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Tumor microenvironment is fundamental for cancer progression and chemoresistance. 

Among stromal cells tumor-associated macrophages (TAMs) represent the largest 

population of in�ltrating in�ammatory cells in malignant tumors, promoting their growth, 

invasion, and immune evasion. M2-polarized TAMs are endowed with the nitric oxide 

(NO)-generating enzyme inducible nitric oxide synthase (iNOS). NO has divergent effects 

on tumors, since it can either stimulate tumor cells growth or promote their death 

depending on the source of it; likewise the role of iNOS in cancer differs depending 

on the cell type. The role of NO generated by TAMs has not been investigated. Using 

different tumor models in  vitro and in  vivo we found that NO generated by iNOS of 

M2-polarized TAMs is able to protect tumor cells from apoptosis induced by the che-

motherapeutic agent cisplatin (CDDP). Here, we demonstrate that the protective effect 

of NO depends on the inhibition of acid sphingomyelinase (A-SMase), which is activated 

by CDDP in a pathway involving the death receptor CD95. Mechanistic insights indicate 

that NO actions occur via generation of cyclic GMP and activation of protein kinase 

G (PKG), inducing phosphorylation of syntaxin 4 (synt4), a SNARE protein responsible 

for A-SMase traf�cking and activation. Noteworthy, phosphorylation of synt4 at serine 

78 by PKG is responsible for the proteasome-dependent degradation of synt4, which 

limits the CDDP-induced exposure of A-SMase to the plasma membrane of tumor cells.  
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This inhibits the cytotoxic mechanism of CDDP reducing A-SMase-triggered apoptosis. 

This is the �rst demonstration that endogenous NO system is a key mechanism through 

which TAMs protect tumor cells from chemotherapeutic drug-induced apoptosis. The 

identi�cation of the pathway responsible for A-SMase activity downregulation in tumors 

leading to chemoresistance warrants further investigations as a means to identify new 

anti-cancer molecules capable of speci�cally inhibiting synt4 degradation.

Keywords: tumor-associated macrophages, nitric oxide, acid sphingomyelinase, syntaxin 4, cisplatin resistance

INTRODUCTION

Chemotherapeutic agent cisplatin (CDDP) is a widely used and 
very e�ective chemotherapeutic drug that induces apoptosis of 
cancer cells in solid tumors (1). However, CDDP has a major 
drawback; while patients in the �rst line of treatment usually 
respond to it, tumors develop resistance over time (2, 3), mostly 
because of their ability to escape the apoptogenic e�ects of the 
drug (4). Recent studies have revealed a more complex scenario 
in which tumor resistance is also acquired through changes in the 
tumor milieu both in the cells composing the tumor microenvi-
ronment, as for instance immune cells, and in the soluble factors 
they release locally (5, 6).

Inside the tumor microenvironment, tumor-associated mac-
rophages (TAMs) have been demonstrated to be fundamental  
for cancer progression (7). In the tumor mass, these cells are 
subjected to a variety of stimuli that change their features. Initially, 
TAMs are in the M1 (classically activated) state, that is pro- 
in�ammatory and anti-tumorigenic; as tumors progress they evolve 
to the M2 (alternatively activated) state, a pro-tumoral phenotype 
that triggers tissue remodeling as well as immune-suppression 
(8–10). TAMs are predominantly polarized as M2 macrophages  
in tumor of high grade associated with poor prognosis, and pro-
mote proliferation, survival, and motility of cancer cells (8, 10–17).

Tumor-associated macrophages are competent to express 
inducible nitric oxide (NO) synthase (iNOS) and generate the 
gaseous messenger NO (18–20). At low, physiological levels 
NO displays cytoprotective properties while it is cytotoxic when 
produced at high concentrations (19, 21–24). NO cytoprotection 
in cancer has been linked to the inhibition of the sphingomyelin 
metabolizing enzyme acid sphingomyelinase (A-SMase) whose 
activation is triggered by death receptors, i.e., CD95 and TNFRI, 
and chemotherapeutic drugs such as CDDP (25–27). We have 
previously found that an important determinant of A-SMase 
activity is the target-SNARE protein syntaxin 4 (synt4), known to 
be involved in several exocytosis events, such as antibody secre-
tion as well as secretory pathway of CTLs and GLUT4 transport 
on the plasma membrane (28–31). In U373 human glioma cells 
stimulated by CD95, we showed that synt4 presides over the 
vesicular tra�cking of A-SMase allowing its exposure to the 
plasma membrane and hence its activation (28, 32). Intriguingly 
syntaxins expression and activity, including that of synt4, have 
been linked to tumor progression through mechanisms still 
unknown (33–37).

We thus decided to investigate the molecular relationship 
between NO, A-SMase and synt4 and the role they play in the 

development of tumor resistance to CDDP. By in vivo and in vitro 
experiments using human and murine cell models we found 
that NO, produced at low levels by iNOS from M2-like TAMs, 
protects cancer cells from CDDP-induced apoptosis leading 
to chemoresistance. NO phosphorylates synt4 promoting its 
proteasomal degradation in a pathway involving generation of 
cyclic GMP (cGMP) and activation of protein kinase G (PKG). 
Synt4 downregulation in turn inhibits CDDP-induced A-SMase 
traslocation to the plasma membrane and its activation, thus 
blocking CDDP-apoptogenic action against tumor cells. We thus 
de�ne for the �rst time a mechanism whereby NO regulation of 
synt4 causes chemoresistance to CDDP leading to the control of 
sphingolipid metabolism. �e identi�cation of this system in the 
tumor microenvironment contributes to shed light on the role of 
TAMs in the pathophysiology of cancer.

MATERIALS AND METHODS

Immuno�uorescence
Immunohistochemical staining was performed on tissue 
microarray (TMA) samples obtained from US Biomax (#GL805L, 
Rockville, MD, USA), using published protocols (38–41). �e 
para�n-embedded tissue arrays were baked at 60°C for 30 min, 
then were dewaxed in xylene for 10 min twice and �nally were 
rehydrated through a series of alcohol solutions (Sigma-Aldrich, 
Saint Louis, MO, USA) (100, 95, and 70%, respectively ethanol) to 
water. For antigen retrieval, the TMA samples were heated to 95°C 
for 15 min in 0.01 M sodium citrate bu�er (Sigma-Aldrich, Saint 
Louis, MO, USA) at pH 6.0. A�er returning to room temperature, 
the TMA samples were rinsed with 0.1 M phosphate bu�er (PB) 
and subsequently blocked with 10% of normal goat serum (NGS; 
�ermo Fisher Scienti�c, Waltham, MA, USA) in PB for 30 min 
at room temperature. For double-immuno�uorescence staining, 
TMA samples were incubated with rabbit anti-iNOS antibody 
(1:500 dilution; #ab178945, Abcam, Cambridge, UK) and 
mouse anti-CD206 antibody (1:100 dilution; #MCA2155; Bio-
Rad, Hercules, CA, USA) in PB containing 0.1% Triton X-100 
overnight at 4°C. Following washes in PB, TMA was incubated 
with the appropriate Alexa Fluor secondary antibodies (Life 
Technologies-�ermo Fisher Scienti�c, Waltham, MA, USA) in 
PB containing 0.1% Triton X-100 for 1.5 h at room temperature. 
Finally, the TMA was coverslipped with Fluoroshield Mounting 
Medium containing DAPI (Abcam, Cambridge, UK). Images 
were acquired using a 40× objective by a Zeiss LSM 710 confocal 
microscope (Carl Zeiss, Oberkochen, Germany).
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Human and Mouse M2-Polarized 

Macrophage Preparation
Human polarized macrophages were propagated as descri-
bed (42): brie�y, human monocytes, derived from peripheral 
blood of healthy donors using sequential Ficoll-Paque PLUS  
(GE Healthcare, Chicago, IL, USA) and 46% Percol (GE 
Healthcare, Chicago, IL, USA) density gradients, were cultured 
for 5  days in X-VIVO 15 (Cambrex Bio Science, Verviers, 
Belgium) supplemented with 1% human serum (BioWhittaker, 
Walkersville, MD, USA) (culture medium) and recombinant 
human rhM-CSF (R&D Systems, Minneapolis, MN, USA) 
(100  ng/ml) at a density of 2.5  ×  105/cm2. Cells were then 
cultured for an additional 2 days in X-VIVO 15 supplemented 
with 1% HS and recombinant human rhIL-4 (R&D Systems, 
Minneapolis, MN, USA) (10  ng/ml) for M2 polarization. 
Macrophage di�erentiation was validated by the expression of 
HLA A, B, and C (PE Mouse Anti-Human HLA-ABC antibody, 
Clone G46-2.6, BD Bioscience, San Jose, CA, USA) by �ow 
cytometry (Gallios, Beckman-Coulter, Brea, CA, USA) (20). 
�e M2 phenotype was con�rmed by the expression of the 
M2 markers CD163 and CD206 (mouse anti-human CD163 
antibody, clone GHI/61, and mouse anti-human CD206, Clone 
19.2, BD Bioscience, San Jose, CA, USA) and by the low expres-
sion of the M1 marker CD14 (mouse anti-human CD14, clone 
M5E2, BD Bioscience, San Jose, CA, USA).

For murine M2 macrophages preparation, bone marrow cell 
suspensions were isolated by �ushing femurs and tibias of 8- to 
12-week-old C57BL/6 wt and iNOS−/− mice with MEM alpha 
supplemented with 10% fetal bovine serum (FBS) (Euroclone, 
Milan, Italy), 2 mM glutamine (Euroclone, Milan, Italy), 100 U/ml  
penicillin, and 100 U/ml streptomycin (Euroclone, Milan, Italy) 
(complete MEM alpha). Aggregates were dislodged by gentle 
pipetting, and debris was removed by passaging the suspension 
through a 40-µm nylon cell strainer. Cells were washed twice 
with medium, and seeded on ultra-low attachment surface plates. 
Cells were cultured in complete MEM alpha supplemented 
with recombinant mouse rhM-CSF (Miltenyi Biotec, Bergisch 
Gladbach, Germany) (100 ng/ml) and cultured in a humidi�ed 
incubator at 37 C and 5% CO2 for 7 days. On days 3 and 5, cells 
were ampli�ed and medium was refreshed. Cells were then  
cultured for additional 4 days in complete MEM alpha supple-
mented with rhM-CSF (10 ng/ml) and recombinant mouse rhIL-4 
(Miltenyi Biotec, Bergisch Gladbach, Germany) (10  ng/ml)  
for M2 polarization. Flow cytometry analysis demonstrated 
macrophage di�erentiation (F4/80) (anti-mouse F4/80, clone 
BM8, #123110, Biolegend, San Diego, CA) and the M2 phe-
notype (CD206) (anti-mouse CD206 antibody, clone C068C2, 
#141704, Biolegend, San Diego, CA, USA) (43). �e expression 
of M2 markers was con�rmed by real-time PCR (Figure S3D in 
Supplementary Material) (43).

Cell Cultures and Pharmacological 

Treatments In Vitro
U373 human glioma (American Type Culture Collection), 
GL261 murine glioma (a kind gi� of Dr. Serena Pellegatta, 
“Carlo Besta” Neurological Institute, Milan, Italy), and Lewis 

lung carcinoma (LLC) cells (American Type Culture Collection) 
were routinely grown in Dulbecco’s Modi�ed Eagle Medium 
(DMEM) (Euroclone, Milan, Italy), supplemented with 10% FBS 
(Euroclone, Milan, Italy), 2  mM glutamine (Euroclone, Milan, 
Italy), 100 U/ml penicillin (Euroclone, Milan, Italy), and 100 U/ml  
streptomycin (Euroclone, Milan, Italy) at 37°C, 5% CO2.

All pharmacological treatments on U373 and GL261 cells 
were carried out in the culture medium. In brief, incuba-
tions with Nω-Nitro-l-arginine methyl ester hydrochloride 
(l-NAME; 2  mM) (Sigma-Aldrich, Saint Louis, MO, USA) or 
(z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-
1-ium-1,2-diolate (DETA-NO; 20  µM) (Calbiochem—Merck, 
Darmstadt, Germany) or 8Br-cGMP (3  mM) (Sigma-Aldrich, 
Saint Louis, MO, USA) or human neutralizing anti-CD95 anti-
body ZB4 (500  ng/ml) were performed for 1  h before CDDP  
(50  µg/ml for U373 and 20  µg/ml for GL261) (Teva Pharma-
ceuticals Europe B.V., Amsterdam, �e Netherlands) admin-
istration (44). H-[1,2,4]oxadiazolo[4,3-α]quinoxalin-1-one 
(ODQ; 1 µM) (Enzo Life Sciences, Farmingdale, New York, NY, 
USA) was added to the cell culture 15 min prior to DETA-NO 
administration. KT5823 (1  µM) (Calbiochem—Merck, 
Darmstadt, Germany) was added to the cell culture 15 min prior 
to DETA-NO administration. Incubation with MG132 (10 µM) 
(Calbiochem—Merck, Darmstadt, Germany) was performed for 
2 h before 8Br-cGMP and CDDP administration.

Viability Assay
Cell viability of human and mouse glioma cells in the presence 
of CDDP at increasing concentrations for 24 h was evaluated by 
MTT analysis (40, 45, 46). MTT (Sigma-Aldrich, Saint Louis, MO, 
USA) absorbance was quanti�ed spectrophotometrically using a 
Glomax Multi Detection System microplate reader (Promega, 
Madison, WI, USA).

Proliferation Assay
U373 and GL261 cell proliferation a�er 24 h of treatment with 
CDDP was assessed by measuring the serial halving of cell 
�uorescence intensity via �ow cytometry (45). �e CytoTrack 
Cell Proliferation Assays (CytoTrack Green; Bio-Rad, Hercules, 
CA, USA) was used, according to the manufacturer’s protocol. 
Fluorescence was analyzed by Gallios Flow Cytometer (Beckman-
Coulter, Brea, CA, USA) and the so�ware FCS Express 4 (De Novo 
System, Portland, OR, USA). �e proliferation index, de�ned 
as the average number of cells that an initial cell became, was 
calculated using FCS Express so�ware.

Transwell Co-Cultures
M2-polarized human or mouse macrophages (2 × 106) from wt or 
iNOS−/− mice were plated on the upper compartment of 0.4-µm 
pore size transwell plates in 0.1 ml of DMEM complete medium, 
while respectively U373 human or GL261 murine glioma cells 
(0.3 × 106) were plated in the lower chamber. Co-cultures were 
incubated for 24 h a�er which cells in the lower chamber received 
pharmacological treatments. Precisely, U373 cells were treated as 
follows: CDDP (50 µg/ml); l-NAME (2 mM) pre-incubated 1 h 
before CDDP; DETA-NO (20 µM) and l-NAME pre-incubated 
1 h before CDDP administration. GL261 cells co-cultured with 
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wt M2 macrophages were treated as follows: CDDP (20 µg/ml); 
l-NAME (2  mM) pre-incubated 1  h before CDDP; DETA-NO 
(20 µM) and l-NAME pre-incubated 1 h before CDDP adminis-
tration. GL261 cells co-cultured with iNOS−/− M2 macrophages 
were treated with CDDP (20 µg/ml). A�er additionally 24 h, U373 
or GL261 cells and murine wt and iNOS−/− M2 macrophages were 
harvested and used for evaluation of apoptosis.

Apoptosis Detection
Phosphatidylserine exposure on the outer lea�et of the 
plasma membrane was detected by analysis of cells stained 
for 15  min with Alexa Fluor 488-labeled annexin V (1  µg/
ml) (Molecular Probes—�ermo Fisher Scienti�c, Waltham, 
MA, USA) and propidium iodide (PI, Sigma-Aldrich, Saint 
Louis, MO, USA) or VivaFix649 (Bio-Rad, Hercules, CA, USA), 
using a Flow Cytometer (Gallios, Beckman-Coulter, Brea, CA, 
USA) as described previously (40, 45, 46). For the experi-
ment with the human neutralizing anti-CD95 antibody ZB4  
(500 ng/ml) cells were also visualized by bright�eld microscopy 
by using the ZOE Fluorescent Cell Imager (Bio-Rad, Hercules, 
CA, USA).

Griess Reaction
Nitric oxide generation in cell culture supernatants of human 
and murine M2 macrophages and by DETA-NO (20  µM) was 
assessed by the Griess method to measure nitrites, which are 
stable breakdown products of NO. Brie�y, culture supernatants 
and DETA-NO were incubated with the Griess reagents I  
(1% sulphanilamide in 2.5% phosphoric acid) and II (0.1% naph-
thylenediamine in 2.5% phosphoric acid). �e absorbance was 
read within 5 min at 550 nm and actual concentration calculated 
using a standard curve with serial dilutions of sodium nitrite.

Lentiviral Infection
For the infection, 1 × 105 GL261 cells were seeded in 6-well plate 
and 2  h before infection growing medium was replaced with 
IMDM medium (Euroclone, Milan, Italy) supplemented with 10% 
of FBS HyClone (GE Healthcare, Chicago, IL, USA), 1% penicil-
lin/streptomycin, and 1% l-glutamine (infection medium). A�er 
2  h, cells were infected with the vector (pCCL.PGK.luciferase.
WPRE -PLW-vector, kindly provided by Dr. Stefano Rivella, �e 
Children’s Hospital of Philadelphia, PA, USA) with a MOI of 5, 
in presence of polybrene (8 µg/ml) (Sigma-Aldrich, Saint Louis, 
MO, USA). Cells were washed 16 h later in order to remove all 
viral particles, then cells were cultured normally. A�er having 
been acquired at CCD camera to evaluate luciferase production, 
cells were implanted in C57BL/6 mice.

Animals
Female C57BL/6 mice and iNOS−/− mice (B6.129P2-Nos2tm1Lau/J 
mice) (6–8  weeks old) were purchased from Charles River 
Laboratories and Jackson Laboratories, respectively. Null muta-
tion of iNOS was con�rmed by PCR using an upstream primer 
that was common for both wild-type (wt) and mutant DNA 
(5′-ACATGCAGAATGAGTACCGG-3′), a wt downstream pri-
mer (5′-TCAACATCTCCTGGTGGAAC-3′), and a downstream 
primer for the neomycin cassette (5′-AATATGCGAAGTGG 

ACCTCG-3′). Animals were kept in a regulated environment 
(23 ± 1°C, 50 ± 5% humidity) with a 12 h light/dark cycle (lights 
on at 08:00 a.m.) and fed ad libitum. All studies were conducted 
in accordance with the Italian law on animal care N° 116/1992 
and the European Communities Council Directive EEC/609/86.

Orthotopic Brain Tumor Model, 

Pharmacological Treatment, and 

Bioluminescence Imaging
Luciferase-infected GL261 cell suspension (2 µl, 1 × 108 cells/ml)  
in phosphate bu�er saline (PBS) was delivered into the right stria-
tum (0.2 µl/min) by stereotactic injection through a glass electrode 
connected to a Hamilton syringe. �e following coordinates were 
used: antero-posterior  =  0; medio-lateral  =  +  2.5  mm; dorso- 
ventral = − 3.5 mm.

Nine days a�er orthotopic implantation of tumor cells into 
the brain, mice were randomly assigned to receive the follow-
ing treatments at days 9, 11, and 13: (a) intraperitoneal (i.p.) 
injection of PBS (control group), (b) i.p. injection of CDDP at 
4 mg/kg (CDDP group); (c) i.p. injection of l-NAME at 4 mg/kg  
(l-NAME group); (d) i.p. injection of CDDP at 4 mg/kg combined 
with l-NAME at 4  mg/kg (l-NAME  +  CDDP group) (Figure 
S4A in Supplementary Material). Mice were sacri�ced when  
they reached IACUC euthanasia criteria, as for instance clinical 
signs of tumor.

Intracranial tumor growth was monitored at days 9, 14, and 
18 using the IVIS Lumina (Xenogen, Caliper Life Science—
Perkin Elmer, Waltham, MS, USA). Mice were injected i.p. with 
d-luciferin (Beetle Luciferin Potassium Salt; Promega, Madison, 
WI, USA) at 50 mg/kg and then they were placed in the light-
tight chamber, and a gray-scale image of the animals was �rst 
taken with dimmed light (FOV—Field of View—12.5 cm). A�er 
biodistribution time (20 min) photon emission was acquired for 
10 min. Mice were acquired before and a�er each treatment. For 
co-localization of the bioluminescent photon emission on the 
animal body, gray-scale and pseudocolor images were merged 
using the Living Image So�ware® (Caliper Life Sciences).  
To compare di�erent mice, all images were scaled a�er all the 
acquisitions with the same scale and ROI analysis were performed 
to quantify luciferase signal intensity within tumor.

Subcutaneous Tumor Model  

and Treatment
Lewis lung carcinoma (2  ×  105) cells resuspended in PBS 
(Euroclone, Milan, Italy) were injected into the right �ank of 
mice and allowed to grow. Nine days a�er tumor cells injection, 
mice were randomly assigned to receive the following treatments 
at days 9, 11, and 13: (a) i.p. injection of PBS (control group), 
(b) a daily i.p. injection of CDDP at 4  mg/kg (CDDP group);  
(c) i.p. injection of l-NAME at 4 mg/kg (l-NAME group); (d) i.p. 
injection of CDDP at 4 mg/kg combined with l-NAME at 4 mg/kg  
(l-NAME  +  CDDP group) (Figure S4A in Supplementary 
Material). Tumor growth was monitored every 2–3  days by 
means of external caliper measurements and volume calcula-
tion (length × width2/2), until mice reached IACUC euthanasia 
criteria, as for instance clinical signs of tumor or when tumor size 
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TABLE 1 | Primer pairs designed for real-time PCR analysis.

Gene name Forward primer sequence Reverse primer sequence

Human smpd1 5′-TGGCTCTATGAAGCGATGGC-3′ 5′-TTGAGAGAGATGAGGCGGAGAC-3′

Murine smpd1 5′-TGGGACTCCTTTGGATGGG-3′ 5′-CGGCGCTATGGCACTGAAT-3′

Human stx 4 5′-CGGACAATTCGGCAGACTATT-3′ 5′-TTCTGGGGCTCTATGGCCTT-3′

Murine stx 4 5′-CCCGGACGACGAGTTCTT-3′ 5′-TTTGATCTCCTCTCGCAGGTT-3′

Murine arg1 5′-CTCCAAGCCAAAGTCCTTAGA-3′ 5′-AGGAGCTGTCATTAGGGACAT-3′

Murine ccl-2 5′-AGGTGTCCCAAAGAAGCTGTA-3′ 5′-ATGTCTGGACCCATTCCTTCT-3′

Murine ccl-9 5′-CCCTCTCCTTCCTCATTCTTACA-3′ 5′-AGTCTTGAAAGCCCATGTGAAA-3′

Murine cd36 5′-ATGGGCTGTGATCGGAACTG-3′ 5′-GTCTTCCCAATAAGCATGTCTCC-3′

Murine il-10 5′-GCTCTTACTGACTGGCATGAG-3′ 5′-CGCAGCTCTAGGAGCATGTG-3′

Human rpl32 5′-TTTAAGCGTAACTGGCGGAAAC-3′ 5′-AAACATTGTGAGCGATCTCGG-3′

Murine rpl32 5′-TTAAGCGAAACTGGCGGAAAC-3′ 5′-TTGTTGCTCCCATAACCGATG-3′
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exceeded 10% of body weight (ca. 1,500  mm3 tumor volume). 
When indicated, mice were sacri�ced when tumor size reached 
ca. 500  mm3 volume, and tumor collected for further analysis  
(i.e., TUNEL assay and western blotting).

TUNEL Assay
Lewis lung carcinoma tumors were collected and �xed in ice 
cold 4% paraformaldehyde before being rinsed in PBS and cryo-
protected overnight in 30% sucrose. Tissues were then embed-
ded in O.C.T. Compound (Sakura, AJAlphen aan den Rijn, �e 
Netherlands) and cut in a CM1850 UV cryostat (Leica Biosystems, 
Wetzlar, Germany). At least �ve cryosections (6 µm) were assayed 
for apoptosis by the TUNEL method (DeadEnd Fluorometric 
TUNEL System), according to the manufacturer’s protocol  
(46, 47). Samples were counterstained with DAPI, mounted with 
Vectashield (Vector Laboratories, Burlingame, CA, USA), and 
examined using a DMI4000 B automated inverted microscope 
equipped with a DCF310 digital camera (Leica Microsystems, 
Wetzlar, Germany). Image acquisition was controlled by the Leica 
LAS AF so�ware.

Intratumoral Macrophage Reconstitution 

and Tumor Treatment
Macrophage depletion was accomplished with injection of 
clodronate liposome (48). Brie�y, 3  days a�er tumor injec-
tion, mice received a �rst i.p. administration of 200 µl of PBS 
liposomes (control) (PBS-LIPO) or clodronate liposomes 
(CL-LIPO; 1  mg/ml). Mice were, then, treated every 2  days 
with an intratumor injection of 50  µl PBS liposomes (con-
trol) or clodronate liposomes (0.25  mg/ml) (Liposoma B.V., 
Amsterdam, �e Netherlands) till day 9 a�er tumor inoculation 
when macrophage depletion was assessed in two mice (Figure 
S4C in Supplementary Material). For macrophage reconstitu-
tion, 5  ×  105 bone marrow-derived macrophages from wt or 
iNOS−/− mice were injected intratumor at day 11 and 13 a�er 
tumor inoculation. CDDP was i.p. administered at 4 mg/kg every 
2 days from day 12 to 16 a�er tumor injection. Tumor growth 
was monitored every 2–3  days by means of external caliper 
measurements and volume calculation (length × width2/2), until 
mice reached IACUC euthanasia criteria, as for instance clinical 
signs of tumor or when tumor size exceeded 10% of body weight  
(ca. 1,500 mm3 tumor volume).

Real-Time PCR
�e analysis of mRNA expression was performed as previously 
described (40, 43, 49, 50). Brie�y, total RNA from U373 and 
GL261 cells was extracted with the PureZol RNA Isolation 
Reagent (Bio-Rad, Hercules, CA, USA), according to the manu-
facturer’s protocol. First-strand cDNA was generated from 1 µg 
of total RNA using iScript Reverse Transcription Supermix 
(Bio-Rad, Hercules, CA, USA). A set of primer pairs (Euro�ns 
Genomics, Milan, Italy) was designed to hybridize to unique 
regions of the appropriate gene sequence (Table  1). PCR was 
performed using SsoAdvanced Universal SYBR Green Supermix 
and the CFX96 Touch Real-Time PCR Detection System (Bio-
Rad, Hercules, CA, USA). �e fold change was determined rela-
tive to the control a�er normalizing to Rpl32 (internal standard) 
through the use of the formula 2−ΔΔCT.

A-SMase Activity
Acid sphingomyelinase activity was determined by measuring  
conversion of sphingomyelin to phosphorylcholine in cell homo-
genates using the Amplex Red Sphingomyelinase Assay Kit  
(Molecular Probes-Thermo Fisher Scientific, Waltham, MA, 
USA) according to the two-step standard protocol. In brief, 
2 × 106 cells were homogenated with 0.2% Triton X-100 in H2O 
for 15 min at 4°C, sonicated, and incubated overnight at 80°C. 
For enzymatic activity assay 100  µg of homogenate from each 
sample were diluited in 100 µl of sodium acetate (50 mM), pH 5.0, 
and plated in a 96-well microplate. Similarly, a negative control 
without the enzyme was set up. �e �rst step reaction was started 
adding 10 µl of the sphingomyelin solution (5 mM) to samples 
or negative control and incubated at 37°C for 1 h. At this point, 
two positive controls were prepared diluiting sphingomyelinase 
from Bacillus cereus at the �nal concentration of 4  U/ml and 
H2O2 10 µM in 100 µl of 1× reaction bu�er and adding 10 µl of 
the sphingomyelin solution (5  mM). �e second step reaction 
was performed adding to samples, and negative and positive 
controls, 100 µl of the Amplex Red reagent containing 2 U/ml 
HRP, 0.2 U/ml choline oxidase, and 8 U/ml alkaline phosphatase 
and incubated for 30 min at 37°C, protected from light. �e �uo-
rescence was measured in a �uorescence microplate reader using 
excitation in the range of 530–560 nm and emission detection at 
~590 nm. For each point, background �uorescence was corrected 
by subtracting the values derived from the no-sphingomyelinase 
control (40, 51).
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Western Blotting
Cells and resected allogra�s were homogenized in lysis bu�er 
(50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1% Triton X-100, 10% glycerol) supplemented with a 
cocktail of protease and phosphatase inhibitors (cOmplete and 
PhosSTOP; Roche Diagnostics, Milan, Italy) and centrifuged at 
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FIGURE 1 | M2 macrophages protect human glioma from chemotherapeutic agent cisplatin (CDDP)-induced apoptosis through the generation of nitric oxide (NO) 

in vitro. (A) Immuno�uorescence staining of human glioma samples with anti-CD206 antibody (green) and anti-iNOS antibody (red). DAPI (blue) was used for nuclei 

detection (scale bar = 20 µm). Panels on the right represent enlarged image details. (B) U373 cells were treated with increasing concentrations of CDDP for 24 h 

before the MTT assay. Data are expressed by setting the absorbance of the reduced MTT in the absence of CDDP as 100%. The data points represent the results 

obtained from four independent experiments. (C) Flow cytometry analysis of U373 cells proliferation at 24 h after treatment with CDDP (35 µg/ml) or untreated (UT). 

The data are represented as fold change of proliferation index compared with UT (n = 3). **p < 0.001 vs UT. (D) Inducible nitric oxide synthase (iNOS) expression in 

human M2 macrophages, assessed by western blotting. N9 cells treated with LPS were used as positive control. GAPDH was used as the internal standard. The 

images are representative of three independent experiments. (E) Evaluation of CDDP-induced apoptosis of U373 cells cultured alone or in the presence of M2. 
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1,500 × g for 5 min at 4°C to discard cellular debris. A�er sepa-
ration by SDS-polyacrylamide gel electrophoresis (MiniProtean 
TGX precast gels and Criterion TGX Stain-free precast gels; 
Bio-Rad, Hercules, CA, USA), polypeptides were electropho-
retically transferred to nitrocellulose �lters using a Bio-Rad 
Trans-Blot Turbo System. �e membranes were probed using 
the following primary antibodies: rabbit anti-A-SMase (custom 
synthetized, Areta, Gerenzano, Italy) (28, 40, 52, 53), mouse 
anti-synt4 (for detection human protein), mouse anti-neuronal 
NOS (nNOS), mouse anti-endothelial NOS (eNOS) (#610439, 
#610309, and #610297, BD Bioscience, San Jose, CA, USA), 
rabbit anti-iNOS (#ab178945, Abcam, Cambridge, UK), rabbit 
anti-synt4 (for detection of murine protein) (#110042 Synaptic 
System, Goettingen, Germany), mouse anti-GAPDH and anti-
vinculin (#G9295, #v4505, Sigma-Aldrich, Saint Louis, MO, 
USA). A�er the incubation with the appropriate horseradish 
peroxidase conjugated secondary antibody (Bio-Rad, Hercules, 
CA, USA), bands were visualized using the Clarity Western 
ECL substrate (Bio-Rad, Hercules, CA, USA) exposure to 
autoradiography Cl-Xposure �lms (�ermo Fisher Scienti�c, 
Waltham, MA, USA) or with a ChemiDoc MP imaging system 
(Bio-Rad, Hercules, CA, USA). When appropriated, bands were 
quanti�ed vs the respective loading control (GAPDH, vinculin, 
or total proteins) for densitometry using the Bio-Rad Image Lab 
so�ware.

Cell Surface Biotinylation Assay
U373 cells were stimulated with CDDP in the absence or in the 
presence of DETA-NO or 8Br-cGMP at the indicated times in 
culture medium. Stimulation was stopped with ice cold PBS, 
cells were washed twice with PBS, and then incubated twice with 
EZ-Link Sulfo-NHS-LC-Biotin (0.5  mg/ml) (�ermo Fisher 
Scienti�c, Waltham, MA, USA) in DMEM without serum for 
10 min at 4°C. A�er washing with serum-free DMEM for 10 min 
and three times with PBS for 5 min at 4°C, cells were solubilized 
in lysis bu�er (10 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 mM 
EDTA, 0.1% SDS, 1% Triton X-100 with protease inhibitor 
cocktail) for 30  min at 4°C. Lysates were then centrifuged for 
5 min at 1,500 × g and streptavidin agarose beads (�ermo Fisher 
Scienti�c, Waltham, MA, USA) were added to the supernatant to 
isolate cell membrane proteins. A�er incubation of the mixture 
for 16 h at 4°C, biotin–streptavidin beads complexes were sedi-
mented at 18,000 × g for 3 min. �e supernatant was conserved 
as control, and, a�er two washes with PBS, bead-bound proteins 
were denatured in Laemmli’s bu�er and analyzed by SDS-PAGE 

followed by western blotting with the anti-A-SMase antibody as 
described (28, 40). Cell surface exposure of A-SMase was normal-
ized to 25 µg of total cytosolic lysate for each sample.

Immunoprecipitation
U373 cells were grown to subcon�uency on a 10-cm dish and 
then treated �rst with MG132 for 2 h and then with 8Br-cGMP 
for 30 min before lysis. A�er washing with PBS, cells were scraped 
with RIPA bu�er (50 mM Tris–HCl Ph 7.4, 150 mM NaCl, 1 mM 
EDTA, 0.1% SDS, 1% NP-40, 1% sodium deoxycholate) contain-
ing protease and phosphatase inhibitor cocktails and incubated 
for 30 min at 4°C. Cell suspension was centrifuged and protein 
concentration was measured for adjusting protein amount. Lysates 
were incubated with Agarose-TUBEs (Tandem Ubiquitin Binding 
Entities Tebu-Bio, Magenta, Italy) for 4 h at 4°C with rotation. A�er 
centrifugation, the immunoprecipitate was washed four times 
with TBS-T. �e pellet was resuspended in SDS 1× sample bu�er, 
treated by heating for 10 min at 80°C and subjected to SDS-PAGE 
followed by western blotting. Anti-synt4 antibody (#610439, BD 
Bioscience, San Jose, CA, USA) was used at a dilution of 1:1,000.

Site-Directed Mutagenesis and 

Transfection
Mutations of the serine residues of synt4 were performed by 
PCR cloning using the QuikChange site-directed mutagenesis 
kit (Stratagene—Agilent, Santa Clara, CA, USA) according to the 
manufacturer’s instructions. As template for the PCR reaction we 
used the pCMV6-XL4-Synt4 plasmid containing a native form of 
human synt4 (Origene, Rockville, MD, USA). �e primers used 
for the S to A mutation were as follows:

S78A, 5′-CCCTTCCCGAGGAGGCCATGAAGCAGGAGC-3′;
S208A, 5′-CTCGGCCCGGCACGCTGAGATCCAGCAG-3′;
S216A, 5′-CCAGCAGCTTGAACGCGCTATTCGTGAGCTG 
CAC-3′;
S247a, 5′-TTGAGAAGAACATCCTGGCCTCAGCGGACT 
ACGTGG-3′.

All transformants were sequenced to verify the integrity 
of mutations. Transfection of U373 cells (~80% con�uence) 
with the native and the mutated forms of synt4 was carried out 
using Fugene Tranfection Reagent (Promega, Madison, WI, 
USA), according the manufacturer’s protocol. Analysis of synt4 
expression levels was performed by western blotting 48 h a�er 
transfection.
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Statistical Analysis
Statistical signi�cance of raw data between the groups in each 
experiment was evaluated using unpaired Student’s t-test (single 

comparisons) or one-way ANOVA followed by the Newman–Keuls 
post-test (multiple comparisons). When data are not normally 
distributed, the Mann–Whitney test was used. Tumor growth was 
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FIGURE 2 | M2 macrophages protect murine glioma from chemotherapeutic agent cisplatin (CDDP)-induced apoptosis through the generation of nitric oxide (NO) 
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reduced MTT in the absence of CDDP as 100%. The data points represent the results obtained from four independent experiments. (B) Flow cytometry analysis of 

GL261 proliferation at 24 h after cell treatment with CDDP (10 µg/ml). The data are represented as fold change of proliferation index compared with untreated (UT) 

controls (n = 3). *p < 0.05 vs UT. (C) Inducible nitric oxide synthase (iNOS) expression in murine wild type (wt) M2 macrophages, assessed by western blotting. N9 

cells treated with LPS were used as positive control. GAPDH was used as the internal standard. The images are representative of three independent experiments. (D) 

Evaluation of CDDP-induced apoptosis of GL261 cells cultured alone or in the presence of wild type (wt) M2. L-NAME (2 mM) and DETA-NO (20 µM) were added 1 h 

before CDDP (20 µg/ml, 24 h) administration. Apoptosis quanti�cation is expressed as fold increase of total apoptotic cells (annexin V+/PI− and annexin V+/PI+ cells) 

compared to their respective UT controls (dashed line) (n = 3). **p < 0.001, ***p < 0.0001 vs UT; ++p < 0.001, +++p < 0.0001 vs CDDP; ##p < 0.001 vs CDDP + wt M2; 
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analyzed using two-way ANOVA, followed by Bonferroni post-
test. �e GraphPad Prism so�ware package (Graph So�ware, San 
Diego, CA, USA) was used. When indicated, data belonging from 
di�erent experiments were represented and averaged in the same 
graph. �e results were expressed as mean ± SEM of the indicated 
n values.

RESULTS

TAMs Induce Chemoresistance of Cancer 

to CDDP Through the Generation of NO
�e presence of M2-polarized macrophages in human glioma 
was assessed using sections of bioptic specimens of glioma, which 
were co-immunostained with the M2 subtype TAM marker 
CD206 and iNOS. Inside tumors we found areas with high den-
sity of cells positive for both proteins, namely M2-TAMs, and also 
cells positive only for iNOS, namely M1-TAMs (Figure 1A). �e 
presence of double positive cells demonstrates that M2-TAMs  
in gliomas are able to produce NO.

To investigate the role of NO generated by macrophages on 
CDDP-induced apoptosis we chose human U373 and mouse 
GL261 glioma cell lines, which are defective in the expression 
of both constitutive (nNOS and eNOS) and iNOS enzymes 
(Figures S1A–C and S2A–C in Supplementary Material). As 
shown in the viability assay of Figure 1B, U373 cells responded 
to CDDP (24 h) with an IC50 of 38.96 ± 0.17 µg/ml, a concentra-
tion at which cell proliferation was also signi�cantly reduced 
(Figure 1C). Glioma cells were co-cultured with human periph-
eral blood mononuclear cell-derived macrophages, polarized 
to M2 (Figure S3A in Supplementary Material) and expressing 
detectable levels of iNOS (Figure 1D). As shown in Figure 1E, 
the presence of macrophages protected glioma cells from CDDP 
(50 µg/ml)-induced apoptosis, an e�ect which was reversed in 
the presence of the NOS inhibitor l-NAME (2 mM, added to the 
cell culture 1 h before the administration of CDDP) (Figure 1E). 
�e protective role of M2 macrophages on glioma cells treated 
with CDDP and l-NAME was restored a�er NO was re-added 
to the co-cultures using the NO donor DETA-NO (20 µM, 1 h 
before the administration of CDDP) (Figure 1E), that released 
a constant physiological �ux of NO comparable to that of M2 
macrophages (20, 54) (Figure S3B in Supplementary Material).

Similar results were obtained with the GL261 cells. �eir 
sensitivity to the apoptogenic action of CDDP (24 h) had an IC50 
of 6.41 ± 0.17 µg/ml in the viability assay, a concentration that 
also signi�cantly decreased cell proliferation (Figures 2A,B). 
GL261 cells were then co-cultured with M2-polarized mac-
rophages derived from the bone marrow of wt mice (Figures 
S3C,D in Supplementary Material), that expressed detectable 
levels of iNOS (Figure 2C). �e apoptotic cell death of GL261 
cells induced by CDDP treatment (20 µg/ml) was signi�cantly 
reduced in the presence of wt M2 macrophages (Figures 2D,E). 
Notably, the presence of l-NAME restored CDDP e�ects 
but not when cells were also pre-incubated with DETA-NO 
(Figure 2D). Taken together these �ndings indicate that NO 
produced by M2 macrophages protects tumor cells from 
CDDP-induced apoptosis. Accordingly, as shown in Figure 2E, 
the co-colture of GL261 cells with M2-polarized macrophages 
derived from the bone marrow of iNOS−/− mice (Figures S3C,D 
in Supplementary Material) did not modify the response to 
CDDP of glioma cells, further con�rming the key role of 
M2-released NO. As expected, under the same experimental 
conditions we observed that CDDP induced apoptosis also in 
M2 macrophages. However, the cytotoxic e�ect of CDDP was 
di�erent, being iNOS−/− cells signi�cantly more sensitive when 
compared to wt cells (Figure 2F), thus suggesting an autocrine 
protective e�ect of NO.

To investigate the role of NO in vivo, we carried out experi-
ments with the syngeneic tumor mouse models generated using 
GL261 glioma and LLC cell lines, also these latter being defective 
in the expression of NOSs (Figures S2A,C in Supplementary 
Material), such that any e�ect of NO can be safely attributed 
to that generated in the host. GL261 (2  ×  105 cells) and LLC 
(2  ×  105 cells) were injected intraparenchymally (orthotopic 
allogra�) and subcutaneously (�ank allogra�s), respectively, 
in mice before i.p. administration with CDDP (4 mg/kg) both 
alone or in combination with l-NAME (3  mg/ml in drinking 
water) (Figure S4A in Supplementary Material). By monitoring 
tumor progression over time we found that the largest reduction 
of tumor growth occurred in the CDDP  +  l-NAME-treated 
group (Figures 3A,B). In addition, TUNEL assay for apoptosis 
detection performed on LLC tumor slices demonstrated that 
CDDP-induced cell death was enhanced by l-NAME administra-
tion and the ensuing inhibition of NO generation (Figure 3C).  
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FIGURE 3 | Tumor-associated macrophages protect murine cancer from chemotherapeutic agent cisplatin (CDDP)-induced apoptosis through the generation  
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according to the scheme depicted in Figure S4A in Supplementary Material. Tumor growth was monitored by luminescence every 3 days. Panel on the left shows  
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representation of the bioluminescence expressed as fold induction compared to acquisition at day 9. (B,C) C57BL/6 mice (n = 7) were injected in the right �ank  

with Lewis lung carcinoma (LLC) cells. Mice were then treated according to the scheme depicted in Figure S4A in Supplementary Material. (B) Tumor growth was 

monitored by measuring tumor volume (mm3) every 2–3 days. *p < 0.05, **p < 0.01, and ***p < 0.001 vs untreated control mice. The bottom panel shows the 

typical photographs of subcutaneous LLC allografts excised from mice at day 25 of treatment. (C) Representative �uorescence micrographs of TUNEL and DAPI 

staining of LCC excided from mice when tumor size reached ca. 500 mm3 (scale bar: 100 µm). (D) C57BL/6 mice (n = 7) were injected in the right �ank with LLC 

cells. Mice were then treated according to the scheme depicted in Figure S4C in Supplementary Material. Tumor growth was monitored by measuring tumor volume 

(mm3) every 2–3 days. *p < 0.05, **p < 0.01, and ***p < 0.001 vs CL-LIPO + wild-type MΦ + CDDP group.
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�ese data suggest cytoprotection as a mechanism by which  
NO limits the response to CDDP thus promoting tumor growth.

To assess whether macrophages in the tumor microenviron-
ment generated the cytoprotective NO, we depleted TAMs in 
LLC masses by the injection of CL-LIPO in the peritumoral area 
(48, 55) (Figure S4B in Supplementary Material). TAMs were 
subsequen tly replaced by macrophages obtained from wt and 
iNOS−/− mice inoculated inside LLC tumors before CDDP 
administration (Figure S4C in Supplementary Material). As 
shown in Figure 3D, mice injected with iNOS−/− macrophages 
showed a signi�cantly reduced tumor growth compared to mice 
injected with wt macrophages, indicating that NO released by 
TAMs is a key factor limiting tumor cell sensitivity to CDDP and 
thus identifying TAMs as a critical source of NO in the tumor 
microenvironment.

NO Mediates Tumor Cells Resistance to 

CDDP Through the Generation of cGMP 

and the Inhibition of A-SMase Activity
NOS/NO pathway induces many of its action via activation of 
guanylate cyclase/cGMP system (25, 44, 56–59). To corroborate 
our hypothesis that NO protects tumor cells from CDDP-induced 
apoptosis and to investigate the molecular mechanism underly-
ing this event, U373 cells, natively de�cient of NOS enzymes, 
were pre-incubated with the NO donor DETA-NO (20  µM, 
1 h) before the addition of CDDP (50 µg/ml, 24 h). As shown in 
Figure 4A, Annexin V staining decreased in DETA-NO treated 
cells when compared to control (CDDP alone), thus reveal-
ing the paracrine key role of NO in inhibiting CDDP-induced 
apoptosis. Pre-incubation of U373 cells with 8Br-cGMP (3 mM, 1 h),  
a non-hydrolyzable and cell permeant analog of cGMP, mimicked 
the action of DETA-NO on CDDP-induced apoptosis while the 
protective e�ects of DETA-NO were blocked in the presence of 
ODQ (1 µM, administered 15 min before DETA-NO), a guanylate 
cyclase inhibitor that prevents NO-dependent cGMP generation 
(60, 61). �ese results indicate that NO inhibits CDDP-induced 
apoptosis in tumor cells through the generation of cGMP.

The death receptor CD95 contributes to CDDP-induced 
apop tosis in cancer cells (32). In U373 cells, the pro-apoptotic 
e�ects of CDDP were inhibited, at least in part, by the presence 
of the neutralizing anti-CD95 antibody ZB4 (500 ng/ml, 1 h of 
pre-incubation) (Figure 4B), thus supporting the critical role of 
CD95 in our system. Similar results were obtained by bright�eld 
microscopy revealing that the majority of cells exposed to CDDP 

alone, but not to ZB4 + CDDP, presented apoptotic cell morpho-
logical changes (round in shape, shrunken cytoplasm, formation 
of apoptotic bodies) (Figure 4C).

Acid sphingomyelinase, a valuable enzyme in cancer progres-
sion and in the sensitivity to chemotherapy (40, 46) has been 
previously reported to be activated by CDDP (28, 32, 62). 
�erefore, we �rst assessed the time course of A-SMase activa-
tion by CDDP in U373 cells. Our results indicated that A-SMase 
activity transiently peaked at 30 min, returning to basal level at 
60 min, and peaked again at 120 min a�er CDDP administra-
tion (Figure 4D). One of the way through which NO protects 
cancer and normal cells from apoptosis induced by di�erent 
stimuli, including CDDP, is through the modulation of A-SMase  
(25, 26, 57). Since NO protective e�ects against apoptosis may 
occur within few minutes a�er death stimuli (56), we analyzed 
the e�ect of NO during the �rst phase of CDDP-induced A-SMase 
activation. Pre-incubation of U373 cells with DETA-NO and 
8Br-cGMP strongly inhibited A-SMase activity following 30 min 
of CDDP stimulation, that was instead maintained if DETA-NO 
was added to the cells in the presence of ODQ (Figure 4E).

Commonly, A-SMase activation occurs by its translocation 
from cytosolic compartments to the plasma membrane (28, 62, 63).  
In U373 cells, cell surface biotinylation assay revealed that 
A-SMase speci�cally expressed at plasma membrane increased 
a�er 30 min of CDDP administration while this e�ect was reversed 
in the presence of DETA-NO and 8Br-cGMP (Figure 4F). Of 
notice, no changes were detected in the total levels (mRNA and 
protein) of the enzyme in cells treated with CDDP, DETA-NO, 
and 8Br-cGMP both alone or in combinations (Figures S5A,B 
in Supplementary Material). Taken together this data indicate 
that NO/cGMP inhibits A-SMase activation by preventing its 
translocation to the cell surface.

NO Released by TAMs Reduces  

Synt4 Expression in Tumor Cells
�e SNARE protein Synt4 controls the tra�cking of A-SMase 
from the intracellular compartments to the plasma membrane 
and its activation upon CD95 stimulation (28) and NO/cGMP 
is known to regulate protein expression at both transcriptional 
and post-transcriptional levels (64–66). Treatment of U373 and 
GL261 cells with either 8Br-cGMP (3 mM) or DETA-NO (20 µM) 
for 1 h did not change the mRNA levels of synt4 (Figures 5A,B), 
thus excluding an e�ect at transcriptional level, still the protein 
amount was decreased signi�cantly (Figures 5C,D).
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Likewise in co-cultures of GL261 with M2-polarized mac-
rophages derived from the bone marrow of wt and iNOS−/− mice 
we found that the presence of wt M2 macrophages signi�cantly 
reduced synt4 in GL261 cells when compared with control 
cells (GL261 alone) and with GL261 cells co-cultured with 

iNOS−/− M2 macrophages (Figure 5E). We sought independent 
evidence for this e�ect in vivo in LLC �ank allogra�s implanted 
in wt and iNOS−/− mice, and analyzed 20 days a�er the tumor 
injection. In tumors extracts of iNOS−/− mice we found higher 
levels of synt4 compared to those observed in tumors implanted 
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FIGURE 4 | Nitric oxide (NO) mediates tumor cells resistance to chemotherapeutic agent cisplatin (CDDP) through the generation of cyclic GMP (cGMP) and the 

inhibition of acid sphingomyelinase (A-SMase) activity. (A) Evaluation of CDDP-induced apoptosis of U373 cells cultured in the presence of CDDP (50 µg/ml, 24 h) 

administered alone or in the presence of DETA-NO (20 µM, 1 h before CDDP), 8Br-cGMP (3 mM, 1 h before CDDP), and DETA-NO + ODQ (1 µM, 15 min before 

DETA-NO). Panel on the right shows apoptosis quanti�cation expressed as fold increase of total apoptotic cells (annexin V+/PI− and annexin V+/PI+ cells) compared 

to their respective untreated (UT) controls (dashed line) (n = 4). **p < 0.001 vs UT; ++p < 0.05, ++p < 0.001 vs CDDP. (B,C) U373 cells cultured in the presence of 

CDDP (50 µg/ml, 24 h) administered alone or together with neutralizing anti-CD95 antibody ZB4 (500 ng/ml, 1 h before CDDP). (B) Evaluation of CDDP-induced 

apoptosis expressed as fold increase of total apoptotic cells (annexin V+/PI− and annexin V+/PI+ cells) compared to their respective UT (dashed line) (n = 3). 

*p < 0.05, **p < 0.001 vs UT; +p < 0.05 vs CDDP. (C) Bright�eld microscopy images representative of three independent experiments. Scale bar: 100 µm.  

Bottom panels represent enlarged image details marked by the white arrows. (D) A-SMase activity on cell lysates measured as sphingomyelin hydrolysis to 

phosphorylcholine at pH 5.5. Cells (n = 3) were treated for the indicated time points (30, 60, and 120 min) with CDDP (50 μg/ml). Enzyme activity is expressed as 

fold increase compared to UT (dashed line). *p < 0.05, **p < 0.001 vs UT. (E) A-SMase activity on cell lysates derived from cells cultured in the presence of CDDP 

(50 μg/ml, 30 min) administered alone or together with DETA-NO (20 µM, 1 h before CDDP), 8Br-cGMP (3 mM, 1 h before CDDP), and DETA-NO + ODQ (1 µM, 

15 min before DETA-NO) (n = 3). Enzyme activity is expressed as fold increase compared to UT controls (dashed line). **p < 0.001 vs UT; ++p < 0.001 vs CDDP.  

(F) A-SMase translocation was evaluated, at the indicated time points after CDDP (50 μg/ml) administered alone or together with DETA-NO (20 µM, 1 h before 

CDDP), 8Br-cGMP (3 mM, 1 h before CDDP), and DETA-NO + ODQ (1 µM, 15 min before DETA-NO), by assessment of biotinylated plasma membrane A-SMase, 

using the A-SMase antibody and assessing cytosolic GAPDH expression in parallel as internal control. The images are representative of three independent 

experiments.
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in wt mice (Figure 5F). Together, all these data indicate that 
macrophage-derived NO decreases synt4 in tumors, at post-
transcriptional level and in a pathway involving cGMP.

NO/cGMP Induces Degradation of Synt4 

by the Proteasome via PKG-Dependent 

Phosphorylation of Ser-78 Which Explains 

the Chemoresistance of Tumor Cells
We then explored whether the post-translational reduction of 
synt4 by NO/cGMP was due to an action on the proteasomal 
pathway. U373 cells were treated with 8Br-cGMP (3  mM) for 
1 h in the absence/presence of the proteasome inhibitor MG132 
(10 µM). As shown in Figure 6A, MG132 reversed the degrada-
tion of synt4 induced by 8Br-cGMP. We also found that synt4 
was ubiquitinated upon 8Br-cGMP treatment (Figure  6B),  
thus indicating that the reduction of synt4 expression was medi-
ated by NO/cGMP through a proteasome-dependent degradation.

�e PKG, a classical signaling molecule activated by NO/
cGMP, is involved in the inhibition of A-SMase activity (25) and 
serine phosphorylation is known to regulate protein degradation 
(67–70). We found that the e�ect of 8Br-cGMP on synt4 levels 
of U373 cells was inhibited in the presence of KT5823 (1 µM), 
a well-known PKG inhibitor (Figure 6C). We thus analyzed the 
human and murine synt4 primary sequence using the NetPhos 
phosphorylation prediction algorithm, identifying potential PKG 
phosphorylation residues located either at the NH2-terminus 
regulatory domain (Ser-78) or in the t-SNARE domain (Ser-208, 
Ser-216, Ser-247). �e serine residue of each site was mutated 
to alanine by site-directed mutagenesis. �e e�ect of 8Br-cGMP 
on the degradation of the mutants, transiently overexpressed 
in U373 cells, was then evaluated. As shown in Figure  6D, 
the mutation of Ser-78 (S78A) conferred resistance to cGMP-
induced synt4 degradation, while none of the other mutations 
had any signi�cant e�ect, thus indicating that phosphorylation 
of Ser-78 site of synt4 protein is required for PKG action.

Finally, we investigated CDDP-induced A-SMase activity 
and apoptosis in U373 cells transfected with the synt4 S78A 
mutant. Cells expressing this mutant remained sensitive to 
CDDP (50 µg/ml) even in the presence of 8Br-cGMP; indeed, 
the administration of 8Br-cGMP did not alter the e�ect of CDDP 

in terms of A-SMase activity and apoptosis (Figures  6E,F). 
Taken together, our data indicate that synt4 phosphorylation 
at Ser-78 and its ensuing degradation by NO/cGMP/PKG is 
indeed responsible for the resistance of tumor cells to CDDP 
via A-SMase inhibition.

DISCUSSION

In this study, we report a new mechanism at the basis of resistance 
of solid tumor of various origin to chemotherapeutics through 
an action on A-SMase. �is event is based on NO produced 
by M2-like macrophages in the tumor microenvironment that 
decreases the sensitivity of tumoral cells to CDDP-induced 
apoptosis. We also identi�ed in the degradation of the SNARE 
protein synt4 and in the ensuing inhibition of A-SMase plasma 
membrane exposure the molecular mechanism of NO action.

�e e�ect of NO on tumor biology has been largely explored 
and has been demonstrated to be dichotomous, since it can either 
stimulate tumor cells growth or promote their death depending 
on its concentration and origin (21–24, 71). Administration of 
exogenous NO may directly kill cancer cells or act as chemosen-
sitizing agents (72, 73), thus indicating NO-donors as potential 
anticancer drugs (74, 75). However, it has to be pointed out 
that the �nal activity of exogenous NO in cancer depends on its 
microenvironment, the type of cell exposed to the compound 
and its redox state, as well as the intracellular concentration  
and the duration of intracellular exposure to NO (74).

Another issue currently debated is the role of iNOS in cancer. 
Overexpression of iNOS and concomitant changes on cancer cell 
kinetics are demonstrated to have an anti-cancer action accord-
ing to several in vitro and in vivo studies (71, 76–78). However, 
the observation that iNOS expression is high in a number of 
tumors and that this correlates with poor survival, has also led to 
the conclusion that induction of iNOS may somehow be related 
to tumorigenesis and tumor growth (79–82).

In light of this, it appears that the dual role of iNOS is strongly 
in�uenced by the cell situation and depends on the environment, 
with either induction or inhibition of iNOS having anti-cancer  
or pro-cancer potential based on tumor and cell types.

Inside the tumor mass, NO can be produced by both cancer 
cells and cells of the tumor microenvironment among which 
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FIGURE 5 | Nitric oxide (NO) released by tumor-associated macrophages reduces syntaxin 4 (synt4) expression in tumor cells. Synt4 mRNA expression  

in (A) U373 and (B) GL261 cells treated with DETA-NO (20 µM, 1 h) and 8Br-cyclic GMP (cGMP) (3 mM, 1 h), assessed by real-time PCR (n = 3). Data are 

expressed as the fold change over untreated (UT) controls (dashed line). Synt4 protein expression in (C) U373 and (D) GL261 cells treated with DETA-NO 

(20 µM, 1 h) and 8Br-cGMP (3 mM, 1 h), or (E) GL261 cells cultured for 24 h in the presence of wild-type (wt) M2 and iNOS−/− M2 macrophages, assessed  

by western blotting. The images are representative of three independent experiments. Panel on the right shows the densitometry analysis of synt4 expression. 

Data are expressed as the fold change over UT controls (dashed line). *p < 0.05, **p < 0.001 vs UT. (F) Synt4 protein expression of Lewis lung carcinoma 

�ank allografts at 20 days after injection in wt and iNOS−/− mice, assessed by western blotting. The images are representative of 3–5 independent 

experiments. Panel on the right shows the densitometry analysis of synt4 expression. Data are showed using stain-free total proteins staining as loading 

control. *p < 0.05 vs wt.
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TAMs. In early events of tumorigenesis, TAMs show a M1-like 
phenotype, highly expressing iNOS that generates huge concen-
trations of NO, which in turn trigger tumor cell apoptosis and 

erase newly transformed cells (71). During tumor development, 
TAMs acquire a M2-like phenotype and promote tumor develop-
ment possibly contributing also to resistance to chemotherapy 
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FIGURE 6 | Nitric oxide (NO)/cyclic GMP (cGMP) induces degradation of syntaxin 4 (synt4) by the proteasome via protein kinase G-dependent phosphorylation  

of Ser-78 which explains the chemoresistance of tumor cells. (A) Synt4 expression in U373 cells treated with 8Br-cGMP (3 mM, 1 h) in the presence or in the 

absence of MG132 (10 µM), assessed by western blotting. The images are representative of three independent experiments. Panel on the right shows the 

densitometry analysis of synt4 expression. Data are expressed as the fold change over their respective controls (UT or MG132 alone) (dashed line). **p < 0.001  

vs UT. (B) Immunoprecipitation of ubiquitinated synt4. Cells were treated with 8Br-cGMP (3 mM, 1 h) in the presence of MG132 (10 µM, 2 h before 8Br-cGMP 

administration), lysed, and incubated with Agarose-TUBEs to immunoprecipitate ubiquitinated protein. Synt4 expression was detected by western blotting. The 

images are representative of three independent experiments. (C) Synt4 expression in U373 cells treated with 8Br-cGMP (3 mM, 1 h) in the presence or in the 

absence of KT5823 (1 µM, 15 min before 8Br-cGMP administration), assessed by western blotting. The images are representative of three independent 

experiments. Panel on the right shows the densitometry analysis of synt4 expression. Data are expressed as the fold change over their respective controls (UT or 

KT5823 alone) (dashed line). **p < 0.05 vs UT. (D) Synt4 expression in cells transfected with synt4 wild-type and synt4 mutant proteins. GAPDH was used as the 

internal standard. The images are representative of three independent experiments. (E) Acid sphingomyelinase activity on cell lysates derived from cells transfected 

with the mutant protein S78A and treated with chemotherapeutic agent cisplatin (CDDP) (50 µg/ml, 30 min) alone or in the presence 8Br-cGMP (3 mM, 1 h before 

CDDP administration) (n = 3). Enzyme activity is expressed as fold increase compared to UT controls (dashed line). (F) Evaluation of CDDP-induced apoptosis  

of U373 cells transfected with the mutant protein S78A and treated with CDDP (50 µg/ml, 24 h) alone or in the presence 8Br-cGMP (3 mM, 1 h before CDDP 

administration). Panel on the right shows apoptosis quanti�cation expressed as fold increase of total apoptotic cells (annexin V+/PI− and annexin V+/PI+ cells) 

compared to their respective UT controls (n = 4).
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(83, 84). It is worth mentioning that M2-like macrophages show 
a redu ced expression of iNOS and generate NO at low, cytopro-
tective concentration (20). By in  vitro experiments carried out 
in human and murine tumor cell models, i.e. U373 and Gl261 
glioma cells, that do not natively express NOSs, and culturing 
these cells with macrophages derived from the bone marrow of 
wt and iNOS−/− mice, we observed that the presence in tumor 
milieu of M2-like macrophages expressing iNOS renders tumor 
cells resistant to CDDP by protecting them from apoptosis. 
Moreover, analyzing cell death of wt and iNOS−/− derived M2 
macrophages, we found that iNOS−/− cells were more sensitive to 
apoptosis, thus suggesting a possible paracrine/autocrine e�ect 
of NO (85). Inhibiting iNOS activity in  vitro in both cell lines 
and in  vivo in tumor allogra�s, by the administration of NOS 
inhibitor l-NAME increased the apoptotic activity of CDDP and 
reduced signi�cantly tumor growth. �e anti-proliferative e�ect 
of l-NAME has been demonstrated in di�erent kinds of cancer 
cells in vivo (86–88). Our results obtained by the replacement of 
wt TAMs with iNOS−/− TAMs in tumor allogra�s indicate that 
NO generated by TAMs is a key player in CDDP resistance.

Despite being one of the oldest chemotherapeutic drugs, 
CDDP is still a mainstay in the therapy of a variety of solid 
tumors (1). �e e�cacy of this drug is due to its multiple actions. 
Alongside its direct cytotoxic action at the DNA level, CDDP 
targets molecules promoting tumor expansion among which 
are cytoskeleton proteins, mitochondrial DNA, and plasma 
membrane proteins and lipids (2, 3, 62). CDDP activates also 
the CD95 death receptor on tumor cells and triggers A-SMase 
activity (26, 32, 62, 89). �is leads to the activation of down-
stream apoptotic pathways and to a modi�cation of the plasma 
membrane structure such that receptor clustering is favored 
and the death signal ampli�ed (26, 32, 62, 90). Here, through 
an experiment of CD95 blockade, we corroborate the �ndings 
that the death receptor activation contributes, at least in part, to 
CDDP-induced cell death. �e partial e�ect on the inhibition 
of apoptosis we observed was expected, because of the multiple 
ways through which CDDP may kill cancer cells (3).

We have previously reported that NO protects cells from 
apoptosis induced by di�erent stress stimuli through the inhi-
bition of A-SMase activity (25, 26, 56). Here, we demonstrated 
that such an action, at least in the case of CDDP signaling, is 

dependent on NO ability to generate cGMP in tumoral cells 
and to block the CDDP-induced, synt4-dependent A-SMase 
translocation on the plasma membrane and hence its activity 
(28). Furthermore, we demonstrated that this action of NO is 
mediated through synt4 phosphorylation by PKG on Ser-78 and 
this in turn triggers proteasome-dependent degradation of synt4.  
�e phosphorylation of synt4 at Ser-78 site within the NH2-
terminal regulatory domain of the t-SNARE we describe here 
stimulates protein degradation, likely inducing the misfolding of 
synt4 that triggers its recognition by the proteasome.

�e very tight relationship between proteasome regulation 
and CD95-induced apoptosis (91) suggests the importance in cell 
death of the pathway of synt4 phosphorylation/degradation we 
report. �is pathway may also be important in view of the role 
played by NO and A-SMase in the pathogenesis of cardiovascular, 
pulmonary, liver, and neurological diseases, as well as sepsis and 
infections (57, 92–95). Previous studies showed that synt4 can be 
phosphorylated by protein kinases A, Cα, and casein kinase II 
and that phosphorylation is a fundamental mechanism for synt4-
dependent exocytosis, since binding of synt4 to cognate SNAREs 
is altered by its phosphorylation (96). Synt4 phosphorylation by 
protein kinase Cα promotes exocytosis of Weibel–Palade bodies 
in endothelial cells by dissociating the synt4/Munc-18 complex 
(97), whereas phosphorylation by protein kinase A inhibits synt4 
binding to SNAP 23 (96). Recently, a role for synt4 phosphoryla-
tion state has been demonstrated for the regulation of membrane 
type-1 matrix metalloproteinase tra�cking during invadopodium 
formation and tumor cell invasion (36, 37). Protein phospho-
rylation is known to regulate and maintain protein function and 
turnover, also by the activation of proteasome in physiological and  
pathological condition (67–70, 98, 99). Although the PKG-
dependent phosphorylation of synt4 and the ensuing degradation 
had not been reported yet, it is conceivable that such event char-
acterizes also the above biological systems in which both A-SMase 
activity and NO generation occur. Finally, the phosphorylation-
induced degradation of synt4 by proteasome as a novel mechanism 
inducing chemoresistance to CDDP may be considered relevant 
also in the light of the recent advance in combinatorial cancer 
therapy based on proteasome inhibitors (100–102).

In summary, we demonstrated here that NO produced by 
iNOS expressed in M2-like TAMs e�ciently protects cancer 
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cells from CDDP-induced apoptosis leading to chemoresist-
ance, such that inhibition of iNOS in TAMs is per se su�cient 
to restore the e�cacy of chemotherapy. In addition, we found 
that NO activates cGMP/PKG pathway in cancer cells leading to 
phosphorylation of synt4 at Ser-78 site, an event which promotes 
the proteasomal-dependent degradation of synt4. Importantly, 
low levels of synt4 limit the CDDP-induced exposure of 
A-SMase to the plasma membrane of tumor cells thus inhibit-
ing the cytotoxic mechanism of this drug. �e identi�cation of 
the role of this pathway in chemoresistance of tumors warrants 
further investigations as a means to identify new anti-cancer 
molecules capable of speci�cally inhibiting synt4 degradation.
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