies.
For example, viewed by themselves, DFT=GGA results for
ordered La0:5Ca0:5MnO3 [blue (or dark gray) circles in
Fig. 2] might be interpreted as a failure to predict the
observed magnetic ordering (in the data AF prevails up
to x � 0:52). However, when viewed as a trend with dop-
ing, as in Fig. 2, the agreement with experiment is excel-
lent (note the meV scale). It has been believed that one
must include double exchange and superexchange explic-
itly, as a manifestation of strong correlations, to account
for the observed magnetic ordering in La0:5Ca0:5MnO3

[29]. Clearly, these effects are included adequately by
DFT=GGA. Another example is LaMnO3, for which
GGA obtains the correct crystallographic symmetry, but
predicts FM ordering instead of the observed AF ordering.
The problem can be traced to slightly smaller Jahn-Teller
distortions than observed (see, e.g., Refs. [15,30]).
However, AF ordering is predicted if the measured distor-
tions are used. Thus, in this case, the magnetic ordering is
within the error of DFT=LSDA for atomic positions.
GGA� U gets the correct structure (larger Jahn-Teller
distortions than GGA) and magnetic ordering.

Overall, we conclude the following. When one examines
structural, electronic, and magnetic ground-state properties
of the entire LCMO system as opposed to isolated cases,
the discrepancies between GGA results and experimental
data are small, just as they are in sp-bonded materials,
obviating the need to invoke strong correlations. Though it
is desirable to have theories that go beyond GGA even for
ground-state properties, the task is very challenging be-
cause such theories would seek improved performance on
the scale of 0.1 eV in total energies and 0.1 Å in bond
lengths. Our results demonstrate that, as formulated,
GGA� U does not meet this challenge in a key mixed-
valence system, even though it is often a clear winner over
GGA in isolated cases in other systems. It is clear that
systematic DFT=GGA benchmarks are needed for ground-
state properties of other systems as well before strong
correlations are invoked.

GGA� U and DMFT are usually invoked to account for
the observed energy gaps of transition-metal oxides, fol-
lowing the suggestion by Mott for NiO [31] and by
Hubbard [32]. In sp-bonded materials, energy gaps are
generally calculated with the GW scheme [33], which yield
satisfactory agreement with data, even in cases where the
LDA gap is zero. In recent years, the GW scheme has been
shown to yield excellent band gaps for TM oxides as well,
in particular, for the benchmark case of NiO [34]. This
result, together with the results of the present Letter,

clearly suggest that systematic and accurate benchmarks
using DFT=GGA and by GW as an extension for energy
gaps are needed to establish any discrepancies from ex-
perimental data that need to be addressed by theories that
include additional correlations.
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BiFeO3 is an interesting multiferroic oxide and a potentially important Pb-free ferroelectric.

However, its applications can be limited by large leakage currents. Its band gap is calculated by the

density-functional based screened exchange method to be 2.8 eV, similar to experiment. The

Schottky barrier height on Pt or SrRuO3 is calculated in the metal induced gap state model to be

over 0.9 eV. Thus, its leakage is not intrinsic. © 2007 American Institute of Physics.

�DOI: 10.1063/1.2716868�

There is increasing interest in materials which display

simultaneous ferroelectric and magnetic properties, the

multiferroics,
1–5

of which BiFeO3 is the best known ex-

ample. It was noted that the remnant polarization of bulk

BiFeO3 of 3.5 �C/cm2 was low compared to its high Curie

temperature.
6

Recently, Wang et al.
7

and Eerenstein et al.
8

found that thin epitaxial films of BiFeO3 on SrTiO3 sub-

strates displayed much higher polarizations of �90 �C/cm2

and this is becoming accepted as the bulk value.
5,9

There is

also an interest in Pb-free ferroelectrics such as BiFeO3 for

environmental reasons.
10

These observations suggest a num-

ber of possible applications of BiFeO3 thin films in high-

density data storage, etc. However, these films often show

sizable electrical leakage currents.
11–16

These can mask mea-

surements of the polarization loop and could short-circuit

ferroelectric storage devices, so there have been extensive

efforts to reduce the leakage currents.
14–16

It is therefore of

interest to know the band gap of BiFeO3 and its conduction

mechanisms, in order to know if the leakage is intrinsic or

extrinsic.

On the theory side, the atomic structure and multiferroic

character of BiFeO3 and related materials can be partially

described by the local spin density approximation �LSDA� of

the local density approximation �LDA�. However, LDA is

known to underestimate the band gap for semiconductors.

LSDA is well known to be particularly poor for correlated

insulators, of which NiO is the classic case.
17

LDA gives a

metal, whereas experimentally it has a 4 eV band gap.
18

For BiFeO3, LSDA gives a rather small band gap of

0.3–0.77 eV.
19,20

If this were true, it would lead to a very

high leakage current.

This problem can be corrected by using density-

functional methods which go beyond LDA. The simplest of

these is “LDA+U” in which an empirical on-site potential

�U� is added to the atomic �pseudo-� potential.
21

This method

was employed by Neaton et al.
19

for BiFeO3, who found

band gaps from 0.3 to 1.9 eV, depending on the value of U.

The most accurate but expensive method is the parameter-

free GW approximation.
22

Here, we calculate the electronic

structure of BiFeO3 using the screened exchange �sX�
method.

23–26
This is a parameter-free, density-functional

method of including an improved electronic exchange poten-

tial, but it is less expensive than GW. The sX method has

been found to give good band gaps for many insulating ox-

ides and semiconductors.
25,26

We then use this band structure

to calculate the Schottky barrier height of various metals on

BiFeO3 and thus find the likely size of any intrinsic leakage

currents.

Our calculations use the CASTEP plane-wave pseudopo-

tential code.
27

The sX potential is a density-functional

method based on Hartree-Fock, which includes the electron

exchange via a Thomas-Fermi screened exchange term.
23

The sX potential is actually a true energy functional which

could be used to minimize the total energy. However, for

speed reasons, here we calculate the atomic structure by the

conventional spin-polarized generalized gradient approxima-

tion, and then use sX to calculate the energy bands from this

structure. Norm-conserving pseudopotentials are used and

the plane-wave cutoff energy is 800 eV.

BiFeO3 is a perovskite whose most stable phase is the

R3c rhombohedral structure.
28

This is a distortion of the ba-

sic cubic perovskite structure in which the oxygen octahedra

are rotated in alternate senses about the �111� axis, as seen in

two projections in Fig. 1. The Bi3+ ions are displaced along

�111� and this leaves the oxygens effectively fourfold coor-

dinated to two Bi3+ ions and two Fe3+ ions. BiFeO3 has an

antiferromagnetic ordering, with the spins on the Fe3+ ions

being aligned in opposite senses along the �111� axis.

Our calculated structural parameters are similar to those

of Neaton et al.
19

The resulting bands in sX are shown in

a�
Electronic mail: jr@eng.cam.ac.uk

FIG. 1. �Color online� Structure of the R3c phase �a� rhombohedral cell and

�b� pseudocubic cell. Oxygen�red, Bi�green, and Fe�blue.
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in Fig. 4. This shows that the barrier of Pt will be 0.95 eV.

The barrier to a typical conducting oxide RuO2 or SrRuO3

would be 0.9 eV. These are sizable energy barriers. Thus

overall, the band gap of BiFeO3 is not as large but ap-

proaches that of SrTiO3. The barrier heights are sufficiently

large to inhibit Schottky emission from the metal into the

oxide conduction band, the most likely intrinsic form of con-

duction.

Experimentally, BiFeO3 films can show considerable

electrical conductivity.
11–16

It was found that the conductivity

could be reduced by optimizing the growth procedures.
12–16

The conductivity could be greatly reduced by doping the

BiFeO3 with Ti4+ ions
13

or Mn,
16

but increased by doping

with NiO.
13

This suggests that the conductivity originates

from oxygen vacancy levels in the oxide band gap. They

form rather shallow states in many perovskites. O vacancies

occur to allow mixed Fe valence.

Overall, our calculated band gap and Schottky barrier

heights for BiFeO3 are large enough to suggest that elec-

tronic leakage can be small. The gap is much larger than

found in earlier LSDA calculations and similar to experi-

ment. It suggests that the screened exchange method works

well for correlated oxides as well as simple oxides. It sug-

gests that leakage current can be reduced by better process-

ing conditions of the oxide films.

The authors thank Nicola Spaldin for a reading of this

letter.
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Atomic hydrogen provides a unique test case for computational electronic structure methods, since its

electronic excitation energies are known analytically. With only one electron, hydrogen contains no electronic

correlation and is therefore particularly susceptible to spurious self-interaction errors introduced by certain

computational methods. In this paper we focus on many-body perturbation theory �MBPT� in Hedin’s GW

approximation. While the Hartree-Fock and the exact MBPT self-energy are free of self-interaction, the cor-

relation part of the GW self-energy does not have this property. Here we use atomic hydrogen as a benchmark

system for GW and show that the self-interaction part of the GW self-energy, while nonzero, is small. The

effect of calculating the GW self-energy from exact wave functions and eigenvalues, as distinct from those

from the local-density approximation, is also illuminating.

DOI: 10.1103/PhysRevA.75.032505 PACS number�s�: 31.25.Jf, 31.15.Lc, 31.15.Ar

I. INTRODUCTION

Ab initio many-body quantum mechanical calculations are
crucially important to our understanding of the behavior of
atomic, molecular, and condensed matter systems. It is well-
known that predicting the behavior of these systems requires
the description of electronic correlation. While density-
functional theory �DFT� in the local-density approximation
�LDA� does this with startling success in many cases, it does
so at the expense of a nonphysical electron self-interaction.
For delocalized electron systems this self-interaction be-
comes negligible, but in atomic or strongly localized elec-
tronic systems it plays an important role. If one is interested
in the calculation of quasiparticle excitation spectra, many-
body perturbation theory �MBPT� is formally a correct way
to proceed. For solids, MBPT in Hedin’s GW approximation
�1� has become the method of choice, but it is also increas-
ingly being applied to molecular systems and clusters. The

GW self-energy can be decomposed into correlation and ex-

change parts, where the latter is the same as the Fock opera-

tor encountered in Hartree-Fock theory and thus self-

interaction free. While the exact self-energy must also be

free of self-interaction, the correlation part of the GW self-

energy does not have this property. To investigate the influ-

ence of self-interaction in the GW approach the hydrogen

atom provides an ideal case because the exact solution is

known analytically.

Hydrogen in its solid phase has previously been studied

within the GW approximation by Li et al. �2�, who analyzed

the transition between the high-pressure solid phase and the

low density, atomiclike limit. For individual atoms, GW elec-

tron removal and addition energies �we use the term “quasi-

particle” energies by analogy with the solid-state situation�

have been investigated by Shirley and Martin �3�, Dahlen et

al. �4,5�, Stan et al. �6�, and Delaney et al. �7�, although

hydrogen was not considered. These studies have shown that

GW, in general, gives quasiparticle properties which are

much improved over DFT and Hartree-Fock methods, even

for atoms.

In this paper we use the hydrogen atom as a benchmark

system to quantify the self-interaction error in the GW ap-

proach. Since the self-energy diagrams beyond GW, known

as the vertex correction, must by definition correct this self-

interaction error, our findings are relevant for research into

vertex functions for the many-electron problem.

Attention has recently focused on the prospects for im-

proving the usual non-self-consistent GW calculations by

choosing an initial Green’s function, G0, that is physically

more reasonable than the LDA �e.g., �2,8,9��. We explore this

here by determining the sensitivity of the self-interaction er-

ror to the use of the exact hydrogenic orbitals and energies in

place of those from the local-density approximation �LDA�.
We also assess the error introduced into GW calculations by

employing first-order perturbation theory in solving the qua-

siparticle equation �as opposed to the full numerical solu-

tion�, and we analyze the quasiparticle wave functions that

emerge from a full solution.

II. HARTREE-FOCK VERSUS DFT-LDA

In many-body perturbation theory the quasiparticle exci-

tation energies �i� and wave functions �i� are the solutions

of the quasiparticle equation

H0�r��i��r� + �
��

� dr�M���
�r,r�;�i�

qp��i��
�r�� = �i�

qp�i��r� ,

�1�

where, in Hartree atomic units, H0�r�=−
1

2
�

2+vext�r� and

vext�r� is the external potential. It is customary to divide the
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the correct physics in this extreme system �owing to the large
self-interaction present in the LDA calculation itself, as re-
flected in the large error in the LDA Kohn-Sham eigenvalue�
that it forms a very unsuitable starting point for GW. How-
ever, a physically reasonable starting point reduces the GW
self-interaction error to a small size.

Since �c gives a nonvanishing contribution to the hydro-
gen 1s state, even if the analytic solution is used as a starting
point, the quasiparticle wave function will differ from the
exact one. Figure 1 shows that the GW correlation gives rise
to a slight delocalization of the quasiparticle wave function
in this case. This relaxation, however, now makes the quasi-
particle wave function an eigenfunction of the quasiparticle
Hamiltonian. In the LDA the self-interaction error is much
more pronounced and the wave function becomes signifi-
cantly more delocalized. The GW self-energy corrects this to
a small extent �as reflected in the quasiparticle wave func-
tion�, but the remaining discrepancy reiterates the unsuitabil-
ity of the LDA as a starting point for GW in this self-
interaction-dominated atom.

For an analysis of the contributions to the self-energy we
turn to the perturbative solution of the quasiparticle equation
using Eq. �17�, shown in Table II. When the exact Kohn-
Sham wave function and eigenvalues are used, as in the
Hartree-Fock case the exchange part of the self-energy is
seen to cancel the self-interaction contribution from the Har-
tree potential exactly. The correlation part, on the other hand,
is not zero, but amounts to a self-polarization of 0.25 eV.
When the LDA is used as the starting point the influence of
the LDA wave function on the exchange operator becomes
apparent and it reduces from −17.00 eV in the exact case to
−15.38 eV. This corrects the highly overestimated LDA ei-

genvalue for the 1s state of −6.36 eV �see Table I� to

−13.49 eV. However, in this case the contribution from the

correlation part of the GW self-energy is even larger than

when starting from the exact case and increases the quasipar-

ticle energy to −12.93 eV.

VI. CONCLUSION

We have performed spin-resolved benchmark calculations

for the GW formalism using the analytically known solutions

of the hydrogen atom as a reference, making the self-

interaction error introduced by the correlation part of the GW

self-energy directly assessable. When the exact Kohn-Sham

Green’s function is used as the input to GW, the self-

interaction error is small �0.21 eV, 1/30 the size of that in

the LDA�, but not negligible. If the LDA Kohn-Sham

Green’s function is used, as done in many GW calculations

for more complex systems, a larger self-interaction error re-

mains, inherited from the LDA starting point.
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Abstract: Embedded NixOx clusters (x ¼ 4–12) have been studied by the density-functional method using compen-

sating point charges of variable magnitude to calculate the ionic charge, bulk modulus, and lattice binding energy.

The computations were found to be strongly dependent on the value of the surrounding point charge array and an op-

timum value could be found by choosing the point charge to reproduce the experimentally observed Ni��O lattice pa-

rameter. This simple, empirical method yields a good match between computed and experimental data, and even

small variation from the optimum point charge value produces significant deviation between computed and measured

bulk physical parameters. The optimum point charge value depends on the cluster size, but in all cases is significantly

less than 62.0, the formal oxidation state typically employed in cluster modeling of NiO bulk and surface properties.

The electronic structure calculated with the optimized point charge magnitude is in general agreement with literature

photoemission and XPS data and agrees with the presently accepted picture of the valence band as containing

charge-transfer insulator characteristics. The orbital population near the Fermi level does not depend on the cluster

size and is characterized by hybridized Ni 3d and O 2p orbitals with relative oxygen contribution of about 70%.

q 2007 Wiley Periodicals, Inc. J Comput Chem 28: 1240–1251, 2007

Key words: nickel oxide clusters; point charge embedding; density-functional methods; electronic structure

ab initio calculations

Introduction

The electronic structure of NiO has been under active investiga-

tion for almost 6 decades, dating from the historic studies of

Neville Mott,1–3 which explained the insulating nature of the

partially filled Ni2þ 3d level with a localized, antiferromagneti-

cally ordered conduction band. Subsequent refinements produced

the Mott-Hubbard model,4,5 in which an insulating gap of energy

U forms within the 3d level due to the strong Coulomb repulsion

among the highly correlated 3d electrons. NiO was considered a

prototypical Mott-Hubbard insulator for quite some time until

the model was challenged by a series of photoemission ex-

periments,6,7 supported by ab initio cluster calculations,8 which

proposed the insulating nature originated from hybridization

between localized nickel 3d and oxygen 2p levels. The band

structure in this charge-transfer model is described by inclusion

of configurations that transfer electron density between the filled

O 2p6 band into the empty Ni 3d:

�band ¼ �3d8 þ �3d9Lþ �3d10L2 (1)

where, L represents a hole in the oxygen 2p band. The charge-

transfer model explains satellite structure in photoemission quite

well, but is less satisfactory in describing the composition of the

top of the valence band and bottom of the conduction band, and

thus the nature of the band gap. These problems occasionally

give rise to a new round of controversy,9–13 and the presently

adopted picture of the NiO band structure often includes both

Mott-Hubbard and charge-transfer nature.

As a theoretical understanding of the electronic nature of

nickel oxide and other rocksalt 3d monoxides has developed, it

has become apparent that in many cases computational methods

have proven inadequate to describe key features of the band

structure. In particular, ab initio studies of nickel oxide, espe-

cially those employing DFT methods, often fail to correctly

describe the band gap, found experimentally to be in the range

of 3.5–4.3 eV.14–18 Many calculations either significantly under-

estimate the value at less than 1 eV,19,20 or strongly overesti-

mate it at greater than 4.5 eV.21–25

While the controversy over the nature of the band gap is fun-

damental, there is reason to believe that some inaccuracies in

Contract/grant sponsor: National Science Foundation; contract/grant
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Electrochromic (EC) materials are able to change their optical properties, reversibly and

persistently, by the application of an electrical voltage. These materials can be integrated in

multilayer devices capable of modulating the optical transmittance between widely separated

extrema. We first review the recent literature on inorganic EC materials and point out that today’s

research is focused on tungsten oxide (colouring under charge insertion) and nickel oxide

(colouring under charge extraction). The properties of thin films of these materials are then

discussed in detail with foci on recent results from two comprehensive investigations in the

authors’ laboratory. A logical exposition is obtained by covering, in sequence, structural features,

thin film deposition (by sputtering), electronic band structure, and ion diffusion. A novel

conceptual model is given for structural characteristics of amorphous W oxide films, based on

notions of defects in the ideal amorphous state. It is also shown that the conduction band density

of states is obtainable from simple electrochemical chronopotentiometry. Ion intercalation causes

the charge-compensating electrons to enter localized states, implying that the optical absorption

underlying the electrochromism can be described as ensuing from transitions between occupied

and empty localized conduction band states. A fully quantitative theory of such transitions is not

available, but the optical absorption can be modeled more phenomenologically as due to a

superposition of transitions between different charge states of the W ions (6+, 5+, and 4+). The Ni

oxide films were found to have a porous structure comprised of small grains. The data are

consistent with EC coloration being a surface phenomenon, most likely confined to the outer

parts of the grains. Initial electrochemical cycling was found to transform hydrated Ni oxide into

hydroxide and oxy-hydroxide phases on the grain surfaces. Electrochromism in thus stabilized

films is consistent with reversible changes between Ni hydroxide and oxy-hydroxide, in

accordance with the Bode reaction scheme. An extension of this model is put forward to account

for changes of NiO to Ni2O3. It was demonstrated that electrochromism is associated solely with

proton transfer. Data on chemical diffusion coefficients are interpreted for polycrystalline W

oxide and Ni oxide in terms of the lattice gas model with interaction. The later part of this review

is of a more technological and applications oriented character and is based on the fact

that EC devices with large optical modulation can be accomplished essentially by connecting

W-oxide-based and Ni-oxide-based films through a layer serving as a pure ion conductor.

Specifically, we treat methods to enhance the bleached-state transmittance by mixing the Ni oxide

with other oxides characterized by wide band gaps, and we also discuss pre-assembly charge

insertion and extraction by facile gas treatments of the films, as well as practical device

manufacturing and device testing. Here the emphasis is on novel flexible polyester-foil-based

devices. The final part deals with applications with emphasis on architectural ‘‘smart’’ windows

capable of achieving improved indoor comfort jointly with significant energy savings due to

lowered demands for space cooling. Eyewear applications are touched upon as well.

I. Introduction

Chromogenic materials are able to change their optical

properties as a response to an external stimulus,1 such as

irradiation by light (photochromic materials), change in

temperature (thermochromic materials), the application

of an electrical voltage (electrochromic materials), to

mention the most common types. Electrochromic (EC)

materials, which this Feature Article is about, were brought

to public attention some 35 years ago thanks to the seminal

work on tungsten oxide films by Deb.2,3 In essence, the

optical absorption in the visible range changes widely as

charge is inserted or extracted. Not surprisingly, these

materials were immediately considered for application in

information displays, but they did not stand up to the

competition from the then rapidly developing liquid-crystal-

based technology.
Department of Engineering Sciences, The Ångström Laboratory,
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ABSTRACT We first introduce electrochromic (EC) device tech-
nology, which uses transparent conducting oxides as one of its
critical components, and consider how this technology can be
employed to obtain urgently needed energy savings for modern
buildings. The discussion then focuses on two of the most suit-
able EC materials, WO3 and NiO; we cover recent advances in
basic physics and chemistry as well as the properties of flexi-
ble foil-type devices combining the two oxides. The final part
of the paper provides a broader, more general overview of chro-
mogenic materials.

PACS 82.47.-a; 78.66.-w; 78.20.Jq; 81.15.Cd

1 Introduction

Electrochromic (EC) devices incorporate transpar-
ent conducting oxides (TCOs) and a three-layer stack com-
prising a “battery-like” structure with thin films serving as
“cathode”, “anode”, and electrolyte. Figure 1 illustrates a typ-
ical EC device wherein the TCOs are of In2O3:Sn (indium tin
oxide, or ITO), the “cathode” is WO3, and the “anode” is NiO.
Charging and discharging this “battery” leads to varying opti-
cal absorption, a phenomenon that can be used in a multitude
of applications.

This paper highlights applications to solar energy and en-
ergy savings with a focus on modern building construction. In
this context it is customary to speak of EC “smart windows”.
Section 2 below is devoted to energy-related applications and
their urgency, and where electrochromics – and hence TCOs
– come into play. Section 3 outlines EC device technology
in general, and then focuses on WO3, NiO, and foil-type de-
vices made from them. Section 4 broadens the scope and gives
a more general survey of chromogenic devices including ECs,
photochromics, thermochromics, and other “chromics”.

2 TCOs, electrochromics, and the need

for chromogenic building skins

There can be no doubt that future energy supplies
and energy security will demand revolutionary advances in
technology in order to maintain or forward today’s (2006)
general standard of living and level of economic prosper-

✉ Fax: +46 18 500131,
E-mail: Claes-Goran.Granqvist@Angstrom.uu.se

ity [1]. Indeed, the magnitude of the problems surrounding
these issues may seem daunting. For example, it has been
stated that the warming and precipitation trends due to an-
thropogenic, energy-related climate change during the past
thirty years already claim over 150 000 human lives annu-
ally [2, 3]. Furthermore, the advances in energy technology
must take place for a growing population whose increasing
concentration in mega-cities leads to “heat islands”, thereby
accelerating the warming [4]. By 2050 there will be some
10 billion people in the world. Energy must be available to
them all, and it has to be clean. New technologies are urgently
needed to accomplish this.

Where do the TCOs, and devices using them, enter into
this scenario? A basic reason why they are relevant in this
context is that they can show transparency in a limited and
well-defined range, normally encompassing visible light in
the 0.4 < λ < 0.7 µm wavelength interval. This has led to
a range of applications in fenestration technology with doped
SnO2 being extensively used for providing low thermal emit-
tance and thus good thermal insulation [5]. Other windows-
related applications employ antireflected noble-metal-based
films for admitting visible light and rejecting infrared solar ir-
radiation, and/or for providing low thermal emittance [5]. In
some markets, the penetration of coated glass for new build-
ings is currently almost total, whereas the market share is
smaller elsewhere. Given the obvious need to diminish energy
use on a global scale, these technologies can only be expected
to grow. The enormity of the market is apparent; the produc-
tion of float glass – used almost without exception in modern
fenestration – exceeds 4 billion m2 per year [6]. Coating even
a small portion of this with TCOs makes architectural (and au-
tomotive) windows by far the largest field of applications for
transparent conductors, completely outstripping other appli-
cations such as displays and transparent electronics.

Modern people normally spend some 90% of their time in-
side buildings and vehicles, hence the quality of the indoor
environment is of great importance. More and more energy
is used to maintain the indoor environment at a level that
is both comfortable and healthy. Within the EU, some 40%
of the energy supply is used for heating, cooling, ventilation
and lighting of buildings, as well as for appliances; this cor-
responds to ∼ 4% of the Gross National Product [4, 7]. As
indicated recently [8, 9], air conditioning and refrigeration is
becoming increasingly important to peak electricity demand.
It has risen by an average of 17% per year in the EU between
1995 and 2003 [10]. A further indication of the pressing de-
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ate light-weight buildings with little embedded energy inside
huge membranes. These membranes could allow the flow
of visible light and solar energy to be controlled and opti-
mized. The possibilities offered by such membranes were in
fact pointed out more than 50 years ago by the great vision-
ary Buckminster Fuller [83], although based on conventional
glass technology. Perhaps this grand vision will one day come
true – thanks to electrochromics.
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The band gaps, longitudinal and transverse effective masses, and deformation potentials of ScN in the
rock-salt structure have been calculated employing G0W0-quasiparticle calculations using exact-exchange
Kohn-Sham density-functional theory one-particle wave functions and energies as input. Our quasiparticle gaps
support recent experimental observations that ScN has a much lower indirect band gap than previously thought.
The results are analyzed in terms of the influence of different approximations for exchange and correlation
taken in the computational approach on the electronic structure of ScN.
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I. INTRODUCTION

Scandium nitride �ScN� is emerging as a versatile material
for promising technological applications. As part of the
transition-metal nitride family it initially generated interest
for potential applications as wear-resistant and optical coat-
ings due to its mechanical strength, high melting point of
2600 °C,1 and high hardness �H=21 GPa� with respect to
load deformations.2 ScN crystallizes in the rock-salt phase
with a lattice parameter of 4.50 Å.3 The octahedral bonding
arrangement provides a much more favorable environment
for the incorporation of transition-metal atoms like Mn or Cr
than the tetrahedrally coordinated III-V semiconductors,
which have up until now been popular candidates for spin-
tronic materials. Successful incorporation of Mn into ScN
has been demonstrated4 and ab initio calculations predict
Mn-doped ScN to be a dilute ferromagnetic semiconductor.5

Moreover, ScN has a lattice mismatch of less than 2% to
cubic gallium nitride �GaN�. This makes ScN structurally
compatible with the group-IIIA nitrides6–13—an important
technological material class, in particular, for applications in
optoelectronic devices. Alloying ScN with GaN �Refs. 9–12�
might provide a viable alternative to InGaN alloys for use in
light-emitting devices or solar cells. In addition, multifunc-
tional devices are conceivable if the strong electromechani-
cal response predicted for hexagonal ScN �Ref. 14� can be
utilized.

The electronic band structure of ScN—a key quantity for
the design of optoelectronic devices—has been difficult to
access both experimentally and theoretically. Early experi-
ments were hampered by various complications in growing
films with well-defined crystalline orientation, stoichiometry,
low background carrier concentration, and surface rough-
ness. For a detailed discussion we refer to, e.g., Ref. 15.
Recent advances in growth techniques have led to a system-
atic improvement of the material’s quality.16 Employing op-
tical spectroscopy and photoemission, Gall et al.15 concluded

that ScN is a semiconductor with an indirect �–X band gap
�Eg

�–X� of 1.3±0.3 eV. The sizable error bar of 0.3 eV has
been mainly attributed to the large background carrier con-
centration of �5�1020 cm−3 causing an apparent increase of
the band gap due to the Burnstein-Moss shift.17 Reducing the
electron carrier concentration to 4.8�1018 cm−3 and com-
bining tunneling spectroscopy and optical-absorption mea-
surements, Al-Brithen et al.18 were able to reduce the error
bar and found a value for Eg

�–X of 0.9±0.1 eV.
Early Kohn-Sham density-functional theory �KS-DFT�

calculations employing the local-density �LDA� or X� ap-
proximations predicted ScN to be a semimetal with a small
negative band gap between −0.01 and −0.21 eV.19–21 In or-
der to overcome the well-known underestimation of the LDA
band gap, more advanced exact-exchange �OEPx�cLDA��
�Ref. 15� and screened-exchange22 calculations have been
performed, and showed that ScN is a semiconductor with an
indirect � to X band gap, in accord with experimental
evidence.15,18 However, the calculated band gap of 1.60 eV
found in both studies is significantly larger than the most
recent experimental value of 0.9±0.1 eV.18

In order to shed light on this discrepancy we have per-
formed quasiparticle energy calculations in Hedin’s GW

approximation,23 which is a well-established technique to
calculate accurate band-structure energies and currently the
choice for computing quasiparticle band structures of
solids.24–26 The quasiparticle calculations predict ScN in the
rock-salt phase to have an indirect band gap between the �

and X point of 0.99±0.15 eV, strongly supporting recent ex-
perimental findings. In addition, we have also determined the
direct band gaps and other electronic structure parameters
relevant for device simulations: the volume deformation po-
tentials of the main band gaps and the longitudinal and trans-
verse effective masses of the conduction band at the X point.
The effective mass has previously been calculated at the
level of the LDA,27 but to the best of our knowledge, only
one experimental study has reported a conduction-band ef-
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IV. CONCLUSIONS

Pseudopotential G0W0 calculations based on Kohn-Sham
density-functional theory calculations in both the LDA and
OEPx�cLDA� have been performed for the electronic struc-
ture of ScN in the thermodynamically stable rock-salt phase.
To analyze the effects of exchange and correlation the atomic
and electronic structures have been studied within DFT for
several levels of approximations for the exchange-correlation
functional �LDA, GGA and OEPx�cLDA��. In agreement
with previous calculations for ScN, our LDA �OEPx�cLDA��
band gaps are underestimated �overestimated� by about
100%. Despite this large difference, OEPx�cLDA�-G0W0 and
LDA-G0W0 calculations for the quasiparticle band structure
agree to within 0.3 eV. Our quasiparticle gap of
0.99±0.15 eV supports the recent observation that ScN has a

much lower indirect band gap than previously thought. The
main advantage of the OEPx�cLDA�-G0W0 approach lies in
the fact that it facilitates a direct calculation of the electronic
structure of ScN at the experimental equilibrium volume,
whereas for the LDA-G0W0 calculation an indirect approach
has to be taken due to the negative LDA band gap.
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We use a combination of optical spectra, first-principles calculations, and energy-dependent magneto-optical

measurements to elucidate the electronic structure and to study the phase diagram of Ni3V2O8. We find a

remarkable interplay of magnetic field and optical properties that reveals additional high magnetic-field phases

and an unexpected electronic structure, which we associate with the strong magnetodielectric couplings in this

material over a wide energy range. Specifically, we observed several prominent magnetodielectric effects that

derive from changes in the crystal-field environment around Ni spine and cross tie centers. This effect is

consistent with a field-induced modification of local structure. Symmetry-breaking effects are also evident with

temperature. We find Ni3V2O8 to be an intermediate-gap, local-moment band insulator. This electronic struc-

ture is particularly favorable for magnetodielectric couplings, because the material is not subject to the spin-

charge separation characteristic of strongly correlated large-gap Mott insulators, while at the same time re-

maining a magnetic insulator independent of the particular spin order and temperature.

DOI: 10.1103/PhysRevB.74.235101 PACS number�s�: 75.80.�q, 78.20.Ls, 71.20.Be

I. INTRODUCTION

Ni3V2O8 is a particularly interesting magnetic material,1–5

both because of its unusual structure, which provides an ex-

ample of a spin-1 system on a Kagomé staircase lattice, and

because of the rich variety of magnetic and structural phases

that are stabilized under different conditions. One especially

interesting feature is the occurrence of a magnetic, ferroelec-

tric phase as a function of temperature and magnetic field.

More generally, coupled magnetic and electric degrees of

freedom, flexible lattices, and magnetic frustration in multi-

ferroics can result in cascades of coupled magnetic and di-

electric transitions.6–13 The recent report10 of colossal low-

frequency �1 kHz� magnetodielectric effects in inhomo-

geneously mixed-valent DyMn2O5 is especially important,

because it illustrates that a sizable dielectric contrast can be

achieved by physical tuning through an unusual commen-

surate-incommensurate magnetic transition and is facilitated

by a soft lattice. The 300 K low-frequency magnetodielectric

effect in mixed-valent LuFe2O4 has also attracted attention

due to the very low magnetic fields needed to achieve dielec-

tric contrast.14 Ni3V2O8 is another system where the tem-

perature and field dependence of the spontaneous polariza-

tion shows a strong coupling between magnetic and

ferroelectric order.3–5 This coexistence is unusual and ap-

pears only when certain symmetry conditions are fulfilled.3

That the effect can be controlled with an external magnetic

field makes it attractive for device applications. Based upon

our previous work with inhomogeneously mixed-valent

K2V3O8,15 the significant coupling between spin, lattice, and

charge degrees of freedom make Ni3V2O8 an excellent can-

didate for the discovery of higher-energy magnetodielectric

effects.

Figure 1�a� shows the orthorhombic �Cmca� crystal struc-

ture of Ni3V2O8. It consists of Kagomé layers of edge shar-

ing NiO6 octahedra separated by nonmagnetic VO4 tetrahe-

dra. Ni3V2O8 is considered to be a Kagomé staircase

compound due to buckling of the lattice perpendicular to the

a axis. There are two distinct types of Ni2+ �S=1� centers,

which we refer to as “spine” and “cross tie” sites. The spine

sites run along the a axis. A view of the Kagomé staircase

showing only the Ni atoms is displayed in Fig. 1�b�. Note

that the spine and cross tie sites have very different local

symmetries. The spin-ordering arrangements in Ni3V2O8

have been extensively investigated by neutron scattering and

FIG. 1. �Color online� �a� Crystal structure of Ni3V2O8. �b�

View of the Kagomé staircase showing only the Ni atoms.
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The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed using

the local density approximation plus dynamical mean-field theory �LDA � DMFT�. To this end the noninter-

acting Hamiltonian obtained within the LDA is expressed in Wannier function basis, with only the five

antibonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb

interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with

quantum Monte Carlo �QMC� simulations. The large insulating gap in NiO is found to be a result of the strong

electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic

spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and

bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic mo-

ment computed in the paramagnetic phase �PM� agrees well with that measured in the antiferromagnetic

�AFM� phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in

accordance with the experimental finding that AFM long-range order has no significant influence on the

electronic structure of NiO.

DOI: 10.1103/PhysRevB.74.195114 PACS number�s�: 71.27.�a, 71.30.�h, 79.60.�i

I. INTRODUCTION

NiO is a strongly correlated electron material with a large

insulating gap of 4.3 eV and an antiferromagnetic �AFM�
ordering temperature of TN=523 K. Conventional band theo-

ries which stress the delocalized nature of electrons cannot

explain this large gap and predict NiO to be metallic.1 On the

other hand, spin-polarized band calculations—e.g., density

functional calculations based on the local spin-density

approximation2 �LSDA�—which do find an AFM insulating

ground state in NiO, produce a band gap and local magnetic

moment which are considerably smaller than the experimen-

tal values. These facts are often taken as evidence for the

inapplicability of conventional band theories to strongly cor-

related systems like NiO. Indeed, already a long time ago

Mott3 showed that NiO and similar insulators may be better

understood within a real-space picture of the solid, where

localized electrons are bound to atoms with incompletely

filled shells. This leads to the formation of incoherent bands,

the lower and upper Hubbard bands, which are separated by

a correlation gap of the order of the local Coulomb repulsion

U. For this reason NiO has long been viewed as a prototype

“Mott insulator.”3,4

This view of NiO was later replaced by that of a “charge

transfer insulator,”5 after Fujimori and Minami had success-

fully explained the photoemission data in terms of a cluster

model treated within the configuration-interaction method.6

In particular, this interpretation was supported by the com-

bined x-ray-photoemission �XPS� and bremsstrahlung-

isochromat-spectroscopy �BIS� measurements of Sawatzky

and Allen.7 Within this new picture an additional ligand p

band appears between the lower and upper Hubbard bands,

and the insulating gap is formed between the ligand p band

and the upper Hubbard d band. However, unless the p-d

hybridization is taken into account, this picture is still an

oversimplification. Namely, the hybridization between

transition-metal d and ligand p states will lead to some
d-electron features also in the upper valence bands. Indeed,
subsequent studies suggested that the first valence peak is
actually a bound state arising from the strong hybridization
of Ni 3d and O 2p states,8,9 such that NiO is close to the
intermediate regime of the Zaanen-Sawatzky-Allen scheme.5

Despite the success of the cluster approach it has apparent
drawbacks since it neglects the band aspects of O 2p states

completely which are known to play an important role in

NiO.8,10 The translational symmetry has been taken into ac-

count to some extent within the cluster perturbation theory

recently.11 Another extension is the treatment of a larger clus-

ter �Ni6O19� so that nonlocal charge transfer excitations can

be identified.12

Since the cluster approach relies on adjustable parameters

to fit the experimental spectrum, it is highly desirable to

obtain a description of the electronic structure of NiO from

first principles. Already within L�S�DA the O 2p bands can

be accounted for quite well.8 Attempts to go beyond L�S�DA

are based on the self-interaction-corrected density functional

theory �SIC-DFT�,13 the LDA+U method,14 and the GW

approximation.15,16 These methods represent corrections of

the single-particle Kohn-Sham potential in one way or an-

other and lead to substantial improvements over the L�S�DA

results for the values of the energy gap and local moment.

Within the SIC-DFT and LDA+U methods the occupied and

unoccupied states are split by the Coulomb interaction U,

whereas within the LSDA this splitting is caused by the

Stoner parameter I, which is typically one order of magni-

tude smaller than U. Therefore, compared with the LSDA,

the SIC-DFT and LDA+U methods capture more correctly

the physics of transition-metal �TM� oxides and improve the

results for the energy gap and local moment significantly.

The GW method goes one step further by calculating the

self-energy to lowest order in the screened Coulomb interac-

tion W, and the obtained band structure shows better agree-
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NiO is due to strong electronic correlations in the paramag-

netic phase. The magnetic order in NiO is therefore only a

secondary effect—i.e., a consequence rather than the origin

of the gap. Hence we expect the conduction band photoemis-

sion spectra to remain almost unchanged by the AFM long-

range order.

In the construction of the ab initio Hamiltonian �4�, only

the five “antibonding” bands �which have mainly Ni 3d char-

acters in the LDA calculation� were included, while the three

“bonding” bands �which are the mixture of the Ni 3d and O

2p states, but have more O contributions� below them were

neglected. Therefore in the present work the contributions to

the Wannier functions from Ni 3d and O 2p states depend on

the LDA results. This means that the valence bands close to

the Fermi level have mainly Ni 3d character. The insulating

gap we obtained is therefore an effective Mott-Hubbard gap

between Wannier states. In other words, we used an effective

Mott-Hubbard gap to mimic a charge-transfer gap6,7 or a gap

with mixed character.21,68 Strictly speaking, the gap here is

also of mixed character since some amount of oxygen con-

tribution is contained in the Wannier functions. The results

obtained by such a treatment are surprisingly good. This may

be due to the fact that correlation effects are treated better

within DMFT than within any other theoretical approach

available so far, and also because features due to oxygen are

rather suppressed in XPS.60

In spite of the limitations of the current implementation,

we showed that the LDA+DMFT approach which combines

first-principles, material-specific information with strong cor-

relation effects is able to deal with late transition-metal mon-

oxides like NiO. A more complete treatment of NiO within

the LDA+DMFT approach will require the inclusion of oxy-

gen bands and the p-d hybridization. Only in this way can

one produce a full spectrum of NiO and identify the satellite

structure at high binding energies.
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We present a method for calculating second harmonic generation on a purely ab initio basis in NiO, both for

the �001� surface and for the bulk. We go beyond the electric dipole approximation and we incorporate

magnetic dipoles and electric quadrupoles in our results. A full detailed symmetry analysis of these contribu-

tions is given. Then we calculate phononic contributions to the second order susceptibility tensor for the bulk

within the frozen phonon approximation. It is shown that transient lattice distortions can lead to a second

harmonic signal, even in centrosymmetric materials like NiO. The second order susceptibility tensor is calcu-

lated from first principles, including nonlocalities in two different ways: �i� with phononic contributions on a

time averaged way and �ii� with a time resolved single optical phonon at the � point. Furthermore the effects

of electronic redistribution prior to the probe pulse are given.

DOI: 10.1103/PhysRevB.74.155106 PACS number�s�: 78.68.�m, 78.47.�p, 73.20.�r

I. INTRODUCTION

In recent years there has been a continuous strive to un-

derstand nonlinear �magneto-� optics in antiferromagnetic

materials, in order to employ a possible ultrafast magnetic

switching scenario. Nonlinear optics is more selective than

nonlocal linear optics, and while less sensitive it falls within

the frame of modern detecting apparatus, thus making it an

ideal tool for investigating antiferromagnets. Several experi-

mental and theoretical works have been published on a num-

ber of such materials, nickel oxide among others, which is a

good candidate for such a scenario due to its large spin den-

sity, antiferromagnetic order, and clearly separated intragap

states. It has a rocksalt structure above the Néel temperature

�TN=523 K� and exhibits a small distortion along the �111�
axis below TN. Although NiO possesses a center of inversion,

it generates a second harmonic signal.1 In the literature there

are to date four main explanations for its origin �i� lowering

of the crystallographic symmetry due to local distortions or

phonons, �ii� spin-orbit coupling �SOC�, �iii� a signal that

mainly results from the surface, and �iv� inclusion of higher

order transitions. Recent works2,3 from our group showed

that explanations �ii� and �iv� are the most probable candi-

dates for the physics behind the work. In this paper we elabo-

rate further on the inclusion of higher order transitions and

give the symmetry analysis of the second order susceptibility

tensor for them. Then we include the phononic effects, both

with and without higher order transitions, and we discuss

how the transient lowering of the local symmetry affects the

second harmonic generation �SHG� signal.

II. QUANTUM CHEMISTRY

A. Computational model

In order to model both the surface and the bulk of NiO

one can use either the real or the momentum space approach.

Their major difference manifests itself in the ability of only

the first one to find the localized intragap d states of the Ni

ion. These dispersionless states are experimentally confirmed

for the surface4,5 and for the bulk.6 Although some recent

calculations with extended local density approximation

�LDA��� within the Hubbard-I approach7 �a gap of 4.3 eV

and an absorption edge of 3.1 eV� and within the GW

approximation8–10 give better results for the gap than the real

space approach �2.9 to 5.5 eV�, they persistently miss the

intragap states. In the energy window we are interested in

�up to 4 eV�, these states are the most relevant ones for op-

tics. Furthermore NiO is a compound in which correlations

play an important role, and the real space approach is there-

fore more suitable to describe its complex electronic struc-

ture. Last but not least we wish not only to calculate the

energy levels but the transition matrix elements between

them as well, in order to compute the second order suscep-

tibility tensor. For the calculation of the transition moment

elements we use wave functions in the real space. If how-

ever, one had a reciprocal space approach �density functional

methods� then one would get from the wave functions the

���p��� elements, which then have to be transformed using

���p��� = −
ime

�
����r,Ĥ0���� = ime������r��� . �1�

Equation �1� works fine as long as the transition does not

take place between two states with the same �or almost the

same� energy, otherwise ���r��� becomes infinite; the matrix

elements of the operator r are ill defined when the wave

functions, which include local pseudopotentials, obey Born-

von Kármán boundary conditions.11 One way to overcome

the problem is to introduce a factor � and then Eq. �1� be-

comes

���r��� = −
i

me

���p���

��� + i�
�2�

which, however, leads to the problem of introducing one

additional arbitrary constant, the value of which cannot be

evaluated from first principles. Furthermore, � smears out

the transition elements, and can thus lead to very different

spectra, especially around energy regions with a high density

of states. The real space approach used here does not present

these problems, since the calculation of the transition mo-

ments does not rely on any energy differences.
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spatial extension of the intragap d states. However, a simple
model Hamiltonian can be used to describe the d bands at
various interaction levels within a tight-binding approxima-
tion, and to give qualitative insight in the effects of the in-
clusion of intersite two-center integrals in the Fock matrix.

For this purpose we employ a 8�8 Hamiltonian matrix
for an fcc lattice, with Bloch functions basis set of the type
�G�k��=	R�eik·R�e−ar���, where ��� is the angular part of the

localized atomic Gaussian functions, k the wave vector, and
R the position of the atoms. We restrict ourselves to the
nearest neighbors, and use the five pure d functions and a set

of three high energy p functions which describe the charge

transfer states, needed as intermediate levels for the second

harmonic signal. The matrix elements are computed from the

resonance integrals and the geometric considerations as de-

scribed by Slater and Koster.19 The resonance integrals scale

as e−aR
2
/2 like the two center overlap integrals Sij and can be

calculated for each coefficient a. In the extreme case of Sij

=0 there is no interaction at all, and the d bands are com-

pletely flat. Giving a value of 0.0 eV for the tg orbitals and

0.94 for the eg ones, as calculated in our previous paper, and

taking a=0.0134 so that the system barely stays an insulator

one gets after integration over the whole Brillouin zone the

second order susceptibility tensor depicted in Fig. 15. This

value for a is much smaller than the diffuse primitive Gauss-

ian in both the LANL2DZ and the very large Roos20 basis sets

�0.836 and 0.0728 51, respectively�. One notes that even in

the case of an almost metallic system, the calculated tensor

elements do not present any new features except a broaden-

ing of the peaks. Using the integrals from our LANL2DZ �Ref.

21� basis set, both the tg and eg bands undergo a broadening

of less then 5�10−3 eV, which practically does not affect

the tensor elements at all.
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ABSTRACT: The electronic band structure of NiO in the ferromagnetic state is
calculated using the B3LYP hybrid density functional, the Hartree–Fock (HF) method,
and the GW approximation (GWA) with dielectric functions constructed using either
B3LYP or HF wave functions and energy eigenvalues. The band structure from the
GWA calculation based on B3LYP wave functions is quite similar to the parent B3LYP
band structure; the main differences are in valence bandwidth and in the upward shift
of the empty minority spin Ni 3d bands relative to the same bands in the B3LYP
calculation. The band structure from the GWA calculation based on HF wave functions
differs in that there are large upward shifts in valence band positions in the GWA
calculation relative to the HF calculation, which result from screening of the bare
exchange term in the Fock operator. Matrix elements of the HF exchange operator are
obtained using wave functions from self-consistent HF or B3LYP calculations.
Magnitudes of these matrix elements for several states at the � point of the Brillouin
zone are compared, and it is found that the only major difference occurs in the empty
minority spin bands derived from Ni 3d states of e symmetry. © 2006 Wiley Periodicals,

Inc. Int J Quantum Chem 106: 3383–3386, 2006
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Introduction

N ickel oxide (NiO) is an anti-ferromagnetic
transition metal oxide whose electronic struc-

ture has been studied using a wide range of theo-

retical techniques [1–9]. There have been a number
of ab initio Hartree–Fock (HF) and density func-
tional theory (DFT) studies of NiO. It is well known
that these approaches over- or underestimate the
bandgap to a large extent. In fact, the local spin
density approximation (LSDA) to DFT predicts that
NiO in a ferromagnetic (FM) state is metallic [3],
while in the anti-ferromagnetic-II (AF-II) state it is
predicted to have a small bandgap of 0.3 eV [8]; the
bandgap for the AF-II state is observed to be �4.3
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upward shift of the valence bands by �4 eV and
some band narrowing.

To attempt to understand the differences in elec-
tronic structures predicted by B3LYP and HF cal-
culations, matrix elements of the exchange contri-
bution to the Fock operator were computed for the
three principal types of state in the valence band at
the � point and the strongly dispersive state at or
near the conduction band minimum (CBM) (Ta-
ble I).

When x � 0, NiO in the FM state is metallic, and
the correct electronic configuration is not con-
verged. Values of x � 0.07, 0.20, and 1.00 were used.
For x � 0.07, the smallest difference between occu-
pied and vacant levels is just 0.4 eV; for x � 1.00, a
direct bandgap of 15.0 eV is obtained. There are
only relatively small changes in magnitude of the
matrix elements for occupied states (Table I), espe-
cially for the state with O 2p character. The largest
change is for the vacant Ni 3d state with e symmetry
where the magnitude changes from 22.0 to 15.6 eV
on going from x � 0.07 to 1.0. The decrease in
magnitude for empty states and increase for occu-
pied states on going from x � 0.07 to 1.0 suggest
that occupied 3d orbitals are somewhat more com-
pact in HF, while empty 3d orbitals are significantly
more diffuse.

In summary, a B3LYP calculation on FM NiO
results in an indirect bandgap of 3.7 eV, in reason-
able agreement with the experimental value of 4.3

eV [10]. When a perturbative GWA calculation is
performed using a B3LYP wave functions and en-
ergy eigenvalues the indirect bandgap increases to
4.7 eV. There is little shift in the positions of most
bands, with the exception of the empty Ni 3d mi-
nority spin bands, in contrast to GWA calculations
using DFT [5] or HF wave functions. This is most
likely because the exchange operator in the B3LYP
calculation contains only a fraction (0.2) of the full
HF value, and this may be approximately the frac-
tion that is unscreened in the GWA calculation.
B3LYP wave functions may therefore present a su-
perior starting point for perturbation theories in
solids, especially when DFT or HF approaches fail.
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B 1984, 30, 4734.

9. Faleev, S. V.; van Schilfgaarde, M.; Kotani, T. Phys Rev Lett
2004, 93, 126406.

10. Sawatzky, G. A.; Allen, J. W. Phys Rev Lett 1984, 53, 2339.

11. Becke, A. D. J Chem Phys 1993, 98, 5648.

12. Saunders, V. R.; Dovesi, R.; Roetti, C.; Causá, M.; Orlando,
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Mackrodt, W. C.; Aprà, E. Phys Rev B 1994, 50, 5041.

TABLE I ______________________________________

Matrix elements of the exchange operator for bands
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(x � 0.07)

B3LYP

(x � 0.2)

HF

(x � 1.0)

Ni e 47.1 47.6 49.1

Ni t 44.7 45.3 47.1

O 2p 27.8 27.6 27.1

CBM 11.7 11.5 10.4

� spin

Ni 42.3 42.8 44.1

O 2p 24.4 25.0 26.1

Ni 22.0 20.4 15.6

CBM 10.8 10.7 10.0
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Abstract

Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in

buildings. The largest of these applications, in terms of area, make use of the fact that the TCs have low infrared emittance and hence can

be used to improve the thermal properties of modern fenestration. Depending on whether the TCs are reflecting or not in the near

infrared pertinent to solar irradiation, the TCs can serve in ‘‘solar control’’ or ‘‘low-emittance’’ windows. Other applications rely on the

electrical conductivity of the TCs, which make them useful as current collectors in solar cells and for inserting and extracting electrical

charge in electrochromic ‘‘smart windows’’ capable of combining energy efficiency and indoor comfort in buildings. This Review takes a

‘‘panoramic’’ view on TCs and discusses their properties from the perspective of the radiative properties in our ambience. This approach

leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent

sections. The spectrally selective materials are thin films based on metals (normally gold or titanium nitride) or wide band gap

semiconductors with heavy doping (normally based on indium, tin, or zinc). Their applications to energy-efficient windows are covered in

detail, experimentally as well as theoretically, and briefer discussions are given applications to solar cells and solar collectors.

Photocatalytic properties and super-hydrophilicity are touched upon. Angular selective TCs, for which the angular properties are caused

by inclined columnar nanostructures, are then covered. A discussion of TC-like materials with thermochromic and electrochromic

properties follows in the final part. Detailed treatments are given for thermochromic materials based on vanadium dioxide and for

electrochromic multi-layer structures (incorporating TCs as essential components). The reference list is extensive and aims at giving an

easy entrance to the many varied aspects of TCs.

r 2007 Elsevier B.V. All rights reserved.
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