
NiTransforms: A Python tool to read, represent,
manipulate, and apply n-dimensional spatial transforms
Mathias Goncalves1, Christopher J. Markiewicz1, 2, Stefano Moia4,
Satrajit S. Ghosh2, 3, Russell A. Poldrack1, and Oscar Esteban1

1 Department of Psychology, Stanford University, Stanford, CA, USA 2 McGovern Institute for
Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA 3 Department
of Otolaryngology, Harvard Medical School, Boston, MA, USA 4 Basque Center on Cognition Brain
and Language, San Sebastian, Spain

DOI: 10.21105/joss.03459

Software
• Review
• Repository
• Archive

Editor: Øystein Sørensen
Reviewers:

• @robbisg
• @PeerHerholz

Submitted: 29 June 2021
Published: 10 September 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Introduction

Spatial transforms formalize mappings between coordinates of objects in biomedical images.
Transforms typically are the outcome of image registration methodologies, which estimate the
alignment between two images. Image registration is a prominent task present in almost any
image processing workflow.
Statement of need. In neuroimaging, the proliferation of image registration software imple-
mentations has resulted in a disparate collection of structures and file formats used to preserve
and communicate the transformation. This assortment of formats presents the challenge of
compatibility between tools and endangers the reproducibility of results. Some tools are avail-
able that permit some conversions between formats, either within neuroimaging packages or
standalone such as Convert3D (Yushkevich, n.d.). However, they are typically limited either
in compatible packages and/or application coverage (e.g., only linear transforms).
Summary. NiTransforms is a Python tool capable of reading and writing tranforms produced
by the most popular neuroimaging software (AFNI (Cox & Hyde, 1997), FSL (Jenkinson et al.,
2012), FreeSurfer (Fischl, 2012), ITK via ANTs (Avants et al., 2008), and SPM (Friston et al.,
2006)). Additionally, the tool provides seamless conversion between these formats, as well as
the ability of applying the transforms to other images. The tool has already been integrated
into fMRIPrep (Esteban et al., 2019), a popular neuroimaging preprocessing pipeline that
leverages many of the neuroimaging software already mentioned. NiTransforms is inspired by
NiBabel (Brett et al., 2006), a Python package with a collection of tools to read, write and
handle neuroimaging data, and will be included as a new module.
Audience. Computer vision researchers and experts using Python, developers of neuroimaging
workflows built on AFNI, FSL, FreeSurfer, ITK/ANTs, or SPM, developers of neuroimaging
visualization tools.

Implementation

We first mathematically formulate the problem of spatial alignment of images and highlight
common pitfalls. We then justify the architectural design of NiTransforms and describe the
major elements of the implementation.

Goncalves et al., (2021). NiTransforms: A Python tool to read, represent, manipulate, and apply n-dimensional spatial transforms. Journal of
Open Source Software, 6(65), 3459. https://doi.org/10.21105/joss.03459

1

https://doi.org/10.21105/joss.03459
https://github.com/openjournals/joss-reviews/issues/3459
https://github.com/poldracklab/nitransforms
https://doi.org/10.5281/zenodo.5499694
https://osorensen.rbind.io/
https://github.com/robbisg
https://github.com/PeerHerholz
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03459


Methods

Let x⃗ represent the coordinates of a point in the reference coordinate system R, and x⃗′ its
projection on to another coordinate system M :
T : R ⊂ R

n → M ⊂ R
n

x⃗ 7→ x⃗′ = f(x⃗).

In an image registration problem, M is a moving image from which we want to sample data
in order to bring the image into spatial alignment with the reference image R. Hence, f

here is the spatial transformation function that maps from coordinates in R to coordinates
in M . There are a multiplicity of image registration algorithms and corresponding image
transformation models to estimate linear and nonlinear transforms.
The problem has been traditionally confused by the need of transforming or mapping one
image (generally referred to as moving) into another that serves as reference, with the goal
of fusing the information from both. An example of image fusion application would be the
alignment of functional data from one individual’s brain to the same individual’s corresponding
anatomical MRI scan for visualization. Therefore, “applying a transform” entails two opera-
tions (Figure 1): first, transforming the coordinates of the samples in the reference image R

to find their mapping x⃗′ on M via T{·}, and second an interpolation step, as x⃗′ will likely
fall off-the-grid of the moving image M . These two operations are confusing because, while
the spatial transformation projects from R to M , the data flows in reversed way after the
interpolation of the values of M at the mapped coordinates x⃗′.

Goncalves et al., (2021). NiTransforms: A Python tool to read, represent, manipulate, and apply n-dimensional spatial transforms. Journal of
Open Source Software, 6(65), 3459. https://doi.org/10.21105/joss.03459

2

https://doi.org/10.21105/joss.03459


Figure 1: Resampling a 3D image via a spatial transform to fuse the information of one into another
image.

Software Architecture

There are four main components within the tool: an io submodule to handle the structure
of the various file formats, a base submodule where abstract classes are defined, a linear
submodule implementing n-dimensional linear transforms, and a nonlinear submodule for
both parametric and non-parametric nonlinear transforms. Furthermore, NiTranforms provides

Goncalves et al., (2021). NiTransforms: A Python tool to read, represent, manipulate, and apply n-dimensional spatial transforms. Journal of
Open Source Software, 6(65), 3459. https://doi.org/10.21105/joss.03459

3

https://doi.org/10.21105/joss.03459


a straightforward Application Programming Interface (API) that allows researchers to map
point sets via transforms, as well as apply transforms (i.e., mapping the coordinates and
interpolating the data) to data structures with ease.
To ensure the consistency and uniformity of internal operations, all transforms are defined using
a left-handed coordinate system of physical coordinates. In words from the neuroimaging
domain, the coordinate system of transforms is RAS+ (or positive directions point to the
Righthand for the first axis, Anterior for the second, and Superior for the third axis). The
internal representation of transform coordinates is the most relevant design decision, and
implies that a conversion of coordinate system is necessary to correctly interpret transforms
generated by other software. When a transform that is defined in another coordinate system
is loaded, it is automatically converted into RAS+ space.
NiTransforms was developed using a test-driven development paradigm, with the battery of
tests being written prior to the software implementations. Two categories of tests were used:
unit tests and cross-tool comparison tests. Unit tests evaluate the formal correctness of the
implementation, while cross-tool comparison tests assess the correct implementation of third-
party software. The testing suite is incorporated into a continuous integration framework,
which assesses the continuity of the implementation along the development life and ensures
that code changes and additions do not break existing functionalities.

References

Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic
image registration with cross-correlation: Evaluating automated labeling of elderly and
neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. https://doi.org/10.1016/
j.media.2007.06.004

Brett, M., Markiewicz, C. J., Hanke, M., Cote, M.-A., Cipollini, B., McCarthy, P., Cheng, C.,
Halchenko, Y. O., Ghosh, S. S., Larson, E., Wassermann, D., & Gerhard, S. (2006). Open
Source Software: NiBabel. Zenodo, 3458246. https://doi.org/10.5281/zenodo.591597

Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of fMRI data.
NMR Biomed, 10(4-5), 171–178. https://doi.org/10.1002/(SICI)1099-1492(199706/08)
10:4/5%3C171::AID-NBM453%3E3.0.CO;2-L

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A.,
Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J.,
Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust prepro-
cessing pipeline for functional MRI. Nat Meth, 16(1), 111–116. https://doi.org/10.1038/
s41592-018-0235-4

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/10.1016/j.
neuroimage.2012.01.021

Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2006). Statistical
parametric mapping : The analysis of functional brain images. Academic Press. ISBN: 978-
0-12-372560-8

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012).
FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

Yushkevich, P. A. (n.d.). Open Source Software: Convert3D Medical Imaging Processing tool.
Sourceforge. https://sourceforge.net/p/c3d

Goncalves et al., (2021). NiTransforms: A Python tool to read, represent, manipulate, and apply n-dimensional spatial transforms. Journal of
Open Source Software, 6(65), 3459. https://doi.org/10.21105/joss.03459

4

https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.5281/zenodo.591597
https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3C171::AID-NBM453%3E3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-1492(199706/08)10:4/5%3C171::AID-NBM453%3E3.0.CO;2-L
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://worldcat.org/isbn/978-0-12-372560-8
https://worldcat.org/isbn/978-0-12-372560-8
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://sourceforge.net/p/c3d
https://doi.org/10.21105/joss.03459

	Introduction
	Implementation
	Methods
	Software Architecture

	References

