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Nitric oxide and the proliferation of vascular smooth muscle cells
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1. Introduction with thiol groups to produce nitrosothiols [9]. Hence, the
effects of NO and the pathophysiological influences on it

Vascular smooth muscle cell (VSMC) proliferation is an may also be mediated indirectly, potentiated or inhibited
important component of vessel wall remodelling in re- through the availability of these oxygen species. Irre-
sponse to injury, for example, after angioplasty or vein spective of the physiological role of NO in VSMC prolifer-
grafting, and during atherosclerosis formation. Endo- ation, a pharmacological effect of NO may still be
thelium-derived nitric oxide (NO) production is both a exploited to reduce neointima formation and prevent
tonic and an induced regulator of blood vessel tone [1–3]. adverse vessel-wall remodeling. We will therefore also
Its function is impaired by atherosclerosis and, more consider the experience with this approach either in
significantly, by atherogenic risk factors, including hy- conventional or gene therapy.
percholesterolaemia, homocysteinaemia, diabetes, smoking
and high blood pressure, even before the appearance of
overt atherosclerosis [4–6] Endothelial NO production is 2. Alterations in NO formation and NO synthases
dysfunctional after balloon injury and in vein grafts at the that may influence VSMC proliferation in
time when VSMC proliferation and neointima formation is pathological states
progressing [5,6]. It has been tempting, therefore, to
propose a causal relationship between impaired NO pro- During atherogenesis, VSMCs are activated to a syn-
duction and increased VSMC proliferation. If so, this thetic state, which allows them to proliferate and migrate
might explain, in part, the association between endothelial to the intima and produce extracellular matrix [10,11]. This
dysfunction and atherogenesis. leads to neointima formation and the fibrous component of

The primary purpose of this review is to discuss atherosclerosis [12,13]. Atherosclerosis is associated with a
critically the evidence to support such an hypothesis. We reduced endothelium-dependent vasodilatation, which has
will also go on to consider the molecular mechanisms that been ascribed to reduced NO formation [4,14]. Although
might underlie the inhibitory effects of NO on VSMC endothelium-dependent responses are attenuated in aortic
proliferation, with the following important caveats. Firstly, tissue from cholesterol-fed rabbits, total arterial NO pro-
any direct action of NO on an increase in VSMC numbers duction is actually increased [15]. This increased NO
may be mediated at a variety of levels, for example, on the production is likely to be the result of the induction of
signal transduction pathways, on energy production or by inducible nitric oxide synthase (iNOS) in VSMCs [16–19].
promoting cell death. Secondly, in the more complex in Indeed, cholesterol loading of arterial VSMCs upregulates
vivo models, effects of NO on endothelial cells (ECs), cytokine-induced NO formation [20]. Current evidence
platelets and inflammatory cells, rather than directly on indicates that, despite this, the decrease in endothelium-
VSMCs may be responsible for modulating VSMC prolif- dependent relaxation is a consequence of increased
eration. Thirdly, NO is highly unstable, with a half-life superoxide production, which quenches the increased
measured in seconds [2,7,8]. It reacts rapidly with oxygen levels of NO [21–23]. In a recent elegant study, Luoma et

2species (O , O and H O ) to produce, nitrite, nitrate or al. [24] found high expression of iNOS in VSMCs from2 2 2 2

the highly reactive species, peroxynitrite (ONOO) and both human and rabbit atherosclerotic lesions, which was
co-localised with epitopes of oxidised low-density lipopro-
tein (LDL) and ONOO-modified proteins. These data*Corresponding author. Tel.: 144-117-928-3154; fax: 144-117-929-
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consolidate the view that the local increase in levels of index of ONOO [44]) in porcine vein grafts (P. Gadsdon
iNOS increases NO, which, together with increased and J.Y. Jeremy, unpublished observations).
superoxide, leads to the generation of ONOO and other
nitrated oxygen species [9].

In animal models of neointima formation (arterial injury, 3. Evidence that NO inhibits VSMC proliferation
vein grafts), where VSMC proliferation and migration are
central events, NOS activity and NO release are also 3.1. Pharmacological studies in vitro
markedly altered. After balloon injury, there is inevitable
endothelial loss, which ipso facto results in the loss of Early studies demonstrated that NO donor agents,
endothelial constitutive NOS (eNOS). Endothelial re- including sodium nitroprusside (SNP), nitrosothiols, S-
growth occurs rapidly [25], although several studies have nitroso-N-acetylpenicillamine (SNAP) and 3-mor-
indicated that the regrown endothelium in injured coronary pholinosydon imine (SIN-1) inhibit the proliferation of
arteries is dysfunctional [26,27]. This leads to agonist- isolated rat and rabbit VSMCs in tissue culture [45–48].
selective impairment of endothelium-dependent vasodilat- The effective concentrations of NO donor agents were
ation, which suggests a defect in receptor–effector cou- higher than in studies of vasodilator action but occurred at
pling. The loss of endothelial eNOS may be compensated similar intracellular cGMP levels [47]. Below 1 mM SIN-
for by increased iNOS expression [28]. In balloon-injured 1, cells remained viable, as judged by ATP concentrations,
rat carotid arteries, iNOS expression is induced by inter- although additional effects of higher concentrations of
leukin 1-b (IL-1b) [29]. Medial and neointimal VSMCs SIN-1 on proliferation were accompanied by loss of cell
are the main cell type expressing iNOS [30]. viability [48]. Not all preparations of VSMCs showed

The situation is similar in vein grafts. For example, equal sensitivity to NO donors and 8-Br-cGMP. Indeed,
Cross et al. [31,32] and Ku et al. [33,34] found that synthetic state, isolated rabbit smooth muscle cells were
porcine vein graft rings, pre-contracted with noradrenaline, inhibited, whereas contractile cells interacting with their
failed to show endothelium-dependent relaxation in re- native extracellular matrix within aortic explants were
sponse to acetylcholine or histamine. Impaired endo- refractory [49]. On the other hand, human saphenous
thelium-dependent relaxation was also demonstrated in VSMCs within organ cultures were inhibited, arguing that
explanted human coronary vein grafts, with no response to the difference was not simply one of contractile versus
acetylcholine but a significant relaxation to A23187 synthetic cells [50].
[35,36]. Since acetylcholine operates via receptor-mediated In several studies, the effects of low, but not higher,
NO release and A23187 by receptor-independent mecha- concentrations of NO-donors were mimicked by 8-Br-
nisms, these data also suggest that while ecNOS may be cGMP [47], indicating the involvement of cGMP-depen-
preserved in human vein grafts, disruption may occur at dent protein kinase. However, NO can also directly inhibit
some point upstream in the signalling pathway linked to the synthesis of RNA and proteins in VSMCs [51]. NO
the receptor. Consistent with this, in porcine vein grafts, also directly inhibits mitochondrial respiration, which, in
there is a marked reduction in cGMP formation in the turn, may influence growth [52]. Sarkar et al. [53,54]
medial and intimal regions, even though eNOS content and recently suggested multiple sites for the effect of the NO
activity is actually increased [37,38]. donors, SNAP and S-nitroso-glutathione (SNOG) on the

Haemodynamic forces, which are altered by atheroma cell cycle in rat aortic VSMCs. Individually, these elicited
and as a consequence of restenosis and vein graft thicken- a 50% reduction in the fraction of cells in the S and
ing, also exert a powerful influence on endothelial struc- G 1M phases and a corresponding increase in the G2 1

ture and function. For example, high shear stress induces fraction, suggesting that NO inhibits S-phase entry of
activation of signal transduction mechanisms, including VSMCs. Addition of both donors together, however,
phosphoinositide (PI) turnover [39,40]. Thus, although immediately blocked replication reversibly in the S-phase,
there is rapid endothelial regrowth in recently implanted an effect that was not mimicked by exogenous cyclic GMP.
vein grafts, its functional integrity may be compromised by These experiments implied that NO inhibition of VSMC
the impact of arterial haemodynamic forces. Increased proliferation is associated with two distinct and reversible
ecNOS may constitute an adaptive response to shear stress. cell cycle arrests, an immediate cGMP-independent S-
There also appears to be a marked increase in iNOS in phase block and a cGMP-dependent shift back from the
vein-grafts [38]. Although a decrease in NO activity is G –S boundary to a quiescent G -like state [53,54].1 0

associated with neointima formation [41], increased NO The studies with lipid-soluble cGMP analogues imply
formation in itself may be deleterious to vein grafts. For that NO inhibits VSMC proliferation by activating the
example, there is increased accumulation and infiltration cGMP-dependent protein kinase (protein kinase G). How-
into vein grafts of leukocytes, including neutrophils ever, NO-induced elevation of cGMP in VSMCs can
[42,43], which generate large amounts of superoxide, activate adenosine 39,59cyclic monophosphate (cAMP)-de-
thereby transforming NO into ONOO [44]. Indeed we have pendent protein kinase [55], which also is a potent
recently detected large amounts of nitrated tyrosine (an inhibitor of VSMC replication [47,56–58].
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3.2. Time course of the effects of NO on proliferation balloon-injured pig carotid arteries [30]. The effect may
have been direct or through platelet inhibition because

Most in vitro experiments have studied the effect of NO, SIN-1 inhibits both the adhesion of platelets and mural
NO-donor drugs or cGMP analogues added initially to thrombus formation in balloon-injured pig arteries [75].
cells stimulated to enter the cell cycle from quiescence. Few systematic pharmacological studies of the effects of
However, a similar inhibitory effect is obtained when the NO on neointima formation have been carried out in man.
addition of NO-donors or 8-Br-cGMP is delayed for 6 h However, in the ACCORD study, administration of the NO
after growth-factor stimulation (Taylor and Newby, un- donors, linsidomine and molsidomine, was associated with
published observations, 1999). Hence, the most important a modest improvement in the long-term angiographic result
site of action of NO and cGMP may not be on early signal after angioplasty but had no effect on clinical outcome
transduction events but later in the G phase of the cell [76].1

cycle. Similar results have been observed in the case of
cAMP-elevating agents and several other physiological 3.4. Gene transfer and transgenics
inhibitors of VSMC proliferation, including transforming
growth factor-b and interferon-g [11,59]. This is not to say A number of studies have established that gene transfer
that the effects on early signalling events are irrelevant of eNOS successfully influences endothelium-dependent
and, indeed, they may have more important roles in the relaxation [77–79]. Kullo et al. [78] studied rabbit carotid
induction of early response genes (for example, metallop- arteries exposed to adenoviral vectors encoding eNOS
roteinases). (ADeNOS). Over-expression of eNOS resulted in dimin-

ished contractile responses as well as enhanced endo-
3.3. Pharmacological studies in vivo thelium-dependent relaxations [78]. In another study, the

same authors introduced adenoviral vectors encoding
In vivo effects of substrates for NO synthase and NO eNOS into the periarterial sheath (adventitia) of carotid

donors may not be mediated through direct inhibition of arteries, which enhanced endothelium-dependent relaxation
VSMC proliferation but also through inhibition of platelet when assessed four days later [79]. Both luminal and
and leukocyte activation. Both of these cells can play a adventitial delivery represents a convenient means of
role in atherogenesis and neointima formation [6,59] (see introducing gene vectors into blood vessels, which may be
sections on platelets and leukocytes below). Conversely, useful clinically.
inhibitors of NO formation, such as L-NAME (L-nitro- Gene transfer and transgenic models have provided the
arginine-methyl ester) can induce leukocyte activation most persuasive evidence for a role of NO in moderating
[60]. VSMC proliferation [80–82]. For example, transfer of both

Direct, long-term inhibition of NO formation promotes eNOS and neuronal NOS (nNOS) inhibits VSMC prolifer-
atherosclerosis and neointima formation in the hyper- ation and neointima formation in balloon injury and vein-
cholesterolaemic rabbit thoracic aorta [61]. However, this grafting models [83–86]. Interestingly, adventitial expres-
observation has recently been challenged [62]. Several sion of the recombinant eNOS gene restores NO pro-
studies have demonstrated that the oral administration of duction in arteries without endothelium [87]
L-arginine or NO donors inhibit the in vivo proliferation of Over-expression of human ecNOS in syngeneic rat
VSMCs in laboratory animals [63,64]. Administration of arterial SMCs using a retrovirus, which were then seeded
L-arginine (which, as a substrate, increases endogenous NO onto balloon-injured carotid arteries, inhibited neointimal
formation) to hypercholesterolaemic rabbits augments vas- formation by 37% and induced marked dilatation at two
cular NO formation and reduces atheromatous lesions in weeks compared with vector alone [82]. Orally adminis-
rabbits [65]. Interestingly, dietary correction of hyper- tered N-v-nitro-L-arginine blocked these changes. Varenne
cholesterolaemia in the rabbit also normalises increased et al. [88] investigated the effect of intramural injection of
endothelial superoxide production and, hence, generation adenovirus carrying the eNOS cDNA on pig coronary
of ONOO [66]. In cholesterolaemic rabbits, the administra- arteries subjected to angioplasty. In eNOS-transfected
tion of L-arginine reduces intimal thickening in iliac animals, neointimal thickness, lumenal area and % re-
arteries denuded of endothelium with a balloon catheter stenosis were all reduced compared to animals treated with
[67–69]. Similar inhibitory effects of L-arginine adminis- control vector [88]. Mice display a hyperplastic response
tration on intimal thickening were obtained in the rat of the arterial wall in response to external carotid artery
arterial injury model [70–74]. Chronic inhibition of NO ligation [89]. Mice with targetted disruption of the eNOS
formation with L-NAME in rats also caused a significant gene show a greater increase in wall thickness compared to

89.increase in the vessel wall-to-lumen ratio [74] and acceler- wild-type mice
ated neointima formation in hypercholesterolaemic rabbits Given the larger quantities of NO generated, it is not
[41]. clear if iNOS functions through the same mechanisms as

Administration of the NO donor (SIN-1) inhibited eNOS to limit VSMC proliferation. Porcine arteries infec-
VSMC proliferation but not final neointimal thickening in ted with human iNOS cDNA and subjected to balloon
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injury exhibited a threefold increase in total NO synthesis of the effect should reverse the inhibitory action of NO and
and a 15-fold level of cGMP (despite only 1% transfer that a precise molecular mechanism for the action of NO
efficiency) as well as reduced intimal thickness [90,91]. should be defined.
The administration of a NOS inhibitor reversed these
effects [90,91]. 4.1. Effects on the signal transduction pathways

The effect of transfer of human iNOS cDNA was
investigated in a rat aortic allograft transplantation model To place the effects of NO on signal transduction into
[92]. After 28 days, control allografts were found to have context, a brief and simplified overview of the principal
intimal thickening despite significant increases in both intracellular signalling mechanisms involved in VSMC
iNOS mRNA and protein. Inhibition of NO production proliferation is warranted. VSMC proliferation is promoted
with iNOS inhibitor, however, further increased intimal by the concerted action of several distinct signal transduc-
thickening by 57%. In this model, cyclosporine suppressed tion pathways (Fig. 1). These include phospholipase C

21the expression of and promoted intimal thickening. Con- isoforms (which link to Ca release from intracellular
versely, transduction with iNOS cDNA using adenoviral stores and activation of protein kinase C) and the ras,
vector inhibited completely the development of allograft Raf-1, MAP kinase cascade [95–97]. Ultimately, these
atherosclerosis. These data suggest that early immune- pathways lead to transcription of the nuclear transcription
mediated upregulation in iNOS expression partially sup- factors, c-fos and c-jun, by mechanisms involving pre-
presses allograft arteriosclerosis. existing transduction factors, including the serum response

In injured rat carotid arteries, transfer of the iNOS gene factor. C-fos and c-jun together constitute the activator
initiated at the time of vascular injury prevented intimal protein-1 complex that binds to the promoter region of
hyperplasia, a response reversed by the administration of many other early response genes. Coupling of tyrosine
L-N-6-(1-iminoethyl)-lysine [93]. In the same study, but kinase receptors to the soluble tyrosine kinases, c-src,
using a different animal model, human iNOS gene transfer c-yes and c-fyn [98] leads to induction of the c-myc
to injured porcine arteries also reduced intimal hyperplasia transcription factor [99]. Increased transcription of the
by 51.8% [93]. c-myc oncogene is required for VSMC proliferation

When hearts from wild-type mice were transplanted into [100,101]. Agents such as angiotensin II, 5-hydroxy-
syngeneic recipient mice, there was increased luminal tryptamine and thrombin, which act through G-protein-
stenosis and increased intimal /medial ratios [94]. Allo- linked receptors, trigger the same pathways also, through
grafts taken from iNOS knock-out recipients had increased less completely understood mechanisms [102,103]. Inflam-
neointima formation compared to wild-type controls [94]. matory cytokines, including interleukin-1 (IL-1) and
It was concluded that iNOS plays a protective role in the tumour necrosis factor-a (TNF-a) act through receptors
development of arteriosclerosis in transplantation, suppres- that couple transiently with cytosolic serine kinases (janus
sing neointimal VSMC accumulation [94]. kinases, JAKs), which, in turn, activate signal transducers

and activators of transcription (Stats) [104].
Inflammatory cytokines also cause translocation of the

4. Mechanisms underlying the inhibitory effects of nuclear factor-kB transcription factor (NF-kB) to the
NO on VSMC proliferation nucleus [105]. The events shown to be affected by NO/

cGMP are circled in Fig. 1A and discussed below.
The success of various mechanisms in explaining the These early events, within the first 6 h after the addition

inhibitory effects of NO on proliferation can be judged of growth factor, promote transition of cells from quiesc-
against a series of increasingly stringent criteria (Table 1). ence (defined as G ) into the G phase of the cell cycle.0 1

Stated briefly, these are that addition of NO should They prime cells for further progression through the cell
produce the effect, other agents that produce the same cycle (see Fig. 1B), which may then be sustained by other
effect should also inhibit VSMC proliferation, antagonism growth factors, including epidermal growth factor (EGF)

Table 1
Criteria for judging the significance of mechanisms proposed to mediate the action of NO on VSMC proliferation

1. Addition of NO at the time points and concentrations that inhibit proliferation
regulates the mechanism in the appropriate direction (i.e. activation or
inhibition).

2. Modulation of the same pathway in the same sense by other agents also causes
inhibition of proliferation.

3. Modulation of the mechanism in the opposite sense using pharmacological or
molecular biological methods antagonises the effects of NO.

4. The biochemical mechanisms (e.g. phosphorylation events) regulating the
mechanism in response to NO are defined.
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Fig. 1. Possible sites for cGMP-mediated inhibition of VSMC proliferation. (A) Early signal transduction events. Peptide growth factors, for example,
platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF, FGF-2) stimulate tyrosine phosphorylation of receptors (PY) and couple

21to effector mechanisms, which include phospholipase C (PLC) isoforms, which generate the second messengers Ca and diacyl glycerol (DAG). These
activate isoforms of protein kinase C (PKC). PY activates the c-ras, c-raf, mitogen-activated protein kinase (MAPK) cascade, the final result of which is
transcription and activation of the early response genes c-fos and c-jun. PY also activates soluble tyrosine kinases, c-src, c-yes and c-fyn, which induce the
nuclear transcription factor c-myc. Angiotensin II (Ang II), endothelin-1 (ET-1), 5-hydroxytryptamine (5-HT) and thrombin, acting through G-protein-
linked receptors, trigger the same pathways through less completely understood mechanisms. Inflammatory cytokines, including interleukin-1 (IL-1) and
tumour necrosis factor-a (TNF-a), act through receptors that couple transiently with cytosolic serine kinases (janus kinases, JAKS), which, in turn, activate
signal transducers and activators of transcription (Stats). Inflammatory cytokines also cause translocation of nuclear factor-kB transcription factor (NF-kB)
to the nucleus. Events potentially regulated by NO/cGMP are circled in bold. (B) Late G events. The retinoblastoma protein (pRb) binds to transcription1

factors, including E2F, to prevent gene transcription, including that of DNA polymerase II (POL II), which is required for DNA replication. Cyclins D and
E and their kinase partners CDK4 and CDK2, respectively, phosphorylate pRb, which reduces its affinity for E2F and other transcription factors. CDK4
and CDK2 are regulated by phosphorylation by cyclin-activating kinase (CAK) and by dephosphorylation by the phosphatase, cdc25A. This phosphatase
may be induced by the c-myc transcription factor. Events potentially regulated by NO/cGMP are circled in bold.
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21and insulin-like growth factor-1 (IGF-1). Progress through the transport of Ca in and out of intracellular stores as
the cell cycle is controlled by cyclin-dependent protein well as across plasma membranes by modulating the

21 21 21kinases (cdks) and their cyclin catalytic partners [106– Ca –Mg -dependent ATPase activity of the Ca pump
21108]. The G -phase-specific D and E cyclins are key [127]. Likewise, many studies have shown that Ca -1

21regulators of passage from G to S-phase, where DNA channel blockers, which inhibit Ca influx, also inhibit1

synthesis commences and cells become committed to the proliferation of VSMCs and neointima formation
replicate [103]. Cyclin D and E mRNAs are induced by following experimental arterial injury [128]. Felbel et al.

21growth factors, including PDGF [109,110], and are sup- [128] found that cGMP kinase blocks Ca influx from the
pressed by antiproliferative agents [111,112]. Cyclin D1 extracellular space and Blatter and Weir [129] showed that

21expression is regulated positively by the MAP kinase both nitroprusside and cGMP lowered cytosolic Ca in
p42/p44 and negatively by the MAP kinase p38/HOG VSMCs. On this theme, Clementi et al. [130] reported that

21pathways [113,114]. Induced over-expression of the D PDGF-BB induced Ca responses are differentially
21cyclins accelerates cell cycle progression and shortens the modulated by NO: inhibition of IP -sensitive Ca stores3

21cycle in many cell types [115,116]. A principal substrate and augmentation of store-dependent Ca channels
21for the G cyclins is the retinoblastoma (pRb) tumour (SDCs) and second messenger-operated Ca channels1

21suppressor gene [116], which, in its hypophosphorylated (SMOCs). In this context, Ca -channel blockers such as
21form, suppresses S-phase progression. Cyclin-dependent nifedipine and verapamil, which prevent Ca entry via

phosphorylation of pRb negates its action, allowing repli- blockade of these channels, are potent inhibitors of VSMC
cation to progress. The activity of the cdks is itself proliferation and migration [130–132]. As mentioned,
regulated positively and negatively by phosphorylation at cAMP-dependent kinases, in particular PKAs, can be
different sites [117,118]. Indeed, the essential role of activated by cGMP [55]. In turn, PKA phosphorylates

21 21 21c-myc, in cell cycle progression may be explained by its Ca –Mg ATPases (Ca pumps) at both the plasma
ability to induce the cdc25A protein phosphatase, which membrane and the sarcoplasmic reticulum, which results in

21dephosphorylates and activates cdks99. Several cdk in- cytosolic Ca being pumped out of the cell or being
hibitors, which are either selective for D cyclins (INK1-4) re-sequestered back into the sarcoplasmic reticulum [56].

21cip1 waf1 In VSMCs, SNAP decreased cytosolic Ca levels andor nonselective for D and E cyclins (p27 , p21 ), play
elicited phosphotyrosine dephosphorylation [133]. Thesean additional important role in regulating cdk phosphoryla-

21effects are mimicked by the extra- and intracellular Cation of pRb [118,119]. In principle, NO/cGMP could
21chelators EGTA and BAPTA and by the Ca channelinterfere at any stage of this signal transduction cascade,

blocker [133]. Both BAPTA and nifedipine also decreasedalthough the events for which there is direct evidence (see
DNA synthesis [133], providing further evidence to linkbelow) are circled in Fig. 1B.

21 21membrane Ca channels, Ca levels and dephosphoryla-
tion to the control of mitogenesis [133]. In contrast,

4.2. Calcium Assender et al. [47] found no effect on basal or agonist-
21stimulated intracellular Ca by NO and 8-Br-cGMP at

21There is no doubt that Ca plays a key role in vascular concentrations that inhibited VSMC proliferation (failed
contraction and that the NO–cGMP axis mediates its criterion 1 of Table 1).

21vasodilator effects in part by inhibiting Ca entry and Overall, the preceding studies provide strong evidence
mobilisation [120]. Circumstantial evidence points to a that NO inhibits VSMC proliferation by preventing an

21 21similar regulatory role of Ca in VSMC proliferation increase in cytosolic Ca . However, the precise relation-
21[121]. Vasoconstrictor agonists and growth factors general- ship between NO, Ca mobilisation and VSMC prolifer-

ly cause an immediate (within seconds to minutes) increase ation remains to be fully elucidated, particularly in light of
21 21in cytosolic Ca . Recent studies with thapsigargin, a the studies that showed no effect of NO on Ca .

potent and selective inhibitor of the endoplasmic reticulum
21Ca -sequestering ATPase, demonstrate the crucial role of
21Ca stores in VSMC replication [122–124]. In isolated 4.3. MAP kinase

human VSMCs, thapsigargin, at concentrations less than 10
21nM, inhibited the release of Ca from intracellular pools A recent study by Yu et al. [134] demonstrated that

[122–124], although it did not acutely alter resting cyto- sodium, 8-bromo cGMP as well as a phosphodiesterase
21solic Ca [122–124]. This highlights the importance of type V inhibitor (which elevates cGMP levels through

release from intracellular stores, which may include the inhibition of its hydrolysis) all attenuate growth factor-
endoplasmic reticulum and the nuclear envelope [125]. stimulated VSMC replication via a cGMP-dependent

With regard to the NO–cGMP axis, NO has been shown mechanism. It was also demonstrated that sodium nitro-
in intact vascular preparations to inhibit agonist-induced prusside and 8-Br-cGMP decreased the activity of MAP

21Ca mobilisation [126]. In turn, cyclic GMP influences kinase, MAP kinase kinase and their regulatory proteins
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Ras and Raf-1, which couple peptide growth factors to the cell proliferation may contribute to decreasing the extent of
MAP kinase cascade [134] (criterion 1 of Table 1). SNAP hyperplasia [142]. Furthermore, indirect effects on other
inhibited VSMC proliferation and increased protein cell types, such as endothelial cells, which generally
tyrosine phosphatase activity, in particular, in proteins of suppress VSMC proliferation [143,144] and macrophages,
70–85 kDa and |215 kDa molecular mass [135]. SNAP which are stimulatory [145], can also influence the final
also increased protein tyrosine phosphatase (PTPase) ac- response.
tivity in VSMC homogenates, indicating that phos-
photyrosine dephosphorylation was likely to be the result
of increased PTPase activity. 8Br-cGMP and atrial nat- 5.1. Effects on VSMC death
riuretic peptide elicited similar effects [135] (criterion 2 of
Table 1). Cell death and apoptosis are prominent features of

advanced atherosclerotic lesions, often resulting in the
formation of hypocellular fibrous zones and a lipid-rich4.4. c-myc
necrotic core [146–148]. Apoptosis also occurs in re-
stenotic lesions after balloon angioplasty [149,150]. TheBennett et al. [136,137] observed that 8-Br-cGMP, as
main significance of VSMC apoptosis is to counteract thewell as 8-Br-cGMP, heparin and interferon-g, at con-
increase in neointimal cell number resulting from neointi-centrations that caused a similar 50% inhibition of rat
mal migration and proliferation. Apoptosis is generallyaortic VSMC proliferation, all inhibited the expression of
held to be silent, i.e., it does not result in growth-factorc-myc (criterion 1 of Table 1). Studies with antisense
release or provoke an inflammatory response. Unlikeoligonucleotides directed against c-myc demonstrate that
necrosis, it therefore should not provoke compensatorythis inhibition is sufficient to cause cell cycle arrest
VSMC proliferation or migration nor induce iNOS in(criterion 2 of Table 1). Moreover, when c-myc was
neighbouring cells. However, recent evidence suggests thatover-expressed using a retroviral construct, the inhibitory
bFGF can be released from cells dying by apoptosis andeffects 8-Br-cGMP and the other agents was completely
could therefore elicit proliferation in remaining healthyreversed (criterion 3 of Table 1) [136,137]. Taken together,
cells [151]. This might explain why the early occurrence ofthese data represent a strong case for considering c-myc,
apoptosis [152] is strongly correlated with later hyperplasiawhich is active late in the late G phase of the cell cycle,1 [147].as a possible mediator of the effects of NO/cGMP on

Inflammatory mediators may also directly stimulateVSMC proliferation. However, as with the other proposed
VSMC apoptosis through the generation of NO. Formechanisms, the precise phosphorylation events required
example, incubation of VSMCs with IL-1b results in NOhave not been defined (criterion 4 of Table 1)
release and concomitant cytotoxicity, an effect reversed by

GN -monomethyl-L-arginine [151]. Geng et al. [153] also
4.5. G cyclins1 demonstrated that apoptosis of VSMCs induced with INF-

g, TNF-a and IL-1b is mediated by NO. NO derived from
NO has also been shown to exert an impact downstream iNOS also induces macrophage apoptosis [154,155],

of these aforementioned cytosolic events. Ishida et al. which, in turn, may influence VSMC proliferation.
[138] have demonstrated that the NO donor, SNAP,

Sdi1 / Cip1 / Waf1induces cyclin-dependent kinase inhibitor p21 .
(criterion 1 of Table 1). Thus, NO ultimately inhibits the 5.2. VSMC migration and matrix deposition
G /S transition by inhibiting Cdk2-mediated phosphoryla-1

tion of the retinoblastoma protein, and p21 induction is It is the currently held consensus that neointima forma-
involved in the Cdk2 inhibition. tion after arterial injury or vein graft surgery involves

Less effort has been devoted to identifying the cGMP- migration of medial VSMCs towards the lumen where they
independent effects of NO on VSMC proliferation. NO continue to proliferate and secrete matrix proteins [11].
also exerts direct effects on ribonucleotide reductase, an The mechanisms underlying migration have been reviewed
enzyme essential in DNA synthesis [139–141]. Inhibition [156,157]. There is much less data concerning the effects
of this enzyme by NO (criterion 1 of Table 1) may result of NO and its derivatives on VSMC migration or matrix
in cell cycle arrest at the G –S boundary1 formation than proliferation. However, NO has been

shown to inhibit VSMC migration when stimulated with
angiotensin II through a cGMP-dependent mechanism
[158]. NO modulates basal and endothelin-induced in-5. Indirect influences of NO on VSMC proliferation
creases in collagen levels [159], NO down-regulates the
synthesis of type IV collagen and fibronectin but stimulatesIn a complex event, such as atherosclerosis or restenosis
the production of laminin by rat mesangial cells [160]. In aafter angioplasty, both cell death and direct inhibition of
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study in which porcine coronary EC and VSMCs were play [172]. VEGF augments NO release from the quiescent
grown in co-culture, NO produced by the endothelium rabbit and human vascular endothelium [173] and induces
inhibited VSMC production of collagen types I and III but NO-dependent relaxation in coronary arteries [174]. It has
had no effect on collagen type I [161]. These effects were also been demonstrated that NO mediates VEGF-stimu-
blocked by L-NAME. As noted previously, proliferating lated mitogenesis of microvascular ECs [175]. VEGF-
VSMCs in intact vascular tissues secrete metalloprotein- stimulated NO release from simian virus 40 immortalised
ases, which proteolyse matrix proteins, thereby allowing microvascular ECs induced cell migration whereas L-
them to migrate [11]. Trachtman et al. [160] have found NAME or antisense oligonucleotides to ecNOS suppressed
that NO stimulates the activity of a 72-kDa neutral matrix this effect of VEGF [176]. In an in vivo model of
metalloproteinase (gelatinase) in cultured rat mesangial angiogenesis, the rabbit cornea, Ziche et al. [177] found
cells. If also true for VSMCs, this would constitute a that sodium nitroprusside potentiated the pro-angiogenic
pathway by which NO might promote migration. effect of substance P. The same authors found that

angiogenesis stimulated by basic fibroblast growth factor
5.3. Effects on endothelial proliferation and death (bFGF) was unaffected by inhibitors of NO formation

[177,178]. This indicates that NO is one, but not the only,
Intact endothelium is a key inhibitor of VSMC prolifer- factor controlling angiogenesis in this system. Angiogen-

ation [162,163]. It follows that regeneration of damaged esis in the rabbit cornea in vivo and in vitro and migration
endothelium is a major determinant of VSMC hyperplasia of human umbilical ECs is greatly reduced by the absence
after balloon injury. In other circumstances, activated ECs of L-arginine [179]. VEGF transfer reduces intimal thicken-
are a source of VSMC mitogens [162,163]. ing via increased production of NO in carotid arteries

Hansson et al. [164] demonstrated that ecNOS is rapidly [180].
upregulated in the ECs of vessels in response to injury.
There is also a three-to sixfold increase in ecNOS protein 5.4. Effects on blood platelets and inflammatory cells
and ecNOS mRNA in growing compared to growth-ar-
rested bovine endothelial cells [164]. The increased release NO donors may also influence VMSC behaviour in-
of NO may limit neointima formation under the repairing directly through actions on platelets and leukocytes. It is
EC. On the other hand, Kourembanas et al. [165] demon- well established that NO inhibits platelet and leukocyte
strated that in vitro suppression of NO formation with adhesion to ECs [180–182]. On adhesion and aggregation,
L-NAME caused a threefold increase in endothelin-1 (ET- platelets generate a number of pro-mitogenic substances,
1) and PDGF-B expression in human umbilical vein ECs. including PDGF, TGF-b, epidermal growth factor (EGF),
Both ET-1 and PDGF-B are potent promoters of VSMC thromboxane A (TXA ), 5-HT, platelet-activating factor2 2

proliferation and are chemoattractants for VSMCs [166– (PAF), platelet factor IV, fibrinogen, fibronectin, vWf,
168]. Similarly, long-term blockade of NO synthesis in rats thrombospondin and b-thromboglobulin, as well as
resulted in increased tissue angiotensin converting enzyme heparitinase, elastase, collagenases and cathepsins
activity and angiotensin II formation, an established [183,184]. Neutrophils, T lymphocytes and monocytes
mitogen for VSMCs [169]. Thus, suppression of NO release an array of substances that may also contribute to
formation can increase VSMC proliferation either directly neointima formation, including peptide growth factors,
or through modulation of other growth promoters. leukotrienes (LTs), interleukins, histamine, TNF-a and

With regard to EC regeneration itself, data are ambival- PAF. There is increasing evidence that there is significant
ent. Neither NOS inhibitors nor superoxide dismutase ‘cross talk’ between platelets and incoming leukocytes. For
(SOD) affect EC proliferation in culture [170]. Similarly, example, platelet–neutrophil complexes play a key role in
vascular iNOS gene transfer, while inhibiting SMC prolif- angina [185,186]. Neutrophils, in addition to platelets, are
eration, does not affect EC proliferation or viability [171]. the main constituents of intracoronary thrombus in acute
In relation to programmed EC death, the addition of NO myocardial ischaemia. In turn, microthrombi, which ac-
actually inhibits lipopolysaccharide-induced apoptosis in cumulate secondarily to platelet adhesion, have been
ECs by reducing caspase 3-like protease activity [171]. In suggested as being more relevant as a trigger to neointima
a blood vessel, more rapid endothelial regrowth as a result formation than platelet accumulation alone.
of NO-mediated protection from apoptosis would indirect-
ly inhibit VSMC proliferation (see below). 5.5. Interactions of NO with reactive oxygen species,

In contrast, there is compelling evidence for a key role lipoproteins and homocysteine may directly or indirectly
for NO in angiogenesis, a process that quintessentially influence its effects on VSMC proliferation
involves the proliferation, migration and tube formation of
ECs [172–175]. Angiogenesis is regulated predominantly It is by virtue of its interactions with reactive oxygen
by vascular endothelial growth factor (VEGF), although species generated by ‘oxidative stress’ that NO can be-
many other growth and humoral factors also come into come pro-atherogenic [187]. Briefly, NO reacts with
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superoxide (O ), hydroxyl (OH), peroxyl, alkoxyl, hy- accumulation of insoluble collagen [205–207]. Such ob-2

droperoxyl and hydrogen peroxide (H O ) as well as with servations are consistent with a role for homocysteine in2 2

thiols [8]. Principal amongst the products of these re- the pathogenesis of atherosclerosis. In the majority of these
2actions are peroxynitrite (ONOO) nitrite (NO ), nitrate in vitro studies, high concentrations of homocysteine (mM)2

2(NO ), nitrosonium ions and nitroxide ions [187]. In the were used to elicit effects. Since homocysteine levels3

presence of transition elements (e.g. copper or iron), NO become pathological in the 20–100 mM range, these data
can also undergo reactions with phenolics, thiols and indicate that, in vivo, homocysteine interacts with other
secondary amines to yield nitrosothiols and iron nitro- substances to promote angiopathy. For example, oxidation
tyrosyls [187]. Nitrosothiols act as naturally occurring NO of homocysteine can promote the formation of H O and2 2

2donors. Indeed, the formation of S-nitrosothiols may O , [208] which augment VSMC proliferation but impair2

account for the ability of ONOO to produce vascular EC growth and function [193,194]. We have recently
relaxation [188]. Nitrosothiols also inhibit VSMC prolifer- established that copper markedly augments the inhibitory
ation. At a mechanistic level, ONOO is ambivalent in that effect of homocysteine on endothelium-dependent relaxa-
it can elicit events that are either pro- or anti-mitogenic. tion of the isolated rat aorta, an effect that is reversed by

21For example, ONOO elicits release of [Ca ] in VSMCs the presence of superoxide dismutase and catalasei
21 2but reduces IP -mediated release of Ca in response to [193,194]. We proposed that O generated by homo-3 2

VEGF [21,189]. MAP kinase can be activated by reactive cysteine and copper interacts with NO to produce ONOO
2oxygen species, such as O or H O , and this may be (Fig. 2) and that this cascade may be central to the2 2 2

mimicked by ONOO [190]. Although ONOO activates angiopathic impact of homocysteine.
guanylate cyclase, it is 50–100 times less potent than NO
[191]. Interestingly, acidic FGF enhances ONOO-induced
apoptosis in primary murine fibroblasts [192].

In the context of ONOO, we have recently explored the 6. Concluding remarks
pro-atherogenic effect of homocysteine, an established risk
factor for accelerated atherosclerosis [193,194]. Although it is clear from current evidence that NO plays
Homocysteinaemia in animal models results in endothelial a key role in mediating vascular remodelling, its mecha-
denudation, VSMC proliferation, matrix protein deposition nisms of action are far from being straightforward. For
and intimal thickening [195–198]. Homocysteine inhibits example, NO elicits diametrically opposite effects on
EC growth in culture [199–201] but promotes proliferation different cell types: namely, the inhibition of VSMC
of VSMCs [202–204]. In addition, homocysteine enhances proliferation but the promotion of EC proliferation and
VSMC collagen matrix production and an excessive microvessel formation. This selectivity is remarkable given

Fig. 2. Hypothetical model of the oxidant stress cascade mediated by homocysteine (HCy–SH): (1) transition metals (free and protein bound) accelerate
2oxidation of HCy to generate H O . (2) H O is oxidised to superoxide (O ), which also catalysed by transition metals. (3) Superoxide reacts with NO to2 2 2 2 2

21produce peroxynitrite (ONOO). (4) ONOO dissociates copper and iron from binding proteins. (5) Free Cu augments eNOS activity and (6) inducible
NO (iNOS) is enhanced by HCy as well as cytokines and hypoxia. Together, increased local levels of NO provide ‘fuel’ for the generation of ONOO and
perpetuation of the cascade. ONOO also accelerates the oxidation of HCy to generate more H O . This cascade can come into play in other risk factor2 2

scenarios, in particular, diabetes mellitus and lipidaemia, where superoxide generation is enhanced.
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