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Germination ability is regulated by a combination of environmental and endogenous signals
with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-
releasing agent in many species, including Arabidopsis, and has been suggested to behave
as an endogenous regulator of this physiological blockage. Distinct reports have also
highlighted a positive impact of NO on seed germination under sub-optimal conditions.
However, its molecular mode of action in the context of seed biology remains poorly
documented. This review aims to focus on the implications of this radical in the control of
seed dormancy and germination.The consequences of NO chemistry on the investigations
on both its signaling and its targets in seeds are discussed. NO-dependent protein post-
translational modifications are proposed as a key mechanism underlying NO signaling
during early seed germination.
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INTRODUCTION
Survival of plant species mainly relies on the sexual reproduction
which gives rise to new populations. During this process, the adult
angiosperm plants produce flowers which upon fertilization give
rise to seeds, the main unit of dispersal of flowering plants. In
the plant life cycle, the seed and seedling stages are key develop-
mental stages conditioning the final yield of crops. Indeed, seed
dormancy, viability, and germination vigor are among the main
concerns for agricultural productivity. High vigor seed lots display
a low dormancy and lead to seedlings able to withstand extreme
stress conditions. If not completely released, dormancy will neg-
atively influence seed germination, which is detrimental to crop
yield. However, from an agronomical point of view, lack of dor-
mancy is not a desirable trait as it may lead to pre-harvest sprouting
(Bewley and Black, 1994). Therefore, the management of this
trait is of fundamental concern for the seed industry and agri-
culture performance. Thus, investigation of seed quality, toward a
better understanding of dormancy, germination and longevity,
is of paramount agronomical importance. All these seed fea-
tures are complex traits controlled by a large number of genes,
which are affected by both developmental and environmental
factors.

Numerous distinct nitrogen-containing compounds have been
shown to positively influence seed germination especially by
releasing seed dormancy and improving seed vigor in a wide range
of species (Bethke et al., 2007b). These concentration-dependent
effects could allow the sensing of the presence of these essential
resources in the direct environment. The possibility that all these

molecules could act in a similar way prompted plant biologists
to look for a possible common nitrogen-containing intermediate
and pinpointed nitric oxide (NO) as a possible candidate. Indeed,
since its discovery, this radical has progressively emerged as an
ubiquitous molecule in both animal and plant signaling net-
works (Baudouin, 2011). Increasing reports highlight its large
implication in diverse signaling pathways regulating growth and
developmental processes all along the plant life cycle. A key role
for NO was further demonstrated in plant response to abiotic and
biotic stresses. Instead of describing in details all these roles that
have already been extensively discussed in recent reviews (Besson-
Bard et al., 2008; Wilson et al., 2008; Moreau et al., 2010; Baudouin,
2011), we will focus on the implications of NO in the control
of seed dormancy and germination with a particular emphasis
on the experiments carried out on the model Angiosperm plant
Arabidopsis thaliana. The present review also aims to provide
outlooks for future investigation in this field.

DEFINITION AND GENERAL OVERVIEW ON SEED DORMANCY
AND GERMINATION
SEED DORMANCY
Under natural conditions, an appropriate timing of seed germina-
tion is determinant to ensure optimal growth conditions for the
young seedlings and guarantee the survival of the species (Bewley,
1997). Seed dormancy is one of the mechanisms contributing to
this spatio-temporal adjustment and is defined as a block to the
completion of germination of an intact viable seed placed under
(temporary) favorable conditions in an otherwise unfavorable
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season (Bewley, 1997; Finch-Savage and Leubner-Metzger, 2006;
Graeber et al., 2012). It may be due to certain properties of the
seed coat, mobilization of reserve components, hormone levels,
or the joint action of several of these factors (Koornneef et al.,
2002). Thus, dormancy is determined by genetic factors but it
can also be substantially modulated by environmental parame-
ters (Graeber et al., 2012). Indeed, the alleviation of this blockage
can be conditioned by several distinct environmental (tempera-
ture, humidity, light, nutrient concentration. . .) or physical (testa
rupture. . .) factors. The exact conditions required for dormancy
release and subsequent germination depend on the species and
thus contribute to the adequacy of the plant to its environment by
delaying germination until the seed meets appropriate conditions
for its development. In addition, the depth of primary dormancy
in mature seeds can depend on the conditions under which the
mother plant was exposed such as temperature or availability of
mineral elements (such as nitrate) in the soil (Alboresi et al., 2005;
Kendall et al., 2011). Thus, seeds have developed a complex con-
trol of the depth of dormancy integrating diverse spatio-temporal
parameters allowing a dynamic definition of the minimal require-
ments for germination. In addition, when a non-dormant seed
encounters inappropriate conditions for germination, it can enter
into a so-called secondary dormancy. Overall, these mechanisms
contribute to the sensing of environmental conditions and can
lead to dormancy cycling under natural conditions (Footitt et al.,
2011).

Abscisic acid (ABA) is considered as the pivotal hormone
responsible for the induction and maintenance of seed dormancy
(Nambara et al., 2010). ABA is accumulated during seed matura-
tion reaching high levels in dry seeds. Dry dormant seeds were
found to contain higher amounts of ABA than dry after-ripened
non-dormant seeds (Ali-Rachedi et al., 2004). Upon imbibition,
a significant decrease in ABA content was observed in both
dormant and non-dormant seeds (Ali-Rachedi et al., 2004). How-
ever, after 3 days of imbibition a significant up-accumulation
of ABA was detected in dormant seeds only. Exposition of dor-
mant seeds to common dormancy-releasing treatments such as
cold-stratification or exogenous nitrate supply leaded to ABA lev-
els similar to non-dormant seeds and prevented the increase in
ABA observed when dormancy is maintained (Ali-Rachedi et al.,
2004). Reactive oxygen species (ROS) and NO counteract the
positive effect of ABA on seed dormancy maintenance. Exoge-
nous application of fluridone (an inhibitor of ABA synthesis)
also efficiently released seed dormancy by reducing ABA levels
highlighting the requirement for de novo ABA synthesis for the
maintenance of this blockage and the existence of a dynamic
equilibrium between ABA synthesis and catabolism during seed
imbibition (Ali-Rachedi et al., 2004). In addition, recent exper-
iments demonstrated that two independent dormancy-releasing
treatments led to similar proteome adjustments supporting the
occurrence of shared molecular mechanisms underpinning seed
dormancy release (Arc et al., 2012). Furthermore, recent data
emphasize the importance of redox control of seed proteome
in dormancy release (Marx et al., 2003; Bykova et al., 2011a,b).
Thus, ROS and NO appear as good candidates, acting syn-
ergistically to release dormancy, putatively acting upstream
of ABA.

SEED GERMINATION
Seed germination is temporally defined as the sequence of
molecular and physiological events initiated upon imbibition of
non-dormant seed and leading to the radicle protrusion through
the seed external envelopes (testa and endosperm) that marks
the end of germination sensu stricto (Bewley, 1997). Seed ger-
mination constitutes a pivotal physiological transition and is
associated with a strong modification of the transcriptome (∼one-
third of the genome) and metabolism over a short time period
(around 36–48 h for non-dormant Arabidopsis seeds) relatively
to the plant life cycle. During this process, the initially quies-
cent dry seed successively go through three major steps of water
uptake (Bewley, 1997; Weitbrecht et al., 2011). The first step con-
sists in a rapid imbibition of the initially quiescent seeds that
lead to the progressive resumption of metabolic activity, gene
expression (transcription), protein synthesis and processing and
DNA repair (Weitbrecht et al., 2011). The recapitulation of the
metabolic activity mainly depends on the stored proteins and
metabolites. The importance of the compounds accumulated
in the seeds during the maturation was further highlighted by
the finding that stored mRNAs and proteins are sufficient for
germination sensu stricto (Rajjou et al., 2004; Sano et al., 2012).
De novo protein synthesis from the stored mRNAs occurs dur-
ing the very early step of germination. During this period, the
proteins translated are similar to those accumulated during the
late maturation and already abundant in seeds reflecting an early
recapitulation of the corresponding gene expression program dur-
ing early germination (Rajjou et al., 2006, 2012). During the
second step of water uptake, the water content only slightly
increases while important metabolic changes take place inside the
seeds. A significant shift is observed during this step from mat-
uration to germination program of development that includes
the preparation for seedling establishment (Lopez-Molina et al.,
2002; Nonogaki et al., 2007). This two steps time course is con-
sistent with a model proposing that recapitulation of the late
maturation program occurs during early germination up to an
ABA-dependent developmental checkpoint after which the seed
can either activate its germination program or maintain a dor-
mant state notably depending on the sensing of environmental
conditions during early imbibition (Lopez-Molina et al., 2002;
Rajjou et al., 2012). During this period, seeds maintain their
desiccation tolerance. At the end of this second step, if the
“decision” to pursue toward germination is taken, the growth
potential of the embryo progressively overcome the mechanical
constraints imposed by the surrounding layers leading to the suc-
cessive rupture of the testa and the endosperm (Nonogaki, 2006;
Bentsink and Koornneef, 2008). The protrusion of the radicle
through the seed coat is thus achieved as a result of important
cell elongation without any cell division (Sliwinska et al., 2009)
and occurs concomitantly with an important resumption of water
uptake. The ABA/gibberellins (GAs) balance coordinate this last
step with a decrease in ABA leading to the progressive release
its inhibitory effect on endosperm rupture while an important
increase in bioactive GAs levels both enhanced the growth poten-
tial of the embryo and induced hydrolytic enzymes that weaken
the barrier tissues (Bewley and Black, 1994; Muller et al., 2006;
Finkelstein et al., 2008).
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GERMINATION VIGOR
If the seed encounters suitable conditions for germination during
its life, it may, if still viable, allow the young seedling establishment.
But as a consequence of aging, the seed germination vigor can be
severely affected. In other words, the capacity of a seed lot to ger-
minate rapidly, uniformly and in a wide range of environmental
conditions can be impaired or destroyed. As the seed germination
process mainly relies on stored mRNA and proteins (Rajjou et al.,
2004), damages at the DNA level can result in an aborted develop-
ment of the seedling. Thus, cellular repair mechanisms especially
at the DNA level but also for certain protein post-translational
modifications (PTMs) play an essential role in seed vigor (Rajjou
et al., 2012). Due to seed high vulnerability to injury, abiotic, and
biotic stresses during imbibition, germination is considered as the
most critical phase of the plant life cycle. The level of reactive oxy-
gen and nitrogen species (respectively ROS and RNS), influenced
by the storage and environmental conditions will determine a bal-
ance between the required signaling events and the detrimental
oxidative damages (Bailly et al., 2008; Rajjou et al., 2008, 2012; Arc
et al., 2011).

NITROGEN OXIDES IMPLICATION IN THE CONTROL OF SEED
DORMANCY AND GERMINATION
NITRATE AND NITRITE AVAILABILITY: DETERMINANT FACTORS FOR
SEED DORMANCY RELEASE AND SUBSEQUENT GERMINATION
Nitrate (NO−

3 ) is considered as a major nitrogen source for most
plant species. Nitrate reduction into nitrite (NO−

2 ) is catalyzed
by nitrate reductase (NR) that produces nitrogen-containing
metabolites, such as amino acids and NO. Apart from being an
essential nutrient, nitrate is also considered as a signaling molecule
involved in both plant metabolism regulation and developmen-
tal processes (Krouk et al., 2010). In particular, nitrate has been
shown to promote seed dormancy release and subsequent germi-
nation in numerous plant species (Bewley and Black, 1994). Most
of the first experiments mainly investigated the effect of nitrate
on these physiological processes although the principal product of
its assimilation, nitrite can also alleviate seed dormancy (Bethke
et al., 2006a).

Exogenous treatments with nitrates were shown to promote
seed germination in Arabidopsis by reducing the light requirement
(Hilhorst and Karssen, 1988; Batak et al., 2002). The enhancement
of germination mediated by light absorbed by phytochrome-A
operates via the very-low-fluence response (VLFR; Botto et al.,
1996). Thus, nitrate could stimulate the accumulation of cGMP,
which then promotes some phytochrome responses (Ludidi and
Gehring, 2003). Moreover, a positive correlation between endoge-
nous or applied nitrate levels and germination response to ethylene
or GAs was reported for Chenopodium album seeds (Saini et al.,
1985). In Arabidopsis, high nitrate feeding of mother plants is
associated with higher nitrate content and lower dormancy of the
seed progeny (Alboresi et al., 2005). This result suggests a nega-
tive correlation between nitrate levels in dry mature seeds and the
depth of dormancy. In addition, mutation in the nitrate trans-
porter NRT1.1/CHL1 resulted in lower sensitivity to exogenous
nitrate indicating that this protein may be required for nitrate
uptake by the seed (Alboresi et al., 2005). Moreover, mutants
in the seed specific nitrate transporter AtNRT2.7, involved in

nitrate loading into the vacuole during seed maturation, displayed
reduced nitrate content and slightly increased dormancy (Chopin
et al., 2007). Overall, nitrate availability in seeds appears as an
important determinant of seed dormancy.

The reduced dormancy of NR deficient seeds, impaired in
nitrate assimilation, along with the finding that glutamine, another
nitrogen source did not affect seed germination suggest that the
effect of nitrate is unrelated to plant nutrition (Alboresi et al.,
2005). As stated in the previous part, exogenous nitrate application
was proved to negatively affect ABA content during Arabidopsis
seed imbibition (Ali-Rachedi et al., 2004). In addition, controlled
nitrate supply to the mother plants led to ABA contents nega-
tively correlated to the endogenous nitrate concentration in dry
mature seeds (Matakiadis et al., 2009). Accordingly, it has recently
been demonstrated that the gene expression of the ABA catabolic
enzyme, CYP707A2, was positively regulated by both endogenous
and exogenous nitrate (Matakiadis et al., 2009). Thus, the positive
effect of nitrate on dormancy alleviation is presumably mediated
by affecting ABA metabolism.

NITRIC OXIDE, THE KEY SIGNALING ELEMENT MEDIATING NITRATE
RESPONSE IN SEEDS?
Nitric oxide is a gaseous diatomic free radical detected at low levels
in the atmosphere. It is also present in the soils at a concentration
depending on the micro-biotic environment (Simontacchi et al.,
2007). Moreover, nitrogen fertilization was shown to increase
NO release from the soils and proposed to account for the fit-
ness of nitrogen-fertilized plants (Lamattina et al., 2003). NO
was shown to efficiently break the dormancy and / or promote
germination of several orthodox seeds (Beligni and Lamat-
tina, 2000; Bethke et al., 2004b; Sarath et al., 2006; Liu et al.,
2007; Gniazdowska et al., 2010a) including in Arabidopsis thaliana
(Bethke et al., 2006b).

Nitric oxide: a key mediator of seed dormancy release
Recent data disclosed that the improvement of dormant-seeds
germination provided by exogenous treatments with various
nitrogenous molecules, including nitrate, and nitrite, most pre-
sumably occurs through NO production (Bethke et al., 2004b,
2006a). Accordingly, the NO content in homogenates from 24 h-
imbibed soybean and sorghum embryonic axes, detected by
electron paramagnetic resonance (EPR)-spin trapping, increased
with increasing nitrate supply during seed imbibition (Caro and
Puntarulo, 1999; Simontacchi et al., 2004). This result pinpoints
exogenous nitrate concentration during seed imbibition as a key
determinant of NO release.

Indeed, NO is well known to release seed dormancy in numer-
ous species (Bethke et al., 2007b). For instance, pharmacological
approaches demonstrated that most known NO donors promoted
dormancy alleviation and subsequent germination while NO
scavengers favored dormancy maintenance and counteracted the
positive effect of NO donors (Bethke et al., 2007a). In addition, it
has been shown that NO may alleviate dormancy of apple embryos
via a transient accumulation of ROS, leading to enhanced ethy-
lene emission as required to terminate germination sensu stricto
(Gniazdowska et al., 2007, 2010a,b). NO also proved efficient to
reverse blue light inhibition of dormant wheat seed germination,
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presumably acting interdependently with methyl-jasmonates in
controlling reduction of ABA (Jacobsen et al., 2013).

In tomato seeds, the NO scavenger, carboxy-2-phenyl-4,4,5-
tetramethylimidazole-1-oxyl 3-oxide (cPTIO), was shown to pre-
vent germination stimulation by fluridone, an ABA synthesis
inhibitor (Piterkova et al., 2012). On the contrary, exogenous
sodium nitroprusside (SNP), commonly used as NO donor,
enhanced the positive effect of norfluorazon, another ABA synthe-
sis inhibitor, on dormancy release of Arabidopsis C24 seeds (Bethke
et al., 2006b). Moreover, SNP was shown to reduce seed sensitiv-
ity to exogenous ABA (Bethke et al., 2006b). Taken together, these
results suggest that NO can decrease ABA sensitivity. A possible
effect of NO on ABA catabolism was consequently investigated.
Seed treatment with NO donor enhanced CYP707A2 transcript
and protein accumulation while the NO scavenger c-PTIO reduced
CYP707A2 expression and reversed the NO donor effect (Liu et al.,
2009). Thus, as for nitrate, NO was found to enhanced CYP707A2
gene expression (Liu et al., 2009). These results consequently rein-
force the assumption that nitrate does not affect seed dormancy
on its own but rather act through NO biosynthesis.

A rapid accumulation of NO, possibly in the endosperm layer,
during the first stage of Arabidopsis seed imbibition is required
for rapid ABA catabolism and breaking of dormancy (Liu et al.,
2009). A similar NO accumulation during imbibition was also
observed in germinating seeds from other species (Simontacchi
et al., 2007). Recently, NO was suggested to act upstream of GAs
in a signaling pathway leading to vacuolation of protein storage
vacuoles in aleurone cells, a process inhibited by ABA (Bethke et al.,
2007a). However, the growth of isolated embryos was unaffected
by NO donor or scavengers. Thus, the endosperm layer, proposed
as the primary determinant of seed dormancy in Arabidopsis, was
proved to perceive and respond to NO, and suggested as its main
site of synthesis and action in seeds (Bethke et al., 2007a). Apart
from its effect on the hormonal balance, it has been speculated
that NO might accelerate the flux towards the pentose phosphate
pathway (PPP) by indirectly increasing the oxidation of nicoti-
namide adenine dinucleotide phosphate (NADPH; Hendricks and
Taylorson, 1974; Bethke et al., 2007b). Interestingly, the oxidation
of NADPH by S-nitrosoglutathione (GSNO) in the presence of
thioredoxin reductase and thioredoxin was demonstrated, releas-
ing glutathione (GSH) and NO (Nikitovic and Holmgren, 1996).
In addition, the involvement of the hemoglobin/NO in the oxida-
tion of NADPH has been proposed (Igamberdiev and Hill, 2004).
An increase in glucose catabolism via PPP could in turn promote
dormancy release (Roberts and Smith, 1977).

As a conclusion, NO is a likely player of a signaling pathway that
promotes loss of dormancy and has been suggested to behave as an
endogenous regulator of this process. However, the direct targets
of NO in seeds remain unclear. Nonetheless, some consequences
of NO accumulation on seed metabolism have been highlighted
and pinpoint an implication in the regulation of ABA metabolism.

Reactive oxygen species and no crosstalk in the control of seed
dormancy and germination
In parallel to NO, ROS have emerged as key players in the control of
seed dormancy and germination (Bailly, 2004; Bailly et al., 2008).
In cells, ROS can be generated by specific enzymatic reactions

or as by-products of the metabolism. Depending on their con-
centration, ROS may have positive signaling effects including the
promotion of dormancy release and germination or detrimental
consequences (Liu et al., 2010; Leymarie et al., 2012). Accordingly,
it has been proposed that the amount of ROS generated upon seed
imbibition should fall within a defined “oxidative window” for
germination to occur (Bailly et al., 2008). Below this window, ROS
levels would be too low to promote dormancy alleviation while
above, oxidative damages would be predominant.

Recently, it has been proposed that ROS might coordinate
the reduction of ABA-imposed dormancy with the onset of
GA-stimulated germination (Liu et al., 2010). More precisely,
exogenous hydrogen peroxide (H2O2) was shown to enhance
ABA catabolism and GA biosynthesis during seed imbibition. As
NO scavenger efficiently reversed H2O2-mediated induction of
CYP707A genes but had no effect on the stimulation of GA biosyn-
thesis, NO was proposed to act downstream of H2O2 in enhancing
ABA catabolism. In vivo, both H2O2 and NO appeared to accumu-
late rapidly and concomitantly upon imbibition and to precede the
induction of ABA catabolism/GA biosynthesis (Liu et al., 2010).

In stomatal guard cells, one of the well-established signaling
pathway for ABA-induced stomatal closure involve the successive
accumulation of ROS and NO, acting as secondary messengers
of ABA signal (Neill et al., 2008; Simontacchi et al., 2013). Even
though similar actors are present in seeds, the picture is obviously
quite different as both ROS and NO counteract ABA-inhibition
of seed germination. This clear distinction highlights the speci-
ficity of seed physiology (Figure 1). The exact interplay between
reactive nitrogen and oxygen species is always difficult to interpret
due to the non-enzymatic reactions susceptible to occur and the
molecular consequences they might have.

Nitric oxide and germination vigor
Nitric oxide is well known to play a dual role in stress responses in
plants (Corpas et al., 2011). In particular, NO can directly scavenge
certain ROS such as superoxide anions and lipid-derived radicals
and was shown to stimulate antioxidant enzymes thereby limit-
ing oxidative damages. However, uncontrolled NO accumulation
referred to as nitrosative stress can have detrimental consequences.

In seeds, pharmacological experiments highlighted that NO did
not significantly influence the germination of non-dormant (fully
after-ripened) Arabidopsis seeds under optimal conditions (Bethke
et al., 2006a). However, in rice seed, NO was proved to enhance
germination by stimulating the transcription of the plasma mem-
brane intrinsic protein (PIP) genes encoding water channels (Liu
et al., 2007). In addition, several studies suggested that NO could
participate in the tolerance to abiotic stresses during seed germi-
nation (Sirova et al., 2011). In particular, NO was demonstrated
to delay programmed cell death of barley aleurone cells by pro-
moting the activity of antioxidant enzymes (Beligni et al., 2002).
In addition, SNP, commonly used as NO-donor, was shown to
alleviate heavy metal stress during seed germination of wheat (Hu
et al., 2007), lupin (Kopyra and Gwóźdź, 2003) and rice (Péres da
Rocha Oliveiros Marciano et al., 2010). Seed pre-incubation (seed
priming) with SNP was also proved to increase salt stress toler-
ance in wheat (Duan et al., 2007; Zheng et al., 2009). Finally, two
recent papers on Arabidopsis reported an enhanced sensitivity of
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FIGURE 1 | Contrasting models showing ROS, NO, and ABA

crosstalk in stomata guard cells and seeds. ABA increases ROS
and NO level in guard cells leading to ABA-dependent stomatal
closure. Seed imbibition leads to ROS and NO accumulation. ROS

up-regulate ABA catabolism through NO, and also GA biosynthesis.
A high concentration of ABA also inhibits GA biosynthesis, but a
balance of these two hormones jointly controls seed dormancy and
germination.

mutants with reduced NO accumulation (atnoa and nia1nia2) to
salt and osmotic stress (Zhao et al., 2007; Lozano-Juste and Leon,
2010). In the few cases where it was examined, stress tolerance was
associated to increased antioxidant activity. NO could therefore
play a key role in germination vigor that could result from its
crosstalk with ROS. NO and superoxide rapidly combine to form
peroxynitrite (ONOO−), a selective oxidant able to reacts with
most biological molecules. Peroxynitrite modifies protein tyro-
sine to create nitrotyrosines, leaving a footprint detectable in vivo
(Vandelle and Delledonne, 2011). However, up to now, only indi-
rect evidences support this assumption in Arabidopsis seeds and
none investigated the underlying mechanisms associated to the
increased tolerance observed. Overall, NO could play a pivotal
role in the sensing of environmental conditions appropriate for
seed germination.

CONSEQUENCES OF NITRIC OXIDE CHEMISTRY ON THE
INVESTIGATION ON ITS SIGNALING IN SEEDS
SPECIFICITIES OF NITRIC OXIDE CHEMISTRY AND SIGNALING
Nitric oxide (NO•) is an uncharged, gaseous and lipophilic free
radical that can readily diffuses across biological membranes.
Thus, NO can interact with numerous distinct molecules in plant
cells and therefore acts as a signaling element. Free NO• is a
transient compound displaying a high reactivity toward other
free radicals (e.g., superoxide anion) and transition metal ions
(e.g., iron; Wink and Mitchell, 1998). Thus, upon production,
released NO can adjust to the cellular redox environment leading
to the formation of diverse biologically active compounds collec-
tively referred to as reactive nitrogen species (RNS). RNS include
nitrosonium (NO+) and the nitroxyl anion (NO−), respectively
resulting from a gain or loss of one electron by NO and peroxyni-
trite (ONOO−) product of the reaction of NO with superoxide
anion radical (O−

2 ; Stamler et al., 1992b). Oxidation reactions in
the presence of molecular oxygen (O2) can also lead to nitrogen
dioxide (NO2), nitrous anhydride (N2O3), NO−

2 and NO−
3 genera-

tion. All these molecules differ in reactivity toward the range of NO
biological targets. Their differential production can thus orient
and/or alter the message mediated by NO. Under physiologic
conditions, a strict control of NO content is required to maintain
proper cellular functions. High accuracy in signaling events can

only be achieved through a tight spatio-temporal control of the
intracellular levels of the messengers. Therefore, the balance
between NO production and elimination (conversion or storage)
is of major importance in determining the biological effects of
this radical (Besson-Bard et al., 2008; Moreau et al., 2010; Bau-
douin, 2011). As for ROS, the chemical reactivity of NO (and
associated RNS), make it a particular signal element which can
readily interact with a wide range of targets (e.g., proteins, lipids)
rather than interact with “dedicated” receptors (Kalyanaraman,
2004; Besson-Bard et al., 2008). The signal mediated by NO can
belongs to transduction pathways or be associated with nitrosative
stress depending on the biological environment.

NITRIC OXIDE SYNTHESIS AND HOMEOSTASIS IN PLANT SEEDS
Distinct pathways have been proposed to account for NO genera-
tion in plant cells (Reviewed in Gupta et al., 2011a). However, the
reactions and enzymes involved are still a matter of debate and the
relative contribution of these NO biosynthesis pathways remains
unclear in seeds (Reviewed in Arc et al., 2013). For instance, NR-
catalyzed reduction of nitrite into NO in the cytosol is presumably
the most documented reaction but its relevance in seeds is contro-
versial. Instead, nitrite reduction was suggested to occur either via
non-enzymatic reactions especially within the apoplasm possibly
next to the endosperm layer (Bethke et al., 2004a) or in hypoxic
mitochondria (Igamberdiev et al., 2010; Gupta and Igamberdiev,
2011). Alternatively, NO synthesis could result from oxidative
reactions from hydroxylamine, polyamines or L-arginine (L-Arg)
pathways. NO can also be “stored” through its interaction with
diverse molecules. Indeed, NO can react with reduced GSH or thiol
groups leading to the reversible formation of S-nitrosothiols (e.g.,
GSNO, S-nitrosylated proteins). GSNO was suggested to consti-
tute a storage and transport form for NO, even in seeds (Sakamoto
et al., 2002; Catusse et al., 2008).

NITRIC OXIDE DETOXIFICATION BY NON-SYMBIOTIC HEMOGLOBINS
Hemoglobins are well known in the animal kingdom for their role
as oxygen carrier. In plants, non-symbiotic hemoglobins (nsHb)
are divided into two main classes with distinct properties. Class 2
nsHb are the only proteins with an affinity for oxygen fitting with
a direct role in oxygen storage and supply (Spyrakis et al., 2011;
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Vigeolas et al., 2011). Contrarily, the very high affinity for oxygen
(in the order of 1–2 nM) displayed by class 1 nsHb is not compat-
ible with such function (Dordas, 2009; Gupta et al., 2011b; Hill,
2012). The plant nsHb1 can act as NADPH-dependent dioxyge-
nase metabolizing NO into nitrate (Igamberdiev and Hill, 2004;
Perazzolli et al., 2004). Under hypoxia, NO can be generated from
nitrite by deoxyhemeproteins within the mitochondria. Then,
nsHb1 and NR can allow the NADPH-dependant re-oxidation
of NO into nitrite in the cytosol. As NO can reversibly inhibits
cytochrome c oxidase, the reaction between NO and nsHb1 is
part of a dynamic equilibrium allowing a tight adjustment of the
cellular energy and redox state to oxygen availability (Hebelstrup
et al., 2007). These reactions constitute the so-called hemoglobin-
NO cycle (Igamberdiev et al., 2010). Furthermore, nsHb1 protein
also participates in NO scavenging and therefore NO homeosta-
sis. Accordingly, modulation of nsHb1 expression in plants was
shown to directly impact NO levels at distinct developmental
stages including seeds (Hebelstrup and Jensen, 2008; Thiel et al.,
2011) and in diverse environmental conditions (Dordas, 2009;
Cantrel et al., 2011). Thus, despite putative other functions, like
CO binding (Hill, 2012), the use of transgenic lines with altered
AHb1 expression proved to be a valuable tool to highlight NO
implication in physiological processes and stress tolerance.

The over-expression of Arabidopsis nsHb1, AHb1 (also named
GLB1 or AtHb1 in other studies; At2g16060) in seeds resulted
in a pre-adaptation to stress with the repression of energy con-
suming pathways, modulation of hormone metabolisms (ABA,
SA, auxin, ethylene. . .) and reduced NO emission under transient
hypoxia (Thiel et al., 2011). Overall, this leaded to a more efficient
allocation of energy resources in seeds resulting in higher weight
of mature transgenic seeds (Thiel et al., 2011). Thus, this study
highlighted an impact of AHb1 over-expression on the nitrosative
stress induced by hypoxia and possibly on NO mediated signal-
ing during seed maturation. However, in dry mature wild-type
(WT) seeds, neither nsHb1 protein nor the corresponding mRNA
has been detected so far, instead both accumulated during seed
imbibition suggesting a crosstalk between nsHbs1 and NO in the
germination process (Duff et al., 1998; Ross et al., 2001; Hebelstrup
et al., 2007; Matilla and Rodriguez-Gacio Mdel, 2013). Indeed, the
NO dioxygenase activity of nsHb1 may also have a significant
impact on seed physiology. Importantly, NO accumulation upon
water uptake seems to precede nsHb1 induction (Hebelstrup et al.,
2007; Liu et al., 2009; Arabidopsis EFP-browser dataset, Winter
et al., 2007). The shift between the induction of NO release and
nsHb1 accumulation could delimit a short time window during
which NO-mediates its effect on ABA catabolism thereby allowing
dormancy release before the re-establishment of NO homeostasis
by nsHb1 as required to avoid nitrosative stress.

Previous studies relying on modulation of nsHb1 expression
in seeds mainly focused on seed maturation (Thiel et al., 2011;
Vigeolas et al., 2011). Yet, to date, the link between the NO-related
AHb1 function and physiology of seed germination (dormancy,
germination vigor, longevity) has never been addressed.

DETECTION AND STUDY OF NITRIC OXIDE IN SEEDS
The investigations on the mode of action of NO in plant cells still
suffer from several technical limitations. Indeed, the improvement

of NO detection and quantification, pharmacological approaches
and biochemical assay for the analysis of NO-induced PTMs are
still required.

Pharmacological experiments
Most of the known implications of NO in plant physiology were
first highlighted through pharmacological experiments employing
NO donors and/or NO scavengers (Bethke et al., 2011). Indeed,
due to the toxicity, reactivity, and gaseous state of NO, direct
application is not easy to carry out in the laboratory. Thus, a
plethora of compounds known to generate NO are preferentially
used instead. All these molecules differ by their characteristics of
NO release (kinetic, amount, light-dependency) and can thus lead
to contrasted results (Planchet and Kaiser, 2006b). Used in aque-
ous solutions, NO donors can lead to nitrogen oxides production.
In addition, certain of these chemicals are complex molecules with
potential side products. For instance, the photolysis of SNP was
proved to release more cyanide than NO. Indeed, cyanide may
actually be the active compound when applying SNP to seeds
(Bethke et al., 2006a). Conversely, the widely used derivatives of
PTIO such as c-PTIO are thought to be relatively specific NO scav-
engers (Akaike et al., 1993): PTIO + NO → PTI + NO2. However,
the reaction products including PTI may have undesirable side
effects in cells (Planchet and Kaiser, 2006a). In a general way,
when using NO donors or scavengers, the potential effect of all
generated compounds should always be taken into account. The
demonstration of opposite effects of NO donors and NO scav-
engers in a given physiological process is usually considered as a
reliable evidence of NO implication.

Methods available for the detection and quantification of nitric
oxide in seeds
In animal cells, the absence of nitrate reduction pathways allows
the use of assay based on nitrogen oxides, especially nitrite, quan-
tification to evaluate NO production (nitrate and nitrite being
considered as by-products of NO production and subsequent
oxidation). In plant, such methodology is excluded due to the exis-
tence of an active nitrate assimilation pathway responsible for most
of nitrite production. Consequently, distinct other methodologies
have been applied including fluorescent probes based detection,
EPR spectroscopy, electrochemistry, ozone based chemilumines-
cence, laser photoacoustic, mass spectrometry and the oxyhe-
moglobin assay. A short discussion on some of these techniques
is provided below, for a complete review refer to (Vandelle and
Delledonne, 2008; Bethke et al., 2011; Mur et al., 2011).

Several distinct fluorescent probes can be used to inves-
tigate NO biosynthesis or release by a given tissue. The
diaminofluoresceins (DAF; DAF-FM, 4-amino-5-methylamino-
2′,7′-difluorofluorescein) or the diaminorhodamine 4M (DAR-
4M) and their cell permeable forms DAF diacetate (DAF-2DA,
DAF-FM DA) and DAR-4M acetoxymethyl ester (DAR-4M AM)
are the most commonly used (Kojima et al., 1998, 2001). These
probes are sensitive (up to the nM range) but suffer from a seri-
ous lack of specificity. Indeed, they do not directly react with NO
but with its main oxidation product N2O3. Thus, the fluorescence
intensity could also depend on the rate of NO oxidation. As the
non-enzymatic oxidation of NO requires oxygen, these fluorescent
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probes cannot be used under anoxia. Finally, numerous distinct
compounds were reported to affect DAF-T fluorescence in vivo
including ascorbate and dehydroascorbate (Vandelle and Delle-
donne, 2008). Nonetheless, N2O3 detection with DAF-FM was
successfully applied on Arabidopsis seeds but required to remove
the seed testa (Liu et al., 2009).

Electron paramagnetic resonance spectroscopy is a more spe-
cific method that can be applied to the direct detection of radical
species including NO both in vitro and in vivo. However, in order
to increase its sensitivity, EPR spectroscopy is often associated
with the use of spin-traps, molecules that can react with NO
and enhance its EPR signal. This technique has been successfully
applied to the detection and quantification of NO in embryonic
axes homogenates from soybean and sorghum (Caro and Pun-
tarulo, 1999; Simontacchi et al., 2004). However, NO detection
from intact seed tissues, eventually supplemented with a spin trap
remains a technical challenge as it would require a sufficiently high
production to reach the sensitivity threshold.

Another widely used approach is based on the chemilumines-
cent reaction between gaseous NO and ozone. This technique can
allow the direct quantification of NO release from a tissue placed in
a sealed compartment under a gaseous flux driving the gas released
in the environment to an analyser. NO-specific electrodes are also
available but are also difficult to apply to the study of the tiny
Arabidopsis seeds. They could only be useful to assess the amount
of NO released by the seeds in their environment.

Overall, despites all the existing techniques, an accurate detec-
tion and quantification of NO generation in plant tissue remain
difficult. In addition, most techniques require preparation steps
or experimental conditions that can lead to undesirable signal.
Thus, as for the pharmacological experiments, a cross validation
with at least two distinct quantification methods is highly recom-
mended (Gupta and Igamberdiev, 2013). In case of Arabidopsis
seeds, the size and characteristics of the mature seeds represents
significant technical constraints to an accurate and specific detec-
tion/quantification of NO levels by the methodologies currently
available.

Genetic resources for the study of nitric oxide production and
signaling
The genetic resources available to investigate NO signaling remain
restricted due to our limited actual knowledge of NO biosynthesis
pathways in plants. Thus, most of the studies rely either on a phar-
macological approach (as discussed previously) or on mutants
affected in NO availability although their NO levels are not always
explained. Some mutants somehow related to NO homeostasis in
plants (e.g., nia1nia2, gsnor, atnoa1) have been associated to seed
phenotypes. However, the interpretation of these phenotypes is
often difficult and requires a lot of caution.

Nitrate reductase, being the only identified enzyme proven to
be directly involved in NO biosynthesis, NR-deficient mutants
has been extensively used, especially the G′4–3 mutant in Ara-
bidopsis (Wilkinson and Crawford, 1993). However, NR-deficiency
causes important perturbation of nitrogen metabolism and a sig-
nificant nitrate accumulation resulting in a pleiotropic phenotype
(Alboresi et al., 2005). Consequently, it is difficult to establish a
direct link between nitrate-related phenotypes and reduced NO

production by NR-NiR activity. Moreover, the high nitrate levels
could lead to an enhanced NO-independent nitrate-mediated sig-
naling (Alboresi et al., 2005). Contradictory results have been
published regarding G′4–3 seeds physiology (Alboresi et al., 2005;
Lozano-Juste and Leon, 2010).

Several other mutants known as affected in NO levels have
also been used to investigate NO signaling in Arabidopsis. Mutants
associated to reduced NO levels include NO-Associated 1 (atnoa1,
At3g47450; Guo et al., 2003) and prohibitin 3 (phb3; At5g40770;
Wang et al., 2010) while one mutant with enhanced endogenous
NO levels was identified as the phosphoenolpyruvate/phosphate
translocator chlorophyll a/b binding protein underexpressed
1/NO overproducer 1 (cue1/nox1; At5g33320; He et al., 2004). The
exact relation between the function of the corresponding pro-
teins and the NO levels in these mutants has not been clearly
elucidated yet. Most of these mutants have strong phenotypes
but, phb3 and cue1/nox1 have not been investigated for seed phe-
notypes. However, the atnoa1 mutant has been more studied
as it was first proposed as encoding a NO synthase (NOS)-
like protein based on sequence similarity with an hypothetical
snail NOS and subsequent characterization of a corresponding
mutant displaying reduced NOS activity in leaves and lower
NO levels in roots (Guo et al., 2003). However, further exper-
iments excluded a direct role for this protein in NO synthesis.
Instead, it was later identified as a GTPase. The atnoa1 mutant
seeds were associated with a slightly increased dormancy and a
hypersensitivity to salt and osmotic stresses (Zhao et al., 2007;
Lozano-Juste and Leon, 2010).

Alternative strategies have been developed to get around the
known limitations and pursue the investigations on NO signal-
ing in plants. Promising examples include the use of transgenic
lines with altered hemoglobin expression (Perazzolli et al., 2004)
and the over-expression of rat neuronal NOS in Arabidopsis (Shi
et al., 2012). Both strategies already led to significant results even
thought all putative side consequences, apart from NO levels
alteration, must be considered with extreme caution.

MOLECULAR TARGETS OF NITRIC OXIDE IN SEEDS
Aside from the long lasting question concerning the relevant
NO sources in seeds, the re-constitution of NO signaling path-
ways require the identification of the NO biological targets. Yet,
direct molecular targets of NO remain poorly documented in
plants. NO could regulate physiological processes by affecting gene
transcription. Indeed, several NO-regulated genes, involved in dif-
ferent functional and biological processes, have previously been
described (Huang et al., 2002; Polverari et al., 2003; Parani et al.,
2004; Grun et al., 2006; Palmieri et al., 2008; Besson-Bard et al.,
2009). Furthermore, NO can bind to transition metals of met-
alloproteins (metal nitrosylation) or cause protein PTMs such as
cysteine S-nitrosylation or tyrosine nitration (Figure 2; Moreau
et al., 2010; Arc et al., 2011).

PROTEIN S-NITROSYLATION IN SEEDS
Nitric oxide-mediated S-nitrosylation of cysteine thiol groups
within polypeptide chains is a likely mechanism by which NO
may function in signaling processes (Stamler et al., 1992a; Jaffrey
et al., 2001). S-nitrosylation consists in the covalent attachment of
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FIGURE 2 | Schematic diagram summarizing NO signaling in seeds:

from generation to targets. NO can be produced by various
biosynthesis pathways or released from NO-storage compounds.
Proteins are preferentially targeted by NO resulting in PTMs (cysteine

S-nitrosylation, tyrosine nitration, and metal nitrosylation). These
NO mediated PTMs modulate the protein functions, leading to
strong impacts on cell metabolism thereby affecting seed
physiology.

a NO moiety to a reactive cysteine thiol resulting in the formation
of a S-nitrosothiol group (S-NO). In animal systems, regulation
of specific proteins by S-nitrosylation is an intensively investi-
gated PTM. This PTM, which is thought to be particularly labile,
is associated with a precise spatio-temporal regulation and can
potentially result in the activation or inactivation of targeted pro-
teins (Hess et al., 2005). It occurs mainly through non-enzymatic
reactions being dependent on the physiochemical environment
of the protein cysteinyl residues and the proximity of susceptible
proteins to NO production sites in cells (Lindermayr and Durner,
2009). On the contrary, protein de-nitrosylation seems to be cat-
alyzed by several enzymes, such as thioredoxins (Trxs) or Cu/Zn
superoxide dismutases, as well as by reducing metals and intra-
cellular reducing agents (Lindermayr and Durner, 2009). In fact,
because of its selectivity toward protein targets, S-nitrosylation
may represent a general pathway for modulating protein struc-
ture/function, analogs to protein phosphorylation (Spickett et al.,
2006). Up to now, only few intracellular S-nitrosylated proteins
have been identified in plants (Lindermayr et al., 2005; Tanou
et al., 2009; Astier et al., 2011; Lounifi et al., 2012). A recent and
promising example is the NO-mediated modulation of auxin sig-
naling through the S-nitrosylation of the TIR1 auxin receptor.
This PTM of TIR1 promotes its interaction with Aux/IAA repres-
sors thereby facilitating their degradation (Terrile et al., 2012).
Moreover, NO and ethylene act antagonistically in fruit ripening
through inhibition of enzymes involved in ethylene production

by S-nitrosylation (Manjunatha et al., 2012). In contrast, NO and
ethylene act synergistically in seed dormancy release but the under-
lying molecular mechanisms are still unknown (Gniazdowska
et al., 2010b; Arc et al., 2013). Due to the limited permeabil-
ity of most of their outer layers, seeds can experience hypoxia
(Borisjuk and Rolletschek, 2009). Consequently, a fine regulation
of oxygen consumption is necessary. This seems to be achieved
through NO-mediated inhibition of seed mitochondrial activity
(Borisjuk et al., 2007). Consequently, NO-related protein mod-
ifications are likely to be increased in seed mitochondria and
therefore to play an important role in regulating the activity of
these organelles. Many S-nitrosylated proteins identified in plants
are implicated in metabolic processes (Lindermayr et al., 2005;
Abat et al., 2008; Romero-Puertas et al., 2008; Abat and Deswal,
2009; Tanou et al., 2009; Palmieri et al., 2010) suggesting that NO
could participate in the regulation of the energy status of the seeds.
In agreement, a β-subunit of the mitochondrial ATP synthase com-
plex was found to be S-nitrosylated in dry Arabidopsis seeds (Arc
et al., 2011). Since a homologous protein was shown to be inac-
tivated by S-nitrosylation in alcoholic fatty liver of rats (Moon
et al., 2006) and more recently in pea leaves mitochondria (Camejo
et al., 2013), the seed mitochondrial ATP synthase activity might
be inhibited by this NO-mediated PTM. Further experiments are
required to assess this hypothesis.

In wheat seeds, a parallel increase in NO and protein
S-nitrosylation was reported during sensu stricto germination
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(Sen, 2010). Noteworthy, seed treatments with NO promoted
desiccation tolerance, in the recalcitrant species Antiaris toxi-
caria, by limiting protein carbonylation and enhancing protein
S-nitrosylation (Bai et al., 2011).

PROTEIN NITRATION IN SEEDS
Tyrosine nitration consists in the addition of a nitro group
(–NO2) resulting in an alteration of diverse protein functions.
The very fast reaction between NO and O2− gives rise to per-
oxynitrite (ONOO−) which is considered as a potent oxidizing
and nitrating agent (Ducrocq et al., 1999; Abello et al., 2009).
Tyrosine nitration is consequently predominantly observed in
states prone to the concomitant release of NO and ROS. Until
recently, tyrosine nitration was considered as being irreversible
suggesting that the presence of nitrotyrosine in proteins rep-
resents a footprint of nitrosative stress. However, increasing
evidence suggests the existence of a de-nitration mechanism in
vivo (Abello et al., 2009). Protein nitration can result in an alter-
ation of diverse protein functions (Alvarez et al., 2011; Melo
et al., 2011; Jacques et al., 2012) and could enhance protein sen-
sibility to proteolytic degradation via the proteasome (Abello
et al., 2009). Thus, protein nitration would be more than a
biological marker of nitrosative stress and could participate in
protein turnover or signal transduction in plants (Corpas et al.,
2008, 2009; Ischiropoulos, 2009). A single study has been car-
ried out on seeds, more precisely on sorghum embryonic axes
(Jasid et al., 2008). This work revealed the appearance of sev-
eral nitrated proteins upon seed imbibition. A recent study based
on immunoprecipitation with an anti-3-nitrotyrosine antibody
and subsequent analysis by shotgun liquid chromatography–mass
spectrometry (LC-MS/MS) led to the identification of 127 pro-
teins putatively targeted by this PTM in protein extracts from
Arabidopsis seedlings (Lozano-Juste et al., 2011). Among this
important list, a few candidates were further confirmed by addi-
tional experiments. Among these numerous putative targets of
tyrosine nitration were a few proteins with known implications in
seed physiology. For instance, the molybdenum cofactor (MoCo)
sulfurase ABA3 (At1g16540) was among these candidates. ABA3
is involved in the last step of ABA synthesis (Mendel, 2007).
Thus, the inactivation of ABA synthesis by this PTM might
contribute to the control of dormancy release and germina-
tion vigor. Overall, nitration may be more than a biological
marker of nitrosative stress and could participate in protein
turnover or signal transduction in plants (Corpas et al., 2009;
Ischiropoulos, 2009). In seeds, the concomitant generation of
NO and ROS upon imbibition could lead to enhanced peroxyni-
trite formation thereby improving tyrosine nitration. Therefore,
protein tyrosine nitrations appear likely to occur in this context
and in lights of the discussed examples could be of paramount
importance.

CONCLUSIONS AND PROSPECTS
Most of the analysis published up to date pinpoint ABA content
as a major determinant of dormancy release or maintenance. It
appears that the decision to pursue the transition toward ger-
mination or maintain a dormant state can be taken during seed
imbibition depending on environmental parameters. Thus, the

control of ABA levels and sensitivity during early imbibition
appears of paramount importance. During this phase, both NO
and ROS accumulation has been reported. The intensity of the
generation of these radicals could depend on both endogenous and
environment cues. In turn, the interplay between ROS and RNS
would determine both the extent of ABA catabolism (via the regu-
lation of CYP707A2 expression for instance) and the sensitivity to
this hormone. As a result, theses reactive species could determine
the kinetics of ABA degradation and the threshold below which
ABA content should fall for germination to occur. As the de novo
protein synthesis is low during the first hours upon imbibition
these effects could be mainly modulated via non-enzymatic pro-
tein PTMs such as carbonylation, nitration and/or S-nitrosylation.
Still, both ROS and RNS accumulation can also lead to detrimental
damages. Thus, we believe that the concept of “oxidative win-
dow” for seed germination should be extended to include NO and
associated RNS.

However, despite a general consensus regarding NO impor-
tance in seed physiology, the pathways involved in its biosynthesis
remain uncertain. This observation presumably reflects the com-
plexity of the regulation of NO biosynthesis in plants. Indeed,
multiple different endogenous sources all potentially depending
on environmental and/or molecular parameters may contribute
to NO accumulation in seeds. Moreover, the relevant reactions in
seeds may be significantly different from those described at other
physiological stages including the non-enzymatic reactions that
may occur in the apoplast next to the aleurone layer (Bethke et al.,
2004a). To discriminate between the relative contribution of the
distinct known NO sources, accurate determination of NO con-
tent in seeds and especially during imbibition appears absolutely
required. However, the relatively low amount of NO released under
physiological conditions and the drawbacks of the techniques cur-
rently available makes NO measurement a very challenging issue.
In any case, an unambiguous confirmation of NO accumulation
in the seed endosperm and/or embryo appears as a priority to
consolidate the available evidences and determine the seed NO
content.

In a similar way, we are firmly convinced that NO-related PTMs,
namely tyrosine nitration and cysteine S-nitrosylation, can explain
the effect of NO in seeds though this assumption is not totally con-
firmed yet. Indeed, the detection and identification methods for
both cysteine S-nitrosylation and tyrosine nitration proved diffi-
cult to apply on seeds most presumably due to the low abundance
of modified proteins and/or the limited stability of the modifi-
cations. Nonetheless, these two PTMs represent very seducing
models to explain the roles ascribed to NO in seeds. The char-
acterization of NO-targeted proteins in various seed physiology
context will undoubtedly reveal new area of research to explore
for understanding the control of germination.
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