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Abstract

Administration of nitric oxide (NO), NO donors or drugs that enhance NO realease (statins, calcium antagonists, ACE-inhibitors,

dexamethasone) prior to ischemia protects the myocardium against ischemia/reperfusion injury. While this exogenous administration of NO

prior to ischemia can initiate a preconditioning-like phenomenon, endogenous NO-synthase (NOS)-derived NO is not involved in triggering

or mediating the early phase of ischemic preconditioning’s protection, but does play a pivotal role for initiating and mediating the delayed

phase of ischemic preconditioning’s protection.

The present review now summarizes the importance of endogenous and exogenous NO when given at the time of reperfusion for vascular

and myocardial function and morphological outcome following ischemia/reperfusion. Given the inconsistency of the published data, potential

confounding factors that might affect experimental results on the role of NO in myocardial ischemia/reperfusion were identified, such as (1)

the lack of characterization of the involved NOS isoforms in myocardial ischemia/reperfusion injury in different animal species, (2) the lack

of direct measurements of myocardial NO concentration and/or NOS activity to assure sufficient NOS inhibition, (3) the lack of consideration

of nonenzymatic NO production as a potential source of NO, and (4) the absence of plasma or blood components in in vitro studies

influencing NO delivery and metabolism.

Future research on the importance of NO in ischemia/reperfusion injury will have to focus more precisely on the identification and

standardization of potential confounding experimental factors that influence synthesis, transport, and interaction of NO with various targets in

blood and tissue.

D 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction ministration of NO prior to ischemia can initiate a precondi-
  August 2022
Administration of nitric oxide (NO) or NO donors prior to

ischemia attenuates the consequences of myocardial ische-

mia/reperfusion; i.e., reduces infarct size and endothelial

dysfunction [1]. These beneficial effects of NO are related

to a pharmacological type of preconditioning, and the exist-

ing literature has been reviewed extensively by Roberto Bolli

[1]. Also, pretreatment with drugs that enhance NO release

such as statins [2], certain calcium antagonists [3], ACE

inhibitors [4] or dexamethasone [5] protects the myocardium

against ischemia/reperfusion injury. While exogenous ad-
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tioning-like phenomenon, endogenous NO-synthase derived

NO is not involved in triggering or mediating the early phase

of ischemic preconditioning’s protection (for review, see Ref.

[6]), but does play a pivotal role for initiating and mediating

the delayed phase or second window of ischemic precondi-

tioning’s protection (for review, see Ref. [7]). To what extent

NO is involved in the pharmacologically induced second

window of protection is still a matter of debate (for review,

see Ref. [8]).

Given the above established facts, the present review will

concentrate (1) on the importance of endogenous NO for

vascular and myocardial function in myocardial ischemia/

reperfusion, and (2) on the importance of exogenous NO

when given at the time of reperfusion for the functional and

morphological outcome following myocardial ischemia/

reperfusion, and (3) to identify potential confounding factors
ed by Elsevier B.V. All rights reserved.
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that might affect experimental results on the role of NO in

myocardial ischemia/reperfusion and which could explain

some of the inconsistency of the results obtained so far.
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2. Production of nitric oxide

Nitric oxide synthases (NOS) are the enzymes responsible

for NO generation. To date, three distinct NOS isoforms have

been identified: neuronal NOS (type 1), inducible NOS (type

2) and endothelial NOS (type 3). NOS’s catalyze an overall 5-

electron oxidation of one NN-atom of the guanidino group of

L-arginine to form NO and L-citrulline, with the intermediate

NN-hydroxy-L-arginine (NOHA). NO synthesis is critically

influenced by various cofactors such as tetrahydrobiopterin,

flavin mononucleotide and flavin adenine dinucleotide, the

presence of reduced thiols, the endogenous NOS inhibitor

asymmetric dimethylarginine (ADMA) and, of course, sub-

strate availability (Fig. 1). Also, NOS1 and NOS3 are

dependent on calmodulin and calcium [9]. Without an ade-

quate delivery of substrate and co-factors, NOS no longer

produces NO but instead transfers the free electrons to

oxygen and thus produces free oxygen radicals [10].

Under resting conditions, NO synthesis has been mainly

attributed to the vascular endothelium and its constitutively

active NOS3. Both NOS1 and NOS3 have been identified in

cardiomyocytes, and their expression appears to be species-

dependent in that NOS1 is more important in rats while
Fig. 1. Factors contributing to NO production and downstream targets of NO. For d

kinase C, PI3K: phosphoinositol-3 kinase, CaM: calmodulin, BH4: tetrahydrobio

dehydrogenase, PDE: phosphodiesterase, PK: protein kinase.
NOS3 is of greater importance in rabbits [11]. The expres-

sion of NOS differs within the left ventricular wall of ferrets

and humans, with a higher expression in the subepicardium

than in the subendocardium [12], and also the subcellular

distribution of NOS 1 and NOS 3 within cardiomyocytes

differs, with NOS3 present in caveolae located at the outer

membrane and NOS1 located at the sarcoplasmic reticulum

[13]. Given its distinct location, NOS3 has been proposed to

mainly interact with h-adrenoceptors and L-type calcium

channels, thereby attenuating calcium influx into the car-

diomyocyte [14]. Conversely, NOS1 has been proposed to

interact with ryanodine receptors, thereby increasing calci-

um release from the sarcoplasmic reticulum [15]. Platelets

and leukocytes also carry NOS isoforms [16,17]; however,

those NOS isoforms contribute significantly to NO forma-

tion only upon activation [18,19].

The NOS3 activity is increased by phosphorylation of its

serine residue 1177; this phosphorylation is achieved by

activation of PI3-kinase and protein kinase B (Akt). In

contrast, phosphorylation at the threonine residue 495 by

AMP-activated kinase or protein kinase C can inactivate

NOS3 [13] (Fig. 1).

The cardiac interstitial NO concentration is within the

nanomolar range during normoperfusion [20]. During ische-

mia, NOS3 activity is increased within minutes [21], and

subsequently the NO concentration during early ischemia is

increased [22]. However, with prolonged myocardial ische-

mia, NOS3 protein expression decreases [23,24], and the
etails, see text. PKA: protein kinase A, PKB: protein kinase B, PKC: protein

pterin, HSP90: heat shock protein 90, XO: xanthine oxidase, LDH: lactate
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increased tissue acidosis attenuates NOS3 activity[24]. With-

in the early seconds of reperfusion, the NO concentration is

again increased [23]; however, with prolongation of reper-

fusion NOS activity and thus NO concentration decrease

below baseline values [25]. Also, neurohumoral factors

affect NO availability. Angiotensin II, which is increased

in concentration during myocardial ischemia [26], is capable

of increasing NOS3 protein expression; however, since—at

the same time—free radical production is increased, the

myocardial NO concentration is decreased [27]. Tumor

necrosis factor (TNF)a, which is rapidly released within

the ischemic myocardium [28–30], decreases NOS3 protein

expression by reducing eNOS mRNA stability [18], but

induces NOS2 protein expression in leukocytes, however

not in cardiomyocytes [31].

Apart from NOS-derived NO, a non-enzymatic produc-

tion of nitric oxide exists during ischemia [32]. Tissue

acidosis occurring during ischemia increases NO production

independent from NOS3 [33], and even at normal pH,

xanthine oxidase in the presence of low pO2 and high

NADH concentration is capable of producing NO from

nitrite [34]; the nitrite concentration in plasma amounts to

0.5 AM and in vascular tissue up to 10 AM [35]. Indeed, in

isolated rat heart [22] and in rabbit hindlimb muscle [36],

the NO concentration is still increased during ischemia after

complete NOS inhibition by L-NNA.

In conclusion, the cardiac interstitial NO concentration

during early ischemia and early reperfusion is increased.

The increase in the NO concentration is in part derived from

activated NOS isoforms (species-dependent differences) but

also from NOS-independent pathways.
 /3/402/402065 by guest on 20 August 2022
3. Metabolism of nitric oxide in the mammalian

circulation

The charge neutrality of NO facilitates its free diffusion in

aqueous solutions and across cell membranes. The biological

effects of NO are dependent on its half-life, which depends on

the rate of NO formation (see above) and its metabolism. In

principle, NO can react by electron gain to form the nitroxyl

anion (NO�) and by electron loss to form the nitrosonium ion

(NO+). Various metabolic routes and reactions contribute to

the breakdown and/or conversion of NO, NO� and NO+, e.g.,

heme proteins such as guanylyl cyclase, catalase, xanthine

oxidase, superoxide dismutase (SOD) and hemoglobin, or

high-energy free radicals such as the hydroxyl radical or

carbon, oxygen- and nitrogen-centered radicals [10].

The major immediate breakdown product of NO in plasma

is nitrite (NO2
�) [9]. Nitrite can be taken up by red blood cells,

where it is oxidized in a hemoglobin-dependent manner to

nitrate (NO3
�), which can subsequently be redistributed into

plasma. NO also rapidly interacts with superoxide anions to

produce the potent oxidant peroxynitrite (ONOO�). The

formation of free oxygen radicals is increased during reper-

fusion, depending on duration and severity of the preceding
ischemia; thus with more severe and prolonged ischemia free

radical formation during the subsequent reperfusion is in-

creased [37], subsequently also increasing the formation of

peroxynitrite. High concentrations of peroxynitrite are

thought to oxidize thiols or thioethers, to nitrate tyrosine

residues, to nitrate and oxidize guanosine, to degrade carbo-

hydrates, to initiate lipid peroxidation, and to cleave DNA.

The peroxynitrite in excess decomposes to yield NO3
�.

Alternatively, NO can react with O2 to yield reactive

intermediates. It is well appreciated that the autooxidation of

NO in an aqueous environment leads to the formation of

reactive NO species such as dinitrogen trioxide (N2O3). This

intermediate can nitrosate as well as oxidize different sub-

strates to yield either N-nitroso or S-nitroso compounds.

Recent data provide unequivocal evidence for nitrosative

chemistry of NO in human plasma. Redox-active thiols,

which are abundantly present in plasma, can incorporate NO

and transport it throughout the mammalian circulation in the

form of bioactive nitrosothiols [38].

In conclusion, depending on its environment (buffer,

plasma, blood, high pO2, presence of free oxygen radicals)

NO forms different reactive intermediates which dose-de-

pendently react with surrounding tissue components.
4. NO-cyclic guanosine monophosphate (cGMP)

pathway

The major target of NO in the cardiovascular system is

the NO-sensitive guanylyl cyclase or soluble guanylyl

cyclase (for review, see Ref. [39]) (Fig. 1). Activation of

the guanylyl cyclase results in the conversion of guanosine

triphosphate to the second messenger cGMP. CGMP acti-

vates two specific cGMP-dependent protein kinases (PKG I

and II), PKG I being most important for vasodilation and

inhibition of platelet aggregation (for review, see Ref. [40]).

CGMP also inhibits the activity of phosphodiesterases (PDE

II and III); inhibition of PDE III elevates the concentration

of cyclic adenosine monophosphate (cAMP), thereby sub-

sequently increasing the activity of protein kinase A (PKA;

for review, see Ref. [41]). A low concentration of cGMP

appears to primarily inhibit PDE III, while a higher cGMP

concentration activates PKG [39–41].

During ischemia, the ensuing acidosis reduces the gua-

nylyl cyclase activity in isolated rat cardiomyocytes [42],

thereby potentially counterbalancing the increased NO con-

centration during early ischemia. Indeed, the myocardial

cGMP concentration did not increase significantly during 40

min of low flow ischemia in isolated buffer-perfused rat

hearts [43] and 90 min low flow ischemia in in situ pig

hearts [44]. In contrast, the cGMP concentration was in-

creased in ischemic areas compared to normoperfused areas

of patients with coronary artery disease [45,46]. Following

ischemia/reperfusion, however, myocardial cGMP concen-

tration was decreased compared to baseline in isolated rat

hearts as well as in pig hearts in vivo [47].



R. Schulz et al. / Cardiovascular Research 61 (2004) 402–413 405
In conclusion, the cardiac cGMP concentration during

ischemia is possibly somewhat increased, while upon reper-

fusion it is clearly decreased. This time course of the

alteration in cGMP concentration matches that of the cardiac

NO concentration. Dose-dependently, cGMP inhibits PDE

or activates PKG, thereby mediating its effects on the

vasculature, platelets and myocytes.
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5. Coronary vascular effects of NO

Pharmacological inhibition of endogenous NO synthesis

increases blood pressure [44,48,49], and lack of NOS3

causes mild hypertension in mice [50]. Also in the presence

of a coronary stenosis, NO contributes to the maintenance of

regional myocardial blood flow [51]. The NO-induced

vasodilation results from a decreased intracellular calcium

concentration in vascular smooth muscle cells secondary to

direct activation of calcium-dependent potassium channels,

cGMP-dependent activation of PKGI and cGMP-dependent

inhibition of voltage-gated calcium channels (for review, see

Ref. [40]). Apart from its direct vasodilatory effect, NO can

preserve myocardial perfusion by inhibiting platelet aggre-

gation and leukocyte adherence to the vascular endothelium

(Fig. 2), the latter most likely independently from cGMP.

NOS activity is reduced during reperfusion [25], as

evidenced also by loss of NO-dependent vasodilation in

response to acetylcholine [52] or bradykinin [53] or loss of

vasoconstriction in response to NOS inhibition [54], and
Fig. 2. Effects of low (eNOS- or nNOS-derived) or high NO (iNOS-derived) co

permeability transition pore.
neutrophil adherence to the endothelium progressively

increases during reperfusion [55]. Preservation of endothe-

lial function by administration of L-arginine [56], a NO

donor [57], or low concentrations of peroxynitrite (1–2 AM)

[58] inhibits such neutrophil adherence and their subsequent

infiltration following ischemia/reperfusion. Following is-

chemia/reperfusion, myocardial infiltration of mononuclear

cells contributes to irreversible tissue injury, since pharma-

cological blockade of NOS2—which is located in the

mononuclear cells but not in cardiomyocytes—reduced

infarct size following 30 min coronary artery occlusion

and 48 h reperfusion in rabbits [59].

Endogenous NO also attenuates the ischemia-induced

increase in adenosine. Following NOS inhibition with L-

NAME, the myocardial adenosine concentration during is-

chemia is increased in isolated rabbit hearts [60]. The effect of

NOS inhibition on the myocardial adenosine concentration is

mediated via protein kinase C and subsequently 5 V nucleo-
tidase [61,62].
6. Inflammation and NO

Both adenosine and TNFa are involved in ischemia/

reperfusion injury [6,63]. Endogenous NO either directly or

through an altered myocardial adenosine concentration [64]

facilitates the ischemia-induced increase in the myocardial

TNFa concentration; accordingly, NOS inhibition com-

pletely abolishes the increase in the myocardial TNFa
ncentrations. VSMC: vascular smooth muscle cells, MPTP: mitochondrial

ticle/61/3/402/402065 by guest on 20 August 2022
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concentration secondary to coronary microembolization in

dogs [65].
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7. Cardiomyocyte function

As mentioned above, NO via cGMP dose-dependently

inhibits PDE and/or activates PKG. At low NO/cGMP

concentrations (in nM range), inhibition of PDEIII activity

or direct activation of adenylyl cyclase [66] with subse-

quently increased cAMP concentration and PKA activity

increases cardiomyocyte function (for review, see Ref. [41]).

Additional mechanisms by which low NO/cGMP concen-

trations might increase cardiomyocyte function relate to a

direct activation of ryanodine receptors or voltage-operated

calcium channels [13]. Indeed, pharmacological blockade of

NOS3 in pigs in vivo reduced regional myocardial function

for a given blood flow and oxygen consumption, supporting

a positive inotropic effect of the basal endogenous NO

concentration [44]. Loss of NO release following ische-

mia/reperfusion (see above) could therefore contribute to the

loss of postischemic contractile function.

At higher NO/cGMP concentrations (in AM range),

activation of PKG inhibits voltage-dependent calcium chan-

nels [13,41] and decreases myofilament calcium responsive-

ness by phosphorylation of troponin I [67]. While a higher

NO/cGMP concentration also suppresses the increase of

regional myocardial function during h-adrenergic stimula-

tion [68], most likely by directly inhibiting ryanodine

receptors, pharmacological blockade of endogenous NOS-

dependent NO synthesis in pigs did not impact on h-
adrenergic responsiveness [69]. Thus, only at high concen-

trations might NO/cGMP directly reduce cardiomyocyte

function.
065 by guest on 20 August 2022
8. Cardiomyocyte mitochondria and NO

Endogenous NO interacts with mitochondrial respiration,

possibly at several steps of the electron transfer. In isolated

rat hearts subjected to 20 min ischemia and 20 min reperfu-

sion, myocardial ATP content was increased following NOS

inhibition, and the production of free oxygen radicals was

reduced [70]. Furthermore, in isolated mitochondria, exog-

enous NO (4 AM) when administered together with calcium

increased the production of peroxynitrite in the presence of

an unaltered respiration, supporting a shift from oxygen

usage for ATP production towards the production of free

oxygen radicals [71].

A low concentration of the NO donor SNAP (2 AM)

increases the mitochondrial membrane potential via activa-

tion of mitochondrial ATP-dependent potassium channels

[72]. Any increase in the mitochondrial membrane potential

will decrease the mitochondrial calcium uptake, and indeed

exogenous NO reduced mitochondrial calcium overload

during simulated ischemia [73].
9. NO and apoptosis

In isolated cardiomyocytes and hearts, high NO concen-

trations (AM range) induce necrosis and apoptosis [74,75].

The amount of necrosis and apoptosis critically depends on

the energetic situation of the cardiomyocytes, with apoptosis

favored at preserved ATP pools [76]. While the development

of necrosis following NO application appears to be inde-

pendent of cGMP, the development of apoptosis involves

cGMP and subsequently activation of mitogen-activated

protein kinases and transcription factors [74,77,78]. Most

interestingly, the development of apoptosis following appli-

cation of a NO donor is decreased, once cardiomyocytes or

isolated hearts have been subjected to a preceding period of

ischemia/reperfusion [74,75], possibly by a diminished

response of guanylyl cyclase to NO.

In conclusion, NO can preserve ischemic blood flow and

attenuate platelet aggregation and neutrophil–endothelium

interaction following ischemia/reperfusion. Low concentra-

tions of NO also increase cardiomyocyte function. On the

contrary, higher NO concentrations depress cardiomyocyte

function, mediate inflammatory processes following ische-

mia/reperfusion, impair mitochondrial respiration and even

induce cardiomyocyte death. Thus, NO mediates protective

as well as deleterious myocardial effects which are critically

dependent on the specific experimental conditions.
10. Considerations on confounding variables in studies

on NO effects

When trying to define the effects of NO on the heart

following ischemia/reperfusion, the results are clearly af-

fected by the experimental preparation and setup:

1. Addition of red blood cells to an isolated buffer perfused

heart preparation reduces the extent of irreversible tissue

injury by delivering NO to the myocardium [79].

2. Addition of neutrophils to an isolated buffer-perfused

heart preparation worsens the functional and morpho-

logical outcome following ischemia/reperfusion [55],

since neutrophil adherence to the vascular endothelium is

increased following ischemia/reperfusion [54]. This

increased neutrophil adherence is related to loss of NO

production during reperfusion. Preservation of endothe-

lial function by administration of L-arginine [56] or a NO

donor [57] inhibits neutrophil adherence following

ischemia/reperfusion.

3. Administration of heparin to in vivo preparations affects

the morphological outcome following ischemia/reperfu-

sion, since heparin abolishes platelet aggregation and

subsequently plugging of small vessels [80] and thereby

counteracts the adherence and aggregation otherwise

seen following a decrease in NO concentration.

4. The ischemia/reperfusion-induced free radical production

differs between in vitro buffer-perfused hearts and in situ
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hearts of anesthetized or awake animals, resulting in a

substantially different production of peroxynitrite during

reperfusion.

5. Species-dependently different NOS isoforms contribute

to a different extent to ischemia/reperfusion injury. In

rats, the contribution of NOS1 to ischemia/reperfusion is

greater than that of NOS3, while in rabbits the major
Table 1

Effects on functional recovery following myocardial ischemia/reperfusion

Study Species Model Ischemia

(min)

Reperfusion

(min)

Inhibitor D

[84] Rabbit In vitro 60 (LF) 30 L-NMMA

L-NMMA

[20] Rabbit In vitro 120 (LF) 70 L-NNA

L-NMMA

[85] Dog In vivo 10 (RI) 360 L-NNA 36

[48] Dog In vivo 15 (RI) 240 L-NAME 2

[86] Rat In vitro 27 (GI) 40 L-NOARG

[87] Rat In vitro 30 (GI) 30 L-NAME

[88] Lamb In vitro 120 (GI) 30 L-NAME

[89] Rat In vitro 37 (GI) 20 L-NNA

[90] Rabbit In vitro 35 (GI) 30 L-NAME

[91] Rat In vitro 35 (GI) 30 L-NAME

[92] Rat In vitro 60 (GI) 45 L-NAME

[55] Rat In vitro 25 (GI) 45 L-NAME

[93] Rat In vitro 60 (GI) 60 L-NAME

[94] Rat In vitro 60 (GI) 60 L-NAME

[95] Rat In vitro 120 (GI) 40 L-NAME

[96] Guinea pig In vitro 15 (GI) 35 L-NOARG

[97] Rat In vitro 40 (GI) 30 L-NAME 1

[98] Rat In vitro 20 (GI) 30 L-NMMA

L-NMMA

[99] Rat In vitro 25 (GI) 25 L-NOARG

[100] Dog In vivo 15 (RI) 120 L-NAME 2

[70] Rat In vitro 20 (GI) 20 L-NAME

[22] Rat In vitro 30 (GI) 30 L-NNA

[101] Mice In vitro 16 (GI) 60 L-NAME

[102] Rat In vitro 25 (GI) 30 L-NAME

[103] Guinea pig In vitro 20 (GI) 20 L-NMMA

[104] Dog In vivo 20 (RI) 20 L-NNA

Knockout mice

[105] Mice In vitro 16 (GI) 60 NOS3 � /�
[106] Mice In vitro 20 (GI) 30 NOS3 � /�

Administration of NO or NO donors just before or at the time of reperfusion

[107] Dog In vivo 15 (RI) 180 NO-gas

[108] Rat In vitro 35 (GI) 30 GS-NO

[109] Rat In vitro 15 (RI) 35 L-Arg

[110] Rabbit In vitro 30 (RI) 20 SNAP

[111] Rat In vitro 30 (GI) 60 NOO2
�

[112] Rat In vitro 30 (GI) 60 SIN-1

[99] Rat In vitro 25 (GI) 40 SNP

[100] Dog In vivo 15 (RI) 120 L-Arg

[113] Rabbit Myocytes 20 (SI) 30 c-GMP

[114] Mice In vitro 20 (GI) 30 NOS3

over-expression

(LF): low flow ischemia; (RI): regional ischemia; (GI): global ischemia; (SI): s

myocardial function assessed as wall thickening; CO: cardiac output; EHW: exte

L-NMMA: N N-methyl-L-arginine acetate; L-NNA, L-NOARG: N N-nitro-L-argin

knockout; GS-NO: S-nitrosoglutathione; L-Arg: L-arginine; SNAP: S-nitroso-N-ac

mine; SNP: sodium nitroprusside; CGMP: cyclic guanosine monophosphate; z:
isoform involved in ischemia/reperfusion injury is

NOS3 [11].

6. The time and duration of NOS inhibitor administration

(bolus application of a high NOS inhibitor concentration

vs. continuous administration of a low NOS inhibitor

concentration) lead—even within the same animal

species —to opposite effects [81]. This observation is
ose Dose Effect on

myocardial

function

Comments

1 AM DP z Dose-dependency

100 AM DP X Decreased baseline DP

100 AM DP X
30 AM DP X

0 Ag/kg f 21 AM WT #
0 mg/kg f 960 AM WT X

10 AM DP #
100 AM DP #
1 mM DP # Cold cardioplegia added

25 AM DP z Decreased baseline DP

3 AM DP z
100 AM DP #
1 mM DP z
250 AM DP # PMN added to perfusate

100 AM DP #
100 AM DP X
100 AM CO # Cold cardioplegia added

1 AM EHW X
0 mg/kg f 480 AM DP X

10 AM DP z Dose-dependency

1 or 100 AM DP #
1 mM DP #

0 Ag/kg/min f 140 AM WT z Given at reperfusion

0.1, 0.5, 1 mM DP X
4.6 AM DP X
100 AM DP #
50 AM DP X
30 AM DP #

4.8 mg/kg f 285 AM WT z

DP #
DP #

70% WT #
20 AM DP z
3 AM DP #
0.01, 1, 100 nM DP # Erythrocytes added

800 nM DP z
100 AM DP #
1, 10, 100 AM DP z
1 mM WT #
1 AM Shortening #

DP z

imulated ischemia; DP: left ventricular developed pressure; WT: regional

rnal heart work; PMN: polymorphonuclear neutrophils.

ine; L-NAME: N N-nitro-L-arginine methylester. HCl; NOS3� /�: NOS3

etyl-D,L-penicillamine; NOO2
�: peroxynitrite; SIN1: 3-morpholinosydnoni-

increased; X : unchanged; #: decreased.
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in part explained by a dose-dependent selectivity of NOS

inhibitors for the different NOS isoforms.

7. NOS inhibitors such as L-NAME or L-NNA in the

presence of vitamin C can release NO at a rate of 1:200 to

1:1000 of the administered inhibitor concentration [82].

Thus, administration of millimolar concentrations of L-

NAME or L-NNA may result in the release of micro-

molar NO concentrations, thereby potentially substituting

for the achieved NOS inhibition.
Table 2

Effects on irreversible tissue injury following myocardial ischemia/reperfusion

Study Species Model Ischemia

(min)

Reperfusion

(min)

Inhibitor Dose

[115] Rabbit In vivo 30/50 (RI) 120 L-NAME 10 mg

[81] Rabbit In vivo 30 (RI) 48 h L-NAME 300 Ag/
[56] Dog In vivo 90 (RI) 60 L-NNA

[116] Rat In vitro 30 (GI) 30 L-NAME

[117] Rabbit In vitro 30 (RI) 120 L-NNA 15 mg

[60] Rabbit In vitro 45 (RI) 180 L-NAME

[118] Rat In vitro 30 (RI) 120 L-NOARG

[119] Rabbit In vitro 30 (RI) 120 L-NAME

[22] Rat In vitro 30 (GI) 20 L-NNA

[120] Guinea In vitro 20 (GI) 20 L-NAME

L-NMMA

[121] Rabbit In vitro 30 (RI) 120 L-NAME

[122] Pig In vivo 90 (LF) 120 L-NNA 30 mg

[123] Guinea pig In vivo 30 (RI) 120 L-NAME

Knockout mice

[124] Mice In vivo 20 (RI) 120 NOS3 � /�
[83] Mice In vivo 30 (RI) 120 NOS3 � /�

[125] Mice In vitro 30 (GI) 30 NOS3 � /�
[126] Mice In vivo 30 (RI) 120 NOS3 � /�

[127] Mice In vitro 35 (GI) 30 NOS3 � /�

Administration of NO or NO donors just before or at the time of reperfusion

[128] Cat In vivo 90 (RI) 270 NO

[129] Feline In vivo 90 (RI) 270 SIN-1 0.1 m

[130] Cat In vivo 90 (RI) 270 L-Arg 30 mg

[57] Dog In vivo 60 (RI) 270 SPM5185

[131] Pig In vivo 45 (RI) 240 L-Arg 1 mg

[132] Dog In vivo 60 (RI) 240 SIN-1C

[133] Dog In vivo 90 (RI) 270 CAS1609 1.25

[117] Rabbit In vivo 30 (RI) 120 L-Arg 25 mg

[109] Rat In vitro 65 (GI) 30 L-Arg

[112] Rat In vitro 30 (GI) 60 SIN-1

[58] Cat In vivo 90 (RI) 270 NOO2
�

[134] Feline In vivo 90 (RI) 270 NOO2
�

[72] Mice In vitro 35 (GI) 30 SNAP

(RI): regional ischemia; (GI): global ischemia; (LF): low flow ischemia; LDH: la

L-NMMA: N N-methyl-L-arginine acetate; L-NNA, L-NOARG: N N-nitro-L-argin

knockout; L-Arg: L-arginine; SNAP: S-nitroso-N-acetyl-D,L-penicillamine; NOO2
�:

donors; z: increased; X : unchanged; #: decreased.
8. Gene knockouts for NOS1/NOS3 in mice to establish

their effects in ischemia/reperfusion injury might also be

counteracted by compensatory increases in other proteins

such as NOS2 [83]. Moreover, using gene chips it was

demonstrated that in NOS1 and NOS3 knockout mice 67

and 47 genes, respectively, were expressed differentially

compared to the respective wild type mice. Some of the

encoded proteins are known to be involved in ischemia/

reperfusion injury (e.g., heat shock proteins) [6].
Dose Effect on

irreversible

myocardial

injury

Comments

/kg f 480 AM #
kg/min f 480 AM z Continuous infusion of L-NAME

1 mM z Compared to cardioplegia

100 AM z LDH measured

/kg f 890 AM z
30 AM # Associated with an increase in

adenosine; blocked by SPT

100 AM X
100 AM X
4.6 AM X LDH measured

10 AM z LDH measured

100 AM
100 AM X

/kg f 1.78 mM X
100 AM X

z
# Upregulation of iNOS, following

blockade of iNOS: Increased

z LDH measured

z Strain-dependency

# Upregulation of iNOS, following

blockade of iNOS: Increased

X

f 600 nM/kg/h #
g/kg 4.6 mg/kg #
/kg 730 mg/kg #

500 nM #
/kg/min 40 mg/kg # Retroinfusion

5 mM #
mg/kg 5.7 mg/kg #
/kg 525 mg/kg X

3 mM X Cardioplegia added

100 AM z LDH measured

1 AM #
2 AM # Dose-dependency

0.2, 20 AM X
1 AM #

ctate dehydrogenase.

ine; L-NAME: N N-nitro-L-arginine methylester. HCl; NOS3� /�: NOS3

peroxynitrite; SIN1: 3-morpholinosydnonimine; SPM5185,CAS1609: NO
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Keeping the above limitations in mind, we now will

summarize the existing literature on the importance of NO

for the functional and morphological outcome following

myocardial ischemia/reperfusion.
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11. Importance of NO for contractile function following

myocardial ischemia/reperfusion

In NOS3 knockout mice functional recovery following

myocardial ischemia/reperfusion is attenuated (Table 1),

while over-expression of NOS3 accelerates functional re-

covery. Also, pharmacological blockade of NOS attenuates

the recovery of left ventricular developed pressure following

ischemia/reperfusion in isolated mice and guinea pig hearts.

Taken together, these studies in mice and guinea pigs

suggest that endogenous NO is cardioprotective and attenu-

ates myocardial stunning.

However, studies in other species using different NOS

inhibitors at different concentrations did not unequivocally

support the above conclusion. In rats, a dose-dependent

effect of NOS inhibitors was observed with low (low

micromolar concentrations) or high concentrations (>50

AM) being ineffective or even aggravating myocardial

stunning while an intermediate concentration of NOS

inhibitors (10–20 AM) improved recovery of contractile

function following ischemia/reperfusion. Similar findings

were obtained in isolated rabbit hearts, in which low

concentrations of NOS inhibitors improved functional re-

covery while high concentrations of NOS inhibitors had no

effect. Finally, in dogs, a low concentration of a NOS

inhibitor decreased recovery of regional myocardial func-

tion, while higher concentrations of NOS inhibitors either

improved or had no effect on functional recovery following

ischemia/reperfusion.

While exogenous NO in rabbits and dogs always wors-

ened the functional outcome following ischemia/reperfu-

sion, independent of the approach to increase the NO

concentration (inhaled NO, L-arginine, SNAP), in rats the

functional recovery following ischemia/reperfusion was

either decreased or increased without a clear dose-depen-

dency or relation to the NO donor used.

In conclusion, the importance of NO for the functional

recovery following myocardial ischemia/reperfusion ap-

pears to be species-dependent. While in guinea pigs and

mice endogenous NO mediates beneficial effects, blockade

of endogenous NO in rabbits and dogs improves and

exogenous NO worsens the functional outcome following

myocardial ischemia/reperfusion.
12. Importance of NO for irreversible tissue injury

following myocardial ischemia/reperfusion

NOS3 knockout mice have increased infarct size follow-

ing myocardial ischemia/reperfusion; however, in some
mice strains blockade of the compensatorily over-expressed

NOS2 (using specific NOS2 inhibitors) was necessary to

demonstrate the detrimental effect of the absence of NOS3

for ischemia/reperfusion injury (Table 2).

Administration of NO or NO donors shortly before or at

the time of reperfusion did not cause adverse effects, but in

some instances decreased irreversible tissue injury. Part of

the beneficial effect achieved by exogenous NO or NO

donors was mediated by attenuated neutrophil adherence to

the vascular endothelium [56].

In conclusion, the above data point towards a reduction

of irreversible tissue injury by endogenous NO or exoge-

nous NO.
13. Final conclusion

In summary, when reviewing the existing literature we

were surprised by its inconsistency: (1) the lack of charac-

terization of the involved NOS isoforms in myocardial

ischemia/reperfusion injury among different animal species;

(2) the lack of direct measurements of myocardial NO

concentration and/or NOS activity to assure sufficient

NOS inhibition (given the different concentrations of NOS

inhibitors used); (3) the lack of consideration of non-

enzymatic NO production as a potential source of NO; (4)

and the absence of plasma or blood components in in vitro

studies which impact on the one hand on NO delivery and

metabolism and on the other hand on myocardial perfusion,

thus making a direct comparison of studies impossible.

Future research in this field will have to focus more

precisely on the identification and standardization of poten-

tial confounding experimental factors that influence synthe-

sis, transport, and interaction of NO with various targets in

tissue and blood.
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[132] Schlack W, Uebing A, Schäfer M, et al. Intracoronary SIN-1C dur-

ing reperfusion reduces infarct size in dog. J Cardiovasc Pharmacol

1995;25:424–31.
[133] Pabla R, Buda AJ, Flynn DM, Salzberg DB, Lefer DJ. Intracoronary

nitric oxide improves postischemic coronary blood flow and myo-

cardial contractile function. Am J Physiol 1995;38:H1113–21.

[134] Nossuli TO, Hayward R, Jensen D, Scalia R, Lefer AM. Mecha-

nisms of cardioprotection by peroxynitrite in myocardial ischemia

and reperfusion injury. Am J Physiol 1998;44:H509–19.
D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/61/3/402/402065 by guest on 20 August 2022


	Nitric oxide in myocardial ischemia/reperfusion injury
	Introduction
	Production of nitric oxide
	Metabolism of nitric oxide in the mammalian circulation
	NO-cyclic guanosine monophosphate (cGMP) pathway
	Coronary vascular effects of NO
	Inflammation and NO
	Cardiomyocyte function
	Cardiomyocyte mitochondria and NO
	NO and apoptosis
	Considerations on confounding variables in studies on NO effects
	Importance of NO for contractile function following myocardial ischemia/reperfusion
	Importance of NO for irreversible tissue injury following myocardial ischemia/reperfusion
	Final conclusion
	References


