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Abstract: Nitric oxide (NO) is a small, diatomic, gaseous, free radicle, lipophilic, diffusible, and
highly reactive molecule with unique properties that make it a crucial signaling molecule with impor-
tant physiological, biochemical, and molecular implications for plants under normal and stressful
conditions. NO regulates plant growth and developmental processes, such as seed germination,
root growth, shoot development, and flowering. It is also a signaling molecule in various plant
growth processes, such as cell elongation, differentiation, and proliferation. NO also regulates the
expression of genes encoding hormones and signaling molecules associated with plant development.
Abiotic stresses induce NO production in plants, which can regulate various biological processes,
such as stomatal closure, antioxidant defense, ion homeostasis, and the induction of stress-responsive
genes. Moreover, NO can activate plant defense response mechanisms, such as the production of
pathogenesis-related proteins, phytohormones, and metabolites against biotic and oxidative stressors.
NO can also directly inhibit pathogen growth by damaging their DNA and proteins. Overall, NO
exhibits diverse regulatory roles in plant growth, development, and defense responses through
complex molecular mechanisms that still require further studies. Understanding NO’s role in plant
biology is essential for developing strategies for improved plant growth and stress tolerance in
agriculture and environmental management.

Keywords: nitric oxide; plant responses; biotic stress; abiotic stress; biological processes; redox biology

1. Introduction

As naturally immotile organisms, plants face numerous environmental challenges
that affect their growth, development, yield, and survival [1,2]. Abiotic stressors include
drought and waterlogging, extreme temperatures, salt stress, and heavy metal (HM) stress.
Biotic stressors include herbivores (insects, mites, and mammals) and pathogens (viruses,
bacteria, and fungi). Thus, understanding these challenges and developing strategies to
mitigate their effects are essential for sustainable agricultural and environmental man-
agement [3,4]. Plants have evolved complex mechanisms to respond to and adapt to
environmental challenges. For example, under drought conditions, plants can lower the
rate of transpiration by closing their stomata to reduce water loss. Plants can also synthesize
osmolytes, such as proline and carbohydrates, to maintain water potential in cells and
prevent dehydration [5]. To acclimate to excessive salinity stress, plants can control ion
transport and accumulation, produce suitable solutes, and alter their metabolism [6]. The
production of heat shock proteins, which prevents protein denaturation and maintains
membrane integrity, can be induced by plants in response to high temperatures [7]. Plants
can produce chelators to bind and sequester toxic metals in response to HM toxicity, and
they can also activate antioxidant mechanisms to scavenge reactive oxygen species (ROS) [8].
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In response to an herbivore attack, plants increase the accumulation of secondary metabo-
lites, such as alkaloids, terpenoids, and phenolics, that can either repel herbivores or attract
their natural enemies [9]. During pathogen attacks, the pattern recognition receptors (PRRs)
in plants can activate their immune systems by recognizing pathogen-associated molecular
patterns (PAMPs). The synthesis of phytohormones and defense-related metabolites is
induced by a series of signaling processes triggered by this identification [10]. Moreover, in
response to these environmental challenges, plants produce different signaling molecules,
including melatonin (MEL), ROS, and reactive nitrogen species (RNS) [11,12].

RNS are a group of highly reactive molecules, such as NO, that play pivotal roles in
plant growth and developmental processes, including seed dormancy and germination,
root and shoot growth, vascular differentiation, stomatal movement, nodulation, nutrient
uptake, flowering, fruit ripening, as well as growth and development of other vegetative
and reproductive tissues [8,13–15]. NO has been associated with an improved root system,
stomatal movement, hypoxic tolerance, upregulation of gene transcript, antioxidant system,
and hormonal regulation during drought and flooding stress response in plants [16–18].
During slat stress, NO regulates ion homeostasis, water uptake, antioxidant system, tran-
script accumulation, and hormone biosynthesis [19]. NO has also been shown to protect
plants against extreme temperatures and HMs by regulating the antioxidant system, the ex-
pression of stress-related genes, proteins, and hormones [13,20,21], while its significant roles
in enhancing the expression of defense-related genes, secondary metabolites, phytohor-
mones, interaction with other signaling molecules, such as ROS, and induction of systemic
responses have been shown during herbivore attacks [22]. Similarly, the defense properties
of NO in plants against pathogenic infections have been demonstrated by the induction of
defense-related genes, such as pathogenesis-related (PR) genes; activation of physiological
defense responses, such as ROS production, callose deposition, and hypersensitive re-
sponse (HR); regulation of plant hormones; enhancement of pathogen-associated molecular
pattern-triggered immunity (PTI); effector-triggered immunity (ETI); and systemic acquired
resistance (SAR) [23].

Compounds, such as sodium nitroprusside (SNP), S-nitrosocysteine (CySNO), and
S-nitrosoglutathione (GSNO) are NO donors [24] and are potentially crucial for the im-
provement of plant defense system against stressful environmental conditions. Overall,
NO is a key determinant of plant adaptation to abiotic and biotic stresses that regulate
numerous physiological and biochemical processes, leading to enhanced plant tolerance
for sustained growth and survival under stressful environmental conditions [25,26]. Thus,
this current review explored the recent advances in NO biosynthesis and its role in plant
growth, development, and stress mitigation.

2. NO Production

Animals have well characterized systems for controlling NO production and signaling.
Despite evidence of its functional presence in plants, the metabolic origin of NO and its
role in plants signaling cascades still remains unknown [27]. Numerous NO synthesis
mechanisms have been proposed to occur in various probable production sites, including
the apoplast, chloroplast, mitochondria, peroxisome, and plasma membrane [26]. Several
studies have identified eight distinct enzymatic (oxidative and reductive) and nonenzy-
matic processes that are involved in NO production [23,26]. NO is synthesized through
the oxidative route by oxidizing L-arginine or other polyamines (PAs), as well as hydrox-
ylamines (HAs) [28]. The reductive process mainly depends on nitrate reductase (NR)
and other reductive enzymes found in the plasma membrane and mitochondria [29]. The
nonenzymatic reduction of nitrite (NO2−)/NO in the acidic compartments of plant tissues
results in nonenzymatic NO generation [29,30].

2.1. Oxidative Pathways of NO Production

Similar to mammalian oxidative processes, plants can produce NO by oxidizing
molecules containing nitrogen (N) [31]. NO synthase (NOS) proteins and NOS-producing
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genes have been found in prokaryotes, unicellular eukaryotes, invertebrates, and verte-
brates, including mammals; however, NOS enzymes are yet to be discovered in higher
plants [32]. In the leaf peroxisomes and chloroplasts of green algae and vascular plants, L-
arginine is oxidized by enzymes to generate citrulline and NO [33]. Nicotinamide adenine
dinucleotide phosphate (NADPH) and the absence of Ca2+ are necessary for L-arginine
oxidation in chloroplasts, whereas NADPH, FAD, FMN, Ca2+, and calmodulin are needed
for peroxisomal oxidation [34,35].

The oxidation of PAs and HAs in plant cells leads to NO generation [36]; however,
the precise mechanism underlying this process is still unknown [37]. A potential pathway
involving the interaction between PAs and NR-catalyzed NO [38], as well as a secondary
impact of polyamine production on L-arginine metabolism, has been proposed [39]. Al-
though hydroxylamine, a byproduct of the nitrification process, can be converted to NO in
tobacco cell cultures, the underlying mechanism for this process is still unknown [40], and
this process might be used instead of oxidative NO production from L-arginine.

2.2. Reductive NO Biosynthesis Pathways

The major substrate for reductive pathways is NO2−, which is mediated by NR, NO-
forming nitrite reductase (NOFNiR), and mitochondrial nitrite reduction (MNR) [41]. The
reduction of NO2− to NO by NR is pivotal during stressful conditions in cyanobacterium,
green algae, and vascular plants [32,42]. The key and oldest enzymatic source in plants
is thought to be NO synthesis from NO2− through NR [41]. This pathway produces low
amounts of NO under normal circumstances because the major substrate for NR is nitrate
(NO3−), and NO2− reduction accounts for only 1% of the NR activity. The primary sites
for NR activity are the cytoplasm and chloroplast [43]. NO2−/NO-reductase (NI-NOR)
can also convert NO2− to NO by using reduced cytochrome c as an electron acceptor [44].
Moreover, when NO2 is used as an alternative electron acceptor during ATP synthesis
in the mitochondrial complexes III and IV, NO2− is reduced to NO [43], causing plant
cells to become hypoxic and mitochondria to produce NO, which inhibits the activity of
cytochrome c oxidase to improve the energy status of hypoxic cells [41]. Hemoglobin in the
cytosol of hypoxic cells oxidizes NO released by the mitochondria, resulting in a constant
supply of NO2 for ATP synthesis [45]. NO2− reduction in plant peroxisomes under hypoxic
or anoxic environments is an alternative route for producing reductive NO. Plant PM,
cytosol, and endoplasmic reticulum generate reductional NO in a similar manner [46].

2.3. Nonenzymatic NO Synthesis Pathways

Nonenzymatic NO generation is triggered by the release of NO from nitrous acid.
This necessitates a low pH due to gibberellin (GA) and abscisic acid (ABA), resulting in
an acidic apoplast [47]. Nonenzymatic conversion of NO2− to NO mediated by phenolic
chemicals was observed in the apoplast of the barley aleurone layer [48]. Moreover, NO is
used to break up seed dormancy, indicating that both NO2− and enzymatic NO production
are necessary for healthy seed germination [49]. The release of NO from nitrosoglutathione
(GSNO), which is yet to be fully investigated, is another potential route for nonenzymatic
NO generation [50].

3. Role of NO in Plant Growth and Development

NO plays a pivotal role in the regulation of plant growth and development by signif-
icantly enhancing seed germination through the breakdown of storage reserves and the
regulation of target germination genes, proteins, and hormones, such as ABA [51]. SNP
application has been shown to increase seed germination of wheat [52]. In addition to
promoting seed germination, NO is crucial for seed fatty acid composition and oil accu-
mulation [53]. NO can also improve the growth and development of roots and shoots
by enhancing cell division, elongation, and differentiation. NO can interact with various
phytohormones, such as auxins (AUX), GA, and cytokinins (CK), to regulate plant growth
and development. For example, NO was shown to not only enhance the production and
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transport of AUXs, which are necessary for root and shoot growth, but also to interact
with GA to promote stem elongation and seed germination [23,41]. Moreover, NO could
significantly improve plant tolerance to various abiotic stress conditions, such as drought,
flooding, extreme temperature, salinity, and HM stresses, as well as biotic stresses, by
regulating the expression of stress-related genes and inducing the production of defensive
secondary metabolites [13,17,26,54]. NO also establishes the symbiotic association between
plants and beneficial microbes to enhance plant growth and development [23]. However, at
higher concentrations, NO negatively affects chlorophyll and photosynthesis [55]. Overall,
NO is a key regulator of plant growth and development, and its effects are mediated by
interactions with various signaling pathways and plant hormones. By modulating these
pathways, NO helps plants optimize their growth and development to adapt to changing
environmental conditions. The role of NO in seed germination, enhancement of symbiotic
associations, and improvement of vegetative and reproductive growth is shown in Figure 1.
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4. Role of NO in Plant Abiotic Stress Response

Abiotic stresses are nonliving factors that can adversely affect plant growth and de-
velopment, leading to decreased productivity. Understanding the mechanisms of plant
response to these stresses is crucial for developing strategies for improved plant adapta-
tion and increased productivity. NO is an important signaling molecule that can induce
physiological, molecular, and biochemical changes in plants under different abiotic stresses,
such as drought, flooding, extreme temperatures, salinity, and HM stresses [56,57]. During
the abiotic stress response, NO significantly enhances plant growth and development by
activating stress-related genes, proteins, hormones, and the antioxidant system [26]. The
role of NO in mitigating different abiotic stresses is discussed in the following sections.

4.1. Drought and Flooding Stress

Drought is a serious abiotic plant stressor that results from prolonged exposure to low
water availability in the soil, which is caused by various factors, such as low rainfall, high
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temperatures, or water loss through transpiration [3,5]. Drought stress adversely affects
plant growth and development, leading to loss in yield. Developing strategies to improve
plant tolerance to drought stress is vital for maintaining crop productivity and ensuring
food security in regions with low water availability [58]. Both endogenous and exoge-
nous NO can significantly enhance plant growth and development under abiotic stress
conditions [59,60]. NO has been shown to regulate stomatal movement during drought
conditions by activating calcium ion channels, which leads to stomatal closure and reduced
water loss through transpiration [25]. Drought stress can increase the accumulation of ROS
in plant cells, which damages cellular components, such as proteins and lipids. Studies
have shown that NO activates antioxidant enzymes, such as superoxide dismutase (SOD)
and catalase (CAT), which scavenge ROS to mitigate oxidative damage [61]. Similarly,
NO was shown to regulate the expression of drought related genes, such as AO3 and
NCED3, to enhance the Arabidopsis thaliana defense system against drought stress, and these
genes could also regulate ABA production, stomatal closure, and A. thaliana acclimation
to drought stress [16,17]. Moreover, NO has been reported to induce the accumulation of
compatible solutes in plants, such as proline, which can maintain cellular water balance and
protect cellular structures during drought stress [59]. In addition, NO could significantly
reduce the production of hydrogen peroxide (H2O2), superoxide anion (SOA), and malon-
dialdehyde (MDA) in plants during drought stress [62]. The NO activity is concentration
dependent; for example, during drought stress, the recovery effects of 100 µM SNP were
more effective than 50 µM [63]. NO donors significantly improve growth and development
in different plants under drought stress [54,63]. In summary, the application of NO donors
can enhance drought stress tolerance in plants by regulating physiological processes associ-
ated with water uptake, photosynthesis, and oxidative responses. The effectiveness of NO
donors can vary depending on plant species and the severity of drought stress. Further
studies are still needed to develop strategies for optimizing the application of NO donors
in crop production systems under drought stress conditions.

Flooding stress occurs when plants are subjected to excessive water in the soil or
around the root zone; it can severely impact growth and productivity due to reduced
oxygen availability, nutrient deficiencies, and other adverse physiological changes. The
effects of flooding stress on plants can vary depending on its severity and duration [64,65].
Endogenous or exogenous NO has been shown to significantly improve plant tolerance to
flooding stress [66]. For example, functional evaluation of NO donors, such as SNP and
CySNO, at the physical, biochemical, and molecular levels in soybean during flooding stress
revealed their capacity to significantly enhance plant growth and development, antioxidant
responses, ABA production, and upregulated expression of NO synthesis-related genes,
such as NR and S-nitrosoglutathione reductase (GSNOR1) [67]. Similarly, application of
NO donors was shown to significantly improve the flooding stress tolerance of soybean,
cotton, and maize crops [68–70], which demonstrate their potential as active substances for
mitigating the adverse effects of flooding stress.

4.2. Extreme Temperature Stress

Extreme temperature and heat stress occurs when plants are exposed to either too
high or low temperatures outside their normal range, which can adversely alter their physi-
ological, molecular, and biochemical processes and affect their growth and development, as
well as productivity [71,72]. Previous studies have shown that endogenous or exogenous
NO can significantly improve plant thermotolerance; for example, NO production was
demonstrated to significantly enhance the thermotolerance of Vicia faba plants, while the
application of an NO scavenger, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-
3-oxide (cPTIO) could significantly reduce NO production, which also demonstrated that
NO is endogenously produced in plants during heat stress [20]. Thus, NO donors could be
sued to improve plant tolerance at high temperatures. For example, increased production
of oxidative stress markers, such as H2O2 content in wheat during high temperature stress,
were significantly decreased by application of NO donors [73]. Similarly, the application of
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SNP showed significantly improved heat-stress-tolerance of Lablab purpureus L. plants [74],
while its application could also reduce the adverse effects of heat stress on rice plants [75].
Overall, NO plays critical roles in the regulation of plant responses to heat stress and
enhancing its levels in plants has been shown to improve heat stress tolerance, which
makes it a potential target for developing strategies for mitigating the negative effects of
heat stress on plant growth and productivity.

Chilling stress occurs when plants are exposed to temperatures below their optimal
range, typically between 0 ◦C and 15 ◦C. The effects of chilling stress on plants can vary
depending on the severity and duration of the stress, plant species, and plant developmental
stages [76]. NO has been reported to play a positive role in alleviating the negative
effects of chilling stress on plant growth and development [77] by regulating the transcript
accumulation of stress response genes, such as those encoding for antioxidant enzymes,
osmolyte biosynthesis, and stress signaling pathways [78]. NO can activate the antioxidant
defense system by upregulating the activity of antioxidant enzymes, such as SOD and CAT,
to eliminate ROS mediated oxidative damage of plant cells during chilling stress, while the
application of cPTIO could reduce the positive effects of NO [79]. NO was also reported
to modulate ion transport across plant membranes, particularly the plasma membrane
and tonoplast, to maintain ion homeostasis, which can be disrupted by chilling stress,
leading to altered plant growth and development [76]. Chilling stress can significantly
reduce photosynthesis in plants, leading to defects in plant growth and development,
and NO has been shown to enhance photosynthesis by improving the efficiency of the
photosynthetic apparatus and by regulating the expression of photosynthetic genes [80]. In
addition, NO has been shown to mitigate the adverse effects of chilling stress on tomato,
cucumber, and rice plants [76,78,81]. Interestingly, the application of an NO donor was also
demonstrated to improve the quality of zucchini fruits during storage at 4 ◦C [82]. Similarly,
the application of NO donors enhanced banana fruit resistance to low temperatures, which
also induced the production of endogenous NO [83]. These findings suggest that NO
donors can be used to enhance plant tolerance to extreme temperature stress.

4.3. Salinity Stress

Salinity is a major abiotic stress that affects plant growth and productivity world-
wide. High salt concentrations in the soil can cause osmotic imbalance, ion toxicity, and
oxidative damage to plant cells, leading to decreased photosynthesis, growth inhibition,
and ultimately plant death [6]. However, NO has been shown to regulate the transport
and accumulation of ions, such as sodium ion and potassium ions, in plant cells during
salinity stress by modulating the activity of ion channels and transporters [84,85]. Over-
production of ROS in plant cells and oxidative damage induced by salinity stress can be
alleviated by NO, which is a signaling molecule that can induce antioxidant enzymes, such
as SOD and CAT, to scavenge ROS directly [86]. Salinity stress-induced changes in plant
hormones balance, such as ABA and CK, which affect plant growth and development, can
be maintained by NO through modulation of hormone signaling pathways, leading to
improved plant salinity stress tolerance [87]. Moreover, NO could activate the expression
of salt stress-related genes, such as HIPP38, GR1, and P5CS2 in rice [86]. Application of NO
donors has been reported to significantly enhance salt tolerance in different plant species,
such as Salicornia persica, Vigna radiata, Crocus sativus, and Triticum aestivum [88–91]. Overall,
NO mitigates salinity stress by maintaining ion homeostasis, protection against oxidative
stress, modulating hormone signaling, and activating stress responsive genes to improve
plant acclimation to salinity stress.

4.4. HM Stress

The increased use of fertilizers in agriculture, industrialization, anthropogenic activ-
ities, and improper waste management have exacerbated HM contamination in the soil,
posing major issues for agriculture worldwide [92]. High-concentration intake of HMs, such
as aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu),
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mercury (Hg), nickel (Ni), and lead (Pb), can impair physiological, biochemical, and molec-
ular plant processes [13,93]. Several studies have demonstrated that exogenous application
of NO donors, such as SNP, can enhance plant tolerance to HM stress by increasing growth
and chlorophyll contents in rice plants exposed to mercury (Hg), chromium (Cr), copper
(Cu), Zinc (Zn), and lead (Pb) stress [8,13]. SNP application was also shown to mitigate
the toxic effects of Hg, Cd, and Pb stress in other plants, such as soybean, Satureja horten-
sis, Pimpinella anisum, and rice plants [8,94,95]. Moreover, the application of NO donors
increased Cd, As, and Cu stress tolerance in peanuts, Brassica juncea, and tobacco [96–98].
The protective effects of NO against HM stress could be attributed to several mechanisms,
including regulation of the expression of genes involved in metal detoxification and the
antioxidant system [13,99]; scavenging of ROS produced by HM stress, thereby preventing
oxidative damage [100]; and enhancing the production of phytohormones, such as ABA
and jasmonic acid (JA), which are involved in plant stress responses [101]. Despite studies
showing that both endogenous and exogenous NO are crucial for mitigating the effects of
HM stress, NO-mediated alleviation of HM stress differs depending on the NO donor, HM
concentration, duration of exposure, plant species, and tissue exposed [102]. In summary,
NO enhances HM stress tolerance in plants through complex mechanisms, and its ability
to regulate gene expression, scavenge ROS, and enhance hormone production makes it a
promising target for improving plant tolerance to HM stress. The roles of NO in mitigating
abiotic stresses, such as drought, waterlogging, extreme temperatures, salinity, and HM
stress, are illustrated in Figure 2.
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4.5. A Summary of the Role of NO in the Mitigation of Abiotic Stresses

Abiotic stresses, such as drought, salinity, extreme temperatures, and HMs, can disrupt
normal plant growth and development, leading to reduced crop yields and economic losses.
As a signaling molecule, NO plays an important role in the regulation of plant growth and
development, as well as in the response of plants to environmental stressors. NO has been
reported to regulate the expression of genes involved in stress responses, such as those
encoding antioxidant enzymes, osmolyte biosynthesis enzymes, ABA, and stress-responsive
transcription factors. NO has been shown to induce the ABA pathway and drought stress-
related genes, such as AO3, NCED3, and bZIP, thereby significantly enhancing drought
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stress tolerance in A. thaliana [16,17]. Similarly, SNP application significantly enhanced
the expression of HM stress-related genes, such as PCS1, PCS2, MTP1, and MTP5, in rice
plants under HM stress [13]. Oxidative damage to cellular components by abiotic stress-
induced ROS overproduction can be alleviated by NO due to its antioxidant properties
or ability to induce antioxidant enzymes activities [103]. During response to drought or
salinity stress, NO has been reported to induce the accumulation of compatible solutes,
such as proline to enable osmotic adjustments in plants [59,104]. Under conditions of
water scarcity or high temperatures, plants may close their stomata to preserve water and
reduce transpiration. NO has been reported to modulate stomatal closure, allowing plants
to maintain a balance between water conservation and photosynthetic efficiency [17,105].
Moreover, increased production of oxidative stress markers, such as H2O2, SOA, MDA,
and EL, during abiotic stresses can be reduced by the application of NO, which activates
the antioxidant system [76,89,106]. The roles of NO in the mitigation of different abiotic
stressors are shown in Table 1.

Table 1. The roles of NO in the mitigation of different abiotic stresses in plants.

Plant Species Stress NO Donor NO Function References

Maize Drought 100 µM SNP Regulation of water status [107]
Mustard Drought 100 µM SNP Antioxidant system activation [103]

Soybean Drought 100 µM SNP Stimulation of antioxidant system and
osmotic adjustment [61]

Soybean Flooding 100 µM SNP Modulation of growth and
physio-molecular responses [18]

Tomato Flooding 500 µM SNP Induction of flooding stress related genes [108]

Rice Chilling 100 µM SNP Regulation of water balance and
antioxidant system [76]

Melon Chilling 200 mM SNP Regulation of gene expression [109]
Tea Chilling 500 µM/L SNP Stimulation of antioxidant system [110]
Rice Heat 100 µM SNP Protective effects on photosynthesis [75]

Tomato Heat 100 µM SNP Enhancement of antioxidant system and
alleviation of oxidative stress markers [106]

Wheat Heat 100 µM SNP Regulation of osmolytes and antioxidants [111]

Vigna radiata Salinity 0.06 mM SNP Modulation of oxidative stress markers and
antioxidant system [89]

Lentil Salinity 100 µM SNP Modulation of plant growth and
biochemical properties [112]

Wheat Salinity 5 mM SNP Alleviation of oxidative stress [113]

Rice Chromium 100 µM NaHS75 µM
SNP Regulation of antioxidant system [114]

Lupin Nickle 0.4/0.6 mM SNP Modulation of antioxidant system [115]
Wheat Cadmium 0.10 mM SNP Reduction in oxidative stress markers [116]

5. The Role of NO in Biotic Stress Responses

Biotic stresses are caused by biological factors, such as pests, pathogens, and com-
peting plants, which can have detrimental impacts on plant growth, development, and
productivity, leading to significant economic losses in agriculture. Pests such as insects
and mites are potential vectors that can damage plant tissues, reduce photosynthesis, and
transmit plant viruses. Fungal-, bacterial-, viral-, and nematode-transmitted infections can
cause wilting, stunted growth, and decreased yield. Competing plants can outperform
crops for resources such as water, nutrients, and light, leading to reduced yields [117].

Plants have evolved complex defense mechanisms to counteract biotic stress. These
include physical barriers, such as thorns and trichomes, as well as chemical defenses,
such as the production of toxic bioactive compounds and the activation of defense-related
genes. However, biotic stressors can often overcome these defenses, leading to significant
crop losses [26,118,119]. Efforts to mitigate biotic stress include the use of pesticides,
crop genetic engineering, and crop rotation. However, these approaches can have negative
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environmental impacts, leading to the development of pesticide-resistant pests and diseases.
Therefore, sustainable plant protection strategies that consider the complex interactions
between plants and biotic stressors are needed [120]. NO has been reported to act as a
signaling molecule in response to biotic stressors [26], and its roles in response to insects
and pathogens is discussed below.

5.1. Role of NO in Plant and Insect Interaction

Insects can cause various negative effects in plants, including injury from direct
feeding, transmitting plant diseases, and competing with vital plant symbiotic insects,
leading to significant economic losses in agriculture, disruption of natural ecosystems,
and environmental damage [121]. The role of NO in protecting plants against insects
through regulation of various physiological and molecular processes has been reported.
For example, endogenous NO was shown to activate signaling molecules and plant defense
mechanisms during insect invasion [122]. NO can induce the expression of plant defense
related genes, leading to synthesis of insect growth inhibitory proteins [31]. Studies have
also shown that NO can activate various signaling pathways that trigger the production
of defense-related hormones in plants, such as salicylic acid (SA), JA, and ethylene (ETH),
which are known to play crucial roles in plant defense against insects [2,23,123]. NO can
also enhance the production of secondary metabolites, such as alkaloids, flavonoids, and
terpenoids, which can have insecticidal properties [124]. Interactions between plant signal
transduction and insect feeding behaviors are crucial in the induction of plant immunity.
During herbivore attacks, plant cell surface-localized pattern recognition receptors (PRRs)
induce plant defense by recognizing plant-derived damage-associated patterns (DAMPs),
microbe-associated molecular patterns (MAMPs), herbivore-associated molecular patterns
(HAMPs), and phytocytokines, resulting in pattern-triggered immunity (PTI) against
pathogens [23,125]. However, very few PRRS for HAMPs have been described [126].
Herbivore attacks can alter the plasma membrane potential and signaling molecules, such
as ROS and RNS [125]. NO is involved in plant stress tolerance and acts as a signaling
molecule during herbivore attacks [127]. Accumulation of NO and H2O2 was shown to
coincide with the induction of JA, ETH, and SA hormones that sequentially appeared
within the first 24–96 h after the aphid Acyrthosiphon pisum fed on the leaves of a pea
seedling [128]. The simultaneous production of phytohormones, ROS, and RNS at the same
time points suggested their synergistic defense action against aphid infection in pea plants.
Moreover, application of NO donors to pea plants infested with A. pisum revealed the
induction of deterrent defense reactions, leading to a reduced population of A. pisum [129].
In addition, NO has been shown to play significant roles in postharvest pest control [130].

5.2. Role of NO in Plant and Pathogens Interaction

Pathogens, such as viruses, bacteria, and fungi, are disease-causing microorganisms
that can infect and damage plants. Pathogens can enter the plant through wounds, natural
openings such as stomata, or by penetrating the plant cell walls. Once inside the host,
pathogens can damage plants by releasing toxins or by competing with other plants for
nutrients and resources. Pathogens can also weaken the plant defense system, making
it more vulnerable to other biotic and abiotic stressors [131,132]. The roles of NO in the
protection of plants from fungi, viruses, and bacteria have been well characterized [10],
and some are discussed below.

5.2.1. Antiviral Effects of NO

Plants are exposed to a vast array of viruses. In response to tomato mottles mosaic
virus, a significant increase of NO, along with phytohormones, was observed in tomato
plants [133]. Rice plants infected with black-streaked dwarf virus (RBSDV) exhibited
increased production of NO, while application of NO donors further improved the de-
fense system of rice plants against RBSDV infection [134]. A rice Osnia2 mutant with
decreased NO levels compared to the wild type plants during response to RBSDV infection
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showed recovery in NO accumulation after treatment with NO donors; moreover, the study
demonstrated that NO treatment could increase the production of SA and expression of
stress-related genes, such as OsICS1, OsPR1b, and OsWRKY45. However, treatment of
NO inhibitor decreased the tolerance of rice to RSV infection. The study also observed an
increase in the expression of stress-related genes, such as OsPR1b and OsWRKY45. Applica-
tion of brassinosteroids (BRs) was previously shown to enhance Arabidopsis tolerance to
viral infections by increasing NO production [135]. In contrast, application of cPTIO or NR
inhibitor (tungstate), which are NO scavengers, could reverse its beneficial effects and in-
crease plant susceptibility to viral infections. NO has also been shown to enhance tolerance
to various viral infections in numerous plants [136,137], which suggests the potential of
NO donors in increasing plants survival under different viral diseases.

5.2.2. Antibacterial Effects of NO

NO has been reported to regulate plant defense system against pathogenic bacterial
infection by triggering a cascade of defense responses that inhibit growth and the spread
of pathogens [10]. NO can induce the expression of defense-related genes and activate
the production of bactericidal ROS [23]. NO can also regulate the activity of plant defense
proteins, such as mitogen-activated protein kinases (MAPKs), which play crucial roles in the
regulation of stress-related gene expression levels [138]. NO can induce the production of
stress-related hormones, such as SA, JA, and ETH, which crucially regulate the plant defense
responses to pathogenic bacterial infections [12,26]. Various NO-induced genes, including
CLV1, CLV3, and ILL6, were shown to positively regulate the Arabidopsis defense system,
such as plant basal defense, a resistance mediated by resistance gene (R-gene-mediate
resistance) and SAR to enhance tolerance against virulent and avirulent Pseudomonas
syringae pv. Tomato (Pst) DC3000 strains [2,24,139]. A previous report showed that the plant
basal defense was positively regulated to protect against virulent bacterial strain Pst DC3000
(Pst DC3000 vir) by significantly decreasing the expression of the Arabidopsis pathogenesis-
related genes (AtPR1 and AtPR2) in the mutant atclv1, atclv2, and atill6 lines compared to
control plants. The study also showed that NO-induced genes could positively regulate
the R-gene-mediated resistance in response to the avirulent Pst DC3000 (Pst DC3000 avrB)
bacterial strain by markedly decreasing the expression of Arabidopsis PR1 and PR2 genes,
leading to significantly increased electrolyte leakage in atclv1, atclv2, and atill6 mutant
lines compared to control plants (ref). In addition, the study also found that the NO-
induced genes could positively regulate SAR in the Arabidopsis leaves in response to
the avirulent Pst DC3000 avrB bacterial strain. Significant decreases in the expression
of the Arabidopsis SAR pathway related genes, such as PR1, PR2, glycerol-3-phosphate
dehydrogenase (AtG3Pdh), and azelaic inducer 1 (AtAZI), were also observed in the atclv1,
atclv2, and atill6 mutant lines compared to the control plants. In contrast, the Arabidopsis
NO-induced genes, such as AO3, NCED3, bZIP62, and DUF569, which are associated
with ABA pathway or involved in drought stress responses, had negatively regulated
plant basal defense, R-gene mediated resistance, and SAR, but had positively regulated
drought stress tolerance [16,17,139,140]. Arabidopsis inoculation with the virulent and
avirulent Pst DC3000 strains led to the identification of candidate genes in the resistant
phenotype, which showed significantly decreased bacterial growth and EL accompanied
with increased expression of PR1, PR2, G3DPH, and AZI genes. Under drought stress, a
susceptible Arabidopsis mutant phenotype with a significantly decreased ABA production,
survival percentage, and EL, as well as significantly decreased expression of ABA2, ABA3,
ABI2, DREB1, DREB2, APX1, and NCED3 genes was observed. Shi, et al. [141] detected
an increase in the endogenous level of NO after MEL application, which indicated that
MEL could induce NO production and other mechanisms associated with innate immunity
during bacterial infection in Arabidopsis. In addition, application of MEL and NO donor
was shown to increase Arabidopsis resistance to Pst DC3000 bacterial strain, while the
application of NO scavenger declined the endogenous NO levels, which increased plant
susceptibility to Pst DC3000 bacterial strain. Moreover, treatment of tomato plants with the
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NO donor, SNP, enhanced the expression of defense-related genes and reduced bacterial
infection severity [142]. Overall, the role of NO in the response to plant pathogenic bacteria
is an active research area, and further studies are needed to fully elucidate the molecular
mechanisms involved in their interactions.

5.2.3. Antifungal Effects of NO

Pathogenic fungi can infect plants through numerous routes and spread disease.
Necrotrophic fungal infections frequently exhibit a wide host range and kill and consume
nutrients released from the dead tissues of their hosts, while biotrophic fungal diseases do
not discharge poisonous substances and exhibit host specificity; they frequently secrete ef-
fectors to inhibit the host immune system. Hemibiotrophic fungal pathogens initially thrive
as biotrophs before transitioning to necrotrophs, which is an intermediate life stage between
the necrotrophic and biotrophic forms [143]. The necrotrophic/biotrophic properties of
fungal pathogens control the concentration and the spatiotemporal patterns of NO in plant
tissues, which impact its specific roles during pathogenic fungal infection. Interestingly,
fungal organisms are potentially associated with NO generation and metabolism during
plant–fungal pathogen interactions [144]. Application of SNP significantly halted lesion
development of apple fruit inoculated with Penicillium expansum [145]. Similarly, NO has
been shown to protect plants against other fungi, such as Fusarium oxysporum [146] and
Alternaria alternata [147]. Similarly, NO has been shown to enhance the resistance of barley,
Arabidopsis, and wheat against biotrophic fungi, such as Blumeria graminis, Golovinomyces
orontii, Erysiphe pisi, and Puccinia triticina [143]. Overall, the application of NO and NO
donors can enhance the expression of stress-related genes and increase the production
of stress-related proteins and hormones, such as SA and JA [148]. The roles of NO in
the alleviation of herbivorous insects, fungi, virus, and bacterial infections are illustrated
in Figure 3.
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6. Conclusions and Future Trajectories

NO is a versatile signaling molecule that is essential for plant growth and development,
as well as plant responses to abiotic and biotic stressors. NO is synthesized in plants through
various routes, such as oxidative, reductive, and nonenzymatic pathways. NO has been
reported to alleviate the adverse effects of environmental challenges on plants via the
regulation of various physical, biochemical, and molecular plant processes under different
environmental conditions. Under abiotic stresses, NO can activate the antioxidant system
to minimize oxidative damage. Additionally, NO can regulate stomatal closure, improve
water uptake, and promote root growth, all of which are crucial adaptive strategies in
plants subjected to stress. Additionally, NO can regulate plant immune responses, such
as the production of ROS, the expression of defense-related genes, and the production
of phytohormones under biotic stress. Moreover, NO can induce SAR, which prepares
the plant to respond more efficiently to future pathogen attacks. Understanding the
mechanisms underlying the regulation of NO in plants can provide valuable insights into
developing strategies for improving crop productivity and enhancing plant resistance to
abiotic and biotic stressors. Based on the previous investigations, various NO-donors could
be used for the growth and development of plants, even under stressful conditions. Such
a critical role of NO compelled researchers to identify more suitable NO-donors for large
scale agricultural practices to promote the productivity of crop plants.
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