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Drug delivery systems are de	ned as formulations aiming for transportation of a drug to the desired area of action within the body.
�e basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance
and thereby enhances drug concentration in target tissues. Based on their biodegradable, biocompatible, and nonimmunogenic
structure, niosomes are promising drug carriers that are formed by self-association of nonionic surfactants and cholesterol in
an aqueous phase. In recent years, numerous research articles have been published in scienti	c journals reporting the potential
of niosomes to serve as a carrier for the delivery of di
erent types of drugs. �e present review describes preparation methods,
characterization techniques, and recent studies on niosomal drug delivery systems and also gives up to date information regarding
recent applications of niosomes in drug delivery.

1. Introduction

Delivering drug with a controlled rate and targeted delivery
received much attention in recent years. �e application of
nanotechnology to medicine has provided the development
of multifunctional nanoparticles that, acting as drug carriers,
can be loaded with di
erent drugs. Nanocarriers present
a great approach in drug delivery with promising features
such as protection of drug from degradation and cleavage,
controlled release, and in case of targeted delivery approaches
the delivery of drug molecules to the target sites [1].

Niosomes are one of the promising drug carriers that
have a bilayer structure and are formed by self-association
of nonionic surfactants and cholesterol in an aqueous phase.
Niosomes are biodegradable, biocompatible, and nonim-
munogenic. �ey have long shelf life, exhibit high stability,
and enable the delivery of drug at target site in a controlled
and/or sustained manner [2]. In recent years, the potential of
niosomes as a drug carrier has been extensively studied [3–
5]. Various types of nonionic surfactants have been reported
to form niosomes and enable the entrapment of a large
number of drugs with a wide range of solubility [6–8]. �e

composition, size, number of lamellae, and surface charge
of niosomes can be varied and optimized to enhance the
performance of niosomes for drug delivery.

�e aim of this review is to present the fundamentals
of niosome preparation and characterization as well as a
description of their use in drug delivery, with particular
attention to more recent studies. �is review will provide an
overview on the increasing interest on niosomes in the 	eld
of drug delivery.

2. Structure and Components of Niosomes

�emain components of niosomes are nonionic surfactants,
hydration medium and lipids such as cholesterol. �e list
of materials used in the preparation of niosomes has been
shown in Table 1.�e self-assembly of nonionic surfactants in
aqueous media results in closed bilayer structures (Figure 1).
A high interfacial tension betweenwater and the hydrophobic
tails of the amphiphile causes them to associate.�e steric and
hydrophilic repulsion between the head groups of nonionic
surfactant ensure that hydrophilic termini point outwards
and are in contact with water. �e assembly into closed
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Table 1: �e materials used in niosome preparation.

Nonionic surfactants Examples References

Alkyl ethers

(i) Alkyl glycerol ethers Hexadecyl diglycerol ether (C16G2) [9]

(ii) Polyoxyethylene glycol alkyl ethers (Brij) Brij 30, Brij 52, Brij 72, Brij 76, Brij 78 [10–12]

Crown ethers Bola [13, 14]

Alkyl esters

(i) Sorbitan fatty acid esters (Spans)
Span 20, Span 40, Span 60, Span 80, Span 65,

Span 85
[15–18]

(ii) Polyoxyethylene sorbitan fatty acid esters (Tweens)
Tween 20, Tween 40, Tween 60, Tween 80,

Tween 65, Tween 85
[7, 19, 20]

Alkyl amides

(i) Glycosides C-Glycoside derivative surfactant (BRM-BG) [21]

(ii) Alkyl polyglucosides
Octyl-decyl polyglucoside (OrCG110), decyl

polyglucoside (OrNS10)
[22]

Fatty alcohols or fatty acids

(i) Fatty alcohols Stearyl alcohol, cetyl alcohol, myristyl alcohol [23]

(ii) Fatty acids Stearic acid, palmitic acid, myristic acid [23]

Block copolymer

(i) Pluronic Pluronic L64, Pluronic 105 [24, 25]

Lipidic components

Cholesterol [26]

l-�-Soya phosphatidyl choline [27]

Charged molecule

Negative charge
Diacetyl phosphate, phosphatidic acid,
lipoamino acid, dihexadecyl phosphate

[28, 29]

Positive charge
Stearylamine, stearyl pyridinium chloride,

cetyl pyridinium chloride
[29]

Bilayer

Hydrophilic head

Aqueous core

Hydrophobic tail

Figure 1: Structure of niosomes.

bilayers usually requires some input of energy such as
mechanical or heat. Niosomes can be categorized in three
groups according to their sizes and bilayers. Small unilamellar
vesicles (SUV) (10–100 nm), large unilamellar vesicles (LUV)
(100–3000 nm), and multilamellar vesicles (MLV) where
more than one bilayer is present.

2.1. Nonionic Surfactants. Nonionic surfactants are a class
of surfactants, which have no charged groups in their

hydrophilic heads. �ey are more stable and biocompatible
and less toxic compared to their anionic, amphoteric, or
cationic counterparts [41]. �erefore they are preferred for
formation of stable niosome for in vitro and in vivo appli-
cations. Nonionic surfactants are amphiphilic molecules that
comprise two di
erent regions: one of them is hydrophilic
(water-soluble) and the other one is hydrophobic (organic-
soluble). Alkyl ethers, alkyl esters, alkyl amides, fatty acids
are the main nonionic surfactant classes used for niosome
production. �e hydrophilic-lipophilic balance (HLB) and
critical packing parameter (CPP) values play a critical role
in the selection of surfactant molecules for niosome prepa-
ration.

2.1.1. Hydrophilic-Lipophilic Balance (HLB). HLB is a dimen-
sionless parameter, which is the indication of the solubility of
the surfactant molecule.�eHLB value describes the balance
between the hydrophilic portion to the lipophilic portion of
the nonionic surfactant. �e HLB range is from 0 to 20 for
nonionic surfactants.�e lowerHLB refers tomore lipophilic
surfactant and the higher HLB to more hydrophilic surfac-
tant. Surfactants with a HLB between 4 and 8 can be used
for preparation of vesicle [42]. Hydrophilic surfactants with
a HLB value ranging from 14 to 17 are not suitable to form a
bilayer membrane due to their high aqueous solubility [43].
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Howeverwith the addition of an optimum level of cholesterol,
niosomes are indeed formed from polysorbate 80 (HLB
value = 15) and Tween 20 (HLB value = 16.7) [44, 45].
Tween 20 forms stable niosome in the presence of equimolar
cholesterol concentration. �e interaction occurs between
the hydrophobic part of the amphiphile next to head group
and the 3-OH group of cholesterol at an equimolar ratio
and this interaction could explain the e
ect of cholesterol on
the formation and hydration behavior of Tween 20 niosomal
membranes [46, 47].

Drug entrapment e�ciency of the niosomes is also
a
ected by HLB value of surfactant [48]. Shahiwala et al.
have incorporated nimesulide into niosomes using lipid 	lm
hydration technique by changing the HLB. �ey found that
as the HLB value of surfactant decreases from 8.6 to 1.7,
entrapment e�ciency decreases [43, 49].

2.1.2. Critical Packing Parameter (CPP). During the niosomal
preparation, the geometry of the vesicle depends upon the
critical packing parameter. On the basis of the CPP of a sur-
factant, the shape of nanostructures formed by self-assembly
of amphiphilic molecules can be predicted. Critical packing
parameter depends on the symmetry of the surfactant and
can be de	ned using following equation [50, 51]:

CPP = V

�� × �0
, (1)

where V is hydrophobic group volume, �� is the critical
hydrophobic group length, and �0 is the area of hydrophilic
head group. If CPP ≤ 1/3 corresponding, for example, to a
bulky head group, small hydrophobic tail spherical micelles
may form. Nonspherical micelles may form if 1/3 ≤ CPP ≤
1/2, and bilayer vesicles can occur if 1/2 ≤ CPP ≤ 1. Inverted
micelles form if CPP ≥ 1 when the surfactant is composed
of a voluminous tail and a small hydrophobic tail [47]. CPP
could be considered as a tool for realizing, rationalizing, and
predicting the self-assembled structure and itsmorphological
transition in amphiphilic solutions [52].

2.2. Cholesterol. In the bilayer structure of niosomes, choles-
terol forms hydrogen bonds with hydrophilic head of a
surfactant [19, 53]. Cholesterol content of niosomes thereby
in�uences the structures of niosomes and physical properties
such as entrapment e�ciency, long time stability, release of
payload, and biostability [17, 46]. Cholesterol improves the
rigidity of vesicles and stabilizes niosomes towards desta-
bilizing e
ects induced by plasma and serum components
and decreases the permeability of vesicles for entrapped
molecules thus inhibiting leakage [54].

Drug entrapment e�ciency plays an important role in
niosomal formulations and it can be altered by varying
the content of cholesterol. Agarwal et al. demonstrated that
cholesterol improves the stability of enoxacin loaded niosome
with increasing cholesterol content, resulting in increases
of entrapment e�ciency [55]. �e e
ect of cholesterol on
�urbiprofen entrapment was studied by Mokhtar et al. and
cholesterol was found to have little e
ect on the �urbiprofen
entrapment into Span 20 and Span 80 niosomes. However,

a signi	cant increase in entrapment e�ciency of �urbiprofen
was obtained when 10% of cholesterol was incorporated into
niosomes prepared from Span 40 and Span 60 followed
by a decrease in encapsulation e�ciency of the drug upon
further increase in cholesterol content [56]. According to the
reported results, the addition of cholesterol and its amounts
needs to be optimized depending on the physical-chemical
characteristic of surfactants and loaded drugs.

2.3. Charged Molecule. Charged molecules increase the sta-
bility of the vesicles by the addition of charged groups to
the bilayer of vesicles. �ey increase surface charge density
and thereby prevent vesicles aggregation. Dicetyl phosphate
and phosphatidic acid are most used negatively charged
molecules for niosome preparation and, similarly, steary-
lamine and stearyl pyridinium chloride are well-known posi-
tively chargedmolecules used in niosomal preparations. Nor-
mally, the chargedmolecule is added in niosomal formulation
in an amount of 2.5–5mol%. However increasing the amount
of charged molecules can inhibit niosome formation [29].

3. Methods of Preparation

3.1.�in-FilmHydrationMethod (TFH). �in-	lmhydration
method is a simple and well-known preparation method. In
this method, the surfactants, cholesterol, and some additives
such as chargedmolecules are dissolved in an organic solvent
in a round bottomed �ask. �en the organic solvent is
removedusing a rotary vacuumevaporator to obtain thin 	lm
on the inside wall of the �ask. An aqueous solution of drug
is added and the dry 	lm is hydrated above the transition
temperature (��) of the surfactant for speci	ed time with
constant shaking [57, 58].Multilamellar niosomes are formed
by this method.

3.2. Ether InjectionMethod (EIM). In ether injectionmethod,
the surfactants with additives are dissolved in diethyl ether
and injected slowly through a needle in an aqueous drug
solution maintained at a constant temperature, which is
above the boiling point of the organic solvent. �e organic
solvent is evaporated using a rotary evaporator. During the
vaporization the formation of single layered vesicles occurs
[59–61].

3.3. Reverse Phase Evaporation Method (REV). In this
method, niosomal ingredients are dissolved in a mixture of
ether and chloroform and added to aqueous phase containing
the drug. �e resulting mixture is sonicated in order to
form an emulsion and the organic phase is evaporated. Large
unilamellar vesicles are formed during the evaporation of the
organic solvent [62–64].

3.4.Micro
uidizationMethod. Themicrofluidizationmethod
is based on submerged jet principle. In this method, the
drug and the surfactant �uidized streams interact at ultrahigh
velocities, in precisely de	ned micro channels within the
interaction chamber. �e high speed impingement and the
energy involved leads to formation of niosomes.�ismethod
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o
ers greater uniformity, smaller size, unilamellar vesicles,
and high reproducibility in the formulation of niosomes [65,
66].

3.5. Supercritical Carbon Dioxide Fluid (scCO2). Manosroi et
al. have described the supercritical reverse phase evaporation
technique for niosome formation [67, 68].�ey added Tween
61, cholesterol, glucose, PBS, and ethanol into the view cell
and the CO2 gas was introduced into the view cell. A�er
magnetic stirring until equilibrium, the pressure was released
and niosomal dispersions were obtained [67]. �is method
enables one step production and easy scale-up.

3.6. Proniosome. Proniosome technique includes the coating
of a water-soluble carrier such as sorbitol and mannitol with
surfactant. �e coating process results in the formation of a
dry formulation. �is preparation is termed “Proniosomes”
which requires to be hydrated before being used. �e nio-
somes are formed by the addition of the aqueous phase. �is
method helps in reducing physical stability problems such as
the aggregation, leaking, and fusion problem and provides
convenience in dosing, distribution, transportation, and
storage showing improved results compared to conventional
niosomes [69].

3.7. Transmembrane pH Gradient. In this method, surfactant
and cholesterol are dissolved in chloroform and evaporated to
form a thin lipid 	lm on the wall of a round bottomed �ask.
�e 	lm is hydrated with a solution of citric acid (pH = 4) by
vortex mixing and the resulting product is freeze-thawed for
niosome formation.�e aqueous solution of drug is added to
this niosomal suspension, a�er that phosphate bu
er is added
to maintain pH between 7.0 and 7.2 [70]. According to this
method, the interior of niosome has a more acidic pH value
than the outer medium. �e added unionized drug passes
through the niosomemembrane and enters into the niosome.
�edrug ionizes in an acidicmediumand cannot escape from
the niosomal bilayer [71].

3.8. Heating Method. �is is a patented method which was
created byMozafari et al. [72, 73]. Surfactants and cholesterol
are separately hydrated in bu
er and the solution is heated to
120∘Cwith stirring to dissolve cholesterol.�e temperature is
reduced and surfactants and other additives are then added
to the bu
er in which cholesterol is dissolved while stirring
continues. Niosomes form at this stage, are le� at room
temperature, and then are kept at 4-5∘C under nitrogen
atmosphere until use [53].

3.9. �e “Bubble” Method. In this method, surfactants, addi-
tives, and the bu
er are added into a glass �ask with
three necks. Niosome components are dispersed at 70∘C
and the dispersion is mixed with homogenizer. A�er that,
immediately the �ask is placed in a water bath followed by
the bubbling of nitrogen gas at 70∘C. Nitrogen gas is passed
through a sample of homogenized surfactants resulting in
formation of large unilamellar vesicles [74].

4. Characterization of Niosomes

�e characterization of niosome is essential for the clini-
cal applications. Characterization parameters have a direct
impact on the stability of niosomes and a signi	cant e
ect on
their in vivo performance. �erefore these parameters such
as morphology, size, polydispersity index (PI), number of
lamellae, zeta potential, encapsulation e�ciency, and stability
must be evaluated.

4.1. Size and Morphology. Dynamic light scattering (DLS)
[75], scanning electronmicroscopy (SEM) [76], transmission
electron microscopy (TEM) [77], freeze fracture replication-
electron microscopy (FF-TEM) [68], and cryotransmission
electron microscopy (cryo-TEM) [67] are the most used
methods for the determination of niosome sizes andmor-
phology. DLS provides simultaneously cumulative infor-
mation of particle size and valuable information on the
homogeneity of the solution. A single sharp peak in the DLS
pro	le implies existence of a single population of scatterers.
�e PI is helpful in this respect. It less than 0.3 corresponds
to a homogenous population for colloidal systems [75]. �e
microscopic approaches are generally used to characterize the
morphology of the niosomes.

4.2. Zeta Potential. Surface zeta potential of niosomes can be
determined using zetasizer andDLS instruments.�e surface
charge of niosome plays an important role in the behavior
of niosomes. In general, charged niosomes are more stable
against aggregation than uncharged vesicles. Bayindir and
Yuksel prepared paclitaxel loaded niosomes and investigated
the physicochemical properties such as zeta potential of
niosomes. �ey found that negative zeta potential values
ranging between −41.7 and −58.4mV are su�ciently high for
electrostatic stabilization of niosomes [12].

4.3. Bilayer Characterization. Bilayer characteristics of nio-
somes have an importance on drug entrapment e�ciency.
�e number of lamellae can be determined by AFM, NMR,
and small angle X-ray scattering (SAXS) for multilamellar
vesicles [54]. Membrane rigidity of niosomal formulations
can be measured by means of the mobility of �uorescence
probe as a function of temperature [20]. DPH (1,6 diphenyl-
1,3,5-hexatriene) is most used �uorescent probe and added
to niosomal dispersion. DPH normally exists in hydrophobic
region in the bilayer membrane. �e microviscosity of nio-
somal membrane is determined by �uorescence polarization.
High �uorescence polarization means high microviscosity of
the membrane [78]. Moreover, the bilayer thickness can be
characterized using the latter method, together with the in
situ energy-dispersive X-ray di
raction (EDXD) [79].

4.4. Entrapment E�ciency. Entrapment e�ciency (EE%) is
de	ned as the portion of the applied drug which is entrapped
by the niosomes. Unencapsulated free drug can be removed
from the niosomal solution using centrifugation [80], dialysis
[24], or gel chromatography [81]. A�er this step the loaded
drug can be released from niosomes by destruction of
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Figure 2: Niosomes in drug delivery.

vesicles. Niosomes can be destroyed with the addition of
0.1% Triton X-100 or methanol to niosomal suspension. �e
loaded and free drug concentration can be determined by a
spectrophotometer [82] or high-performance liquid chroma-
tography (HPLC) [83].

4.5. Stability. �e stability of niosomes can be evaluated
by determining mean vesicle size, size distribution, and
entrapment e�ciency over several month storage periods
at di
erent temperatures. During storage the niosomes are
sampled at regular intervals of time and the percentage of
drug which is retained into the niosomes is analyzed by UV
spectroscopy or HPLC methods [82, 84].

4.6. In Vitro Release. One o�en applied method to study in
vitro release is based on using of dialysis tubing. A dialysis
bag is washed and soaked in distilled water. A�er 30mins,
the drug loaded niosomal suspension is transferred, into this
bag. �e bag containing the vesicles is immersed in bu
er
solution with constant shaking at 25∘C or 37∘C. At speci	c
time intervals, samples were removed from the outer bu
er
(releasemedium) and replaced with the same volume of fresh
bu
er. �e samples are analyzed for the drug content by an
appropriate assay method [17].

5. Niosomes as Drug Carriers

Niosomes are very promising carriers for the delivery of
numerous pharmacological and diagnostic agents. A number

of publications have reported the preparation, characteri-
zation, and use of niosomes as drug carriers. Because of
their nonionic nature, they o
er excellent biocompatibility
and low toxicity. �e unique structure of niosomes allows
the development of e
ective novel drug delivery systems
with ability of loading both hydrophilic and lipophilic drugs.
Hydrophilic drugs and lipophilic drugs are entrapped into the
aqueous core and membrane bilayer of niosome respectively
(Figure 2).

5.1. Anticancer Drug Delivery. �e current treatment for
cancer is usually chemotherapy. �e therapeutic e�cacy of
many anticancer drugs is limited by their poor penetration
into tumor tissue and by their severe side e
ects on healthy
cells. Various attempts have been made to overcome these
drawbacks, including the use of niosomes as a novel drug
delivery system.

5.1.1. Melanoma. Artemisone is a 10-amino-artemisinin
derivative exhibiting antimalarial activity and also possessing
antitumor activity. Dwivedi et al. encapsulated artemisone
in niosomes using thin-	lm hydration method. �e for-
mulations showed highly selective cytotoxicity towards the
melanoma cells with negligible toxicity towards the normal
skin cells [85]. 5-Fluorouracil (5-FU), largely used in the
treatment of di
erent forms of skin cancers, was encapsulated
in an innovative bola-niosomal system made up of �,�-hex-
adecyl-bis-(1-aza-18-crown-6) (bola-surfactant), Span 80, and
cholesterol. �e percutaneous permeation of 5-FU-loaded
bola-niosomes was evaluated by using human stratum



6 Journal of Nanomaterials

corneum and epidermis membranes. Bola-niosomes pro-
vided an increase of the drug penetration of 8- and 4-fold
with respect to free drug aqueous solution [13]. �e use
of cisplatin is limited due to its severe toxic e
ects. Gude
et al. synthesized niosomal cisplatin by using Span 60 and
cholesterol and investigated the antimetastatic activity in
experimental metastatic model of B16F10 melanoma. �eir
results suggest that cisplatin encapsulated in niosomes has
signi	cant antimetastatic activity and reduced toxicity when
compared to free cisplatin [86].

5.1.2. Breast Cancer. 5-FU-loadedpolyethylene glycol- (PEG-)
coated and uncoated bola-niosomes were prepared by Cosco
et al. and were tested on breast cancer cell lines (MCF-
7 and T47D). Both bola-niosome formulations provided
an increase in the cytotoxic e
ect with respect to the free
drug. In vivo experiments on MCF-7 xenogra� tumor SCID
mice models showed a more e
ective antitumor activity of
the PEGylated niosomal 5-FU at a concentration ten times
lower (8mg/kg) than that of the free solution of the drug
(80mg/kg) a�er a treatment of 30 days [87]. Cantharidin-
entrapped niosomes were prepared by injection method.
�eir potential in enhancing the antitumor activities of the
drug and reducing its toxicity was evaluated on human
breast cancer cell line MCF-7. Moreover, in vivo therapeutic
e�cacy was investigated in S180 tumor-bearing mice. Mice
treatedwith 1.0mg/kg niosomal cantharidin showed themost
e
ective antitumor activity, with an inhibition rate of 52.76%,
which was signi	cantly higher than that of the same concen-
tration of free cantharidin (1.0mg/kg, 31.05%) [88]. Recently,
tamoxifen citrate niosomes were prepared by 	lm hydration
technique for localized cancer therapy through in vitro
breast cancer cytotoxicity as well as in vivo solid antitumor
e�cacy. �e optimized niosomal formulation of tamoxifen
showed signi	cantly enhanced cellular uptake (2.8-fold) and
exhibited signi	cantly greater cytotoxic activity on MCF-7
breast cancer cell line. In vivo experiments showed enhanced
tumor volume reduction induced by niosomal tamoxifen
when compared to free tamoxifen [89].

5.1.3. Ovarian Cancer. Uchegbu et al. prepared doxorubicin
loaded niosomes. �e activity of doxorubicin in hexadecyl
diglycerol ether (C16G2) and Span 60 niosomes was studied
against a human ovarian cancer cell line and its doxorubicin
resistant subline. According to the results, there was a slight
reduction in the IC50 against the resistant cell line when the
drug was encapsulated in Span 60 niosomes in comparison
to the free drug in solution [90].

5.1.4. Lung Cancer. Adriamycin was encapsulated into the
noisome using a monoalkyl triglycerol ether by Kerr et al.
and the activity of niosomal adriamycin compared with free
adriamycin solution on human lung tumor cells grown in
monolayer and spheroid culture and in tumor xenogra�ed
nude mice. �e growth delay (i.e., the time taken for
the tumor volume to double) was signi	cantly longer for
adriamycin (15 days) and niosomal adriamycin (11 days)
than for control (5.8 days). It is possible that the thera-
peutic ratio of adriamycin could be further enhanced by

administration in niosomal form [91]. In another study,
pentoxifylline loaded niosomes were prepared by lipid 	lm
hydration method. Intravenous administration of niosomal
pentoxifylline (6mg/kg and 10mg/kg) resulted in signi	cant
reduction in lung nodules in an experimental metastatic
B16F10 model suggesting accumulation of pentoxifylline in
a distant target. Light microscopic observation of histologic
sections showed a decrease in number of tumor islands in the
lung [92].

5.2. Targeted Delivery. �e e�ciency and particularly the
speci	city of cellular targeting of niosomal drug delivery
systems can be further improved by active targeting for
tumor therapy, by using a ligand coupled to the surface of
niosomes, which could be actively taken up, for example,
via a receptor-mediated endocytosis. Niosome surfaces can
be conjugated with small molecules and/or macromolecu-
lar targeting ligands to enable cell speci	c targeting [93].
Proteins and peptides, carbohydrates, aptamers, antibod-
ies, and antibody fragments are the most commonly used
molecules that bind speci	cally to an overexpressed tar-
get on the cell surface [94–96]. Bragagni et al. developed
brain targeted niosomal formulation using with the glucose-
derivative as a targeting ligand. �ey formulated nioso-
mal doxorubicin composed of span : cholesterol : solulan : N-
palmitoylglucosamine. Preliminary in vivo studies in rats
showed that intravenous administration of a single dose of
the developed targeted-niosomal formulation with respect
to the commercial one was able to signi	cantly reduce the
hearth accumulation of the drug and to keep it longer
in the blood circulation and also to allow the achieve-
ment of well detectable doxorubicin brain concentrations
[30]. Moreover, an e�cient tumor-targeted niosomal deliv-
ery system was designed by Tavano et al. Niosomes were
prepared from a mixture of Pluronic L64 surfactant and
cholesterol and doxorubicin was entrapped into the niosome.
A�er the preparation, transferrin was conjugated to nio-
somes surface using EDC (N-[3-(dimethylamino)propyl]-N-
ethylcarbodiimide hydrochloride) chemistry. Doxorubicin-
loaded niosome anticancer activity was achieved against
MCF-7 and MDA-MB-231 tumor cell lines, and a signi	cant
reduction in viability in a dose and time related manner was
observed [24].�e information about some recent studies on
niosomal targeted drug delivery is summarized in Table 2.

5.3. Codrug Delivery. In recent years, nanoparticles have
emerged as a promising class of carriers in codelivery of
multiple drugs for combination therapy [97]. Combinational
therapies enhance therapeutic e�cacy and decrease dosage
while obtaining equal or greater levels of e�cacy and
reducing drug resistance [98]. Anticancer drugs o�en have
serious side e
ects. With multidrug delivery system Pasut et
al. achieved higher anticancer activity for carcinoma cells,
whereas multidrug delivery system decreased cytotoxicity
against endothelial cells and cardiomyocytes, with respect to
free drug treatment. In their system, they have developed
simultaneous anticancer drug epirubicin and nitric oxide car-
rying system, in which nitric oxide and epirubicin were cova-
lently conjugated to each terminal of PEG. Nitric oxide acts
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as not only protecting reagent against anthracycline induced
cardiomyopathy but also sensitizer of anticancer drug treat-
ment. In order to increase anticancer e�cacy and enhance
cardiocyte protecting ability of codelivery system, they used
branched PEG as polymer backbone instead of linear one
[99]. Multidrug resistance (MDR) of malignant neoplasm
is the survival ability of cancer cells under the treatment
with structurally and functionally diverse anticancer drugs.
Increased drug e�ux is mostly mediated by ATP-driven
extrusion pump proteins of the ATP-binding cassette (ABC)
superfamily, such as P-glycoprotein (P-gp) encoded byMDR-
1, multidrug resistance (MDR) proteins (MRPs/ABCC) and
breast cancer resistance protein (BCRP/ABCG2).�ese drug
e�ux pumps noticeably decrease the intracellular concentra-
tion of numerous therapeutic agents [100]. Chemosensitizers,
such as Verapamil, Elacridar, Tariquidar, and cyclosporine A
mainly act as antagonist for P-gp and suppress drug e�ux and
consequently recover chemosensitivity of MDR cancer cells.
Paclitaxel was coencapsulated with cyclosporine A within
actively targeted polymeric lipid-core micelles. P-gp inhibi-
tion with cyclosporine A caused an enhanced cytotoxicity of
paclitaxel. Micelles loaded with this dual cargo demonstrated
signi	cantly higher cytotoxicity in the MDCKII-MDR1 cells
than micelles loaded with paclitaxel alone [101].

Niosomes are promising nanocarriers inmultidrug deliv-
ery applications [102]. Recently Sharma et al. reported the
dual encapsulation of hydrophobic curcumin andhydrophilic
doxorubicin in niosomes for cancer multidrug delivery [44].
Results showed that dual-drug loaded niosomes had higher
cytotoxicity on HeLa cells when compared to free drugs.
In another study, gallic acid, ascorbic acid, curcumin, and
quercetinwere encapsulated into the niosome as single agents
or in combination and the e
ect of the drugs coencapsulation
on the physicochemical properties of the carriers, on their
antioxidant properties and capability to release the encap-
sulated materials, was evaluated [103]. Furthermore, Mari-
anecci et al. prepared, characterized, and applied multidrug
niosomes using lidocaine and ibuprofen. Results suggest the
potential application of niosomes in dermal administration
of the two drugs at the same time in the same pharmaceutical
formulation, as useful carriers for the treatment of various
skin diseases, such as acute and chronic in�ammations in
presence of pain [104].

5.4. Antibiotics. Niosomal carriers are also suitable for the
delivery of antibiotics and anti-in�ammatory agents. �ese
carriers have been used extensively to improve poor skin
penetration and as well as enhance skin retention of the
drugs. Begum and coworkers designed rifampicin, a broad
spectrum antibiotic, encapsulated in a niosomal delivery
system.�ey investigated the activity of this system in in vitro
conditions and this study showed that niosomal formulation
of rifampicin is able to provide consistent and prolonged
release of the drug [105]. In another study to increase e�cacy
of the antibiotics and reduce the dose, Akbari et al. syn-
thesized cipro�oxacin loaded niosomes using di
erent non-
ionic surfactants and cholesterol in various concentrations
by 	lm hydration method. Drug release through bilayers
and antibacterial activity of the niosomes were examined.

�e results showed that cholesterol content and phase tran-
sition temperature of the surfactants in�uenced the perfor-
mance of niosomes. Besides, all formulations presentedmore
antibacterial activity as compared to free cipro�oxacin [106].

Vesicular systems, niosomes and liposomes, are mostly
used in ophthalmic controlled delivery. Abdelbary and El-
Gendy examined the feasibility of the niosomes as a car-
rier for the ophthalmic controlled delivery of gentamicin
antibiotic. Various surfactants (Tween 60, Tween 80, or Brij
35) were combined with cholesterol and a negative charge
inducer dicetyl phosphate in di
erentmolar ratios.�e ability
of these vesicles to entrap the selected drug was evaluated
and the obtained results showed that entrapment e�ciency
and the release rate of gentamicin is a
ected by cholesterol
content, type of surfactant, and the presence of charge
inducer. Gentamicin loaded niosomes composed of Tween
60, cholesterol, and dicetyl phosphate were the most e
ective
in terms of prolongation of in vitro drug release [107].

5.5. Anti-In
ammatory Drugs. Nonsteroidal anti-in�amma-
tory drugs (NSAIDs) loaded niosomes have been prepared
by several groups. �ese drugs may cause adverse e
ects
such as mucosal irritation. Topically applied NSAIDs loaded
niosomes can substantially improve drug permeation. To
investigate the potential application of the niosomes for deliv-
ery of anti-in�ammatory agents,Marianecci et al. synthesized
ammonium glycyrrhizinate (AG) loaded niosomes using
several surfactants and cholesterol at various concentrations.
Drug entrapment e�ciency, anisotropy, cytotoxicity and skin
tolerability, and some further analysis have been performed
for characterization.�e AG-loaded niosomes demonstrated
no toxicity and good skin tolerability and were able to
improve the anti-in�ammatory activity in mice. Moreover,
an enhancement of the anti-in�ammatory activity of the
niosome delivered drug was observed on chemically induced
skin erythema in humans [7].

5.6. Antiviral Drugs. Niosomes have also demonstrated the
capability to deliver various antiviral agents. Ruckmani and
Sankar synthesized zidovudine, which is the 	rst anti-HIV
compound approved for clinical use, encapsulated niosomes,
and examined their entrapment e�ciency and as well as
sustainability of release. �e niosomes were formulated by
combining the proportions of Tween, Span, and cholesterol.
Niosomes composed Tween 80 entrapped large amounts of
zidovudine and the addition of dicetyl phosphate enhanced
drug release for a longer time [108]. �e drug leakage from
Tween 80 formulations stored at room temperature was
signi	cant compared to niosomes stored at 4∘C for 90 days.
Besides, the results of a pharmacokinetic study in rabbits
also con	rmed that Tween 80 formulations with dicetyl
phosphate were cleared from the circulationwithin 	ve hours
[109].

6. Recent Studies

Over the past three decades, niosomes have been successfully
used as a drug carriers to overcome some major biophar-
maceutical problems such as insolubility, side e
ects, and
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Table 3: Recent studies on niosomes in drug delivery.

Type of the drug Name of the drug Composition Experimental model Year References

Angiotensin receptor
blockers

Candesartan
cilexetil

Span 60, cholesterol,
dicetyl phosphate,
maltodextrin

In vitro dissolution test for
proniosomal tablets, in vivo evaluation
of proniosomal tablets,
pharmacokinetic analysis

2016 [36]

Anti-in�ammatory
Naproxen

Tween 80, Tween 20,
cholesterol

In vitro drug release study,
preformulation study

2016 [37]

Dexamethasone Span 60, cholesterol
Characterization of niosomes, in vitro
release studies, stability test

2015 [38]

Antibacterial

Moxi�oxacin Tween 60, cholesterol
In vitro release studies, antimicrobial
activity

2016 [39]

Ce	xime
C-Glycoside derivative
surfactant, cholesterol

In vitro release study, biocompatibility
and bioavailability studies using
experimental animals

2016 [21]

Anticancer
Doxorubicin

Span 60, cholesterol,
dicetyl phosphate,

N-lauryl glucosamine

Optimization studies for formulation,
skin irritancy, histopathological
investigation of rat skin

2016 [35]

Paclitaxel
Span 40, cholesterol,
dicetyl phosphate

Formulation studies, Pharmacokinetic
and tissue distribution studies

2015 [6]

Antiviral Nevirapine Tyloxapol, cholesterol
Di
usion kinetics of drug,
microviscosity studies, in vitro release
study

2015 [8]

H2 receptor antagonist Famotidine Span 60, cholesterol
Kinetic analysis of drug-release
pro	les, ex vivo permeability study

2016 [40]

poor chemical stability of drug molecules [110]. Table 3
summarizes themost recent applications of niosomes as drug
delivery systems.

7. Strengths and Limitations of Niosomes in
Drug Delivery

One of the most important strengths of niosomes compared
with liposomes is their chemical stability. Niosomes are more
stable against chemical degradation or oxidation and have
long storage time compared to liposomes [51].�e surfactants
which are used for niosomes preparation are biodegradable,
biocompatible, and nonimmunogenic [83]. Handling and
storage conditions of surfactants do not need any speci	ca-
tions. Moreover composition, size, lamellarity, stability, and
surface charge of niosomes can be controlled by the type of
preparation method, surfactant, cholesterol content, surface
charge additives, and suspension concentration [66].

On the other hand niosomes show physical stability
problems. During storage of dispersion niosomes are at risk
of aggregation, fusion, drug leakage, or hydrolysis of encap-
sulated drugs. Furthermore the sterilization of niosomes
needsmuch e
ort. Heat sterilization andmembrane 	ltration
are unsuitable for niosomes. �us, these areas need further
research to produce commercially niosomal preparations.

8. Conclusion

Niosomes are novel nano drug carriers to design e
ective
drug delivery systems. �ey o
er a great opportunity for
loading hydrophilic, lipophilic drugs, or both drugs together.

Numbers of studies have been performed with di
erent
types of niosomes in delivery of the anticancer agents, anti-
in�ammatory agents, anti-infective agents, and so forth.
�e relevant studies demonstrated that niosomes improve
the stability of the entrapped drug, reduce the dose, and
enable targeted delivery to a speci	c type of tissue. �e
structural properties and characteristics of the niosomes
can be enhanced by using novel preparations, loading, and
modi	cationmethods for particular routes of administration.
�us, niosomes present itself as promising tools in commer-
cially available therapeutics.

Competing Interests

�e authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

Konrad Adenauer Foundation is acknowledged for the 	nan-
cial support to Didem Ag Seleci. �e publication of this
paper was funded by the Open Access Fund of the Leibniz
Universität Hannover.

References

[1] M. Seleci, D. Ag Seleci, R. Joncyzk, F. Stahl, C. Blume, and T.
Scheper, “Smart multifunctional nanoparticles in nanomedi-
cine,” BioNanoMaterials, vol. 17, no. 1-2, pp. 33–41, 2016.

[2] N. B. Mahale, P. D. �akkar, R. G. Mali, D. R. Walunj, and
S. R. Chaudhari, “Niosomes: novel sustained release nonionic



10 Journal of Nanomaterials

stable vesicular systems—an overview,”Advances in Colloid and
Interface Science, vol. 183, pp. 46–54, 2012.

[3] L. Tavano, L. Gentile, C. Oliviero Rossi, and R. Muzzalupo,
“Novel gel-niosomes formulations as multicomponent systems
for transdermal drug delivery,” Colloids and Surfaces B: Bioint-
erfaces, vol. 110, pp. 281–288, 2013.

[4] K. B. Bini, D. Akhilesh, P. Prabhakara, and K. Jv, “Development
and characterization of non-ionic surfactant vesicles (nio-
somes) for oral delivery of lornoxicam,” International Journal of
Drug Development and Research, vol. 4, no. 3, pp. 147–154, 2012.

[5] Q. Li, Z. Li, W. Zeng et al., “Proniosome-derived niosomes for
tacrolimus topical ocular delivery: in vitro cornea permeation,
ocular irritation, and in vivo anti-allogra� rejection,” European
Journal of Pharmaceutical Sciences, vol. 62, pp. 115–123, 2014.
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