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Abstract: Near-infrared (NIR) face recognition has attracted increasing attention because of its

advantage of illumination invariance. However, traditional face recognition methods based on

NIR are designed for and tested in cooperative-user applications. In this paper, we present

a convolutional neural network (CNN) for NIR face recognition (specifically face identification) in

non-cooperative-user applications. The proposed NIRFaceNet is modified from GoogLeNet, but has

a more compact structure designed specifically for the Chinese Academy of Sciences Institute of

Automation (CASIA) NIR database and can achieve higher identification rates with less training

time and less processing time. The experimental results demonstrate that NIRFaceNet has an overall

advantage compared to other methods in the NIR face recognition domain when image blur and

noise are present. The performance suggests that the proposed NIRFaceNet method may be more

suitable for non-cooperative-user applications.

Keywords: near-infrared face recognition; illumination invariance; convolutional neural network
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1. Introduction

Face recognition is one method of biometric authentication. It has attracted attention from the fields

of pattern recognition and computer vision. Up to now, many methods [1–5] have been used in order

to obtain higher recognition accuracy. However, most of them are concentrated on recognizing facial

images in the visible spectrum, which are vulnerable to changes in environmental illumination [6–9].

Several techniques have been proposed to achieve illumination invariant face recognition,

such as a 3D face scanner [10–12], hyperspectral imaging (HSI) [13–15], thermal imaging

(TI) [16–18], Kinect sensors [19–22], and near-infrared (NIR) imaging techniques [23,24]. Experimental

results [16–18,23,24] have shown that both TI and NIR techniques can achieve illumination invariance

to some extent. TI can be used in a completely dark environment without using any active illumination.

However, a TI system is more costly than a NIR imaging system, and the ambient temperature can

affect recognition accuracy. For the NIR method, a NIR illumination source is needed in a dark

environment. However, a NIR system costs much less.

Research on NIR face recognition has mainly focused on finding robust methods to improve

recognition accuracy. Li et al. [23] established the framework of NIR face recognition and used local

binary patterns (LBP) as a method. LBP can be easily calculated and is a robust method with regard to

image rotation and illumination change. However, it is not robust enough with regard to sensor noise,
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i.e., when there is noise in the images, the recognition rate will be low if LBP is used. Sajad et al. [25]

used geometric moment (GM), Zernike moment (ZM), pseudo-Zernike moment (PZM), and wavelet

moment (WM) as recognition methods, and compared the performance of the four methods on the

CASIA (Chinese Academy of Sciences Institute of Automation) NIR database [23]. It was found that the

best recognition performance can be achieved if ZM is employed. Using the same CASIA NIR database,

Sajad et al. [26] later tested global feature extraction methods (ZM, independent component analysis,

radon transform plus discrete cosine transform, radon transform plus discrete wavelet transform)

and local feature extraction methods (LBP, Gabor wavelets, discrete wavelet transform, undecimated

discrete wavelet transform), and found ZM and undecimated discrete wavelet transform (UDWT) can

achieve the highest recognition rate among global and local feature extraction methods, respectively.

To obtain better recognition performance, Sajad et al. [27,28] moved on to fuse global and local features

and proposed Zernike moment undecimated discrete wavelet transform (ZMUDWT) method and the

Zernike moments plus hermite kernels (ZMHK) method as the feature extraction methods for NIR

face recognition.

However, the methods used in NIR face recognition so far have only been tested on the

subsets of the CASIA NIR database. Moreover, all of the methods are designed for, and tested in,

the cooperative-user application environment; i.e., there is no motion blur in the facial images, which is

common in a non-cooperative-user application environment due to the relative motion between the

object and the camera, or the focusing of the camera.

Recently, deep learning methods have been used in face recognition in the visible spectrum.

The Facebook AI group presents a convolutional neural network (CNN) called DeepFace [29] for

face recognition. It has eight layers and is trained on a database that contains four million facial

images. In a study by Sun et al. [30], DeepID is proposed, which consists of an ensemble of small

CNNs. Each small CNN has nine layers. In [31], a deep network called WebFace is proposed,

which is a CNN-based network with 17 layers. All three networks have very different structures and

implementation choices.

In this paper, we present a CNN called NIRFaceNet. NIRFaceNet is based on a modification

of GoogLeNet [32] for NIR face recognition in non-cooperative-user applications. The experimental

design focuses on one aspect of face recognition, i.e., face identification (distinguishing one face

from many).

In a non-cooperative-user application, such as surveillance, the objects are in motion, and the

imaging systems may be refocusing occasionally. This will lead to blur or noise in the images taken by

the systems. We, therefore, added motion and Gaussian blur, salt-and-pepper, and Gaussian noise to

the CASIA NIR database to simulate a non-cooperative-user application.

Experimental results show that the proposed NIRFaceNet can achieve the highest identification

rate among LBP + PCA (principal component analysis), LBP Histogram, ZMUDWT, ZMHK,

and GoogLeNet, and is the most robust method with regard to the added noise. NIRFaceNet is

modified from GoogLeNet, but it is specifically designed for the CASIA NIR database and, thus,

can achieve a 3%–5% higher identification rate with less training time (30 h < 104 h) and less processing

time (0.025 s < 0.07 s). When density-0.1 salt-and-pepper noise is present, NIRFaceNet can achieve

a 5.51% higher identification rate than ZMHK (96.02% > 90.51%), which has the second highest

identification rate in general.

2. Convolutional Neural Networks

The structure of a CNN was first proposed by LeCun [33]. It simulates the processing system of

human vision by using the local receptive field, shared weight, and subsampling. The local receptive

field and shared weight can make one feature stand out in a feature map and save on the computational

load. Subsampling can achieve invariance of features with regard to geometric distortion. Due to these

advantages, CNN finds applications in computer vision [32–34], natural language processing [35,36],

and speech recognition [37,38].
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A CNN is a multi-layered non-fully-connected neural network. Figure 1 shows the general

structure of a CNN. The input layer receives normalized images with identical sizes. A set of units in

a small neighborhood (local receptive field) in the input layer will be processed by a convolution kernel

to form a unit in a feature map (each plane in the convolutional layer in Figure 1) of the subsequent

convolutional layer. One pixel in the feature map can be calculated by using:

Ck = f (x ∗ W + b) (1)

where Ck is the value of the k-th pixel in the feature map, x is the pixel-value vector of the units in

the local receptive field corresponding to Ck, W and b are the coefficient vector and bias, respectively,

determined by the feature map, and f is the activation function (sigmoid, tanh, ReLU, etc.). Since the

results presented by Vinod et al. [39] suggest that the ReLU is superior to the sigmoid function,

the ReLU function has been employed in our work. For the input t, f (t) = max(0, t) according to the

definition of ReLU.
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Figure 1. Structure of a convolutional neural network (CNN).

Each feature map has only one convolutional kernel, i.e., for all x in the input plane, the W and b

are the same. This CNN design can largely save on calculation time and make one feature stand out in

one feature map [32]. There is normally more than one feature map in a convolutional layer, so that

multiple features are included in the layer.

To achieve invariance of the features with regard to geometrical shift and distortion,

the convolutional layer is followed by a pooling layer to subsample the feature maps [32].

For the k-th unit in a feature map in the pooling layer, its value can be calculated by using:

Pk = f (β ∗ down(C) + α) (2)

where Pk is the value of the k-th unit in the feature map (each plane in the pooling layer in Figure 1) in

the pooling layer, C is the value vector in the feature map of the convolutional layer, β and α are the

coefficient and bias, respectively, and down (·) is the subsampling function.

A max pooling function is used for subsampling. In that case, down (C) can be written as:

down(C) = max
{

Cs,l

∣

∣

∣|s| ≤
m

2
, |l| ≤

m

2
, s, l ∈ z+

}

(3)

where Cs,l is the pixel value in the unit C in the feature map, and m is the subsampling size.

The first convolutional and pooling layers extract elemental features. To obtain higher level

features, more convolutional and pooling layers are often used in a CNN one after another to form

a deep architecture.

Each unit in the last pooling layer will be connected as an input to a fully-connected layer that

acts as a hidden layer in a normal neural network.

The fully-connected layer is followed by the output layer. The number of outputs of this layer is

the number of groups to be classified. For example, if the raw data input to the CNN is expected to be

divided into four groups, then there will be four outputs in this layer. The connection between the
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fully-connected layer and the output layer is a softmax connection [40]. The probability of softmax

regression classifying the input vector F from the previous layer into group c is:

p
(

y(F) = c
∣

∣

∣
F; θ

)

=
e

θT
j F

∑
N
n=1 eθT

n F
1 ≤ j ≤ N (4)

where y(F) is the group identity of input F, θ is the weight vector between the output layer and the

previous layer, and N is the number of groups.

Finally, all coefficients, biases, and weights in the CNN are trained by Batch gradient

descent [41] protocols.

3. Proposed Network Architecture

NIRFaceNet is modified from GoogLeNet [32]. GoogLeNet is a deep neural network which has

27 layers (convolution and pooling layers). It consists mostly of a CNN and won first place in the

ImageNet Large Scale Visual Recognition Challenge 2014.

The success of deep neural networks, such as GoogLeNet, makes researchers believe that it is

reasonable to develop deep networks trained on large datasets [42]. However, for datasets that are not

large enough, a medium-sized network can achieve similar or even slightly higher recognition rates

than what a large-sized network can achieve [42,43]. The CASIA NIR database used in this research

contains 3940 pictures, which is much smaller than the ImageNet database. Therefore, a full-sized

GoogLeNet may not perform better than a modified network with shallow structure.

We have tested the full-sized GoogLeNet on the CASIA NIR database. The results (see Section 4.3)

show that the softmax0, softmax1, and softmax2 of GoogLeNet can achieve identification rates of

99.02%, 98.8%, and 98.74%, respectively, on the dataset of normal faces. Moreover, the identification

rate of softmax0 is the highest, and softmax2 is the lowest, in most of the experimental conditions.

Softmax0 is the classifier in the shallowest place in GoogLeNet and softmax2 is in the deepest place.

This means that the deeper the GoogLeNet is, the lower the identification rate is. We will, therefore,

use a shallow network by modifying GoogLeNet.

Dong et al. [44] presented a two-stage CNN for vehicle type classification. The first stage of the

network is for low-level feature extraction and the second is for high-level global feature extraction.

The CNN was trained on a dataset containing 9850 vehicle images and achieved good recognition

results. The size of the datasets that we used in this research is the same order of magnitude as that of

the vehicle dataset. We, therefore, keep only two feature extraction modules in our NIRFaceNet.

The architecture of NIRFaceNet is shown in Figure 2. It can be seen that NIRFaceNet has only eight

layers and is compact in size compared to the original GoogLeNet. NIRFaceNet has only two feature

extraction modules. A common structure of the feature extraction module is shown in Figure 3.
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Figure 2. Proposed NIRFaceNet (LRN: local response normalization).
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Figure 3. Common structure of a feature extraction module.

The image input to NIRFaceNet is preprocessed. To avoid diminishing small features of the

image [45], the feature extraction modules leave out the 5 × 5 spatial filters in GoogLeNet. Since the

5 × 5 spatial filters also tend to consume a significant number of parameters [46]—for example, with the

same number of filters, a 5 × 5 convolution layer needs 2.78 (25/9) times more computations than

what a 3 × 3 convolution layer needs—the simplified modules in NIRFaceNet require less memory

resources and will take less time to be trained.
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In the feature extraction modules, the 1 × 1 convolutions play two major roles in feature extraction.

Firstly, they increase the nonlinearity of the network while keeping the wealth of information from the

upper layer. Secondly, the 1 × 1 convolutions can reduce the calculation load before we use multi-scale

convolution to extract the upper features. The parallel 3 × 3 max pooling cell, with a one-pixel stride

(S) and one-pixel padding (P), can not only maintain the resolution of the feature maps (the same

resolution as that of the previous layer) but can also extract more texture details.

The output of the 3 × 3 convolutional filters and other related convolutional layers are stacked by

the Concat [32] function to act as the input to the next layer. The local response normalization (LRN)

layer [34] is inspired by a form of lateral inhibition in real neurons and can improve the generalization

ability and the precision of the modules. NIRFaceNet contains no fully connected layer, which can

reduce the network complexity to a great extent. The output dimensionality of each layer is shown

in Table 1.

Table 1. Layers and output size.

Layers Output Size

Input 112 × 112
Conv1 64 × 56 × 56

Maxpool1 64 × 28 × 28
LRN 64 × 28 × 28

Conv2a 64 × 28 × 28
Conv2b 64 × 28 × 28
Conv2c 128 × 28 × 28

Maxpool2 64 × 28 × 28
Conv2d 64 × 28 × 28
Concat1 256 × 28 × 28

Maxpool3 256 × 14 × 14
Conv3a 128 × 14 × 14
Conv3b 128 × 14 × 14
Conv3c 192 × 14 × 14

Maxpool4 256 × 14 × 14
Conv3d 128 × 14 × 14
Concat2 448 × 14 × 14

Maxpool5 448 × 7 × 7
Softmax Classifier 197 × 1 × 1

4. Experiments and Analysis

In this section, we will test NIRFaceNet, LBP + PCA [23], LBP Histogram [47], ZMUDWT [27],

ZMHK [28], and GoogLeNet on the CASIA NIR database [23]. Facial expression, head pose variation,

salt-and-pepper and Gaussian noise, motion and Gaussian blur are added to the dataset to compare

the robustness of the algorithms. Face recognition includes face identification and verification. In this

paper, we test only the algorithms in the identification case (distinguishing one face from many in

the database).

4.1. CASIA NIR Database

The CASIA NIR database was established by Li et al. [23]. It contains 3940 pictures

(resolution 640 × 480) of 197 persons with different expressions, different head poses, and with

or without glasses. In this study, we tested the algorithms using 3330 pictures, including all pictures

with normal faces, different expressions, and different head poses. The other 610 pictures with glasses

were not considered in this research. Figure 4 shows the pictures of one person in the database in

normal, expression variation, and head pose variation conditions.
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Figure 4. NIR pictures of one person under normal (a), expression variation (b) and head pose variation

(c) conditions.

4.2. Data Analysis

Before identification, we used the Viola–Jones [48] function in MATLAB 2015a to detect the

face, and then normalized the facial images into 112 × 112 pixels in size and 0–255 in terms of pixel

dynamic range.

We tested the algorithms on nine test sets. The training sets of all nine test sets were the same.

Three pictures of the normal faces of each person were selected to form the training set. Therefore,

there were 591 (197 × 3) pictures in the set. There were no overlapping pictures between the training

set and the nine-test sets.

The methods to generate the nine test sets are described in Table 2. Test Set 1 is made up of

pictures of normal faces (norm face) other than the ones in the training set. Test Set 2 is made up of

pictures of normal faces, faces with different expressions, and faces with different head poses.

Table 2. Methods to generate testing datasets.

Test Set ID Method to Generate

1

Exclude the training set
For each person, select three pictures of normal face
Exclude the person if there is less than three pictures left
459 pictures from 153 persons are selected to form the test set

2

Exclude the training set
Select all the other pictures, except the pictures of persons with glasses
2739 pictures are selected to form the test set

3 Add motion blur to Test Set 2, with a length of nine pixels and an angle
randomly sampled in the range of 0–360◦

4 Add Gaussian blur to Test Set 2, with standard deviation of 0.5

5 Add Gaussian blur to Test Set 2, with standard deviation of 2

6 Add salt-pepper noise to Test Set 2, with density of 0.01

7 Add salt-pepper noise to Test Set 2, with density of 0.1

8 Add Gaussian noise to Test Set 2, with mean of 0 and variance of 0.001

9 Add Gaussian noise to Test Set 2, with mean of 0 and variance of 0.01

In non-cooperative-user applications, there may be blur and noise in the images taken by NIR

cameras. The blur comes from the relative motion between the object and camera or the refocusing

of the camera, which are common in a surveillance application. The noise is mainly salt-and-pepper

noise and Gaussian noise. Therefore, Test Sets 3–9 were generated from Test Set 2 by adding different

levels of noise and blur to simulate a non-cooperative-user application environment. Figure 5 shows

images of one participant in Test Sets 2–9.
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Figure 5. Images of one participant in Test Sets 2–9: (a)–(h) are the images in the datasets 2–9,

respectively.

This approach to selecting the training set and developing the test sets is designed to simulate

a more realistic surveillance application (in which the face is expected to be recognised when an object

may be in motion or be obscured by image noise) by using a limited training set (three pictures of the

normal face for each person in this research).

The NIRFaceNet model and five algorithms were tested on every test set. The parameters used

for the model and algorithms are described below.

The mini-batch sizes and dropout ratios of the NIRFaceNet model were set to 35 and 0.5,

respectively. The training process and the testing process were implemented by using Caffe [49].

For the LBP + PCA, the raw image was divided into 4 × 4 blocks. The LBP feature vector

was extracted by using the 3 × 3 neighbourhood uniform LBP (LBPU2
8,1 ). PCA (principal component

analysis) was used to extract the most important components, up to 100, from the feature vector.

The 100 components were input into linear discriminant analysis (LDA) for the identification.

For the LBP histogram, the raw image was divided into 4 × 4 blocks. The LBP feature vector was

extracted by using the 3 × 3 neighbourhood uniform LBP. The classifier was support vector machine

(SVM) (using the “svmclassify” function in MATLAB 2015a with default settings).

For the ZMUDWT, n = 10 in the ZM. There were 66 moment features, each of which included

imaginary and real parts, and modulus values. The raw image was divided into 12 blocks according

to [27]. The DB3 wavelet was then used to perform a three-layer non-sampling discrete wavelet

transform. The wavelet coefficients of low and high frequency in the third layer were used to form the

feature vector. The feature fusion and classification methods in [27] were used.

For the ZMHK, the parameter settings in the ZM were the same as those in the ZMUDWT. The γ

and σ in the HK were set to 13 and two, respectively. The image was divided into eight blocks,

according to [28], to extract features. The feature fusion and classification methods in [28] were used.

4.3. Experimental Results Using Normal Faces

The identification rates of every method tested on Test Set 1 are shown in Table 3. It can be seen

that NIRFaceNet achieves 100% accuracy when used to recognize normal faces (without expression

and posture changes). The identification rate of GoogLeNet is lower than that of NIRFaceNet, and the

deeper the GoogLeNet is, the lower the identification rate is. This confirms that a shallow network is

better for a small-sized dataset. With respect to the identification performance of traditional algorithms,

the methods fusing global and local features (95.64% for the ZMUDWT and 100% for the ZMHK)

outperform LBP (89.76% and 87.34%), and the ZMHK outperforms the ZMUDWT. This result is in

accordance with that in [28].
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Table 3. Identification rates of various methods tested on Test Set 1.

LBP + PCA LBP Histogram ZMUDWT ZMHK
GoogLeNet

softmax0
GoogLeNet

softmax1
GoogLeNet

softmax2
NIRFaceNet

Identification
Rate (%)

89.76 87.34 95.64 100 99.02 98.8 98.74 100

4.4. Experimental Results Using Images with Facial Expressions and Head Rotations

The identification rates of every method tested on Test Set 2 are shown in Table 4. Due to the large

variations in expression and posture in Test Set 2, the identification rates for this set are lower than

those for Test Set 1. Nevertheless, NIRFaceNet still outperforms the other algorithms and achieves

an identification rate of 98.28%. This result shows that NIRFaceNet is a robust identification method

with regard to variations in expression and posture. Again, the identification rate of GoogLeNet shows

that the shallow net is more suitable for the CASIA NIR database (softmax0’s 95.64% > softmax1’s

95.15% > softmax2’s 94.73%). The LBP histogram (87.34%) outperforms LBP + PCA (80.94%) under

this experimental condition.

Table 4. Identification rates of various methods tested on Test Set 2.

LBP + PCA LBP Histogram ZMUDWT ZMHK
GoogLeNet

softmax0
GoogLeNet

softmax1
GoogLeNet

softmax2
NIRFaceNet

Identification
Rate (%)

80.94 87.34 90.18 96.5 95.64 95.15 94.73 98.28

4.5. Experimental Results Using Images with Blur and Noise

The identification rates of every method tested on Test Sets 3–9 are shown in Table 5. Compared to

the identification rates achieved on Test Set 2, which includes no noise or blur, the identification rates

achieved on Test Sets 3–9 are generally lower due to the addition of noise and blur. LBP + PCA can only

achieve rates of 30.92%, 30.27%, and 20.45% when motion blur, density-2 Gaussian blur, and density-0.1

salt-and-pepper noise were present, respectively; the identification rate drops to 0.99% and 0.66%

when density-0.001 and density-0.01 Gaussian noise were present, respectively. The LBP histogram is

more robust than LBP + PCA with regard to blur and noise. Except under the density-0.1 salt-pepper

noise condition, the LBP histogram has 1%–20% higher identification rates than those of LBP + PCA.

The performance of LBP + PCA observed in this experiment are in accordance with that in [50].

Table 5. Identification rate of algorithms tested on Test Sets 3–9 with different levels of blur and noise.

Identification
Rate (%)

Motion Blur Gaussian Blur Salt-Pepper Noise Gaussian Noise

Test
Set 3

(density 9)

Test
Set 4

(density 0.5)

Test
Set 5

(density 2)

Test
Set 6

(density 0.01)

Test
Set 7

(density 0.1)

Test
Set 8

(density 0.001)

Test
Set 9

(density 0.01)

LBP + PCA 30.92 76.85 30.27 78.02 20.45 0.99 0.66

LBP
Histogram

54.14 82.99 46.4 81.38 12.6 1.61 1.35

ZMUDWT 88.35 90.03 88.97 89.89 82.48 89.63 87.77

ZMHK 95.14 96.50 95.25 95.87 90.51 96.20 94.56

GoogLeNet
softmax0

94.33 94.98 93.25 95.2 94.79 95.79 92.41

GoogLeNet
softmax1

93.79 95.15 93.03 95.05 94.04 96.03 92.20

GoogLeNet
softmax2

93.04 94.20 92.04 94.88 93.73 95.25 91.73

NIRFaceNet 98.12 98.48 98.24 98.32 96.02 98.36 97.48



Information 2016, 7, 61 10 of 14

ZMUDWT and ZMHK are more robust than LBP with regard to noise and blur. They can still

achieve identification rates greater than 80%. The lowest identification rates for ZMUDWT and ZMHK

were 82.48% and 90.51%, respectively, when density-0.1 salt-and-pepper noise was present. GoogLeNet

has lower identification rates than those of ZMHK in most cases, the one exception being the density-0.1

salt-and-pepper noise condition.

NIRFaceNet is the most robust method. It achieves the highest identification rate on every test

set, which is at least 2% more than the second highest rate. When density-0.1 salt-and-pepper noise

was present, its identification rate of 96.02% was 5.51% higher than that of the best traditional method,

ZMHK (90.51%).

The results in Table 5 are graphically illustrated by using the line chart shown in Figure 6.
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4.6. Traning Time and Processing Time

CNN-based methods have to be trained before they are used for identification. The training times

for GoogLeNet and NIRFaceNet are listed in Table 6. Caffe [49] was used for training the networks.

All of the settings for the training sessions were the same (e.g., 320,000 iteration steps). All training

sessions were run on a DELL PRECISION T3600 (CPU: Xeon E5-1620 3.6 GHz, Memory: 64 GB,

Graphic Card: nVIDIA Quadro 600) (Dell, Chongqing, China).

Table 6. Training times of CNN-based methods.

Method Time (h)

GoogLeNet 104
NIRFaceNet 30

The processing times of all the methods are listed in Table 7. The processing time of each method

is the average time used by the method to process one face image (i.e., to identify each face image).

Since Caffe was used for training the CNN-based methods, it was also used for implementing the

CNN-based methods. MATLAB 2015a was used for implementing the other methods. All of the codes

were run on the DELL PRECISION T3600.

Table 7. Processing times of all the methods.

Methods Processing Time(s)

LBP + PCA 0.078
LBP histogram 0.069

ZMUDWT 0.315
ZMHK 0.214

GoogLeNet 0.07
NIRFaceNet 0.025
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It can be seen from Table 7 that the LBP-based methods need much less processing time than

ZMUDWT and ZMHK, and that NIRFaceNet needs less processing time than GoogLeNet. Since the

traditional methods and CNN-based methods were implemented in different languages (MATLAB

and Caffe), the processing times of these two method types cannot be compared directly. However,

Table 7 shows that NIRFaceNet could process an input image in real-time (0.025 s per image) if the

appropriate implementation method was chosen.

5. Discussion and Conclusion

In this paper, we proposed a CNN-based method called NIRFaceNet to recognize NIR faces.

The strong self-learning ability of a CNN was used to achieve robust NIR face identification in

this research. We tested NIRFaceNet on the CASIA NIR database. In contrast with previous work,

we included not only faces with expression and posture variations but also faces with different types

of blur and noise and different intensities of blur and noise for the testing. Experimental results

demonstrated that NIRFaceNet can achieve the highest identification rate among the LBP, ZMUDWT,

and ZMHK methods, and is the most robust method with regard to expression and posture variation

and with regard to noise and blur.

NIRFaceNet is modified from GoogLeNet. However, it is much more compact in size

than GoogLeNet. Compared to the 27 layers in GoogLeNet, NIRFaceNet has only eight layers.

This reduction in complexity of structure enables NIRFaceNet to be trained in much less time and to

process an input image in less time. For instance, it takes 30 h to train NIRFaceNet, whereas it takes

104 h to train GoogLeNet. It takes 0.025 s for NIRFaceNet to process one image, compared with 0.07 s

for GoogLeNet. Since NIRFaceNet is designed specifically for the CASIA NIR dataset, it can achieve

a 3%–5% higher identification rate than GoogLeNet.

With respect to the traditional methods of NIR face identification, ZMHK can achieve the highest

identification rate. Its performance is even better than GoogLeNet in most cases. However, in the case of

density-0.1 salt-pepper noise, the performance of ZMHK decreases sharply. Its identification rate drops

from 96.50% under the non-noise condition (Test Set 2) to 90.51% under the noise condition (Test Set 7).

On the other hand, NIRFaceNet is much more robust than ZMHK in this case: the identification rate of

NIRFaceNet drops from 98.28% (Test Set 2) to 96.02% (Test Set 7). The drop in identification rates of

ZMHK and NIRFaceNet are 6.21% and 2.30%, respectively. This suggests that NIRFaceNet may be

more suitable for recognizing faces under very noisy conditions, such as in real non-cooperative NIR

face identification applications.

It can be seen from Tables 4 and 5 that the adding of density-0.5 Gaussian blur (Test Set 4),

density-0.01 salt-and-pepper noise (Test Set 6), and density-0.001 Gaussian noise (Test Set 8) does

not decrease the identification rates (98.48%, 98.32%, and 98.36%, respectively) of NIRFaceNet,

but increases them compared to the identification rate (98.28%) under the non-noise condition

(Test Set 2). In the case of GoogLeNet, the adding of density-0.001 Gaussian noise (Test Set 8)

increases the identification rates of softmax0, softmax1, and softmax2, whilst density-0.5 Gaussian

blur (Test Set 4) increases the identification rate of softmax1, and density-0.01 salt-and-pepper noise

(Test Set 6) increases the identification rate of softmax2. These small increases in identification rates

can only be observed in low-density settings of all types of noise. This may be due to the robustness

of the CNN; i.e., the adding of low density noise may not affect the overall performance of the

CNN, but causes identification rates to vary randomly to a small extent. In the case of NIRFaceNet,

the identification rates happen to vary towards larger values. However, in the case of GoogLeNet,

the identification rates vary to larger or smaller values.

As the CASIA NIR database is built incrementally, the structure of NIRFaceNet may need to be

redesigned and retrained again (by updating parameters). Since NIRFaceNet was designed specifically

for the CASIA NIR database, the enlargement of the database may require changes to the network;

i.e., more feature extraction modules may be required. This redesign of the network will not stop until

the training dataset reaches a large enough size, such as a planet-scale size as an extreme example.
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Of course, building a dataset containing seven billion identities is inconceivable. Additionally, it is

hard to tell where the boundary of the size lies, beyond which the network’s structure can be constant.

However, the MegaFace Challenge [51] does start to investigate what happens to the performance

of face recognition algorithms when the person to be recognized is mixed with up to a million

distractors that were not in the training set. It was found that all algorithms had lower recognition

accuracy when they were tested on the MegaFace dataset. However, the algorithms that were trained

on larger sets had a higher accuracy, and FaceN, trained on 18 million images, performed similarly to

FaceNet, trained on 500 million images.

The building of large datasets for training is as equally important as algorithm development.

In terms of CNN-based NIR face identification, the design of NIRFaceNet may be just a starting point.

Building a database including more identities could be a project for the future. Age variation is also

a factor that affects identification accuracy. NIR images of each person at different ages could be

included in the database.

Acknowledgments: We would like to thank for their support the National Natural Science Foundation of
China (Grant No. 61301297 and No. 61472330), the Fundamental Research Funds for the Central Universities
(No. XDJK2013C124), and the Southwest University Doctoral Foundation (No. SWU115093).

Author Contributions: Min Peng, Tong Chen, and Guangyuan Liu conceived and designed the experiments;
Min Peng and Chongyang Wang performed the experiments; Min Peng and Chongyang Wang analyzed the data;
all authors wrote the paper. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolf, L.; Hassner, T.; Maoz, I. Face recognition in unconstrained videos with matched background similarity.

In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs,

CO, USA, 20–25 June 2011.
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Springer: Cham, Switzerland, 2016; pp. 37–46.

19. Li, B.Y.L.; Mian, A.S.; Liu, W.; Krishna, A. Using kinect for face recognition under varying poses, expressions,

illumination and disguise. In Proceedings of 2013 IEEE Workshop on Applications of Computer Vision,

Clearwater Beach, FL, USA, 15–17 January 2013; pp. 186–192.

20. Goswami, G.; Bharadwaj, S.; Vatsa, M.; Singh, R. On RGB-D face recognition using Kinect. In Proceedings of

IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems, Arlington, VA, USA,

29 September–2 October 2013.

21. Li, B.Y.L.; Mian, A.S.; Liu, W.; Krishna, A. Face recognition based on Kinect. Pattern Anal. Appl. 2016, 19,

977–987. [CrossRef]

22. Goswami, G.; Vatsa, M.; Singh, R. Face recognition with RGB-D images using Kinect. In Face Recognition

across the Imaging Spectrum; Bourlai, T., Ed.; Springer: Cham, Switzerland, 2016; pp. 281–303.

23. Li, S.Z.; Chu, R.; Liao, S.; Zhang, L. Illumination invariant face recognition using near-infrared images.

IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 627–639. [CrossRef] [PubMed]

24. Li, S.Z.; Yi, D. Face recognition, near-infrared. In Encyclopedia of Biometrics; Li, S.Z., Jain, A., Eds.; Springer:

berlin/Heidelberg, Germany, 2015.

25. Farokhi, S.; Shamsuddin, S.M.; Sheikh, U.U.; Flusser, J. Near infrared face recognition: A comparison of

moment-based approaches. In Innovation Excellence towards Humanistic Technology; Springer: Singapore, 2014;

pp. 129–135.

26. Farokhi, S.; Sheikh, U.U.; Flusser, J.; Shamsuddin, S.M.; Hashemi, H. Evaluating feature extractors and

dimension reduction methods for near infrared face recognition systems. Jurnal Teknologi 2014, 70, 23–33.

[CrossRef]

27. Farokhi, S.; Shamsuddin, S.M.; Sheikh, U.U.; Flusser, J.; Khansari, M.; Jafari-Khouzani, K. Near infrared

face recognition by combining Zernike moments and undecimated discrete wavelet transform.

Digit. Signal Process. 2014, 31, 13–27. [CrossRef]

28. Farokhi, S.; Sheikh, U.U.; Flusser, J.; Yang, B. Near infrared face recognition using Zernike moments and

Hermite kernels. Inf. Sci. 2015, 316, 234–245. [CrossRef]

29. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. DeepFace: Closing the gap to human-level performance in

face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,

Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708.

30. Sun, Y.; Wang, X.; Tang, X. Deep learning face representation from predicting 10,000 Classes. In Proceedings

of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,

23–28 June 2014; pp. 1891–1898.

31. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. 2014, arXiv:1411.7923.

32. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.

Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and

Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

33. Lécun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

34. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.

In Proceedings of the Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS),

Stateline, NV, USA, 3–8 December 2012.

35. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern

Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

http://dx.doi.org/10.1109/TIP.2015.2393057
http://www.ncbi.nlm.nih.gov/pubmed/25608305
http://dx.doi.org/10.1016/j.patcog.2012.01.001
http://dx.doi.org/10.1016/j.patcog.2014.03.015
http://dx.doi.org/10.1007/s10044-015-0456-4
http://dx.doi.org/10.1109/TPAMI.2007.1014
http://www.ncbi.nlm.nih.gov/pubmed/17299220
http://dx.doi.org/10.11113/jt.v70.2459
http://dx.doi.org/10.1016/j.dsp.2014.04.008
http://dx.doi.org/10.1016/j.ins.2015.04.030
http://dx.doi.org/10.1109/5.726791


Information 2016, 7, 61 14 of 14

36. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks

with multitask learning. In Proceedings of the 25th international conference on Machine learning, Helsinki,

Finland, 5–9 July 2008.

37. Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Penn, G. Applying convolutional neural networks concepts to

hybrid NN-HMM model for speech recognition. In Proceedings of 2012 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012.

38. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks.

In Proceeding of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

Vancouver, BC, Canada, 26–31 May 2013.

39. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.

40. Bouchard, G. Efficient bounds for the softmax function and applications to approximate inference in hybrid

models. In Proceedings of NIPS 2007 workshop for approximate Bayesian inference in continuous/hybrid

systems, Whistler, BC, Canada, 7–8 December 2007.

41. Wilson, D.R.; Martinez, T.R. The general inefficiency of batch training for gradient descent learning.

Neural Netw. 2003, 16, 1429–1451. [CrossRef]

42. McDonnell, M.D.; Tissera, M.D.; Vladusich, T.; van Schaik, A.; Tapson, J. Fast, simple and accurate

handwritten digit classification by training shallow neural network classifiers with the “Extreme Learning

Machine” algorithm. PLoS ONE 2015, 10, e0134254. [CrossRef] [PubMed]

43. Hu, G.; Yang, Y.; Yi, D.; Kittler, J.; Christmas, W.; Li, S.Z.; Hospedales, T. When face recognition meets with

deep learning: An evaluation of convolutional neural networks for face recognition. In Proceedings of the

2015 IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 13–16 December 2015;

pp. 142–150.

44. Dong, Z.; Wu, Y.; Pei, M.; Jia, Y. Vehicle type classification using a semi supervised convolutional neural

network. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2247–2256. [CrossRef]

45. Hayder, M.; Haider, A.; Naz, E. Robust Convolutional Neural Networks for Image Recognition. Int. J. Adv.

Comput. Sci. Appl. 2015, 6, 105–111.

46. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer

Vision. 2015, arXiv:1512.00567.

47. Ahonen, T.; Hadid, A.; Pietikinen, M. Face description with local binary patterns: Application to face

recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef] [PubMed]

48. Castrillón, M.; Déniz, O.; Guerra, C.; Hernández, M. ENCARA2: Real-time detection of multiple faces at

different resolutions in video streams. J. Vis. Commun. Image Represent. 2007, 18, 130–140.

49. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.

Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International

Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

50. Ren, J.; Jiang, X.; Yuan, J. Noise-resistant local binary pattern with an embedded error-correction mechanism.

IEEE Trans. Image Process. 2013, 22, 4049–4060. [CrossRef] [PubMed]

51. Kemelmacher-Shlizerman, I.; Seitz, S.; Miller, D.; Brossard, E. The MegaFace benchmark: 1 million faces for

recognition at scale. 2016, arXiv:1512.00596.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://dx.doi.org/10.1371/journal.pone.0134254
http://www.ncbi.nlm.nih.gov/pubmed/26262687
http://dx.doi.org/10.1109/TITS.2015.2402438
http://dx.doi.org/10.1109/TPAMI.2006.244
http://www.ncbi.nlm.nih.gov/pubmed/17108377
http://dx.doi.org/10.1109/TIP.2013.2268976
http://www.ncbi.nlm.nih.gov/pubmed/23797250
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Convolutional Neural Networks 
	Proposed Network Architecture 
	Experiments and Analysis 
	CASIA NIR Database 
	Data Analysis 
	Experimental Results Using Normal Faces 
	Experimental Results Using Images with Facial Expressions and Head Rotations 
	Experimental Results Using Images with Blur and Noise 
	Traning Time and Processing Time 

	Discussion and Conclusion 

