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Abstract

Apart from its well-known role in regulating endothelial function, in mammals, nitric oxide (NO) is an important signaling molecule

involved in many processes, regulating different biological functions. It has been demonstrated that NO plays a role in the physiology of

the reproductive system, where it acts in controlling the activity of reproductive organs in both sexes. In the female of several animal

species, experimental data suggest the presence of an intraovarian NO-generating system, which could be involved in the control of

follicular development. The role of NO in regulating follicular atresia by apoptosis is still controversial, as a dual action depending mostly

on its concentration has been documented. NO also displays positive effects on follicle development and selection related to angiogenic

events and it could also play a modulatory role in steroidogenesis in ovarian cells. Both in monovulatory and poliovulatory species, the

increase in PGE2 production induced by NO via a stimulatory effect on COX-2 activity appears to be a common ovulatory mechanism.

Considerable evidence also exists to support an involvement of the NO/NO synthase system in the control of meiotic maturation of

cumulus–oocyte complexes.
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Introduction

In the late 1970s, it was recognized that the endothelium
releases a factor that relaxes vascular smooth muscle cells,
thereby causing vasodilatation (Furchgott & Zawadzki
1980), and it was named endothelium-derived relaxing
factor (EDRF). Later on, EDRF was simultaneously
identified by Ignarro et al. (1987) and Palmer et al.
(1987) as nitric oxide (NO), a colorless and odorless gas.
Several lines of evidence have shown that this gas is a
fundamental messenger involved in numerous biological
processes and the journal ‘Science’ entitled NO as
‘Molecule of the Year’ in1992 while in 1998 NO discovery
merited the Noble prize.

This short-lived radical molecule is synthesized by a
complex family of NO synthase (NOS) enzymes. It is
produced by the oxidation and cleavage of one of the
terminal nitrogen atoms of the amino acid L-arginine.
Mammalian cells are endowed with three genes encod-
ing distinct isoforms of NOS, NOS1, NOS2, and NOS3,
which share a 51–57% homology. These isoforms show
different tissue localizations, regulation, and inhibitor
sensitivity. NOS1, also known as neuronal NOS (nNOS)
(first isolated from neuronal tissue), and NOS3 or
endothelial NOS (eNOS) (first found in endothelium)
are constitutive and activated by an increase in calcium,
thus producing low transient concentrations of NO. On
the contrary, NOS2 is an inducible NOS (iNOS) and
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calcium-independent isoform (Daff 2010). In addition,
a mitochondrial NOS was described by Kobzik et al.
(1995). Since then, several studies were addressed in
order to characterize the isoform identity, its regulation,
and its involvement in physiological or pathological
events (Finocchietto et al. 2009, Zaobornyj & Ghafourifar
2012, Geary et al. 2014).

NO can be generated independently from NOS by
reduction of nitrite, which can occur spontaneously
under hypoxic and/or acidic conditions (Cortese-Krott
et al. 2015). Enzymes such as xanthine oxidase and
cytochrome oxidase c can also mediate reduction of
nitrite (Zweier et al. 1995, Godber et al. 2000).

Differently from conventional biosignaling molecules,
NO activity is not mediated by its binding to receptors.
Instead, NO easily diffuses into cells and exerts its
bioactivity directly acting on many signaling pathways
(Moncada et al. 1991).

Owing to its unpaired electron, NO displays a high
reactivity with many biological components (Grisham
et al. 1999). One of the most physiologically relevant
reactions is that with heme proteins, which can result
in the formation of stable chemical species. This is
particularly important as the activation of guanylate
cyclase, the main effector for NO activity, is due to
NO binding to heme moiety in the enzyme, thus
resulting in an increased cGMP production (Denninger
& Marletta 1999).
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NO itself has a short life in vivo because of its
reactivity with hemoglobin and a broad spectrum of
other biological components (Grisham et al. 1999). As
a free radical, NO can react with other molecules.
Moreover, NO may be formed and/or bioactivated as
nitroxyl or nitrosonium, which can be stabilized in
biological complexes with thiols, nitrite and other
intermediates. In addition, several biomolecules can
react with NO, thus resulting in nitration (addition of
NO2), nitrosation (addition of NOC), and nitrosylation
(addition of NO) (Moncada et al. 1991).

NO acts as an important intra- and inter-cellular
messenger adjusting numerous functions, primarily that
of the vascular endothelium. Its role in the maintenance
of small arteries and basal tone of arterioles is supported
by experimental observations documenting an increase
in blood pressure resulting from the administration of the
NOS inhibitor in different animal species (Chatterjee
et al. 2008).

The presence of a ‘nitrergic’ nervous system, composed
of NO-releasing nerves previously classified as non-
adrenergic, non-cholinergic, has been hypothesized in
the cardiovascular, respiratory, and urinary system. In the
CNS, NO displays different effects, being involved in the
mechanisms of memory formation (Katusic & Austin 2014).
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Figure 1 Follicular events controlled by NO.

Reproduction (2015) 150 R1–R9
The sustained NO production by iNOS in activated
macrophages is important in host defense against
infection (Wink et al. 2011).

Moreover, on the basis of animal and in vitro studies,
it has been shown that NO may modulate endocrine
system function (Vargas et al. 2007).

Therefore, as hormones, neurons, blood vessels, and
cells of the immune systems are integral parts of the
reproductive organs, it is likely that NO functions (Fig. 1)
as an important regulator of the biology and physiology
of the reproductive system, where it acts in regulating
multiple functions within the female as well as the male
reproductive organs.

First of all, NO is involved in the control of
gonadotropin secretion both with a direct effect and
via a regulatory effect on hypothalamic GnRH release
(Bellefontaine et al. 2011).

NO is a physiological mediator of erectile function
(Yetik-Anacak et al. 2014) and testicular cells are well
equipped with a NO–cGMP pathway, which may
participate in the regulation of testicular functions,
such as spermatogenesis and steroidogenesis (Ducsay
& Myers 2011). A physiological role for NO in regulating
oviduct function and biology of the uterus that has
gained intense attention (Toda et al. 2013) has been
Angiogenesis

Ovulation

PTGS2 activation and
PGE2 production

Oocyte
competence

OS
s and oocyte)

OS
s and oocyte)

www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/22/2022 10:31:33PM
via free access



NO in physiology of the reproductive system R3
proposed (Chang & Hsu 2013). As for the ovary, it is still
unclear whether these effects are due to NO generated in
the vasculature and neurons within the ovary or directly
attributable to NO generated by various cells within the
ovary. In order to get an insight into these findings, in this
review, we will concentrate on the role of NO in the
control of ovarian follicle development and oocyte
competence.
NO in follicle development

Regulation of NO production

Pituitary gonadotropins are well recognized as key
regulators of the final stages of follicular development,
but a growing body of evidence underlines the
importance of the intrafollicular balance of autocrine
or paracrine factors in driving normal follicular growth.

The presence of NO in follicular fluid has been
confirmed in several animal species, and the demon-
stration of NOS expression suggests the presence of an
intraovarian NO-generating system and emphasizes its
role in the control of follicular development (Fig. 1).

The major regulator of NO production is NOS, which
appears in three isoforms: nNOS, eNOS, and iNOS. In the
ovary, NO can be generated by several ovarian cells and
within the ovarianvasculature; resident macrophages have
also been indicated as a possible source of NO (Dave et al.
1997). As for the ovarian cells, many studies have been
carried out to examine the expression and localization
patterns of NOS isoforms in the ovary of different species.

The localization of NOS isoforms in several mamma-
lian ovaries was reported, but the results were not
consistent. In the rat, Zhang et al. (2011) demonstrated
cellular expression and immunolocalization of three
different NOS isoforms in the ovary before puberty. In
adult rats, several authors assessed the expression of
eNOS in granulosa cells, thecal layer, and ovarian stroma
(Zackrisson et al. 1996, Jablonka-Shariff & Olson 1997,
Jablonka-Shariff et al. 1999, Nakamura et al. 1999,
Yamagata et al. 2002), while iNOS was localized only
in somatic cells of follicle and luteal cells (Jablonka-
Shariff & Olson 1997, Tao et al. 1997, Yamagata et al.
2002). Even though eNOS has been considered a
constitutively expressed enzyme isoform, many experi-
mental works document that the pattern of protein and
mRNA expression within the ovary is subjected to
changes during follicular and luteal phases of the estrous
cycle. Gonadotropin stimulation induces an increase
in eNOS mRNA levels, which are highest during the
periovulatory period (Van Voorhis et al. 1995), as well as
an enhanced protein expression (Jablonka-Shariff &
Olson 1997). iNOS expression has also been documen-
ted in the rat ovary, but different regulatory mechanisms
have been proposed for this isoform.

iNOS mRNA is undetectable in gonadotropin-
stimulated ovulatory follicles (Van Voorhis et al. 1995)
www.reproduction-online.org
and cannot be induced by follicle-stimulating hormone
(FSH) in granulosa cells; in fact, both its expression and
activity seem to require IL1 beta stimulation (Tabraue
et al. 1997). In accordance with these findings, Matsumi
et al. (2000) documented NO production by iNOS only
in immature follicles as well as a decrease in iNOS
mRNA levels induced by gonadotropin administration.
These data would support the hypothesis of a role played
by iNOS as a cytostatic factor in the earlier stages of rat
follicular development.

In the mouse, Mitchell et al. (2004) found that both
eNOS and iNOS were expressed in theca and granulosa
cells where iNOS occurred predominantly.

Among monovulatory species, NOS expression has
been scarcely investigated in humans but eNOS was
demonstrated within granulosa–lutein cells (Van Voorhis
et al. 1994).

In the bovine, Pires et al. (2009) demonstrated that
eNOS is detectable in theca, granulosa, surface
epithelium, and corpus luteum, and that NO is necessary
for follicle development. In addition, Moonmanee et al.
(2013) pointed out a relationship among eNOS
expression, vascularization, and mitotic activity in the
first follicular wave, thus suggesting a role for eNOS in
selection of nonovulatory dominant follicles. Herath et al.
(2007) did not detect iNOS mRNA in ruminant granulosa
cells, while Zamberlam et al. (2011) documented the
expression of iNOS in the same cells and its regulation by
FSH and insulin-like growth factor 1, probably mediated
by estradiol. These observations would support the
hypothesis that, in this species, endogenous NO pro-
duction could be involved in follicle selection. NO has
been detected in ruminant follicular fluids (Basini et al.
1998, Khan & Das 2011, EL-Sherry et al. 2013), with
higher concentrations in small follicle (Basini et al. 1998,
Khan & Das 2011). Different results were documented by
Pancarcı et al. (2011) who measured the lowest NO levels
in bovine dominant follicles.

Grazul-Bilska et al. (2006) reported an increase in
eNOS protein expression around ovulation in ewes,
suggesting a regulatory role of NO in the ovulatory
process. Perifollicular blood flow is positively related to
NO concentrations both in the bovine and ovine
(Pancarci et al. 2012, EL-Sherry et al. 2013) ovaries.

A preliminary study on the buffalo (Dubey et al. 2012)
demonstrated the presence of all the NOS isoforms in
the different stages of ovarian follicles, from preantral to
ovulatory. NO appears to be involved in follicular
development in this species, but the exact definition of
its role requires further research.

In the horse, Pinto et al. (2003) found that NO is
detectable in preovulatory follicular fluids and its
concentration increases after administration of hCG,
thus suggesting its involvement in the ovulatory cascade.

It appears that, in porcine ovary, eNOS is found more
frequently than iNOS. Porcine granulosa cells represent a
site of NO production (Grasselli et al. 2002); the presence
Reproduction (2015) 150 R1–R9
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of iNOS mRNA cannot be confirmed in granulosa cells
from swine antral follicles (Grasselli et al. 2001, Takesue
et al. 2001); eNOS mRNA expression in cultured porcine
granulosa cells has been shown to depend upon FSH
stimulation (Takesue et al. 2001). Physiological hypoxia
taking place during follicle growth could be an important
factor inhibiting NO synthesis in swine granulosa cells
(Basini et al. 2004). In addition, it has been demonstrated
that NO production by swine granulosa cells is
modulated by physiological peptides (Basini et al. 2011,
2014) as well as by endocrine disruptors (Santini et al.
2009, Basini et al. 2012).
Role of NO in the control of follicular growth
and atresia

In the mammalian ovary, more than 99% of ovarian
follicles undergo a degenerative process called atresia.
Follicular atresia is a selective process during follicular
growth that involves granulosa cell death by apoptosis.
Many researchers described mechanisms that regulate
apoptotic cell death during follicular atresia. An
involvement of NO in modulating these events has been
postulated as this molecule appears to be involved in
controlling cell growth and death in several cell types. In
the follicle, the role of NO in these events is controversial
as it can be toxic or protective mostly depending on
its concentration. This dual effect has been clearly
evidenced in the buffalo by Dubey et al. (2011) and in
the bovine by Basini et al. (1998). Several studies
(Matsumi et al. 1998, Yoon et al. 2002, Chen et al.
2005) point out a protective effect of NO vs apoptosis in
rat follicles. This finding has also been reported in human
granulosa cells (Dineva et al. 2008). Sugino et al. (1996)
postulated that internucleosomal DNA cleavage resulting
in DNA fragmentation could be mediated by NO in small
follicles but not in large ones. Large follicles probably
possess a tonic inhibitory system suppressing apoptotic
DNA cleavage.

Data supporting NO antiapoptotic effects have been
documented by Zamberlam et al. (2011), who
hypothesized that increased NO levels in the bovine
dominant follicle would inhibit FasL-mediated
apoptosis.

On the contrary, in the chicken, NO appears to be
involved in follicle regression (Sundaresan et al. 2007).
Role of NO in the control of follicular steroidogenesis

The steroidogenic pathway within the follicle gives rise
to progestins, androgens, and estrogens, all of them
acting via specific nuclear receptors to regulate repro-
ductive functions and to maintain fertility. As sex steroids
play an important role in the growth and differentiation
of reproductive tissues, different factors that impair their
production usually compromise fertility.
Reproduction (2015) 150 R1–R9
NO has been demonstrated to inhibit follicular
steroidogenesis in rats (Dave et al. 1997, Shahpar
et al. 2007), human (Van Voorhis et al. 1994, Rosselli
et al. 1998, Tobai & Nishiya 2001), bovine (Basini et al.
1998, Basini & Tamanini 2000, Faes et al. 2009), buffalo
(Dubey et al. 2011), and swine (Masuda et al. 1997,
Matsumi et al. 2000, Ponderato et al. 2000, Grasselli
et al. 2001). NO exerts its effects by binding to the
prosthetic heme group of enzymes. Thus, NO may
directly bind to P450 aromatase, a key enzyme in the
steroidogenic pathway (Hanke et al. 1998). The
activation of soluble guanylate cyclase is another
mechanism of steroid inhibition mediated by NO.
However, conflicting results have been obtained in
different species, possibly owing to different culture
conditions. In fact, in cultured granulosa cells from
mice (Ishimaru et al. 2001) and pigs (Grasselli et al.
2001), the NO/cGMP pathway has been suggested as
one of the mechanisms used by NO to inhibit
steroidogenesis, while this effect appear to be cGMP
independent in human (Van Voorhis et al. 1994) and
bovine (Basini et al. 2000). In addition, Basini &
Tamanini (2001) suggest that the inhibitory effect of
NO on bovine granulosa cell steroidogenesis could be
at least partially mediated by PGE2 and PGF2a and a
crosstalk between NOS and COX metabolites can be
hypothesized.
Role of NO in the control of follicular angiogenesis

Follicle development is dependent on the establishment
and continual remodeling of a complex vascular system.
This enables the follicle to receive the required supply
of nutrients, oxygen, and hormonal support as well as
facilitating the release of steroids. During the transition
from avascular primary follicle to a vascular secondary
follicle, angiogenesis occurs in the theca layer but the
mechanisms by which the secondary follicle becomes
endowed with vasculature remain unclear. This tran-
sition may be due to local transformation of mesench-
ymal cells into endothelial cells or active migration of
endothelial cell precursors from preexisting blood
vessels. Apart from the effect of NO on follicular blood
flow demonstrated in the rat (Griffith 1994, Zackrisson
et al. 2000, Mitsube et al. 2002) and human (Zackrisson
et al. 1996), suppressive effects of NO on angiogenesis in
the bovine follicle have been postulated by observing
a negative relationship between VEGF and NO levels in
porcine granulosa cells (Grasselli et al. 2002).

The modulatory role of NO on the follicular
angiogenic process appears still controversial at the
present time, as positive effects of NO on follicle
development and selection related to angiogenic events
have been instead demonstrated in bovine (Grazul-
Bilska et al. 2007, Tessaro et al. 2011), horse (Pinto et al.
2003), and sheep (Seekallu et al. 2010).
www.reproduction-online.org
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Role of NO on follicular prostaglandin secretion
and ovulation

The ovulatory cascade is triggered by a surge of
luteinizing hormone (LH), which induces a molecular
machinery in which NO exerts a crucial role at least in
rodents (Shukovski & Tsafriri 1994) and rabbits (Hesla
et al. 1997), mainly increasing prostaglandin production.
The prostaglandin-endoperoxide synthases (PTGS) are
the key enzymes that mediate the synthesis of prosta-
glandins, PTGS1, constitutively expressed in most cells
involved in maintaining homeostatic functions, and
PTGS2, very low under normal physiological conditions
but rapidly induced by several stimuli and known to exert
a pivotal role in ovulation (Sugimoto et al. 2015). NO is
able to induce PTGS2 expression in several cell types.

The involvement of NO in monovulatory species
ovulation was demonstrated for the first time in sheep
(Grazul-Bilska et al. 2006). More recently, both in bovine
(Zamberlam et al. 2014) and human (Fang et al. 2015)
the central role of NO in stimulating PTGS2 activation
and PGE2 production has been confirmed.

Therefore, taken together, the increase in PGE2

production induced by NO via a stimulatory effect on
PTGS2 activity appears to be a common mechanism in
both monovulatory and poliovulatory species.
NO in oocyte competence

The mechanisms involved in the regulation of meiotic
cell cycle in oocytes are not fully understood yet, but
considerable evidence exists to support an involvement
of the NO/NOS system in the control of meiotic
maturation of cumulus–oocyte complexes. NO is now
thought to represent a vital component of the oocyte
microenvironment as it plays a physiological role during
oocyte maturation, fertilization, and beginning of
embryo development (Jablonka-Shariff & Olson 1998,
Sengoku et al. 2001, Bergandi et al. 2014).

eNOS and iNOS expression has been documented
in mammalian oocytes (mice: Mitchell et al. (2004); rat:
Jablonka-Shariff & Olson (1998); cattle: Tesfaye et al.
(2006); Pires et al. (2009); pig: Chmelı́ková et al. (2009))
and their presence was confirmed throughout folliculo-
genesis and follicle maturation (Chmelı́ková
00000000000et al. 2009, Pires et al. 2009). As for
nNOS, its presence in oocytes has been documented
only in the pig (Chmelı́ková et al. 2009), and its mRNA
in the mouse (Abe et al. 1999).

Further confirmation of NO role in oocyte maturation
comes from studies on eNOS knockout mice (Jablonka-
Shariff & Olson 1998), which display an impairment of
ovulation and a higher percentage of atypical oocytes.
Recently, Goud et al. (2014) have confirmed their
previous observations about the role played by NO in
delaying mouse oocyte aging. The inhibition of NO
synthesis during IVM decreases the number of blastocysts
www.reproduction-online.org
(Matta et al. 2009) and increases apoptosis in embryos
(Schwarz et al. 2010). On the other hand, high NO levels
have been reported to impair meiotic progression and
embryonic development in cattle (Schwarz et al. 2008).
Other evidence exists that NO donors would prevent or
delay meiotic resumption in the rat (Nakamura et al.
2002, Bu et al. 2004, Sela-Abramovich et al. 2006), cattle
(Schwarz et al. 2014), and pigs (Tao et al. 2005), while
iNOS-specific inhibitors induce meiotic resumption
(Nakamura et al. 2002). Recently, Goud et al. (2014)
have confirmed that NO plays a significant role in
maintaining oocyte quality. The controversial effects
reported in these studies would suggest that NO can
play a dual function in oocyte maturation, as already
highlighted with regard to its modulatory role on
follicular function (Tamanini et al. 2003). Bu et al.
(2003) documented NO paradoxical effects on mouse
oocyte maturation depending on its concentration:
eNOS-derived NO from cumulus cells stimulates meiotic
maturation of mouse oocytes at low doses, while a milieu
of high concentrations of NO would maintain the meiotic
arrest of oocytes (Nakamura et al. 2002). The decrease in
NO after LH preovulatory surge may be a key factor for
meiosis resumption: as a consequence of the activation of
MAPK, the disruption of gap junctional communication
would stop the transfer of inhibitory substances from
granulosa cells to the oocyte, enabling it to resume
meiosis (Sela-Abramovich et al. 2008).

Different findings indicate that the oocyte itself
possesses the ability to produce adequate NO levels
through iNOS-mediated pathway required for the
maintenance of meiotic arrest at diplotene stage (Tripathi
et al. 2010).

NO levels thus appear as a critical factor in cell
survival and physiology. In a study on the effect of
varying NO concentrations on bovine oocyte nuclear
maturation, Bilodeau-Goeseels (2007) reported that
germinal vesicle breakdown in cumulus-enclosed
oocytes was prevented or stimulated by high or low
doses of the NO donor SNP respectively. These
observations would suggest that NO reduction, possibly
linked to transcript reduction in eNOS, is necessary for
germinal vesicle breakdown (Tesfaye et al. 2006, Pires
et al. 2009) and meiosis resumption.

As for NO signaling pathways, cGMP has been
documented as a crucial factor in maintaining the
meiotic arrest in oocytes (Nakamura et al. 2002), but
the role played by NO in the cGMP/cAMP pathway
during meiosis resumption is not completely known and
still a matter of study. Schwarz et al. (2014) have recently
confirmed that the progression of meiosis in bovine
oocytes is linked to the inactivation of the NO/guanylate
cyclase/cGMP pathway, but did not observe a significant
involvement of cAMP levels in oocyte maturation.
Different results have been reported by Bilodeau-
Goeseels (2007) in the same species, who hypothesized
that the NO-induced reduction of germinal vesicle
Reproduction (2015) 150 R1–R9
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breakdown rate would not be exerted via sGC/sGMP.
Abbasi et al. (2009) suggested that the stimulatory effect
of NO on mice oocyte meiotic resumption would
involve cAMP, while the cGMP pathway would be
involved in mediating the inhibitory effect of NO. High
cGMP levels produced by iNOS-derived NO could
maintain meiotic arrest of preovulatory oocytes via two
different pathways. One would involve inhibition of
oocyte cAMP phosphodiesterase to maintain cAMP
levels, and a second one the activation of cGMP-
dependent protein kinase (Törnell et al. 1991).
Concluding remarks

After 1987, when EDRF was identified as NO, this simple
molecule has been shown to be involved in many
physiological functions. The demonstration of NO effects
on neurons, endothelial cells, immune cells, and
endocrine cells qualifies this molecule as a regulator of
ovarian follicle, a structure that comprises all these cell
types. In the follicle, NO controls the main functional
activities such as growth or atresia, angiogenesis,
steroidogenesis, and ovulatory events. In addition, NO
has been shown to represent a vital component of the
oocyte microenvironment, where it plays a physiological
role during oocyte maturation and the acquisition of
competence. Therefore, the ability to manipulate the
players of the NO system could represent a promising
tool to interfere with the follicular growth dynamics and
ovulation.
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