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An efficient catalytic protocol for the synthesis of novel spiro[indoline-3,4 -pyrano[2,3-c]thiazole]carbonitriles and condensed
thiazolo[5 ,4 :5 ,6 ]pyrano[4 ,3 :3,4]furo[2,3-b]indole derivatives is developed in a one-pot three-component approach involving
substituted 1H-indole-2,3-diones, activated methylene reagent, and 2-thioxo-4-thiazolidinone under conventional heating and
microwave irradiation.is paper describes the use of NiO nanoparticles as catalyst for the synthesis of novel spiro and condensed
indole derivatives by Knoevenagel condensation followed by Michael addition. e advantageous features of this methodology are
operational simplicity, high yield processing, and easy handling. e particle size of NiO nanoparticle was determined by XRD.
Aer reaction course, NiO nanoparticles can be recycled and reused without any apparent loss of activity.

1. Introduction

Catalysis lies at the heart of countless chemical protocols.
e presence of a catalyst is mainly required by both modern
organic synthesis and �ne chemical industries. Nowadays, it
plays a key role in the production of chemicals and materials
as catalytic reactions occur under milder conditions com-
pared to noncatalytic reactions [1–3]. Intensive studies have
been recently focused on the development of catalytic systems
owing to their importance in synthetic organic chemistry.
One of the most attractive synthetic strategies favoured by
organic chemists is the use of heterogeneous catalyst in
increasing the efficiency of a wide range organic synthesis [4].

In recent times, transitionmetal nanoparticles are attract-
ing a great deal of attention in almost any scienti�c and
technological �eld, including catalysis [5, 6]. Several reports
[7–9] showed an amazing level of their performance as
catalysts in terms of selectivity, reactivity, and improved
yields of products. In addition, the high surface-to-volume
ratio of nanoparticles provides a larger number of active sites
per unit area compared to their heterogeneous counterparts.
us, there has been a considerable increase in the interest

in nanoparticles catalysis because of their high efficiency
under environmentally benign reaction conditions [10–12].
Metal oxides represent a broad class of materials that have
been researched extensively due to their interestingmagnetic,
electronic, and catalytic properties [13–16].

One possibility to extend the application of metal oxides
as catalysts is to tailor their sizes in nanodimensions
and hence their surface chemistry and catalytic properties.
Recently, NiO nanoparticles have been employed as hetero-
geneous catalysts for various organic transformations [17].
An increasing number of examples are available in the
literature where Nickel-based nanoparticles have been used
as catalysts during organic transformations [18, 19]. Since
these nanoparticles are oen recovered easily by simple
workup, which prevent contamination of products, they may
be considered as promising, safe, and reusable catalysts com-
pared to traditional catalysts.

Indole and its derivatives are known as an important class
of heterocyclic compounds in the pharmaceutical industry as
well as in synthetic chemistry [20–23]. On the other hand, the
spirooxindole unit is privileged heterocyclic motif that forms
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S 1: Synthesis of spiro and condensed indole derivatives.

the core of a large family of alkaloid and natural products
with strong bioactivity pro�les and signi�cant structural
properties [24–31].

Among nitrogen-containing heterocyclic compounds,
thiazoles are of immense interest to medicinal and industrial
chemists due to their diverse biological activities such as
antiglutamate, antiparkinson [32], antimicrobial [33], anthel-
mintic, anti-in�ammatory [34], antihyperlipidemic, antihy-
pertension and antioxidant properties as well as inhibition of
enzymes such as acetylcholine esterase [35], aldose reductase
[36], lipoxygenase [37], ATPase [38], and HCV helicase [39].
In general, heterocyclic systems encompassing pyran unit
have found application as pharmaceuticals, agrochemicals,
and veterinary products [40]. Further, pyrano thiazoles [41–
46] also possess wide range of bioactivity. It has been
observed that the incorporation of more than one bioactive
heterocyclic moiety into a single framework may result
into the production of novel heterocycles with enhanced
bioactivity.ere are only few reports [47–49] available in the
literature on the synthesis of pyranothiazoles but literature
survey reveals no report on the synthesis of title novel nucleus
so far.

Keeping in view of diverse biological activities associated
with spiroindoles and pyrano thiazoles, it was thought to
construct a novel system which may combine these bioactive
rings together in a single molecular framework to see the
additive effects towards their biological activities. Earlier [50,
51], we studied the reaction of 1H-indol-2,3-diones andmal-
ononitrile with 1-phenyl-2-thiohydantoin and 2-pyrrolidone
under conventional heating and microwave irradiation but
the reaction of 1H-indol-2,3-diones and malononitrile/ethyl
cyanoacetate with 2-thioxo-4-thiazolidinone has not been
studied so far. Hence, as a part of our ongoing program
to develop efficient and robust methods for the prepara-
tion of biologically relevant compounds [52–57], we have
developed a facile and efficient catalytic approach for the

multicomponent one-pot synthesis of novel spiro[indoline-
pyranothiazole]carbonitriles (Scheme 1). e overall pro-
cess involves the Knoevenagel condensation of 2-thioxo-
4-thiazolidinone with 1H-indole-2,3-dione followed by “in
situ” Michael addition of malononitrile in single operation.

In yet another attempt, we explored the reaction of 1H-
indole-2,3-dione and 2-thioxo-4-thiazolidinone with ethyl-
cyanoacetate in absolute ethanol in the presence of NiO
nanoparticles under microwave irradiation. e reaction
surprisingly lead to the exclusive synthesis of 11-amino-2-
thioxo-10-oxo-thiazolo[5 ,4 :5 ,6 ]pyrano[4 ,3 :3,4]furo[2,
3-b]indole instead of the expected spiro compound in
contrast to the earlier reports [58, 59] of the formation
of spiroindoles in the reaction of 3-carboethoxycyano-
methylene-2H-indol-2-ones with cyclic ketones under
classical conditions but similar [60] to the results reported
by us in the reaction of 3-carboethoxycyanomethylene-
2H-indol-2-ones with 1-phenyl-2-thiohydantoin leading to
the synthesis of condensed indole derivatives. e forma-
tion of condensed product was assumed to involve the cyclo-
addition of less acidic indole-OH on the ester group of the
intermediate spiro compound to form �nal isolated product
(Scheme 2).

To the best of our knowledge, there is no report available
in the literature describing the use of NiO nanoparticles as
catalysts for the synthesis of spiro and condensed indole
derivatives (Table 1). Here, we have used a combination of
microwave conditions and NiO nanocatalyst to standardize
the right conditions for the above reaction. e effectiveness
of the process was studied by comparing the results obtained
with and without catalyst under normal conditions (Table 2).
Nanoparticle is considered to be more reacting because it
offers higher surface area and low coordinating sites. e
surface area of the catalyst increases tremendously when size
decreases to nanolevels which are responsible for the higher
catalytic activity and hence enhanced yields (Table 3).
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T 1: Synthesis of Spiro and condensed indole derivatives under microwave irradiation using Ni100 nanoparticles.
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T 1: Continued.

Entry R X Time (min.) Product Yield (%) MP (∘C)
NiO100/Piperidine
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NiO100 is the nanoparticle calcined at 100∘C.
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S 2: Plausible Mechanism for the reaction of 1H-indole-2,3-dione and malononitrile with 2-thioxo-4-thiazolidinone.

2. Results and Discussion

As a part of our ongoing interest aimed at developing new
synthetic strategies for heterocyclic framework, the reaction
of 1H-indole-2,3-dione, malononitrile/ethylcyanoacetate,
and 2-thioxo-4-thiazolidinone was examined in the presence
of catalytic amount (20mg) of NiO nanoparticle under

microwave irradiation to give novel spiro[indoline-3,4�-pyr-
ano[2,3-c]thiazole] carbonitrile and condensed thiazolo[5��,
4��:5�,6�]pyrano[4�,3�:3,4]furo[2,3-b]indole derivatives.

Aer some preliminary experiments, we found that a
mixture of 1H-indole-2,3-dione malononitrile/ethylcyano-
acetate and 2-thioxo-4-thiazolidinone in the presence of NiO
nanoparticle afforded products in excellent yield (84–90%)
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T 2: Comparison of catalytic activity of NiO100 nanoparticle with piperidine in the synthesis of compound 5a and 5g by conventional
and microwave irradiation methods.

Entry Conditions Type of catalysts Reaction time (hr/min.) Yield (%)
5a

MW No catalyst 30min. 40
MW Piperidine 16min. 75
MW NiO100 8min. 90Δ No catalyst 30 hrs 35Δ Piperidine 13 hrs 52Δ NiO100 8 hrs 67

5g

MW No catalyst 30min. 32
MW Piperidine 16min. 74
MW NiO100 8min. 89Δ No catalyst 30 hrs 25Δ Piperidine 14 hrs 50Δ NiO100 9 hrs 65

T 3: Comparison of catalytic activity of NiO nanoparticle calcined at 100∘C (NiO100), 200
∘C (NiO200), 400

∘C (NiO400) in the synthesis of
the compound 5a under conventional heating and microwave irradiation methods.

Entry Type of catalyst Time (hr/min.) Yield (%) Particle size (nm)Δ MW Δ MW
1 NiO100 8 hrs 8min. 67 90 9.7
2 NiO200 12 hrs 13min. 60 82 18
3 NiO400 16 hrs 17min. 53 78 —

T 4: Optimization of reaction conditionsa.

Entry Catalysts (mg) Yield (%)
1 10 83
2 20 90
3 30 90
ae reaction was carried out with 1H-indole-2,3-dione, malononitrile and
2-thioxo-4-thiazolidinone under microwave irradiation.

(Table 1) and with piperidine catalyst, the product formed
with yields ranging between 72 and 75%.

In order to con�rm the effective involvement of NiO
nanoparticle during this transformation, we carried out the
model reaction without any catalyst. In the absence of NiO
nanoparticle, the reaction was incomplete even aer 30
minutes of microwave irradiation though small amount of
compound (40%) (Table 2) was observed. To verify the spe-
ci�c effect of microwaves, we also performed the experiment
under conventional heating without using any catalyst. e
synthesis of compound was carried out by re�uxing for
30 hrs resulting in 25–35% yields while under microwave
irradiation for 30min. compound was obtained in 32–40%
yields. It showed that microwave irradiation was found to
have a bene�cial effect on the synthesis of spiro/condensed
indole derivatives (Table 2).

Encouraged by these results, we have extended this
reaction to variously substituted 1H-indole-2,3-diones under
similar conditions to furnish the respective spiro/condensed
indole derivatives in excellent yields (84–90%) without the
formation of any side products (Table 1). Compounds were

also synthesized under conventional heating using piperi-
dine/NiO nanoparticle catalyst but yield of the product was
found to be low as compared to that obtainedwithmicrowave
heating and it was observed that better yield was obtained in
the presence of NiO nanoparticles even under conventional
heating (Table 2).

To �nd the most effective catalyst for the synthesis
of novel spiro and condensed indole derivatives under
microwave irradiation, NiO nanoparticles obtained were
calcined at different temperatures and their catalytic effect
was studied. It was observed that particle size increased with
increase in calcinations temperature from 100∘C to 400∘C
and hence catalytic activity reduced (Table 3). When the
reaction was carried out in the presence of 100∘C calcined
NiO nanoparticles, yield obtained was much higher (90%) as
compared to that carried out in the presence of 200∘C (82%)
and 400∘C (78%) calcined nanoparticles under microwave
irradiation (Table 3). is may be due to decrease in surface
area of NiO nanoparticle.

Further, we have also emphasized the amount of 100∘C
calcined NiO nanoparticle to be used in this condensation
reaction (Table 4). Adding 30mg of 100∘C calcined NiO
nanoparticle to the system under similar conditions resulted
in obvious acceleration but the yield was not improved.
While increasing the amount ofNiOnanoparticle from10mg
to 20mg the reaction resulted in the formation of �nal
compound in 83% and 90%, respectively. us best results
were obtained when 20mg of NiO nanoparticle was used. A
higher amount of catalyst did not improve the results to an
appreciable extent.
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F 1: Recyclability of NiO nanoparticles.

Reusability (and hence recyclability) is one of the impor-
tant properties of this catalyst. In this study, the catalyst was
recovered by �ltration from the reaction mixture and reused
during three consecutive runs without any apparent loss of
activity for the same reaction Figure 1.

e syntheses of the NiO nanoparticles were performed
according to a literature method developed by Sun and Sir-
ringhaus [61] with slight modi�cation. e structure of NiO
nanoparticles has been studied at room temperature by using
X-ray diffraction pattern. Figure 2 shows XRDpattern of NiO
nanoparticles calcined at 100∘C. As reported in the literature
[62], variation of ageing temperature has a profound effect on
the unit cell lattice ofmetal oxide nanoparticles. Table 3 shows
how variation of this parameter affects particle size. e
particle sizes were calculated from X-ray diffraction images
of NiO powders using Scherrer formula [63]:

D = 𝐾𝐾𝐾𝐾𝛽𝛽 𝛽𝛽𝛽 𝛽𝛽 , (1)

where 𝐾𝐾 is constant, 𝐾𝐾 is wavelength of X-rays employed
radiation, 𝛽𝛽 is full width at half max (FWHM), and 𝛽𝛽 is the
diffraction angle.

A conceivable mechanism for the formation of the prod-
uct would be as follows. e NiO nanoparticle facilitates
the Knoevenagel-type coupling through Lewis acid sites
(Ni+2) [4] coordinated to the oxygen of carbonyl groups. On
the other hand, NiO nanoparticles can activate methylene
compounds so that deprotonation of the C–H bond occurs
in the presence of Lewis basic sites (O−2). As a result, the
formation of spiro indole derivatives proceeds by activation
of reactants through both Lewis acids and basic sites of
NiO nanoparticles. e formation of condensed product was
assumed to involve the cycloaddition of less acidic indole-
OH on the ester group of the intermediate spiro compound
to form �nal isolated product (Scheme 2).

3. Conclusion

In conclusion, we have demonstrated a novel and highly
efficient catalytic approach for the synthesis of structurally
complex and diverse spiro and condensed indole derivatives
catalyzed effectively by NiO nanoparticles involving Michael
and Knoevenagel condensation. NiO nanoparticles are well

characterized by XRD technique. is method offers several
advantages including avoidance of harmful organic solvents,
high yield, short reaction time, a simple work-up procedure,
ease of separation, and recyclability of the catalyst, as well
as ability to tolerate a wide variety of substitutions in the
components.

4. Experimental Section

4.1. General. Reagents and solvents were obtained from
commercial sources and used without further puri�cation.
Melting points were determined on a Toshniwal apparatus.
e spectral analyses of synthesized compounds have been
carried out at SAIF, Punjab University, Chandigarh. Purity
of all compounds was checked by TLC using “G” coated
glass plates and n-hexane: ethyl acetate (7 : 3) as eluent. IR
spectra were recorded in KBr on a Perkin Elmer Infrared RXI
FTIR spectrophotometer and 1HNMR spectra were recorded
on Bruker Avance II 400 NMR Spectrometer using DMSO-
d6 and CDCl3 as solvent and tetramethylsilane (TMS) as
internal reference standard. e obtained products were
identi�ed from their spectral (1HNMR, 13C NMR, and IR)
data. e microwave-assisted reactions were carried out in a
Catalysts Systems Scienti�c Multimode MW oven attached
with a magnetic stirrer and re�ux condenser, operating at
700W generating 2450MHz frequency.

4.2. General Procedure for the Synthesis of NiO Nanoparticles.
NiO precursors were synthesized by the sol-gel reaction and
then calcined to obtain NiO nanoparticles. Firstly, nickel
acetate (Ni(Ac)2 0.646 g, 2.6mmol) and 250𝜇𝜇L of water
were added in to a �ask containing 42mL of methanol.
e solution was heated to 60∘C with magnetic stirring.
Potassium hydroxide (KOH, 0.485 g) was dissolved into
23mL of methanol as the stock solution that was dropped
into the �ask within 10–15min. At a constant temperature
of 60∘C, it took 2 hrs and 15min. A small amount of water
was found helpful to increase the NiO nanocrystal growth
rate. To grow the nanorods, the solution was condensed to
about 10mL. is was found helpful before further heating
to decrease the growth time of the nanorods. en it was
reheated for another 5 hrs before stopping the heating and
stirring. e upper fraction of the solution was removed
aer 30min. Methanol (50mL) was added to the solution
and stirred for 5min. e upper fraction of the solution
was discarded again aer 30min. is process was repeated
twice. Aer being dried under vacuum, the precursors were
calcined in oven at various temperatures (100∘C, 200∘C, and
400∘C) for 2 hrs and then NiO nanoparticles were obtained.

4.3. Regeneration of Catalyst. To examine the reusability, the
catalyst recovered by �ltration from the reaction mixture
aer dilution with ethyl acetate was reused as such for
subsequent experiments (up to three cycles) under similar
reaction conditions. e observed fact that yields of the pro-
duct remained comparable in these experiments (Figure 1)
established the recyclability and reusability of the catalyst
without any signi�cant loss of activity.
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4.4. General Procedure for the Synthesis of Compounds 5
and 6 under Microwave Irradiation. An equimolar mix-
ture (1mmol) of 1H-indole-2,3-dione (0.147 g), malonon-
itrile (0.066 g)/ethylcynoacetate (0.113 g) and 2-thioxo-4-
thiazolidinone (0.133 g), in absolute ethanol (15mL) in
the presence of piperidine (2-3 drops)/NiO100 (20mg) was
charged into a glass microwave vessel and re�uxed inside
a microwave oven at 420 Watts for 16–18min./8–10min.,
respectively. Progress of the reaction was monitored by TLC.
Aer completion of the reaction, reactionmixture was cooled
to room temperature and the excess solvent was evaporated
on rota-evaporator to give a solid, which was dried and
recrystallised from ethyl acetate.

4.5. Characterization Data

4.5.1. 6�-Amino-2�-thioxo-2-oxo-1�H-spiro[indoline-3,4�-pyr-
ano[2,3-c]thiazole]-5�-carbonitrile(5a). Brown solid, mp
296–298∘C, Yield (NiO100/Piperidine) 90/75%, 0.269/0.246 g;
IR (KBr) 𝜈𝜈 3400, 3265, 3059, 3008, 2220, 1710, 1300 cm−1;1HNMR (400MHz, DMSO) 𝛿𝛿 11.21 (s. 1H, NH indole),
7.94 (s, 2H, NH2), 6.93–8.75 (m, 4H, Ar-H), 2.88 (s, 1H,
NH) ppm; 13CNMR (400MHz, DMSO): 193.96, 185.54,
169.63, 161.47, 144.95, 142.98, 137.79, 129.74, 127.17,
121.28, 119.08, 77.27, 61.05, 59.42, 45.26 ppm. Anal. Calcd
for C14H8N4O2S2: C, 51.21; H, 2.46; N, 17.06. Found: C,
51.38; H, 2.48; N, 17.03; MS: [M]+ atm/z 328.01.

4.5.2. 6�-Amino-2�-thioxo-5-chloro-2-oxo-1�H-spiro[indo-
line-3,4�-pyrano[2,3-c]thiazole]-5�-carbonitrile(5b). Brown
solid, mp 310–312∘C, Yield (NiO100/Piperidine) 87/72%,
0.315/0.262 g; IR (KBr) 𝜈𝜈 3450, 3225, 3052, 3028, 2120, 1685,
1320 cm−1; 1HNMR (400MHz, DMSO) 𝛿𝛿 11.12 (s. 1H, NH
indole), 8.78 (s, 2H, NH2), 6.99–8.02 (m, 3H, Ar-H), 2.82
(s, 1H, NH) ppm; 13CNMR (400MHz, DMSO): 189.88,
153.55, 150.67, 150.67, 147.04, 144.56, 129.69, 121.54,
120.56, 105.99, 77.06, 61.02, 56.26, 44.92 ppm. Anal. Calcd
for C14H7ClN4O2S2: C, 46.35; H, 1.94; N, 15.44. Found: C,
46.35; H, 1.92; N, 15.47; MS: [M]+ atm/z 361.97.

4.5.3. 6�-Amino-2�-thioxo-7-chloro-2-oxo-1�H-spiro[indo-
line-3,4�-pyrano[2,3-c]thiazole]-5�-carbonitrile(5c). Brown
solid, mp 275–277∘C, Yield (NiO100/Piperidine) 87/74%,
0.315/0.269 g; IR (KBr) 𝜈𝜈 3310, 3115, 3039, 3020, 2215, 1720,
1340 cm−1. 1HNMR (400MHz, DMSO) 𝛿𝛿 11.58 (s. 1H, NH
indole), 7.19 (s, 2H, NH2), 6.97–8.63 (m, 3H, Ar-H), 2.98
(s, 1H, NH) ppm; 13CNMR (400MHz, DMSO) 𝛿𝛿 193.12,
188.22, 169.41, 160.26, 142.46, 141.76, 135.34, 126.13,
121.04, 114.71, 77.64.08, 56.83, 44.33 ppm. Anal. Calcd for
C14H7ClN4O2S2: C, 46.35; H, 1.94; N, 15.44. Found: C,
46.14; H, 1.96; N, 15.41; MS: [M]+ atm/z 361.97.

4.5.4. 6�-Amino-2�-thioxo-5-bromo-2-oxo-1�H-spiro[indo-
line-3,4�-pyrano[2,3-c]thiazole]-5�-carbonitrile(5d). Brown
solid, mp 270–272∘C, Yield (NiO100/Piperidine) 88/72%,
0.360/0.294 g; IR (KBr) 𝜈𝜈 3410, 3132, 3019, 3012, 2235, 1690,
1335 cm−1. 1HNMR (400MHz, DMSO) 𝛿𝛿 11.04 (s. 1H, NH
indole), 8.02 (s, 2H, NH2), 6.87–8.53 (m, 3H, Ar-H), 2.93
(s, 1H, NH) ppm; 13CNMR (400MHz, DMSO) 192.23,
183.71, 166.42, 143.32, 140.11, 131.44, 124.92, 122.11,
118.12, 111.76, 78.04, 64.25, 59.06, 44.17 ppm. Anal. Calcd
for C14H7BrN4O2S2: C, 41.48; H, 1.73; N, 13.76. Found: C,
41.48; H, 1.70; N, 13.74; MS: [M]+ atm/z 405.92.

4.5.5. 6�-Amino-2�-thioxo-5-nitro-2-oxo-1�H-spiro[indoline-
3,4�-pyrano[2,3-c]thiazole]-5�-carbonitrile(5e). Brown solid,
mp 340–342∘C, Yield (NiO100/Piperidine) 90/72%, 0.337/
0.269 g; IR (KBr) 𝜈𝜈 3410, 3132, 3021, 3112, 2225, 1693,
1320 cm−1. 1HNMR (400MHz, DMSO) 𝛿𝛿 11.01 (s. 1H, NH
indole), 8.01 (s, 2H, NH2), 6.83–8.43 (m, 3H, Ar-H), 2.83 (s,
1H, NH) ppm. 13CNMR (400MHz, DMSO) 191.25, 185.62,
164.30, 143.51, 141.73, 135.81, 126.17, 121.45, 117.33, 78.54,
61.07, 59.31, 42.27 ppm. Anal. Calcd for C14H7N5O4S2: C,
45.04; H, 1.89; N, 18.76. Found: C, 45.22; H, 1.91; N, 18.73;
MS: [M]+ atm/z 372.99.

4.5.6. 6�-Amino-2�-thioxo-5-methyl-2-oxo-1�H-spiro[indo-
line-3,4�-pyrano[2,3-c]thiazole]-5�-carbonitrile(5f). Brown
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solid, mp 315–317∘C, Yield (NiO100/Piperidine) 88/70%,
0.301/0.241 g; IR (KBr) 𝜈𝜈 3350, 3125, 3042, 3088, 2120, 1689,
1330 cm−1. 1HNMR (400MHz, DMSO) 𝛿𝛿 10.91 (s. 1H, NH
indole), 8.65 (s, 2H, NH2), 6.81–8.02 (m, 3H, Ar-H), 3.37
(s, 3H, CH3), 2.81 (s, 1H, NH) ppm; 13CNMR (400MHz,
DMSO) 191.54, 183.42, 169.55, 144.07, 141.52, 137.92,
126.76, 120.04, 117.15, 77.78, 62.22, 59.64, 45.33 ppm. Anal.
Calcd for C15H10N4O2S2: C, 52.62; H, 2.94; N, 16.36. Found:
C, 52.83; H, 2.92; N, 16.39; MS: [M]+ atm/z 342.02.

4.5.7. 11-Amino-2-thioxo-10-oxo-thiazolo[5��,4��:5�,6�]pyr-
ano[4�,3�:3, 4]furo[2,3-b]indole(5g). Brown solid, mp
332–334∘C, Yield (NiO100/Piperidine) 89/74%, 0.293 g/0.241;
IR (KBr) 𝜈𝜈 3430, 3225, 3059, 3018, 1710, 1320 cm−1; 1HNMR
(400MHz, DMSO) 𝛿𝛿 11.11 (s. 1H, NH indole), 7.24 (s, 2H,
NH2), 6.91–8.15 (m, 4H, Ar-H), 2.70 (s, 1H, NH) ppm;13CNMR (400MHz, DMSO) 192.49, 168.41, 142.73, 131.47,
127.33, 123.64, 120.87, 111.34, 77.88, 35.95, 30.03 ppm. Anal.
Calcd for C14H7N3O3S2: C, 51.05; H, 2.14; N, 12.76. Found:
C, 50.87; H, 2.13; N, 12.79; MS: [M]+ atm/z 328.99.

4.5.8. 11-Amino-2-thioxo-5-chloro-10-oxo-thiazolo[5��,4��:
5�,6�]pyrano[4�,3�:3, 4]furo[2,3-b]indole(5h). Brown
solid, mp 288–291∘C, Yield (NiO100/Piperidine) 87/73%,
0.319/0.267 g; IR (KBr) 𝜈𝜈 3330, 3231, 3039, 3018, 1710,
1340 cm−1; 1HNMR (400MHz, DMSO) 𝛿𝛿 11.24 (s. 1H, NH
indole), 7.34 (s, 2H, NH2), 6.82–8.05 (m, 3H, Ar-H), 2.98
(s, 1H, NH). 13CNMR (400MHz, DMSO) 193.26, 169.41,
167.43, 142.97, 131.43, 126.04, 123.25, 121, 111.64, 78.74,
39.05 ppm. Anal. Calcd for C14H6ClN3O3S2: C, 46.22; H,
1.66; N, 11.55. Found: C, 46.05; H, 1.64; N, 11.52; MS: [M]+
atm/z 362.95.

4.5.9. 11-Amino-2-thioxo-7-chloro-10-oxo-thiazolo[5��,4��:
5�,6�]pyrano[4�,3�:3, 4]furo[2,3-b]indole(5i). Brown solid,
mp 226–228∘C, Yield (NiO100/Piperidine) 88/73%,
0.325/0.267 g; IR (KBr) 𝜈𝜈 3430, 3231, 3039, 3018, 1690,
1330 cm−1; 1HNMR (400MHz, DMSO) 𝛿𝛿 11.50 (s. 1H, NH
indole), 7.54 (s, 2H, NH2), 6.91–8.17 (m, 3H, Ar-H), 2.82
(s, 1H, NH) ppm; 13CNMR (400MHz, DMSO) 191.52,
161.75, 159.02, 142.15, 134.06, 123.66, 120.34, 112.35, 76.56,
38.46 ppm. Anal. Calcd for C14H6ClN3O3S2: C, 46.22; H,
1.66; N, 11.55. Found: C, 46.40; H, 1.64; N, 11.57; MS: [M]+
atm/z 362.95.

4.5.10. 11-Amino-2-thioxo-5-bromo-10-oxo-thiazolo[5��,4��:
5�,6�]pyrano[4�,3�:3, 4]furo[2,3-b]indole(5j). Brown solid,
mp 347-348∘C, Yield (%) (NiO100/Piperidine) 88/72%,
0.360/0.295 g; IR (KBr) 𝜈𝜈 3423, 3231, 3029, 3078, 1692,
1340 cm−1; 1HNMR (400MHz, DMSO) 𝛿𝛿 11.51 (s. 1H, NH
indole), 7.13 (s, 2H, NH2), 6.98–8.63 (m, 3H, Ar-H), 2.81 (s,
1H, NH) ppm; 13CNMR (400MHz, DMSO) 193.02, 167.35,
161.64, 154.83, 143.57, 137.01, 126, 121.08, 117.24, 76.52.
38.50 ppm. Anal. Calcd for C14H6BrN3O3S2: C, 41.19; H,
1.48; N, 10.29. Found: C, 41.40; H, 1.50; N, 10.26; MS: [M]+
atm/z 406.90.

4.5.11. 11-Amino-2-thioxo-5-nitro-10-oxo-thiazolo[5��,4��:
5�,6�]pyrano[4�,3�:3, 4]furo[2,3-b]indole(5k). Brown solid,
mp 265–267∘C, Yield (NiO100/Piperidine) 84/74%,
0.315/0.278 g; IR (KBr) 3421, 3248, 3039, 3098, 1702,
1335 cm−1; 1HNMR (400MHz, DMSO) 𝛿𝛿 11.18 (s. 1H, NH
indole), 8.22 (s, 2H, NH2), 6.72–8.57 (m, 3H, Ar-H), 2.90
(s, 1H, NH); 13CNMR (400MHz, DMSO) 192.38, 165.21,
160.53, 159.02, 143.76, 138.43, 126.87, 121.48, 111.56, 77.23,
36.17 ppm. Anal. Calcd for C14H6N4O5S2: C, 44.92; H, 1.62;
N, 14.94. Found: C, 44.72; H, 1.64; N, 14.94; MS: [M]+ atm/z
373.98.

4.5.12. 11-Amino-2-thioxo-5-methyl-10-oxo-thiazolo[5��,4��:
5�,6�]pyrano[4�,3�:3, 4]furo[2,3-b]indole(5l). Brown solid,
mp 356∘C, Yield (NiO100/Piperidine) 87/71%, 0.30/0.245 g;
IR (KBr) 3411, 3228, 3013, 3090, 1720, 1320 cm−1; 1H NMR
(400MHz, DMSO) 𝛿𝛿 10.18 (s. 1H, NH indole), 7.44 (s, 2H,
NH2), 6.98–8.84 (m, 3H, Ar-H), 3.01 (s, 3H, CH3), 2.81 (s,
1H, NH) ppm; 13CNMR (400MHz, DMSO) 195.22, 167.47,
162.88, 131.12, 127.88, 123.72, 118.44, 110.47, 78.45, 40.46,
34.42, 24.77 ppm. Anal. Calcd for C15H9N3O3S2: C, 52.47;
H, 2.64; N, 12.24. Found: C, 52.65; H, 2.66; N, 12.27; MS:
[M]+ atm/z 343.01.
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