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NISQ computing: where are we 
and where do we go?
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Abstract 

In this short review article, we aim to provide physicists not working within the quantum computing community a 
hopefully easy-to-read introduction to the state of the art in the field, with minimal mathematics involved. In particu-
lar, we focus on what is termed the Noisy Intermediate Scale Quantum era of quantum computing. We describe how 
this is increasingly seen to be a distinct phase in the development of quantum computers, heralding an era where we 
have quantum computers that are capable of doing certain quantum computations in a limited fashion, and subject 
to certain constraints and noise. We further discuss the prominent algorithms that are believed to hold the most 
potential for this era, and also describe the competing physical platforms on which to build a quantum computer 
that have seen the most success so far. We then talk about the applications that are most feasible in the near-term, 
and finish off with a short discussion on the state of the field. We hope that as non-experts read this article, it will give 
context to the recent developments in quantum computers that have garnered much popular press, and help the 
community understand how to place such developments in the timeline of quantum computing.
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1 Introduction
Over the last thirty or so years, there has been a huge 
amount of research being done in the field of quan-
tum computers. In the last few years, a short survey by 
the authors records that the ArXiv on average receives 
around a dozen quantum computing-related submissions 
each day. What underpins all this interest is the promise 
of quantum computers, with its potential ability to solve 
incredibly hard, yet practical, problems that are unfeasi-
ble or intractable on any classical computer. Needless to 
say, many government and industrial organizations have 
shown tremendous interest in the area. Like the rise of 
classical computing machines, nobody would like to be 
left behind in the growing technology.

However, quantum computers are still far from achiev-
ing all that they have promised. While early-stage 

quantum computers have been developed, the problems 
of noisy calculations and scalability of quantum comput-
ers still plague the field. As opposed to the far future, 
where quantum computers can be as big as we wish 
them to be and are capable of performing fully control-
lable operations (termed as the fault-tolerant era), we are 
currently working in the Noisy Intermediate-Scale Quan-
tum (NISQ) era, which is an operational definition that 
implies that the quantum computers available to us now 
are subject to substantial error rates and they are con-
strained in size (in terms of the number of qubits). While 
it is already a scientific achievement to get to this stage, 
such quantum computers are still incapable of showing 
any significant advantages over classical computers.

As such, some people in the community have already 
expressed fear that there will be a ‘Quantum winter’, or a 
scenario where quantum computing devices remain noisy 
and are unable to scale up in terms of qubit size, prevent-
ing us from ever achieving a meaningful advantage over 
classical computers. Under such an environment, fund-
ing and enthusiasm for quantum computing devices will 
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dry up, leaving the field in a state of stagnation, with 
little or negligible resources, and hence, the field will 
spiral into a vicious cycle of little or no advances. Busi-
nesses in the field will also be unable to break out into 
profitable industrial applications and they are confined 
to niche research applications. Career paths of the many 
quantum scientists then wither and face uncertainty and 
extinction.

To prevent this from happening, we believe that it is 
important to set the achievements of the field in context. 
There have been some very significant achievements, and 
there is constant progress in the development of the field, 
but we are still far from realizing any sort of useful quan-
tum advantage over classical computers. We do expect 
that we will eventually get there, but it is far too hard 
to divine when this will happen. By writing this review, 
we hope to illumine scientifically literate people who are 
outside the quantum computing field on a broad outline 
of the state of the art in the field. We also hope to provide 
some thoughts to some of these questions:

1. Where are we in the development of quantum com-
puters, relative to the timeline of how classical com-
puters were developed?

2. What are the most promising candidate platforms to 
physically implement the future quantum comput-
ers? And what are the pros and drawbacks of these 
platforms?

3. What are the most immediate problems that quan-
tum computers can be applied to? What are the ‘killer 
apps’? What are the most immediate outcomes?

4. How can the cost of researching and develop-
ing quantum computers be justified in the short to 
medium term?

2  Brief history of classical computing
Living in the information era, where cheap classical com-
puters with plenty of computing power are freely avail-
able, and in an era in which we rely on some form of 
computer (or even a mobile phone) for many daily tasks, 
we easily take for granted the development of the classi-
cal computer. To give some context on exactly how long 
it took us to get to this point, we briefly run through a 
short history of classical computing.

Computing devices can be traced all the way back 
to invention of the abacus in Sumeria. The abacus then 
evolved into the calculating machines like the Pascaline 
(young Pascal’s invention of a calculator to solve his 
father’s as a tax supervisor) and Liebniz’s Step Reckoner. 
Liebniz is also largely responsible for the development of 
the binary number system which now lies at the heart of 

modern computing. Yet, modern computers as we know 
today probably have a much shorter history.

In the early nineteenth century, Joseph Jacquard cre-
ated a punch-card programmable loom to simplify the 
weaving process, though he had no intentions of using 
his work for computing. The first step towards a modern 
computer was probably due to the ideas and proposals 
by Charles Babbage around 1837. Although Babbage’s 
analytical machine was never actually built, its design 
embodied major features of modern computers: the input 
units, the memory, the central processing unit and the 
output units. Around the 1840s, Ada Lovelace became 
fascinated with Babbage’s analytical engine and she 
developed the first computer algorithm to compute Ber-
noulli numbers. Around the same time period, mechani-
cal devices which would later be known as ‘differential 
analyzers’ were being designed to integrate differential 
equations. The first widely used differential analyzer was 
constructed in 1930s, and in the early 1940s, these differ-
ential analyzers were used in the computation of artillery 
firing tables prior to the invention of the ENIAC. In 1941, 
Claude Shannon introduced the idea of a General Pur-
pose Analog Computer (GPAC).

At the turn of the twentieth century, Herman Hol-
lerith created a tabulating machine to help calculate the 
US census with punch cards based on Jacquard’s loom. 
In 1936, Alan Turing published the idea of the Turing 
Machine. Also in 1936, Alonzo Church invented the 
λ-calculus, which is a formalization of how to express 
computations in mathematical logic. Prior to 1936, 
broadly speaking, people had an intuitive yet informal 
understanding of algorithms and computation. The work 
of Turing and Church helped to provide a mathemati-
cally rigorous framework for thinking about algorithms 
and computation, as stated in the famous Church-Turing 
thesis, one version of which is taken from [1]: ‘The class 
of functions computable by a Turing machine corre-
sponds exactly to the class of functions which we would 
naturally regard as being computable by an algorithm’. 
From the Church-Turing thesis, we also get the notion 
of Turing Completeness: a computational system that 
can compute every function that a Turing machine can is 
Turing-complete. Using this framework, we can classify 
things like the abacus and the Pascaline, which can only 
solve a few specific problems, e.g. arithmetic, as devices 
that are not Turing complete. On the other hand, Bab-
bage’s analytical engine would have been the first Turing-
complete machine if it had been built, and hence, it could 
have been said to be the first programmable computer. 
Recently, it has also been shown [2] that Shannon’s Gen-
eral Purpose Analog Computer (GPAC) is equivalent to a 
Turing machine, and, as the name indicates, it operates in 
an analog fashion.
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Further theoretical work on classical computation gave 
birth to the field of computational complexity, which is 
roughly stated as the analysis of the difficultly of solving 
computational problems, where the difficulty of a com-
putational problem is quantified by the amount of time 
and space required by algorithms that solve the compu-
tational problem. Computational problems can then be 
classified into different complexity classes based on the 
difficulty of the problem. Two important examples are 
the complexity classes P and NP. Denoting the input size 
of a computational problem by n, the problem is said to 
be in the complexity class P if the time requirement of 
the algorithm that solves the problem scales polynomi-
ally with n. A problem is also said to be in the complexity 
class NP if we can verify proposed solutions to a problem 
in a time that scales polynomially with n. Clearly, P⊂NP, 
since being able to solve a problem in polynomial time 
would imply an ability to verify proposed solutions in 
polynomial time. However, it still remains an open prob-
lem whether P=NP.

It took the outbreak of World War II, and an immedi-
ate, pressing problem, to give birth to the first electronic, 
programmable computer. To crack German army com-
munication codes, the Colossus was built in the UK 
in 1943, which was built with vacuum tubes, and the 
machine was able to be configured to perform a large 
variety of boolean logical operations. It however was not 
Turing complete. A similar computer, ENIAC, was built 
in the USA soon after. While the machine was huge, 
immensely power hungry and incredibly slow compared 
to modern devices, its improvements over the Colossus 
made it Turing complete, earning it the right to be called 
the first universal (programmable) classical computer.

Even then, the use of computers required further sci-
entific advances to become widespread. Infamously, 
Thomas Watson, the president of IBM in 1943, predicted 
that there would only be a market for five computers in 
the world. With the benefit of hindsight, his prediction 
might seem somewhat foolish to us today. Yet, in his 
time, many people did not fully appreciate all the capa-
bilities and potential of computers. People were not used 
to solving problems with the help of computers, and it 
was not known how to use computers outside of specific 
use cases, like the aforementioned cracking of German 
codes. It took the development of the Integrated Circuit 
in the 1950s and the Microprocessor in the 1960s before 
computers started to become commonplace in industries 
and academia. Since its development, the use of comput-
ers has become widespread, as a positive feedback loop 
developed: as more and more industrial and academic 
researches were done on computers, more algorithms 
and use cases for computers were concomitantly dis-
covered. This has in turn spurred further improvements 

in the physical components of computers (famously 
described by Moore’s Law, which predicted that com-
puting power would double every two years). With more 
powerful computers, researchers had greater access to 
computing power, which allowed them to continue pro-
posing new applications for computers. The rest, as they 
say, is history.

3  Introduction to quantum computers
Quantum computers, by comparison, have a much 
shorter history. It probably starts in the late seventies or 
eighties as a science fiction topic. However, it enjoys (suf-
fers?) far more hype in popular media.

Richard Feynman is universally acknowledged as the 
first proponent of developing a quantum computer [3]. In 
1981, Feynman spoke at a conference, where he proposed 
the idea of using a quantum computer to simulate quan-
tum systems that are too hard to simulate on classical 
digital computers [4]. The difficulty of classically simulat-
ing quantum systems arises from the fact that a system’s 
Hilbert space dimension scales exponentially with the 
system size. Most famously, he summarized the problem 
in this manner: ‘Nature isn’t classical, dammit, and if you 
want to make a simulation of Nature, you’d better make it 
quantum mechanical’. He was not the only one with such 
ideas. In 1980, the mathematician Yuri Manin [5] was 
also thinking of the exponential cost in memory and pro-
cessing power that simulating a quantum many-particle 
system would require on a classical computer. The physi-
cist Paul Benioff [6] was also wondering if it was possible 
to construct a quantum mechanical Hamiltonian model 
of computation. In 1985, Deutsch described the idea of 
a quantum generalization to a class of Turing machines, 
formalizing the idea of a universal quantum computer. 
He also suggested that such devices might be endowed 
with properties that are not reproducible by any classi-
cal computer [7]. At this point, it is helpful to distinguish 
between quantum simulators which are designed solely 
to solve a specific type of problem, and programmable 
quantum devices which are the quantum generalizations 
of the Turing machines described above.

Several years later, the first quantum algorithms were 
developed that promised to solve certain contrived 
problems more efficiently than the best known classi-
cal algorithms [8, 9]. It was then shown that there was a 
separation between the class of problems solved by quan-
tum computers in polynomial time and the class of prob-
lems solved by probabilistic classical Turing machines in 
polynomial time, suggesting that it was indeed possible 
to obtain quantum supremacy, or in other words, the 
ability of quantum computers to perform computations 
that are impossible or extremely hard for classical com-
puters [10]. Not long after, Simon proposed an algorithm 
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for quantum computers that could achieve exponential 
speedups in solving an idealized version of the problem 
of finding the period of a function [11], and this led Shor 
to develop an algorithm to efficiently prime factorize 
large numbers [12]. This problem had obvious applica-
tions in modern cryptography, being able potentially to 
crack the widely used Rivest-Shamir-Adleman (RSA) 
encryption that has been pervasively applied to many 
banking systems. Shor’s algorithm thereafter sparked 
much interest in quantum computing. Soon after, Grover 
proposed a quantum search algorithm for an unstruc-
tured database that had a mathematically provable quad-
ratic speedup over the best classical algorithm [13]. This 
quadratic speedup suggests that while quantum comput-
ers will not be able to reduce all problems from expo-
nential time to polynomial time, it is still interesting to 
reduce the polynomial complexity in certain problems 
and attain substantial speedups. During this time, Seth 

Lloyd also proposed an algorithm (colloquially known as 
Trotterization) for simulating other arbitrary quantum 
systems [14] on a quantum computer, which promised 
to accomplish the task originally proposed by Feynman 
of ‘making a simulation of Nature’. A diagram illustrat-
ing how quantum computers could provide advantages, 
in the language of computational complexity classes, is 
shown in Fig. 1.

In the case of classical computing, while the Turing 
machine model of computation is conceptually very use-
ful, there are other equivalent models of computation 
such as the circuit model of computation. Two models 
of computation are said to be equivalent if the class of 
functions that can be computed on both models are the 
same. Similarly in the case of quantum computing, there 
are a few equivalent models of quantum computation to 
understand quantum algorithms and quantum comput-
ers. For example, the quantum Turing machine model of 

Fig. 1 Diagram illustrates how some relevant complexity classes, along with problem examples, relate to each other. The containment relations are 
only suggestive, with some of the relations still unknown. For example, it is still not known how the Bounded-error Probabilistic Polynomial time 
class (BPP) relates to the other classes, although it is suspected that it is a subset of NP. Another example would be the famous open question if P = 
NP. The two most important complexity classes to help us understand the potential power of quantum classes are Quantum Merlin Arthur (QMA) 
and Bounded-error Quantum Polynomial time (BQP). BQP can be understood as a quantum analog of the classical Bounded-error Probabilistic 
Polynomial time (BPP) class, which the P class is believed to be a subset of, that represents problems that can be solved efficiently on a quantum 
computer. Similarly, QMA can be understood as the quantum analog of NP, which represents problems that cannot be solved, but of which 
solutions can be checked efficiently, on a quantum computer. The precise locations where BQP is located in the hierarchy of complexity classes is 
still not known. It is hoped that there exist problems that are not in P, but in BQP, of which prime factorization is believed to be one. Such problems 
are prime candidates to demonstrate the superiority of quantum computers to classical ones. Figure heavily references [15]
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computation mentioned above is equivalent to the quan-
tum circuit model of computation [16]. This is equivalent 
to an alternative model which is somewhat less popular, 
called the adiabatic quantum computing model of com-
putation [17], which is built on the idea of achieving a 
quantum computation by utilizing the adiabatic theorem 
in quantum mechanics. By slowly evolving a quantum 
ground state from a known Hamiltonian to a compli-
cated Hamiltonian, we are able to solve any problem that 
a quantum computer built on the quantum circuit model 
is capable of solving. In this work, while we will describe 
most of the algorithms using the quantum circuit model, 
we want to emphasize that is not the only way to do so 
1. All algorithms described above, like the Grover search 
algorithm, can be described both with a quantum circuit 
model of computation and also with a adiabatic quantum 
computing model of computation [19].

4  Why NISQ?
Right from the very start, there have been skeptics 
that challenged the possibility of a quantum computer 
superseding the power of a classical Turing machine. 
Most of these arguments are founded on beliefs that 
such quantum computation devices would be exponen-
tially hard and complex to control [20–24]. The effect 
of decoherence underlies all these arguments, which is 
the phenomenon of quantum systems interacting with 
the environment over time, causing it to lose its quan-
tum behaviour. Based on the difficulty of controlling a 
quantum computer, there are arguments that claim that 
quantum computing will never be able to obtain quan-
tum supremacy [25], or at the very least, have non-triv-
ial conditions that must be satisfied in order to realize 
quantum supremacy [26].

While small scale demonstrations of algorithms such 
Shor’s algorithm, Grover’s algorithm, or Deutsch–Jozsa’s 
algorithm on early noisy quantum computers [27–30] 
have been performed, we know that it would be pointless 
to scale such algorithms up at this point in time, as the 
current error rates and noise inevitably destroy any pre-
cision in the results that we can obtain from these noisy 
quantum computers. The capability to control and pro-
tect our qubits in a quantum computer to the degree nec-
essary to run such algorithms is commonly described as 
fault-tolerant quantum computation. To achieve full fault 
tolerance, we either need order of magnitude improve-
ments in the control and stability of our physical qubits 
or need to rely on error-correcting codes. Classical 

error-correcting codes work by aiming to encode a single 
logical bit on multiple physical bits by employing redun-
dancy. However, the quantum no-cloning theorem [31] 
prevents classical methods from being applied directly on 
quantum computers. Nevertheless, in the quantum case, 
it was first shown by Shor in 1995 that it is possible to 
encode the information on one logical qubit onto a highly 
entangled state of multiple physical qubits, protecting 
it against limited errors [32]. This process is otherwise 
known as Quantum Error Correction (QEC). It was also 
shown by Shor that such methods allow us to execute a 
quantum computation reliably with noisy hardware, or 
in other words, physical qubits subjected to decoherence 
and other errors [33].

Soon after it was understood that, in principle, if the 
errors and noise affecting the quantum computer are 
below a certain threshold, it is possible in principle to 
scale up quantum computers to large devices [34–36]. 
Since then, many other types of codes have been devel-
oped, and there has been much work in this field [37–39]. 
Unfortunately, estimates of the number of physical qubits 
needed for getting a useful amount of logical qubits with 
all currently proposed error-correcting codes are mini-
mally in the range of millions [40]. Even if this is even-
tually possible, the current state of the field of quantum 
computing, with the state of the art devices maxing out at 
around a few hundred qubits, suggests that this will only 
come in the far future.

Regardless of this debate on fault tolerance, in recent 
years, there have been a few landmark experiments that 
claim that they have achieved quantum supremacy. They 
were able to carry out computations on a semi-program-
mable quantum computing device that we believe are 
not able to be computed on classical computing devices 
in any reasonable amount of time. One of the first exper-
iments to make this claim was the Google AI Quantum 
team in 2019 [41] and was closely followed by the USTC 
team and their Jiuzhang photonic quantum computer 
in 2020 [42]. Pictures of the experimental setups are 
found in Fig.  2. These quantum computers are signifi-
cant achievements in their own rights, with significant 
degrees of programmable capability and control. Yet 
we are still far away from being fault-tolerant, as these 
machines are only able to execute circuits of limited 
depth and they are subject to significant error and deco-
herence rates with low number of qubits (≈50 qubits). 
While progress has been made to increase the num-
ber of qubits, with IBM announcing recently that they 
have a quantum computer with 127 universal, control-
lable qubits [43], and Xanadu demonstrating significant 
achievements in scaling up photonic quantum com-
puters [44], these machines are still far from the scale 
needed to execute error correcting codes.

1 There is another universal quantum computing scheme, called the one-way 
or measurement-based quantum computation. In this scheme, the model is 
not reversible, yet it is shown that it is equivalent to the circuit model [18].
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In light of these developments, the term NISQ [45] 
computing was coined to refer to the current era of quan-
tum computing. This is distinct from the holy grail of the 
field in the far future, termed the fault-tolerant era of 
quantum computing. We want to emphasize that NISQ 
is a hardware-focused working definition, and does not 
necessarily imply a temporal connotation. Noisy implies 
that such quantum computers are subject to large enough 
error and decoherence rates such that their computa-
tional powers are limited. Intermediate-Scale implies 
that while they are large enough such that they are prob-
ably not able to be simulated with brute force by classi-
cal computers, they are still not large enough to be error 
corrected, which also contributes to the previous point of 
them being noisy.

In the long term, we should view the NISQ era as a 
step towards full fault tolerance and the development 
of more powerful quantum devices. We do not expect 
NISQ devices to be fully capable of realising the power 
of quantum computers. Yet this does not prevent us 
from studying the power of existing quantum computers 
and making progress in the field. However, one should 
note that we may be in this era for a long time. As such, 
research in the NISQ era is important, as we do not know 
how long we will take to realize full fault tolerance, and 
in any case, NISQ technology is exciting, as it could pro-
vide us with new tools to explore problems such as highly 
complex many-body quantum systems that are not feasi-
ble to be simulated with our current technology. Further-
more, we still do not have that many quantum algorithms 
for the fault-tolerant era, which is probably a result of 
how the rules of quantum mechanics (and thus quantum 
computation) are not sufficiently intuitive for most peo-
ple. We clearly need to take a page from the history of 
classical computers and learn from it. As classical com-
puters improved, with more and more budding computer 

programmers entering the field of computer science, the 
field has developed incredibly fast. Programmers were 
quickly able to better understand the power of classical 
computers and how to construct algorithms for them. It 
is also only natural to expect that as NISQ devices are 
promulgated, and as more and more physicists and quan-
tum computer scientists work on NISQ algorithms and 
devices, we should also expect a similar renaissance in 
the field of quantum computing. The work and knowl-
edge we produce in the NISQ era will definitely provide 
the impetus towards the fault-tolerant era.

5  NISQ algorithms
NISQ algorithms refers to those algorithms that are 
designed with the constraints of NISQ computers in 
mind. Most importantly, they are designed to be imple-
mentable on NISQ devices in the near term, i.e. the next 
few years. This also implies that NISQ programmers aim 
to use as many qubits as it is physically implementable. 
Such algorithms also promise to be somewhat tolerant 
to computational noise through error mitigation, and 
make no explicit reference to the absence of QEC. Error 
mitigation is the process by which users aim to build in 
mitigation strategies in their algorithms to account for 
the effects of computational noise [46], while as men-
tioned above QEC is the process by which methods are 
developed to build in a certain form of redundancy in the 
computation by storing information over multiple qubits 
[32, 47]. Lastly, NISQ algorithms aim to utilize only shal-
low-depth quantum circuits (right now, around a few 
hundred gates in depth at maximum) and as few compli-
cated operations (like multi-qubit controlled unitaries) as 
possible.

In this framework, neither the Shor nor the Grover 
algorithm fits into the category of NISQ algorithms. This 
is because they both rely on oracle black box functions/

Fig. 2 Figures taken from [41] and [42], with permission granted. Pictures of the two quantum computers to first claim quantum supremacy. The 
left picture is the superconducting qubit chip from Google, and the right picture is the Jiuzhang photonic quantum computer from USTC
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unitaries that need extremely long and complicated cir-
cuits for execution on a quantum computer [48]. More-
over, quantum advantage cannot be gained with just a 
few noisy qubits in these algorithms. Furthermore, these 
algorithms are not explicitly noise tolerant, as small noise 
and error rates dramatically change the results of such 
computations. Full scale Trotterization does not fit into 
the category of NISQ algorithms too, since time simu-
lation to arbitrarily long times require arbitrarily deep 
depth quantum circuits.

We realize that this definition of a NISQ algorithm is 
extremely subjective. For example, many researchers will 
have differing views on what constitutes ‘near term’, and 
what is a ‘complicated’ operation. However, we note that 
this operational definition is empirically motivated by 
the current experimental work. Most NISQ algorithms 
are run on current hardware, and many of these algo-
rithms are tested experimentally right now. This stands 
in contrast to most algorithms that require fault toler-
ance, which cannot be carried out on current quantum 
computers aside from trivial examples (such as applying 
Shor’s algorithm for finding prime factors for the num-
ber 15). Indeed, most of these algorithms explicitly state 
that they require a substantial degree of fault tolerance to 
work.

In this paper, we provide a short introduction on the 
various NISQ algorithms developed so far. However, this 
list is by no means exhaustive, and for more information, 
one should refer to the works of Bharti et  al. [15] and 
Cerezo et al. [49].

5.1  Variational quantum algorithms
In 2014, Peruzzo et al. [50] proposed the first variational 
quantum algorithm. The algorithm is now commonly 
known as Variational Quantum Eigensolver (VQE). That 
work contains all the essential concepts and tools for the 
whole range of VQAs, so we will describe that algorithm 
and its components in more detail.

Firstly, all VQAs require an objective function O . This 
objective function has the problem encoded within it. In 
the case of VQE, the problem is to find the ground state 
of a Hamiltonian H.

Secondly, all VQAs require a parameterized quantum 
circuit (PQC) that takes in a set of parameters θ. This 
PQC is generated by means of a parameterized unitary 
operation and is also typically known as the ansatz. This 
nomenclature makes a lot of sense if we define the state 
after application of the PQC as |Φ(θ)〉=U(θ)|Φ0〉, where 
θ are the variational parameters that contribute to the 
parameterized unitary operation and |Φ0〉 is some ini-
tial state that can be efficiently prepared on the quantum 
computer. Typically, this is the ground state of qubits, 

where all qubits are in |0〉. In the case of VQE, this 
means that we now can express the objective function as 
O(θ) = ��0|U †(θ)HU(θ)|�0�.

Thirdly, all VQAs need a way to measure O(θ) . This 
is usually done on a quantum computer. Typically, O(θ) 
is expressed on the quantum computer by decompos-
ing it into elementary gates that can be executed on the 
device. In the VQE case, H is a real observable and thus 
O(θ) is fully real and can be measured by applying a uni-
tary transformation on the quantum state to the diago-
nal basis of the observable (in this case H). It is especially 
easy to do so if the Hamiltonian can be written in the 
form of a linear combination of Pauli strings, which are 
just tensor products of Pauli operators. In this case, the 
unitary rotations are just Pauli rotations and measure-
ments can be done in the computational basis. By obtain-
ing the probabilities of measuring each basis state from 
the quantum computer, we can then compute the value 
of O(θ).

Lastly, the VQA relies on an classical opti-
mizer that runs on a classical computer, to mini-
mize the objective function. In the VQE case, our 
problem is to find minθ O(θ) , which corresponds to 
finding minθ〈Φ0|U†(θ)HU(θ)|Φ0〉. This sets up a quan-
tum-classical feedback loop. Thus, the whole process of 
running VQE, and by extension, most VQAs, can be suc-
cinctly summarized as:

1. Encode the problem in an objective function.
2. Choose a PQC/ansatz.
3. Optimize the objective function over the parameter 

space of the PQC/ansatz by relying on a classical 
optimizer and a quantum computer to measure the 
value of the objective function in a quantum-classical 
feedback loop.

A diagram of the major steps in a VQA is shown in 
Fig.  3. VQAs are the most explored NISQ algorithms 
developed to date. However, VQAs contain significant 
problems that must be dealt with before it can achieve 
quantum supremacy, if it is even capable of doing so. 
Most of these problems are not unique to VQAs; how-
ever due to the simplicity of the structure of VQAs, it is 
usually easiest to understand these problems from the 
perspective of VQAs.

Firstly, it is now known that the expectation value of 
the gradient of the objective function corresponding to 
randomly initialized PQCs (RPQC) decays exponentially 
to zero as a function of the number of qubits [51–53]. 
This causes the training landscape to exponentially flat-
ten as the number of qubits increases, making it expo-
nentially hard to train. This issue is commonly called the 
barren plateau problem. Even gradient-free optimization 
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routines are afflicted with this problem [54]. This prob-
lem is further compounded by the noise and errors in 
NISQ quantum computers [55]. It has been argued that 
the barren plateaus have their roots in the volume-law 
growth of entanglement in quantum systems [56] and 
that there are fundamental tradeoffs that have to be made 
between the ansatz expressibility and the trainability [57], 
and these works indicate that it is usually hard to discuss 
this problem without also discussing the expressibility 
problem of the ansatz (see later discussion). There have 
been many proposals to circumvent this problem focus-
ing mainly on changing the ansatz structure [58–60], 
or changing the encoding of the problem [61, 62], or 
devising schemes to obtain good parameters [63, 64] or 
training the PQC layer by layer [65, 66]. Yet, it remains 
unclear if these methods can indeed overcome the bar-
ren plateau problem in NISQ devices. These methods 
can also impose additional constraints, for example the 
proposed PQCs/ansatz that are supposed to avoid the 

barren plateau are usually not hardware efficient in cir-
cuit design and hard to implement on a NISQ computer. 
Some alternative methods that are proposed to avoid the 
barren plateau, for example, by utilizing classical shadows 
[67], exist but we still need further study to determine if 
such techniques really provide a solution.

Secondly, the choice of PQC/ansatz is not always 
clear. The optimal PQC that we choose should be both 
trainable (discussed above) and expressible. Express-
ibility concerns whether the PQC is able to reach/
access most parts of the Hilbert space and thus whether 
it is able to generate a rich class of quantum states. The 
number of PQC layers, parameters or entangling gates 
required to achieve a given accuracy is also linked to 
the expressibility of the circuit. Unfortunately, stud-
ies have shown that, typically, the more expressible we 
make our PQC, the less trainable is the circuit [57], up 
to the point where we over parameterize the circuit. 
There is also no well-agreed measure of expressibility. 

Fig. 3 Figure adapted from [15]. Diagrammatic representation of a typical VQA. In the input stage, we encode the problem in an objective 
function, and next choose a PQC/ansatz. The circuits are then measured. This is typically achieved with basis changes or the help of Hadamard tests 
(labelled in red in the diagram), depending on the objective function. A classical optimizer is used to update the parameters. This gives rise to the 
quantum-classical feedback loop. At the end, after the optimizer has found the optimal parameters to minimize the objective function, we read out 
the result to gain the desired output
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One proposed way is to measure how distributions of 
the fidelity of randomly generated states using the PQC 
differ from a similar distribution generated with Haar-
random states, along with usage of the Meyer-Wallach 
Q measure [68] to estimate how well and what classes 
of entangled states a particular PQC can generate [69]. 
Another proposed measure is the parameter dimension 
of the PQC, which calculates the number of redundant 
parameters a PQC possesses [60]. Ideas from classical 
Fisher Information have also been used to characterize 
expressibility [70]. Many classes of circuits have been 
investigated with both measures [59, 60, 69], and it has 
been shown that certain PQC structures are indeed 
more expressible than others.

Thirdly, for the measurement step, in the general case, 
this overlap could have both real and imaginary parts. If 
so, the measurement step will be slightly more involved, 
requiring Hadamard tests, which comes at the cost of 
more complicated circuits and an additional ancillary 
qubit requirement [71, 72]. However, this problem is usu-
ally not as serious as the previous two and can be over-
come by using methods found in [73].

Many VQAs are variants of VQE that deals with the 
problem of finding the spectrum of a given Hamiltonian. 
While the problem of estimating the ground state and its 
energy of a Hamiltonian is not expected to be efficiently 
solvable on a quantum computer in general [74], there is 
hope that approximate solutions can be found quicker, 
and also for larger systems, compared to what is possible 
on classical computers. Some notable developments on 
VQE are (i) those that adaptively improve the ansatz [75, 
76], (ii) those that reduce the amount of qubits needed 
[77], (iii) those that improve the evaluation of gradients 
[78], (iv) those that extend it to open systems [79] and 
(v) those that use it to find excited states [80–82], just to 
name a few examples.

VQAs for simulating Hamiltonian evolution have 
also been developed. The most notable example is the 
Variational Quantum Simulator (VQS) [83–85]. Other 
interesting VQAs that deal with Hamiltonian evolution 
include those that restrict the evolution to a subspace 
[86], those that rely on finding approximate projections 
of the action of the time evolution operator on an ansatz 
[87, 88] and those that find approximate diagonalization 
of the time evolution unitary [89–91].

5.2  Quantum annealing
Introduced as the quantum analogue of simulated 
annealing (SA) [92], quantum annealing (QA) [93–95] is 
a heuristic (no guarantees on quantum speedup) optimi-
zation algorithm that aims to solve complex optimization 
problems [96]. This is done by encoding the solution of 

the problem into the ground state of what is called the 
annealer Hamiltonian [97] which is usually the transverse 
field Ising Hamiltonian,

 where σ z
i  is the Pauli Z operator on the ith site of the 

Ising model. Many optimization problems like job sched-
uling and chain optimization problems, with diverse 
applications, can be mapped into the problem of find-
ing the ground state of such a transverse field Ising 
Hamiltonian.

In many cases, modelling the optimization problem 
is equivalent to a transformation of the Ising problem 
into a quadratic unconstrained binary optimization 
(QUBO) [98]. The QUBO formulation is then con-
verted into a logical graph where nodes represent the 
variables and edges represent the interaction between 
the variables. Such logical graph naturally lends itself in 
the hardware implementation of the problem with the 
hardware implementation happening via a map called 
minor embedding of the logical graph into the physical 
graph of the quantum processing unit (QPU).

Once the hardware mapping is complete and the sys-
tem is initialized into the ground state of an easy-to-
solve Hamiltonian, the annealing process begins. This 
process is best understood the mechanism of stimu-
lated annealing. The idea behind SA is that by starting 
in an initial random state at high temperature, and by 
adiabatically cooling the system, we are able to find the 
final ground state. Thermal excitations will allow the 
system to escape from local minima and relaxations 
during the cooling process.

In contrast, QA optimization makes use of quantum 
fluctuations as induced by the energy-time uncertainty 
relation to reach the optimum state. It starts out with 
an initialization of the system in a Hamiltonian that 
consists of the transverse field Ising Hamiltonian that 
encodes the QUBO problem, plus a kinetic term,

 where Hkin = − i σ
x
i  . Γ(t) is initialized at a high value 

such that the kinetic term dominates, and the ground 
state of such a Hamiltonian is a universal superposition 
of all the possible classical configurations. By adiabati-
cally decreasing Γ(t) under some cooling schedule to zero, 
the quantum system stays near its instantaneous ground 
state. The goal is that at the end of the ‘cooling process’, 
the system lies in the true ground state of the final Ham-
iltonian, allowing us to access information about the 
solution of the optimization problem encoded in the 
Hamiltonian. The solution is typically read out via spin 

HIsing = −
∑

i

Jiσ
z
i −

∑

i,j

Jijσ
z
i σ

z
j

HInitial = HIsing + Ŵ(t)Hkin,
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measurements of the final configuration. The annealing-
readout step is repeated several times to determine the 
distribution of the final configuration states.

In such a process, quantum tunneling takes the role of 
thermal fluctuations, in which the system is able to escape 
instantaneously the local minima and explore neighbour-
ing state space. The quantum fluctuations are parameter-
ized by Γ(t), which explains why the term is usually called 
the kinetic term, as it provides a visual interpretation of 
the term and reveals its role in the annealing process. At 
high Γ(t), the system experiences very strong quantum 
fluctuations, allowing it to access almost all states, and as 
it cools down to zero ‘temperature’, the quantum fluctua-
tions eventually diminish and allow us to slowly hone in 
on the true ground state.

There has been reasonable evidence to show that while 
in theory, QA can obtain significant speedups versus SA 
and other classical methods [99], there are conditions 
that might not be possible on an physical quantum device 
[100]. A crucial parameter that governs the accuracy of 
this optimization is the time scale over which the entire 
optimization occurs. Long enough time scales guarantee 
convergence to the ground state solution but short time 
scales could lead to the system converging to an excited 
state; therefore, there is a fundamental trade-off between 
computing time and computational accuracy of the QA 
optimization process.

QA also has applications in random sampling where 
sampling from many low energy states of the annealer 
helps to characterize the energy landscape. QA is closely 
related to one of the universal models of quantum com-
puting, i.e. adiabatic quantum computing [101]. Indeed, 
it was first proposed as a practical implementation of adi-
abatic quantum computation. However, the current state 
of the art QA processors, for example those manufac-
tured by D-Wave systems consisting of ∼ 2000 supercon-
ducting flux qubits [102], can only implement a subset of 
protocols required for universal quantum computation. 
Thus, practical implementations of QA still leaves plenty 
of room for improvement. More technical details about 
QA can be found in [98, 103].

5.3  Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm, 
or QAOA for short, was introduced [104] as a way to 
solve combinatorial optimization problems on a quan-
tum computer. As explained in Combinatorial optimi-
zation  section, all combinatorial optimization problems 
can be interpreted as problems of finding the eigenvector 
corresponding to the largest eigenvalue of a Hamiltonian 
that is diagonal in the computational basis. The QAOA 
algorithm can be regarded as a variational quantum algo-
rithm where one uses an ansatz inspired by quantum 

annealing to maximize the expectation value of a Ham-
iltonian Hc that is diagonal in the computational basis. 
More specifically, the variational ansatz is written as

where Hm =
∑N

j=1 σ
x
j  is identical to the kinetic term in 

quantum annealing. This term Hm is also known as the 
mixing Hamiltonian. Here, |+� = 1√

2
(|0� + |1�) , and 

β=(β1,…,βp),γ=(γ1,…,γp) are the variational parameters 
that are to be optimized to maximize the following objec-
tive function O = �ψ(β , γ )|Hc|ψ(β , γ )� . Similar to quan-
tum annealing, the idea is to consider the following 
time-dependent Hamiltonian

For large T, by starting in the lowest energy eigen-
state of −Hm which is |+〉⊗n, the system ends up in the 
lowest energy eigenstate of −Hc as t→T. By identify-
ing 

(
e−iHcβpe−iHmγp

)
. . .

(
e−iHcβ1e−iHmγ1

)
 as the Trot-

terization of H(t) above, we arrive at the QAOA ansatz. 
As mentioned in [104], larger values of p in the ansatz 
lead to better approximate solutions. The success of the 
QAOA algorithm is mathematically guaranteed as p→∞ 
since the Trotterization becomes exact in that case.

It can be easily seen that QAOA shares similarities 
with quantum annealing. They both rely on an additional 
term that does not commute with the problem Hamilto-
nian, and whose role is to allow for quantum fluctuations 
to explore nearby states. However, some key differences 
exist. Firstly, while the goal in quantum annealing is to 
retain the state in its instantaneous ground state at all 
times, and to eliminate slowly the kinetic/mixing Hamil-
tonian, in QAOA, we are actually trying to alternate time 
evolution frantically between the problem Hamiltonian 
and the kinetic/mixing Hamiltonian. Secondly, we have 
in theory an infinite number of steps and we can easily 
choose parameters so that we follow the quantum anneal-
ing path with QAOA (and also guarantee the success of 
the algorithm); in practice, we want to avoid this way of 
doing things. We typically aim to solve the problem with 
as few steps as possible. In short, the QAOA algorithm 
can be regarded as an optimized cooling schedule for 
quantum annealing.

It should be noted that since we are limited to shallow 
circuits in the NISQ era, we are constrained to small val-
ues of p and hence approximate solutions to these combi-
natorial problems. Even so, QAOA remains a promising 
candidate algorithm for quantum advantage in the NISQ 
era, since it has been proven (under some reasonable 

(1)

�ψ(β , γ )� =
(

e−iHcβpe−iHmγp
)

. . .

(

e−iHcβ1e−iHmγ1
)

︸ ︷︷ ︸

p times

|+�⊗n.

(2)H(t) =
t

T
(−Hm)+ (1− t/T )(−Hc).
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complexity theoretic assumptions) that classical comput-
ers are unable to reproduce the output probability distri-
bution of the bit strings generated by p=1 QAOA [105]. 
The performance of QAOA in the NISQ era can also be 
improved by slightly modifying the QAOA algorithm to a 
variant known as adaptive QAOA [106, 107]. Apart from 
solving combinatorial problems, QAOA can also be gen-
eralized to a form where it can be used to perform uni-
versal quantum computation [108, 109].

5.4  Boson Sampling/Gaussian Boson Sampling
Right at the beginning, there were questions on whether 
it is possible to achieve quantum supremacy in quantum 
computers, and how might one achieve it quickest. In 
2011, Aaronson and Arkhipov proposed Boson Sampling 
as a candidate to achieve this feat [110]. The algorithm is 
designed with the expressed intention of demonstrating 
quantum supremacy.

Boson Sampling considers the scenario of a Fock state 
of n photons entering an optical circuit of m modes. 
The optical circuit implements a series of phase shift-
ers and beam splitters, with the phase shifters acting 
on a single mode j by adding a specified phase θ to that 
mode, Rj(θ) = exp (iθa†j aj) , and beam splitters acting 
on two modes j and k by modifying them in the man-
ner B(θ ,φ) = exp (θ(eiφaja

†
k − e

−iφa†j ak )) , where aj(a†j ) is 
the annihilation (creation) operator for the mode j. On 
a typical optical circuit with modes arranged in one-
dimension, with sufficient phase shifters and beam split-
ters acting on adjacent modes, it is possible to implement 
an arbitrary m×m unitary matrix U on such a circuit 
[111–113] with post-selection. Aaronson and Arkhipov 

discovered that by sampling from the distribution of pho-
tons that passed through the optical circuit, the perma-
nent of a related matrix could be efficiently calculated. 
As an illustration of how the algorithm works, we refer 
the reader to Fig. 4. Suppose we inject photons in the first 
three wave guides, denoted by the creation operators of 
the photons by a†i  (i=1...3) and study the probability of 
getting the photons at the third ( b†3 ), fifth ( b†5 ), and sixth 
( b†6 ) outputs. The input and output ports are related to 
each other by the relation a†i =

∑

j Tijb
†
j  . We see that

and by focusing on the term with b†3b
†
5b

†
6 , then we see 

the probability of getting photons in output ports 3, 5 and 
6 is proportional to

Interestingly, while calculating the determinant of a 
large matrix is tractable, thanks to Gaussian elimination, 
the permanent of a large matrix is computational hard. 
Indeed, there is no known efficient classical algorithm to 
accomplish such a task, and it is believed to be extremely 
unlikely due to the implications it would have on the pol-
ynomial hierarchy in computational complexity theory 
[115]. Consequently, a successful Boson Sampling experi-
ment would be a demonstration of quantum supremacy.
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Fig. 4 Figure adapted from [114]. An illustration of the Boson Sampling procedure. a N photons are injected into an interferometer T that simulates 
an unitary matrix. b By obtaining the probabilities of observing the output distribution of the photons n  , the permanent of a submatrix in T can be 
subsequently calculated, Pr(n  )=|Perm(Ts)|
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However, the original Boson Sampling approach is 
difficult to scale up and implement experimentally. The 
biggest problem is the requirement of a reliable source 
of many indistinguishable photons. The most widely 
used method of generating single photons is Sponta-
neous Parametric Down-Conversion (SPDC) for many 
reasons, with two big reasons being its experimental 
simplicity and high photon indistinguishability. How-
ever, the SPDC process is probabilistic in nature, and 
this implies that if we would want to scale up the pro-
cess and simultaneously produce a large amount of 
indistinguishable single photons, the probability of 
doing so would be exponentially rare, with it scaling 
as O(pN), where p is the probability of a SPDC pro-
cess generating a single photon at a given time, and N 
the number of photons one would want to generate 
spontaneously.

To overcome these experimental limitations, Gauss-
ian Boson Sampling (GBS) was proposed in 2017 [116]. 
This proposal was born out of the fact that experi-
mentally, Gaussian input states, states of light whose 
Wigner quasi-probability distributions are of Gauss-
ian shape, are much easier to produce and manipulate 
than pure single photon Fock states, and they can be 
created deterministically. This modifies the problem 
slightly; instead of sampling and calculating the per-
manent of a matrix in the original Boson Sampling 
case, we now solve a slightly different problem of sam-
pling and calculating the Hafnian function of a matrix 
in the GBS case. The Hafnian is also in the complexity 
class #P, which means it is not believed to be solvable 
by a classical computer in polynomial time, implying 
that it is known to be a computationally hard problem. 
Solving the GBS would probably demonstrate a form 
of quantum supremacy. It was first experimentally 
demonstrated in 2019 [117] with up to 5 photons, and 
barely a year later, the same group demonstrated a GBS 
experiment on a scale that is believed to be not clas-
sically simulatable, possibly demonstrating quantum 
supremacy [42]. A detailed analysis on GBS can be 
found in [114].

While Boson Sampling/GBS has designed for the sole 
purpose of demonstrating quantum supremacy, with no 
expected practical applications, there have been propos-
als that suggest that it can be used for calculating molec-
ular vibronic spectra in quantum chemistry [118–120], 
for sampling ground states of a classical Ising model [121] 
and for finding dense subgraphs [122].

As one might expect, the development of Boson Sam-
pling and GBS is closely linked with the development of 
photonic quantum computing platforms. More details 
on the technology used can be found in our later section 
discussing photonics as a quantum computing platform. 

While the capability to perform Boson Sampling/GBS is 
not a form of universal quantum computing, it is typically 
seen as an experimental step towards realising universal 
quantum computing on photonics.

5.5  Quantum‑assisted methods
Apart from VQAs mentioned above, another class of 
NISQ algorithms which we call quantum-assisted meth-
ods have been proposed [123–127]. These methods can 
be used for both finding the ground state energy of a 
given Hamiltonian and also for simulation of time evolu-
tion under a given Hamiltonian.

There are three main steps in this techniques. The first 
step is to first construct an ansatz state |ψ(α)� =

∑

i αi|χi� 
where the states |χi〉 are related to the Hamiltonian H of 
the problem. There are many possible ways to construct 
these problem-aware states |χi〉, but one particular choice 
of states that has been extensively used is the cummu-
lative K moment states, first proposed in [123]. These 
cummulative K moment states are based on the idea of 
generating a Krylov subspace for the Hamiltonian H, 
which suitably encode the information about the problem 
information H. The next step is to construct the so-called 
D and E matrices by measuring on a quantum computer 
the matrix elements Dij=〈χi|H|χj〉 and Eij=〈χi|χj〉 respec-
tively. For this step, there are certain simplifications that 
can be made based on the choice of states |χi〉 in the 
ansatz. For example, if the cummulative K moment states 
are used for the case where H is written as a linear com-
bination of Pauli strings, then the measurement of the 
abovementioned matrix elements reduces to the prob-
lem of sampling an efficiently-preparable quantum state 
|ψ0〉 in different Pauli-rotated bases, which is easy to do 
on a NISQ computer. The last step is to do some classi-
cal post-processing with the D and E matrices on a classi-
cal computer. For the Hamiltonian ground state problem, 
the goal is to obtain the vector α∗ from the D and E 
matrices such that the ansatz state |ψ(α∗)� =

∑

i α
∗
i |χi� 

corresponds to the lowest energy eigenstate. For the 
Hamiltonian simulation problem, the goal is to obtain the 
time-dependent vector α(t) from the D and E matrices 
such that the ansatz state |ψ(α(t))� =

∑

i αi(t)|χi� corre-
sponds to the state of the quantum system at time t.

From the above description, we see that similar to 
VQAs, the main idea is to use a classical computer 
together with a noisy quantum computer leveraging on 
the strengths of both types of computers. However, there 
are many important differences between the quantum-
assisted methods and VQAs. Firstly, unlike VQAs, we see 
that the quantum-assisted methods do not rely on a feed-
back loop between a classical and a quantum computer, 
since all the required quantum computation is done in a 
single step. This is an advantage over VQAs, because the 
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classical-quantum feedback loop can be a major bottle-
neck when running VQAs on cloud-based quantum com-
puters, since each job for the quantum computer needs 
queuing and jobs have to be submitted to the quantum 
computer at each iteration of the feedback loop. Sec-
ondly, because the quantum assisted methods do not use 
a parametric quantum circuit, they avoid the barren pla-
teau problem that typically plagues VQAs.

5.6  Hamiltonian evolution with Trotterization
On classical computers, one method that is commonly 
used in simulating quantum dynamics is to utilize the 
Trotter-Suzuki [128, 129] decomposition of the unitary 
time evolution operator into small discrete steps. This 
allows us to approximately factorize the time evolu-
tion operator, avoiding the need to exactly diagonalize 
the Hamiltonian. The structure of such a method lends 
itself naturally to developing a similar method for simu-
lating time-dynamics on quantum computers, and such 
a scheme is the idea behind the Trotterization algorithm 
mentioned above.

On a quantum computer, the evolution of a state 
under a Hamiltonian for long times is broken down 
into small steps. Each step is individually made up of 
efficiently implementable quantum gates, which can be 
run on the quantum computer. Due to its simplicity, 
there has been much theoretical analysis and experi-
mental work on applying Trotterization on quantum 
computers [14, 130–135]. However, as mentioned pre-
viously, this method is currently thought to be unfea-
sible for NISQ devices for long time evolution, as the 
number of gates needed and the length of the circuit 
grow linearly with the length of time one wants to 
evolve the state for. More prohibitory, the complexity 
of implementing a circuit also grows exponentially with 
the size of the system [136].

There have been some proposed solutions to cut down 
the gate count of Trotterization, mainly focusing on 
compressing the gates needed [137], and on mitigating 
the errors from using a smaller amount of trotter steps 
[138, 139]. Regardless, we would probably need to wait 
for fault-tolerant quantum computers, or at the very 
least quantum computers with much better qubit quality, 
before Trotterization is able to be implemented with high 
fidelity [140, 141].

6  Current NISQ platforms
For quantum computing hardware, DiVincenzo outlined 
five key criteria to assess the suitability of the hardware 
for quantum computation tasks. DiVincenzo’s five crite-
ria [142] include:

1. A scalable physical system containing well-defined 
qubits.

2. The ability to deterministically initialize the system 
into a well-defined initial state.

3. A set of universal quantum gates, such as single-qubit 
and entangling two-qubit gates.

4. Qubit decoherence times are much longer than gate 
times.

5. The ability to perform measurements on the qubit 
state with high accuracy.

Progress and developments in these criteria help us 
progress towards building a fault-tolerant quantum com-
puter. But until the quantum computing hardware fully 
satisfies all the criteria to the point where we can easily 
scale up the number of qubits and still have error rates 
low enough to implement error correction codes, we will 
be in an intermediate stage of the development of quan-
tum computers. It is useful to think of this development 
as a series of stages. An illustration of how the different 
stages look like and how they build upon each other is 
shown in Fig. 5.

All the different platforms have unique strengths and 
weaknesses with respect to the criteria given above. 
Hence, it is still unclear which is the preferred platform, 
especially for NISQ computation. We describe the main 
platforms that have seen the most success so far below.

6.1  Superconducting qubits
Superconducting qubits [143–146] are the current lead-
ing candidates in the race for large-scale quantum com-
putation [147–149]. They are unlike other microscopic 
models of quantum computation in that they are con-
structed out of electrical circuit components such as 
capacitors, Josephson junctions and inductors. These 
qubits take advantage of the phenomena of supercon-
ductivity [150] and the Josephson effect [151–153] to 
emulate the energy level structure of a 2-level system, 
thus transforming the circuit into an artificial atom. 
The field started with 3 basic types of superconducting 
qubits which were the charge, flux and phase qubits. The 
performance of these qubits saw improvements as the 
techniques of fabrication, measurement, and material-
based coherence were studied and improved. Further 
diversification in the type of qubits came with quantro-
nium [154], transmon [155] and fluxonium [156] qubits 
which are constructed of the same components but seek 
to improve performance by reducing decoherence and 
improve upon the robustness of the hardware designs.

Recent demonstrations of high fidelity qubits and gates 
from major technology players such as Google [41, 157–
159] and IBM [43] have elevated the superconducting 
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platform as one of the primary choices for demonstrat-
ing NISQ era advantage. Current state of the art super-
conducting qubit hardware uses multi-step processes to 
fabricate the qubit on thin films of superconductors such 
as aluminium or niobium. These devices are placed in a 
conductor to provide electromagnetic insulation and 
kept in thermal contact with ∼ 10 mK stage of a dilution 
refrigerator [160]. Further, they are coupled to microwave 
resonators which facilitate control operations on the 
qubit using microwave signals [161]. The best supercon-
ducting devices are now able to achieve coherence times 
nearing a millisecond [162], while gate types are typically 
in the order of tens of nanoseconds [149] and gate fideli-
ties usually around 99.5−99.9% [163, 164]. Despite much 
hype that these future devices, current NISQ demonstra-
tions are unable to outperform the best classical comput-
ers in all scenarios except sampling solutions of a random 
circuit. However, a computational advantage seems 
within reach with improvements in the number and qual-
ity of qubits.

Google, in 2019 [41], reported the first demonstration 
of quantum supremacy using their quantum processor 
named Sycamore which constitutes of 53 transmon-type 
qubits. The qubits were individually controllable and the 

processor enabled turning on or off nearest neighbour 
2-qubit interactions using 86 couplers. The task that this 
processor performed was that of sampling the output 
of a pseudorandom quantum circuit; this choice was 
based on the fact that the time taken by the best classi-
cal algorithm to perform the simulation of the random 
circuit sampling would scale exponentially in the num-
ber of qubits. Google claimed that the Sycamore pro-
cessor performed the target computation in 200 s, and 
estimated that the best classical supercomputer running 
the most efficient algorithm would take 10,000 years to 
achieve the same result. This result has been followed 
by other demonstrations [157–159] where the particu-
lar task is assumed to be beyond the reach of best clas-
sical processors and performed on quantum processors 
with increasing number of qubits. Yet, admittedly we 
need to acknowledge the immense advancement in the 
science and technology of superconducting system in 
recent years.

Other than small-scale version of quantum algo-
rithms such as Deutsch-Jozsa, Grover search [29] and 
Shor’s algorithm [165], NISQ algorithms like VQE have 
been run on superconducting computing hardware. The 
ground state energies of molecules including H2 [166], 

Fig. 5 Figure modified from [143]. As we progress in time, we hopefully will be able to progress from the lower stages to the higher stages, building 
on the foundation those earlier stages gives us. The best platforms right now are somewhere between the third (Quantum Non-Demolition 
measurements) and fourth (logical memory) stages, where computers are starting to be able to perform error correcting codes to build logical 
qubits from physical qubits. Except for the last two stages which herald the start of the fault-tolerant era, all previous stages of development 
generally belong to the NISQ era. We also point out that progressing from a lower to higher stage does not imply that no further work must be 
done to improve the techniques required for lower stages. For example, improving the control of the operations on single physical qubits should be 
a goal during the entire timeline of development, even after logical qubits replace physical qubits in computation
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LiH and BeH2 [167] have been approximated with VQE 
methods on such hardware. The QAOA algorithm was 
also demonstrated in [168] using a 19-qubit supercon-
ducting processor.

Superconducting qubits have also seen some success in 
quantum simulation, where qubit-based hardware is used 
to simulate a quantum system to study its properties. 
The key idea is to mimic almost exactly the time evolu-
tion of the quantum system of interest with control-gate 
operations in a quantum circuit. Digital and analog simu-
lation are the two sub-routes being explored with super-
conducting qubits. The digital scheme has been applied 
in the case of superconducting qubits by making use of 
the Jordan-Wigner transformation which maps Fermi-
onic operators to Pauli operators [133]. Circuit QED-
based digital simulation with transmon qubit setups 
were shown in [169, 170]. Further, an adiabatic algorithm 
was digitally simulated using up to 9 qubits and 1000 
quantum gates in [132]. These examples show remark-
able progress in digital simulation; however, the accuracy 
required for scaling up remains challenging due to gate 
errors. Substantially reducing gate errors constitutes a 
current challenge for digital simulation.

There have also been many proposals to use supercon-
ducting qubits in analog simulation as well. By tuning 
the parameters such that we physically mimic a complex 
many-body Hamiltonian with the hardware. An array of 
coupled superconducting qubits was used in [171, 172] to 
emulate the interactions of ultra-strong and deep-strong 
coupling regimes of light-matter interactions. Quantum 
walks of one and two strongly correlated microwave pho-
tons were demonstrated using a 1-D array of 12 super-
conducting qubits with short-range interactions in [173]. 
Open quantum system-related problems such as the 
Spin-Boson model were also realized using supercon-
ducting qubits coupled to an electromagnetic environ-
ment in [174]. Such analog simulation suffers from the 
same issue of finite coherence of qubits and gates, but 
approaches which model the environment’s interaction 
using noisy channels are being further explored.

Finally, we also must mention advances in quantum 
annealing where progress has been made with ∼ 2000 
superconducting qubits on a chip manufactured by 
D-Wave Systems to simulate 3D Ising spin lattices [175, 
176], out-of-equilibrium magnetization in frustrated 
spin-chain compounds [177] and coherent quantum 
annealing in a 1D Ising chain [178].

6.2  Trapped ions
An ion trap refers to the use of electromagnetic fields and 
laser cooling to control the spatial position of ions and 
consequently reduce the temperature of the ions. The 
scheme was suggested just a year after Shor’s algorithm 

in 1995 [179]. Early experimental implementations, espe-
cially demonstration of their entangling capabilities, soon 
followed [180, 181].

The main idea behind trapped ion technology is to use 
the two different internal states of the trapped ion as the 
two-level system. Thus, a quantum computer could look 
like an array of trapped ions where each ion is effec-
tively treated as a qubit. Some possible internal states 
that can be used include states of different orbital angu-
lar momentum, the fine structure states of the ion or 
the hyperfine states of the ion. The resultant qubits are 
respectively called optical qubits, fine-structure qubits 
and hyperfine qubits. One can even add an external 
magnetic field to split the different magnetic sublevels 
with the same orbital angular momentum and use those 
states, with the resultant qubit being known as a Zeeman 
qubit. These different qubits have their own strengths 
and weaknesses. Single qubit gates on the qubits can be 
implemented by driving Rabi oscillations on the ions 
through resonant laser pulses [182], whereas two-qubit 
entangling gates can be performed by manipulating the 
motional degree of freedom of a chain of ions in the trap 
together with the internal states of the qubits [183]. State 
preparation is done by optical pumping to a well-defined 
electronic state. Qubit measurement is done by exciting 
one of the qubit levels to a higher level auxiliary short-
lived level and detecting the fluorescence, which can be 
performed to a very high fidelity [184]. It is known that 
state preparation, qubit measurement, single-qubit and 
entangling two-qubit gates can all be performed with 
fidelities higher than what is required for quantum error 
correction [185–187]. Lastly, ion coherence times are 
much longer than gate times, where the coherence times 
range from 0.2s for optical qubits [188] to up to 600s for 
hyperfine qubits [189]. On the other hand, single-qubit 
gates times are on the order of a few microseconds, and 
two-qubit gate times are typically on the order of 10−100 
µs. It can be seen that trapped-ion technology for a quan-
tum computer easily fulfils all 5 points of the DiVincenzo 
criteria.

Trapped ion quantum computers have registered rea-
sonable success. Small-scale, fully programmable trapped 
ion quantum computers have been developed [190–193]. 
Small-scale demonstrations of fault-tolerant algorithms 
like the Bernstein-Vazirani algorithm [194] and Shor’s 
algorithm [195] have been achieved on the platform, 
along with NISQ algorithms like VQE [196]. Analog sim-
ulations of spin and spin-boson models have also been 
performed on larger trapped ion arrays [197–199].

However, there are certain weaknesses with trapped-
ion technology. Firstly, even though gate times are 
shorter than the coherence times, the gate times are long 
compared to other quantum computing platforms, e.g. 
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superconducting platform where gate times is done in 
around 10 ns. Hence, quantum algorithms with a large 
number of gates will take a comparatively longer time to 
run on these trapped ion quantum computers. Further-
more, scaling up the system to a larger number of qubits 
is quite a challenge for trapped-ion technology. It is dif-
ficult to address and measure a large array of ion qubits 
with bulk optical components, since a large number 
of these bulk optical components will be needed. This 
problem also challenges scalability of the system. Fur-
thermore, since two-qubit operations are done by manip-
ulating the motional states of a chain of ions, it becomes 
harder to control the motional degree of freedom as the 
number of ions in the chain increases. The decrease of 
the Lamb-Dicke factor as the system size increases also 
means that two-qubit operations will become slower, 
although there are proposals to move out of the Lamb-
Dicke regime [200].

Some companies have already started to commercial-
ize the technology behind ion trap quantum comput-
ers, such as Honeywell and IonQ. Benchmarks for the 
IonQ quantum computer can be found in [193]. As com-
pared to other commercial platforms such as Rigetti and 
Google, the IonQ quantum computer has a smaller num-
ber of qubits, yet arguably the qubits in the IonQ com-
puter are of higher quality, as quantified by the single 
qubit and two-qubit gate fidelities. Some good reviews on 
trapped-ion quantum computing can be found at [201, 
202]. A discussion on the material challenges such a plat-
form faces can be found here [203], and a pedagogical 
discussion on the experimental techniques can be found 
in [204, 205].

6.3  Photonics
Optical quantum systems have always been prominent 
candidates to realize quantum computing right from the 
start [206]. They utilize the knowledge in the mature field 
of quantum optics to manipulate quantum states of light 
to perform quantum computations.

Photonic platforms inherently have some experimen-
tal advantages over other platforms. For example, the 
quantum information is typically encoded in the pho-
tons. Photons do not interact much with each other nor 
with the environment. They are thus potentially free 
from most decoherence. Unfortunately, this is also its 
downside, as it is hard to get individual photons to inter-
act with each other, and thus, it is hard to implement 
two-qubit quantum gates. Initial proposals to introduce 
interactions between photons revolved around two 
main proposals: either representing n qubits as a single 
photon in  2n different modes/paths [207], or using non-
linear components, like a Kerr medium [208, 209]. Such 
methods were either not scalable, in the case of the first 

proposal, or extremely hard to implement experimen-
tally, in the case of the second proposal [210].

In 2001, Knill, Laflamme and Milburn showed that, in 
principle, universal quantum computing was possible on 
a photonic platform, with just beam splitters, phase shift-
ers, single photon sources and photon detectors [211]. 
This is a notable result as it does not require the use of 
the non-linear couplings between optical modes, except 
perhaps during the preparation of initial states, making 
it much easier to implement experimentally. Nonlin-
earity can of course be induced with post-selection, but 
this option makes the scheme probabilistic. The proto-
col, known as the KLM protocol, however also shows 
that such a platform needs an exponential amount of 
resources to overcome the probabilistic nature of linear 
optics.

Therefore, photonic quantum computers continue to 
be plagued with significant scaling problems, mostly 
stemming from the fact that the KLM protocol is largely 
probabilistic in nature. Since it is hard to produce sin-
gle photons deterministically (see Section  5.4), it also 
means that any quantum computer would struggle with 
either reliably generating single photons on a large 
scale, or reliably combining them into larger quantum 
states. One alternative proposed is to utilize Gaussian 
states, or in other words, squeezed states of light that 
are not comprised of single photons, which are experi-
mentally much easier to control [212]. This method is 
closely linked to continuous variable quantum computa-
tion, which is a form of quantum computing that relies 
on infinite-dimensional Hilbert spaces, instead of qubits 
with a finite-dimensional Hilbert space. More informa-
tion on the continuous variable approach can be found 
in [213–215].

Due to certain technical differences between photonic 
quantum computers and other quantum computing plat-
forms, the development of photonic quantum comput-
ers, especially in the last 5 years, is closely linked with 
the development of the boson sampling/GBS algorithms. 
While we expect that a fully developed photonic quan-
tum computer will be universal and able to execute any 
quantum algorithm, to date, most experiments on pho-
tonic platforms are variants of boson sampling/GBS 
[216]. Yet with just boson sampling, as mentioned in 
Section  5.4, photonic quantum computing has proved 
to be one of the first few platforms to claim quantum 
supremacy [42]. Indeed, integrated photonic chips can be 
applied easily to artificial neural networks [217, 218] and 
quantum key distribution [217, 219]

Some companies have started to commercialize the 
technology behind photonic quantum computers. For 
example, Xanadu has developed a full-stack hardware-
software system for an integrated photonic chip, which 
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is capable of running algorithms on photonic chips that 
require up to eight modes of squeezed vacuum states ini-
tialized as two-mode squeezed states in a single temporal 
mode, and a programmable four-mode interferometer 
[220]. While their first photonic chip is small compared to 
larger photonic platforms (such as the ones used in large 
scale GBS experiments like in [42, 117]), they believe that 
such a platform is easily scalable, especially with recent 
advances in chip manufacturing technology, while retain-
ing its ability to be dynamically programmed. Recently 
they announced a photonic processor that is capable of 
performing a GBS experiment on 216 squeezed modes 
with the help of a time-multiplexed architecture [44]. 
One should also note that photons are excellent platform 
for quantum communications [219, 221, 222]. Some good 
reviews on photonic quantum computing can be found at 
[212, 223, 224]. A good experimental discussion on how 
we might be able to construct a scalable photonic quan-
tum computer can also be found at [225].

6.4  Other platforms
Other than the three platforms mentioned above, there 
exist many other proposals to build a quantum computer. 
However, the majority of these platforms struggle with 
scaling their platforms past a few qubits at this point. 
Some notable examples, and by no means exhaustive, are:

– Nuclear magnetic resonance (NMR) quantum com-
puters. Such devices utilize the spin states of nuclei 
within chemical molecules as qubits. While this plat-
form was promising during the early stage of quan-
tum computers [226–228], especially since it shares 
many experimental techniques with the well devel-
oped field of NMR spectroscopy, the technique has 
largely fallen out of favour due to the natural limita-
tions on scalability and long gate implementation 
times. Good reviews can be found at [229, 230].

– Quantum dots that rely on electron spin. Such 
devices work by confining free electrons or electron-
holes in a small space in a semiconductor and by 
doping the material with atomic impurities. Qubits 
are encoded in the spin of the electron. Recently, it 
has been shown that at ‘hot’ temperatures (above the 
micro-kelvin level), qubits in such devices have long 
lifetimes [231]. Also, one- and two-qubit logic gates 
[232–234] can be constructed. While this is prom-
ising, proof of scalability is yet to be shown. Good 
reviews can be found at [235–237].

– Rydberg atoms. Such devices work by trapping 
cold atoms in optical lattices generated by counter 
propagating lasers. By utilizing the strong interac-
tions between cold atoms in Rydberg states, certain 
quantum logic operations can be performed. This 

approach has found some success in analog quan-
tum simulations for simulating many-body dynamics 
[238–242], with simulations of up to 256 atoms pos-
sible [243]. While none of the simulators so far are 
capable of universal quantum computation yet, the 
field is moving rapidly and a recent work suggests a 
proposal for making the system into universal quan-
tum computer [244]. Good reviews can be found at 
[245, 246].

7  Current applications
While current quantum computers have barely started to 
claim quantum supremacy [41, 42, 247], it is noteworthy 
that their computational advantage has only been dem-
onstrated for ‘custom-built’ problems that are only meant 
to demonstrate their theoretical computational advan-
tage, with no known practical applications. It is therefore 
still an open question if a NISQ computer can ever obtain 
an advantage over classical computers over a ‘killer’ 
application that is relevant to the industry or science.

In the NISQ era, we do not expect quantum computers 
to become general purpose computing devices. Indeed, 
most quantum computers are likely to be accessed 
through cloud services, providing niche usage within a 
larger computational algorithms. These niche usages are 
probably harder on classical computers and one could 
hopefully achieve substantial quantum speedups over 
classical computations.

We list a few fields where the most promise for poten-
tial quantum speedups is believed to exist.

7.1  Quantum simulation
As mentioned previously, one of the push factors behind 
the search for quantum computers stems from the hope 
that such devices could simulate quantum many-body 
systems that could be highly entangled and therefore not 
easily tractable on classical computers [4]. Richard Feyn-
man in fact suggested this advantage. With classical com-
puters, the fields of chemistry and physics are constantly 
faced with limitations on the number of molecules and 
atoms that can be efficiently simulated on such system. 
Thus, quantum simulation has stubbornly remained one 
of the core applications of quantum computers.

Broadly speaking, such problems usually fall under two 
broad classes: those that solve the spectrum of a given 
Hamiltonian, or those that study the dynamics of a quan-
tum state under a given Hamiltonian, preferably in an 
open system.

In chemistry, one of the hopes is that quantum com-
puters can improve the accuracy in the direct simula-
tion of molecules. By so doing, it would allow for more 
accurate study of important reactions and system that 
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are currently inaccessible by methods relying on classical 
computers. One of the molecules that has been receiving 
the most attention is FeMeCo [248, 249], which can give 
us insights into the designs of new catalysts for nitro-
gen fixation, a crucial step in the industrial process of 
producing fertilizer. Strategies for using quantum com-
puters to solve models of strongly correlated electrons, 
common in chemical problems, have also been proposed 
[250]. Resource estimations are somewhat optimistic that 
quantum computers will eventually be able to tackle such 
problems in the fault-tolerant era [251–253], but it must 
be said that such calculations do not say anything about 
the NISQ era.

The original proposals hinges on quantum phase esti-
mation to get the molecular energies [254, 255]. However, 
the quantum phase estimation algorithm is not NISQ 
friendly, requiring way too many gates to be feasible on 
NISQ computers [256]. Attempts to overcome this lead 
to the first NISQ-friendly algorithm, VQE [50], which 
we have described earlier. Some early applications have 
applied VQE to the estimation of the energy of water 
molecules [257] and small hydrogen chains [157, 166], 

which while small and ‘trivial’ for classical computers, are 
an important proof of principle step. More detailed stud-
ies on the feasibility of applying VQE to chemical prob-
lems suggest that it might be possible to obtain quantum 
advantage with the choosing of good ansatz and can be 
found here [258].

The potential to improve time-dynamic simulations 
of chemical systems on quantum computers is also of 
interest, although comparatively little attention has been 
paid to it. This is somewhat surprising as it could allow 
accurate first principles simulation, with the potential 
to offer new insights into complex dynamical processes, 
where nuclear states and excited electronic states interact 
with one another [259, 260]. Early proposals rely mostly 
on Trotterization [261] (see Fig. 6 for a conceptual illus-
tration), but have been estimated to be too costly to be 
feasible in the near term [136]. Other early proposals to 
avoid Trotterization also required far too complicated 
circuits [262]. As an alternative, VQAs have been pro-
posed to simulate exciton dynamics in molecules [263], 
and VQS have been demonstrated for small systems 
[264], although no detailed study has been done on how 

Fig. 6 Figure adapted from [267]. A conceptual illustration of how one might use Trotterization to perform a quantum simulation on a quantum 
computer. Given the physical problem of finding the evolution of a state under a Hamiltonian for a period of time, a mapping can be used to 
encode the relevant details of the problem into qubits on the quantum computer. Then, the encoded Hamiltonian can be sliced into many small 
steps according to the Suzuki–Trotter formula. By implementing the slices in succession, this gives an approximation for the time-evolved state as 
its output. By measuring the state on the quantum computer, approximate observables for the physical system can be obtained



Page 19 of 30Lau et al. AAPPS Bulletin           (2022) 32:27  

feasible it would be to scale up such processes. Interest-
ing review papers on the application of quantum com-
puters to chemistry can be found in [265, 266].

In high-energy physics, there is a widespread usage of 
perturbative methods in quantum field theory. However, 
there are cases where such perturbative methods break 
down, for example in quantum chromodynamics (QCD). 
Classical computational methods to overcome this like 
Monte Carlo simulations have extremely high computa-
tional costs which might be unattainable [268, 269], and 
the hope is that quantum computers and simulators may 
be able to overcome this by providing alternate methods 
for such calculations [270].

Early proof of principle simulations on studying the 
time dynamics of a toy model on QCD have showed some 
promise. The analysis is done on both trapped ions as an 
analog simulation [271] and superconducting circuits 
using Trotterization [134]. VQS has also been applied for 
such simulations for system sizes of up to 20 qubits and 
15 variational parameters [272]. Methods utilizing both 
analog and digital quantum simulation methods have 
also been proposed in the study of weakly driven quan-
tum systems [273]. However, preliminary results strongly 
suggest that to obtain useful results at the energy reso-
lutions necessary on NISQ devices, significant improve-
ments in algorithms or error-mitigation techniques will 
be necessary [274].

Calculations of ground-state energies are also of inter-
est in the field. VQE was first applied to this field by 
calculating the binding energy of deuteron on supercon-
ducting devices [275]. Subsequently, VQE experiments 
applied to this field were also performed on trapped 
ions [276] and subnucleon calculations of two and three 
body forces between heavy mesons were performed on 
photonic platforms [277]. There is currently much work 
in improving similar computations [278, 279] and in 
studying what types of variational circuits might be use-
ful for these tasks [280]. Quantum neural networks have 
also been proposed to aid in analysing the data gener-
ated from high energy physics experiments [281, 282]. 
Interesting review papers on this field can be found here 
[283, 284].

The two topics covered in some detail above, chem-
istry and high-energy physics, are by no means exhaus-
tive. It is also important to mention that the technology 
underpinning quantum computers lend themselves 
naturally to analog simulations of strong correlated 
quantum matter [172, 285, 286]. Other interesting 
applications of quantum simulation include material 
design [287] and quantum control [288] and nuclear 
physics [289, 290], and so forth. Interesting overall 
review papers on quantum simulators can be found 
here [267, 291].

7.2  Machine learning
The field of machine learning deals with the question 
of how to build computers that can automatically learn 
through experience, without needing to be explicitly 
programmed to solve problems [292]. It is one of the 
fastest growing fields today and it has been shown to 
be particularly useful for uncovering hidden relations 
between complex and high dimensional data sets that 
might otherwise be far too hard to compute [293, 294]. 
With its widespread industrial application now, it is 
only natural to wonder if quantum computers could 
also be used for machine learning tasks, and if any 
quantum speedups are expected, especially since there 
are limitations of the standard classical computing par-
adigm [295].

Early works to produce a learning algorithm for quan-
tum computers have already showed that such a quan-
tum machine learning model could be able to accomplish 
things that no classical algorithm are capable of doing, 
with regard to the capacity storage of associative mem-
ories in the machine learning model [296, 297]. It has 
also been hypothesized that with fault-tolerant quantum 
computers, pattern identification algorithms could be 
designed that quantum machine learning may have expo-
nential speedups over classical counterparts [298], which 
has spawn much theoretical studies on how quantum and 
classical learning differ [299, 300].

Generally speaking, there are two main approaches 
to the use of quantum computers for machine learn-
ing tasks. The first method is to use existing classical 
machine learning algorithms. But, it may be necessary to 
speed up numerical subroutines like sampling [301, 302], 
matrix inversion [303–306] or searches [307–309] with 
the quantum computer. However, most of these algo-
rithms rely on quantum algorithms such as the Harrow-
Hassidim-Lloyd algorithm or the Grover search. Beyond 
the size of a few qubits, these algorithms rely on very 
complex circuits that are not NISQ friendly, preventing 
them from being scaled up currently.

The second method is to utilize VQAs as machine 
learning models. These methods usually revolve around 
the optimization of the parameters of a PQC such that 
when data is encoded as a state in the computational 
basis, after being acted on by the optimized PQC, a 
measurement of the qubits then gives us suitable labels 
for the data [310–312]. This approach has gained some 
success [61, 168, 313–316], with a notable advantage 
being their improved expressibility over classical models 
[317], but the trainability problems present in VQAs still 
persist, and there are questions on their power to gener-
alize [70, 318, 319].

Much work has been done on investigating how quan-
tum machine learning models scale [320, 321], on how 
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the properties of the quantum settings actually change 
the problem [322, 323], and on the type of problems that 
show quantum speed-ups [324–327]. While there is a lot 
of hype surrounding quantum machine learning, impor-
tant questions are being raised on how practical quantum 
machine learning models will evolve [319, 328].

The field has shown exponential growth in the past 
decade, and some good references to get a more in depth 
overview can be found here [329–332].

7.3  Numerical solvers
Quantum computers have been shown to be theoreti-
cally capable of obtaining quantum speedups for certain 
numerical solvers. Most famously, the HHL algorithm, 
which is a quantum algorithm that obtains the inverse 
of a large matrix under certain conditions, promises an 
exponential speedup in solving the linear system problem 
Ax=B relative to any classical solver run on a classical 
computer [333]. This algorithm originally attracted a lot 
of attention and improvements [334, 335], as it promised 
to solve what is called a BQP-complete problem. That is, 
any problem that is solved on a quantum computer effi-
ciently (in polynomial time with high probability) can be 
simulated with this HHL algorithm. It has been demon-
strated for an 8×8 matrix [336]. However, the complexity 
of the circuits needed for the HHL algorithm is expected 
to require fault-tolerant computers to be able to imple-
mented successfully for large matrices. As an alternative, 
NISQ-friendly algorithms for solving the linear system 
problem that rely on VQAs [337, 338] were proposed, but 
they also suffer from the barren plateau and trainability 
problems described above. Quantum-assisted methods 
have also been applied to this problem, and they have 
demonstrated capabilities to solve classically solvable sys-
tems of up to  2300×2300 [339].

Other than the linear system problem, quantum com-
puters do show promise for quite a few other numerical 
solvers:

– Typically, solving non-linear differential equations on 
classical computers require large amounts of compu-
tational resources [340]. Quantum algorithms hope 
to alleviate this by reducing the amount of resources 
needed, potentially allowing us to efficiently solve 
more complicated non-linear differential equa-
tions for more and stronger non-linearities. VQAs 
have been extended to solve such problems, with 
proof-of-principle results for a simple 1-dimensional 
time-independent non-linear Schrödinger equa-
tion obtained on superconducting qubits [341]. This 
method relies on complex controlled unitaries and 
multi-qubit operations, along with ancillary qubits, 

which can be quite expensive on NISQ devices. 
Alternatives using the quantum-assisted approach 
that do not require such operations have been pro-
posed [342], and have been demonstrated for up to 
8 qubits. Other ideas like differentiable quantum 
circuits [343] have also been proposed, and there is 
very strong interest in using such NISQ algorithms to 
solve the Navier-Stokes equations [344, 345].

– Factoring has always been a focus for quantum com-
puting, especially since Shor’s famous algorithm to 
efficiently prime factorize large numbers [12]. It has 
been shown that the problem of factoring can be 
mapped to the problem of finding the ground state 
of an Ising Hamiltonian [346–348]. This has natu-
rally lead to proposals to solve the factoring problem 
with variational principles, with QAOA being used in 
[349]. A detailed analysis of such a scheme is done in 
[350], with the conclusion that at this stage, certain 
types of noise still heavily affects the computation.

7.4  Combinatorial optimization
Combinatorial optimization problems are specified by n 
bits and m clauses, and the goal is to find a n-bit bitstring 
that satisfies as many such clauses as possible. Many 
famous problems, like the travelling salesman problem 
[351] and the knapsack problem [352] belong to this cat-
egory. All combinatorial optimization problems can be 
re-framed as the problem of maximizing the expectation 
value of a diagonal Hamiltonian written as

where in the definition of Cj,j1,…jp is some subset of 
{1,2,…n}. Clearly, Cj has an expectation value of 0 with 
respect to some n-qubit computational basis states and 1 
with respect to other n-qubit computational basis states, 
depending on the values of j1,…jp in the product. Hence, 
we can use the operator Cj to encode the jth clause that 
a bitstring must satisfy, and the bitstring k that maxi-
mizes the expectation value of Hc would be the compu-
tational basis state |k〉 that satisfies all of the clauses, i.e. 
〈k|Cj|k〉=1 for all j.

One such combinatorial optimization problem, known 
as the Max-Cut problem [353], attracted much atten-
tion in the quantum computing community early on. The 
Max-Cut problem is usually mathematically portrayed as 
the problem of partitioning the nodes of an undirected 
graph into two sets, such that the number of nodes con-
necting both sets is maximized. This problem is known 
to be NP-complete [354, 355]. Using the abovementioned 

(3)Hc =
m∑

j=1

Cj , Cj =
1

2

(

1−
pj
∏

i=1

σ z
ji

)
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method, we can cast the Max-Cut problem as the prob-
lem of maximising the diagonal Hamiltonian

In Hc above, the summation is done over all edges 〈jk〉 
between the j and k nodes, and the clause C〈jk〉 is maxi-
mized when the j and k nodes belong to different sets, 
i.e. when the expectation value of C〈jk〉 is taken over a 
computational basis state that has different values in the 
jth and kth bit. As mentioned in section 5.3, the QAOA 
algorithm was introduced in the context of solving the 
Max-Cut problem, and since then, the QAOA problem 
has been demonstrated for up to 19 qubits [168]. There 
has also been plenty of follow-up work on the QAOA 
algorithm for the Max-Cut problem [356, 357]. It has also 
been theoretically shown that under certain conditions, 
the QAOA algorithm beats the best classical algorithms 
[358] for the Max-cut problem. However, these condi-
tions are somewhat strict, and outside these conditions, 
where one may hope for quantum advantage to be dem-
onstrated, it is not clear if classical methods for the Max-
cut problem are inferior [359].

Outside the Max-Cut problem, other combinatorial 
optimization problems that have been investigated with 
quantum computers are protein folding [360–362], the 
knapsack problem [363], graph colouring [364], and the 
k-clique problem [365], to name a few.

8  Outlook
Quantum computers have received plenty of hype in the 
past two decades, as they promised to solve certain hard 
problems which no known classical algorithms can solve 
efficiently. What makes this even more significant is that 
those hard problems, like prime factorization, have deep 
implications in many sectors and they can potentially 
disrupt entire technology industries. They also contain 
potential implications for national defence. Both rea-
sons have caused national research agencies and tech 
giants to pour money into their own quantum computing 
departments.

However, solving those really hard problems will prob-
ably require fault-tolerant quantum computers, which is 
not likely to be realized for quite a while. Such quantum 
computers require enormous leaps in both experimen-
tal control techniques over the qubit gate operations, 
and the amount of qubits available. While there is no 
reason why we will not eventually be able to construct 
such devices, and experimental progress in the last few 
years gives cause for optimism, it is undoubtedly a tough 
undertaking to build a fault-tolerant quantum computer, 
and it will probably take another decade at minimum.

(4)Hc =
∑

�jk�
C�jk�, C�jk� =

1

2
(1− σ z

j σ
z
k ).

Regardless, the rapid developments in both technology 
and theory in this field are exciting. We would like to point 
out that, while comparisons between the eventual capabili-
ties of quantum and classical computers are fair, it took a 
long time for classical computers to come this far. Quan-
tum computers by comparison have not had as long as a 
runway to demonstrate their effectiveness. As described 
at the start of this work, it took many decades from the 
time that the first computational devices were envisioned 
to then develop a rigorous theoretical framework allow-
ing understanding of the power of computers. And then it 
took a global war to provide the impetus to build a classi-
cal computer capable of running a ‘killer app’, which was 
the capability to break German cryptographic codes. And 
even then, when the supremacy of computers over classical 
decryption was demonstrated, it still took 2 decades and 
the development of the transistor before computing finally 
emerged into its own. While we live in the information age 
and are used to rapid technological payoffs, quantum com-
puting seems to be bucking the trend. Rather than saying 
that quantum computing is not feasible and will never pro-
vide substantial payoff, we believe that we need to be a lit-
tle optimistic and level-headed when evaluating our short 
and medium term expectations from the field.

Instead of buying into the hype (and encouraging it), 
we, as scientific professionals, should instead present 
the current accomplishments of the field. We should not 
over- nor under-sell the potential of quantum computing. 
While the process of judging the field will inevitably be 
subjective to a large extent, and dependant on individual 
opinion and interpretation, we hope that the majority are 
able to agree on a few general points:

1. NISQ devices are impressive technological devices 
in their own rights, being capable of demonstrating 
a form of quantum advantage over classical computa-
tion methods for extremely specific problems.

2. There are a few platforms that have seen the most 
success. Each platform has inherent advantages and 
disadvantages and it is too early to tell which will be 
the most promising in the long term.

3. Due to the limitations of NISQ devices, it is not use-
ful to think in terms of fault-tolerant algorithms (or 
at least mainly in such terms), as they probably will 
be unimplementable on such devices.

4. Separate, NISQ-friendly algorithms will need to be 
developed for such devices. A heavier reliance on 
analog computing as opposed to digital computing 
might also be necessary.

5. Unlike fault-tolerant algorithms, it is not known 
if quantum advantage for actual problems that are 
of interest outside the quantum information com-
munity (such as optimization and Cryptanalysis) is 
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achievable, and even if so, under which conditions. 
As such, there are no ‘killer apps’ achievable as of yet. 
Certain fields like quantum simulations and machine 
learning have been singled out as showing the most 
promise of breakthroughs, but quantum comput-
ers and NISQ algorithms are still far from industrial 
applications.

6. Even so, the field is worthy of investment, as no one 
can predict where and when a major breakthrough 
might occur. Furthermore, greater accessibility to 
quantum computers and technologies will create a 
positive feedback loop, with more scientists being 
able to get a feel for quantum computing, their 
strengths and limitations, and allow them to think of 
potential applications.

While we do not want to be detracted from the accom-
plishments that NISQ computers have achieved, we want 
to stress that developments in NISQ devices, both theo-
retically and experimentally, should not lose sight of the 
long-term goal: to develop the core techniques needed to 
quicken the pace towards fault-tolerant quantum comput-
ers. This is especially so as we do not expect that NISQ 
computers will lead to truly transformative and disruptive 
technological developments. Most likely, fault-tolerant 
quantum computers will be necessary eventually. However, 
nobody knows how long it will take to get there, and the 
odds are that it is still at least a decade away, if not more. 
Thus, this NISQ era, while maybe unwanted and unex-
pected, is the reality that we have to live and work with. 
Many relevant and interesting research questions exist in 
the NISQ field, and it is important for the community to 
work on such problems.
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