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Summary

The roles of nitric oxide (NO) in physiology and pathophysiology merit the use of NO as a

therapeutic for certain biomedical applications. Unfortunately, limited NO payloads, too rapid NO

release, and the lack of targeted NO delivery have hindered the clinical utility of NO gas and low

molecular weight NO donor compounds. A wide-variety of NO-releasing macromolecular

scaffolds has thus been developed to improve NO’s pharmacological potential. In this tutorial

review, we provide an overview of the most promising NO release scaffolds including protein,

organic, inorganic, and hybrid organic-inorganic systems. The NO release vehicles selected for

discussion were chosen based on their enhanced NO storage, tunable NO release characteristics,

and potential as therapeutics.

1. Introduction

Ignarro, Furchgott, and Murad’s Nobel Prize-winning discovery that the endothelial derived

relaxation factor (EDRF) was in fact nitric oxide (NO) inaugurated an extensive swell of

research into the pivotal role of NO in numerous other physiological systems.1 The diverse

list of biological processes that NO is associated with includes vasodilation2, platelet

aggregation and adhesion,2 the immune response to infection,3 wound repair,4 as well as

cancer biology and pathology.5

Nitric oxide is produced endogenously from L-arginine via the enzyme nitric oxide synthase

(NOS).2 Due to its integral role in human physiology, deficiencies in NO biosynthesis have

been linked to a number of disease states.6 Strategies for delivering exogenous NO thus hold

promise for a number of biomedical applications ranging from cardiovascular regulation to

antimicrobial and tumoricidal therapies. However, the reactivity of NO gas has hindered the

development of effective NO-based therapies.7

In response to the need for controlled NO delivery, much work has focused on the synthesis

of NO donors.8 Many classes of NO donors exist, including organic nitrates, nitrites, metal –

NO complexes, nitrosamines, N-diazeniumdiolates (NONOates), and S-nitrosothiols

(RSNOs). Based on their ability to spontaneously release NO in physiological media,

NONOates and RSNOs represent the most widely used NO donor systems.

N-Diazeniumdiolates are arguably the most extensively studied and used class of NO

donors. Stable NONOates are formed via the reaction of secondary amines with high

pressures (i.e., 5 atm) of NO (Scheme 1).9 Efficient diazeniumdiolate formation requires the

presence of a second basic residue, either an unreacted amine substrate or an added metal

alkoxide base, to deprotonate the backbone amine and promote its nucelophilic attack on

NO. The cation (e.g., protonated additional amine or metal from alkoxide base) stabilizes the

charge of the resulting anionic NONOate. N-Diazeniumdiolates are attractive as NO donors

because they decompose to NO upon protonation of the amine bearing the NONOate
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moiety. Indeed, NONOates regenerate the parent amine compound and two moles of NO per

mole of donor in physiological solution (i.e., 37°C, pH 7.4).9 The structure of the amine

precursor directly affects the NO release kinetics. Certain N-diazeniumdiolate polyamines

exhibit lengthy durations of NO release due to hydrogen bonding stabilization from

additional amines. For example, diethylenetriamine (DETA/NO) features an NO release

half-life (t1/2) of 20 h.9 In contrast, the NO release from metal cation-stabilized N-

diazeniumdiolate adduct of the amino acid proline (PROLI/NO) is rapid with a t1/2 of only

1.8 s.9

In contrast to the strictly exogenous NONOates, RSNOs are an endogenous class of NO

donor touted as the physiological transporters of NO in vivo.10 In the lab, RSNOs are

prepared upon reaction of a thiol with a nitrosating agent (e.g., alkyl nitrite, dinitrogen

trioxide, or nitrous acid) (Scheme 2).8 Confirmation of RSNO formation is easily made by

their color as they absorb light in both the UV (225–261 and 330–350 nm) and the visible

(550–600 nm) regions.8

Whereas NONOates decompose and release NO as a function of pH, RSNOs may

decompose via multiple triggers.8 For example, thermal and photoinitiated decomposition of

RSNOs results in homolytic cleavage of the S–N bond to generate a thiyl radical and NO.10

The thiyl radical further reacts with another RSNO to yield a disulfide and additional NO.

Trace copper ions also affect RSNO decomposition.10 Reduction of Cu(II), usually by trace

thiolate, forms Cu(I) that subsequently reacts with RSNOs to produce NO, the thiolate and

Cu(II). The thiolate may then regenerate Cu(I) from Cu(II), propagating the catalytic

decomposition of RSNOs to NO. Transnitrosation or the direct transfer of the nitroso

functionality to a free thiol (R’SH) also impacts RSNO stability, resulting in the formation

of R’SNO and RSH.10 The newly generated R’SNO then decomposes by one of the

aforementioned triggers releasing NO.

Low molecular weight (LMW) NO donors have been used to study the influence of

exogenous NO on a number of cardiovascular, central nervous system, and immunological-

related disorders.8 These compounds have demonstrated remarkable antiplatelet,

antimicrobial, antitumor, and vasodilatory activities with great potential as therapeutics in

the biomedical arena. However, the inability to target NO to a specific site of action, the

rapid systemic clearance associated with LMW species, toxicity concerns, and the

undesirable low doses of NO have hindered their clinical development. As such, much

recent research has focused on the synthesis of macromolecular NO-releasing vehicles.

An ideal NO-releasing macromolecular vehicle would be multifunctional and consist of

multiple NO donors to achieve a desirable payload. Multifunctionalization would allow for

advanced tailoring of the scaffold, including chemistry for targeting delivery, tuning

biodistribution, and controlling toxicity. In this tutorial review, we provide an overview of

the most promising NO release macromolecular scaffolds including NO donor

functionalization of proteins, organic, inorganic, and hybrid polymeric materials. Our goal is

to provide a glimpse into this emerging discipline by introducing representative examples of

each category. For further breadth, we guide the reader to prior reviews on NO-releasing

macromolecular materials.11–15

2. Proteins

The innate specificity associated with biological function makes proteins attractive as

macromolecular NO donor scaffolds capable of targeting NO to a site of physiological

interest. Seeking the ability to target NO, Hrabie et al. modified the lysine residues within

human and bovine serum albumin (BSA) with a methoxymethyl-protected (MOM)

diazeniumdiolated piperazine.16 These NO donor conjugates were characterized as having
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extremely long NO release half-lives (on the order of 20 d) due to the stability of the MOM

protecting group that required hydrolysis prior to diazeniumdiolate decomposition to NO.

The multiple (59) lysine residues on the albumins enabled enhanced NO donor loading,

although mass spectroscopic analysis indicated that only ~20 of the 59 lysine residues were

converted to NO donor form. Nevertheless, the authors reported ~40 mol NO per mol of

protein with NO release levels approaching ~1 pmol NO mg−1 s−1.

Due to their physiological ubiquity, more work has been done with S-nitrosothiol-modified

proteins and biomolecules with respect to NO donor modification. Although the single free

cysteine residue on serum albumin restricts storage to 1 mole of RSNO per mole of protein,

Stamler and coworkers reduced the 17 disulfide bonds that maintain the tertiary structure of

BSA to increase the number of NO reactive thiol sites available for nitrosation, resulting in

19.2 ± 3.1 mol of NO storage (as RSNO) per mol of protein.17 The resulting protein

denaturation to enable enhanced NO storage capability was an obvious drawback to this

approach. Thus, others have developed more mild chemical modification strategies to store

NO onto serum albumin. For example, Ewing et al. polythiolated BSA with N-

acetylhomocysteine thiolactone to store 12 ± 3 mol of NO per mol of BSA after

nitrosation.18 Unfortunately, the thiolation induced protein oligomerization and a

heterogeneous molecular mass. This change in protein structure also affected protein

activity. Otagiri and coworkers nitrosated a variant of human serum albumin (HSA),

albumin Liprizzi (R410C), that inherently contained an additional cysteine residue at

position 410.19 The separation between this cysteine residue and (normal) Cys-34 was

hypothesized not to alter the protein structure upon nitrosation. Indeed, the resulting

nitrosated macromolecule had a homogenous molecular mass of 67 kDA and could

theoretically store 1 more mol of NO per mol of protein than native HSA. Although such

modification did not influence protein activity, the total NO loading was improved only

slightly (1.3 mol per mol of protein).

To improve the thermal stability of RSNO moieties by decreasing homolytic cleavage of the

S–N bond via a cage effect, Katsumi et al. modified BSA with polyethylene glycol (PEG).20

The PEG-modified BSA was then reacted with N-succinimidyl S-acetylthiolate (SATA).

Deacetylation of the thiol groups on SATA and subsequent nitrosation yielded the PEG-poly

SNO-BSA macromolecule. This NO-releasing vehicle was estimated to have an average

molecular mass of 250 kDA and with ~37 mol of PEG and ~10 mol of NO per mol of

protein. As expected, the PEG modification both reduced protein aggregation and extended

the NO release half-life (147 ± 9 h), roughly 11 times greater than that of nitrosated BSA

and 108 times greater than that of the LMW S-nitroso-N-acetyl penicillamine (SNAP).

While NO-releasing proteins represent an advancement over LMW analogues, their limited

NO payloads ultimately restrict their potential utility.

3. Encapsulation of NO and low molecular weight NO donors

To enhance NO loading, macromolecular vesicles have been used to encapsulate large

quantities of NO active species (e.g., gaseous NO or LMW NO donors). As shown in Figure

1A, NO gas encapsulation offers the distinct advantage of utilizing the active therapeutic

directly versus only delivering a prodrug requiring an activation trigger to produce NO. The

amount of active species encapsulated within such a macromolecular scaffold would be

enhanced because space would not be required for the inactive portion of the prodrug.

Cavalieri et al. developed poly(vinyl alcohol) (PVA) microbubbles loaded with gaseous

NO.21 Briefly, PVA scaffolds were synthesized at pH 5 and at room temperature to yield

microbubbles 4.6 ± 0.4 μm in diameter. Exposure of freeze dried microbubbles to 1.5 bar of

NO gas for 2 h resulted in NO loading within the microbubbles as verified via electron

paramagnetic resonance spectroscopy. Approximately 3.6 μmol of NO was loaded per mg
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of microbubble with release durations in phosphate buffered saline (PBS) approaching 2 h.

Of note, NO was released in the ambient as well indicating spontaneous loss via diffusion

through the 0.4 μm thick shell. If stability in NO retention could be improved, the ideal

release trigger for these microbubbles would be ultrasonic cracking. Indeed, preliminary

studies found that the microbubbles can be sheared open by ultrasonic cracking to release

their NO payload instantaneously.

Liposome encapsulation of gaseous NO has also been investigated as a strategy for storing

NO in the presence of scavenging molecules (e.g., hemoglobin).22 Huang et al. synthesized

echogenic liposomes using 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine, 1,2-dioleoyl-

sn-glycero-3-phosphocholine, and cholesterol. The resulting lipid films were dried,

rehydrated, and exposed to high pressures of NO. Freezing of the pressurized suspension

and subsequent thawing resulted in NO-releasing liposomes. The amount of NO stored

within the liposomes was tunable by co-encapsulating NO with argon in various proportions.

For example, liposomes loaded with 10% NO and 90% argon released 0.045 μmol NO

mg−1. Unfortunately, NO gas encapsulation is hindered by the lack of control over NO

release rates. Until modifications to the vessels are possible for regulating NO diffusion,

encapsulation of gaseous NO is of little clinical utility.

The encapsulation of LMW NO donor compounds was pursued as a solution to the rapid NO

release kinetics characteristic of encapsulated gaseous NO (Figure 1B). Jeh et al. reported a

double emulsion and solvent evaporation technique to encapsulate LMW PROLI/NO within

poly-lactic-co-glycolic acid (PLGA) and polyethylene oxide-co-lactic acid (PELA)

microparticles.23 The PROLI/NO encapsulation was dependent on the microparticle

composition with only the PELA microparticles (~2.3 μm diameter) proving capable at

trapping PROLI/NO and effectively storing 123 ± 7.6 nM NO per mg. The addition of

gelatin as a hydrophilic binding agent only slightly increased the PROLI/NO entrapment

efficiency for PELA, but facilitated PROLI/NO storage within the PLGA-based

microparticles. Unfortunately, the gelatin and concomitant more hydrophilic structure

resulted in accelerated NO release due to increased water uptake.

4. Polymeric organic scaffolds

The first tunable NO-releasing polymeric microparticles were reported by Meyerhoff and

coworkers.24 Multiple secondary amine-functionalized methacrylate monomers were

employed in free radical benzoyl peroxide-initiated polymerization to yield both

homopolymers and methyl methacrylate-based copolymers. A suspension polymerization

was utilized with methyl methacrylate, the amine-bearing monomer, and 1,6-

hexanedioldimethacrylate as a cross-linking agent to yield polymeric microbeads. Scanning

electron microscopy (SEM) indicated the size of the beads as 100–200 μm. Following a

deprotection step, exposure to high pressures of NO in sodium methoxide resulted in NO-

releasing microbeads with tunable NO storage based on the mol% of the amine-

functionalized monomer (i.e., 20 and 40 mol%). A 40 mol% polymethacrylate microbead

released 1.05 μmol NO mg−1 over 15 h in physiological conditions. Of note, the high

density of amines within the particles was found to increase the local pH and slow

diazeniumdiolate decomposition drastically, resulting in only partial (50%) release of the

stored NO.

Due to precise control over size and the ability to multifunctionalize their structures to

enable targeting and tracking, dendrimers have become ubiquitous as drug delivery vehicles

in the biomedical arena.25 Defined generations of branching and corresponding exponential

increase in end group surface functionalities are inherent to their chain growth synthesis. As

such, their multifunctionality has been utilized to produce NO-releasing macromolecular

Riccio and Schoenfisch Page 4

Chem Soc Rev. Author manuscript; available in PMC 2013 May 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



scaffolds with large reservoirs of NO (Figure 2).26, 27 The potential of dendrimers as

powerful NO storage/release vehicles was first reported by Stasko and Schoenfisch using

commercially available generation 3 and 5 polypropylenimine dendrimers (DAB-Am-16 and

DAB-Am-64 with 16 and 64 primary amine end groups, respectively).26 Since the primary

amine-derived dendrimers stored only small amounts of NO (0.44–0.69 μmol mg−1) due to

low NO donor conversion, secondary amines with alky tails were synthesized by reacting

the dendrimers with heptanoyl chloride. Upon subsequent reduction and NO donor

formation at the secondary amine sites, the NO storage levels were dramatically improved

(3.2 and 3.5 μmol mg−1 for generation 3 and 5, respectively). Both the enhanced NO storage

and NO release durations were attributed to the stability of secondary amine-based

diazeniumdiolates and the hydrophobic nature of the alkyl tails, limiting proton-initiated

diazeniumdiolate breakdown. The large concentration of amines regenerated upon initial

diazeniumdiolate decomposition was postulated to increase local pH and slow further

decomposition, resulting in sustained NO release. To further demonstrate the utility of the

dendrimers, the DAB-Am-64 was reacted with propylene oxide to yield a scaffold with

secondary amines and a more hydrophilic end group. The hydrophilic dendrimer adopted a

fully extended conformation in solution that lead to increased diazeniumdiolate and NO

storage (5.6 μmol mg−1), but at the expense of more rapid NO release kinetics.

In a subsequent study, Stasko et al. functionalized generation 4 polyamidoamine (PAMAM)

dendrimers with either N-acetyl,-D,L-penicillamine or N-acetyl-L-cysteine to yield thiol-

terminated dendrimers.27 Nitrosating the macromolecular scaffolds yielded S-nitrosothiol-

modified dendrimers (G4-SNAP and G4-NACysNO). Both conjugates achieved appreciable

total NO storage of ~2 μmol NO per mg of scaffold, yet their NO release kinetics varied

based on the trigger (i.e., copper ion concentration, light). Although LMW tertiary RSNOs

are generally regarded as more stable than their primary counterparts, the primary RSNO-

derived G4-NACysNO exhibited greater stability/resilience than the tertiary G4-SNAP

regardless of the NO release trigger. This effect was attributed to a more compact solution

structure for G4-NACysNO that increased the tendency for radical recombination between

the thiyl and NO. Overall, this work showcases significant evolution of NO release scaffolds

with respect to NO payloads, release durations, and release kinetics.

5. Inorganic/Organic Hybrid Scaffolds

5.1. Metallic nanoparticles

Metallic clusters have become widely studied in biomedicine for their unique size-dependent

properties that distinguish them from bulk materials.28 For example, many metallic particles

offer the capability of surface plasmon resonance, hyperthermia, and magnetic

targeting.29–31 Potential applications for these nanomaterials include molecular imaging

diagnostics, drug delivery vehicles, and therapeutic agents.

Rothrock et al. first reported on the synthesis of NO-releasing monolayer-protected cluster

(MPC) gold nanoparticles.32 The nanoparticles (~2 nm) were synthesized via the Brust-

Schiffrin method and capped with hexanethiol ligands. These ligands were then exchanged

with bromoalkane thiols. Subsequent reaction with ethylendiamine, butylamine,

hexanediamine, or DETA resulted in secondary amine functionalization that upon exposure

to NO gas resulted in NO-releasing gold nanoparticles. Both the NO storage and NO release

kinetics were tunable by varying the amount and/or amine structure. While these particles

represented the smallest nanometer-sized NO-releasing scaffold to date, the total NO storage

was limited (~0.04 μmol NO per mg of scaffold). Due to both restricted NO storage and

poor solubility in aqueous media, the potential of these materials as NO delivery agents was

concluded to be lacking.
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To design water soluble NO-releasing MPCs, Polizzi et al. synthesized tiopronin-protected

gold clusters.33 N-Hydroxy-succinimide (NHS) and N-(3-dimethylaminopropyl)-N-

ethylcarbodiimide (EDC) chemistry was then used to attach either DETA,

tetraethylenepentamine, or pentaethylenehexamine to the carboxylic acid groups of the

tiopronin-MPCs. Similar to the water-insoluble secondary amine MPCs, the

diazeniumdiolate NO donor conversion efficiency was only ~1%. To increase the NO

storage capacity of the gold nanoparticles, polyamine-stabilized MPCs (~5 nm) were

synthesized directly (i.e., without tiopronin) with significantly enhanced NO release (up to

0.386 μmol NO per mg of scaffold) and durations (~16 h), depending on the polyamine.

However, thermogravimetric analysis indicated that the polyamine ligands were attaching to

the gold surface via both primary amine end groups, thus limiting NO donor conversion and

overall NO storage.

The gold nanoparticles reported by Schoenfisch and co-workers32, 33 employed N-

diazeniumdiolate-modified NO release materials characterized by spontaneous NO release

in aqueous media (physiological pH). To enable control over NO release, Sortino and

coworkers synthesized water-soluble platinum (Pt) MPCs with a photoactive NO release

trigger.34 Thioglycolic acid ligands bound to the Pt nanoparticles (~1 nm) were used to

render the particles water soluble. A partial phase exchange of these carboxy-terminated

groups with a nitroaromatic-terminated alkane thiol ligand resulted in NO release capable,

water soluble particles. While not a traditional NO donor class, the aromatic nitro group

proved to be a novel NO-releasing substituent upon irradiation with visible light.

Spectroscopic analysis revealed ~6 NO donors per Pt cluster. The NO storage of the material

was thermally stable, but capable of liberating NO at a rate of 1.5 pmol s−1 upon visible

light irradiation. In a subsequent report, a bifunctional NO release macromolecular scaffold

was synthesized with mapping capacity via photoluminescence.35 A thiol-derivatized

porphyrin and the NO photodonor ligand were immobilized on the Pt surface via place

exchange with some of the carboxy ligands. Neither the NO-releasing nor porphyrin ligand

influenced the photobehavior of the other when attached to the Pt surface. However, the

porphyrin did influence particle size and more specifically induced particle aggregation (~10

nm aggregates). Water solubility was still retained due to the carboxy-terminated ligands.

While the amount of porphyrin and NO photodonor ligand was tunable by varying the

reaction time and/or molar ratio used in the exchange, the authors noted that reaction times

longer than 30 min resulted in extensive replacement of the carboxy ligands, thus sacrificing

the aqueous solubility of the particles. As expected, the NO storage of the Pt nanoparticle

assemblies was stable in the dark at room temperature. Upon irradiation with visible light,

nanomolar levels of NO were released at a rate of ~0.9 nM s−1. Unfortunately, the NO

release kinetics were not normalized to mass of particles and thus direct comparison of these

scaffolds to other NO-releasing macromolecular vehicles remains unclear.

5.2 Zeolites and molecular organic frameworks

Zeolites and metal organic frameworks (MOFs) are highly porous materials that have found

wide utility in the fields of ion exchange, catalysis, and gas adsorption/storage.36–39 Morris

and coworkers have pioneered the application of zeolites and MOFs to the field of NO

release scaffolds.40 For zeolitic structures, NO is chemisorbed to cations associated with the

inorganic framework. These nitrosyl complexes may then be displaced with an appropriate

nucleophile (e.g., water) to initiate NO release. In an initial study, Wheatley et al. used

Zeolite-A, an alternating alumina/silica network with cobalt cations to chemisorb NO.41

These materials were capable of storing ~1.2–1.3 μmol NO per mg of zeolite.

Unfortunately, this material was not water soluble and the only way to reproducibly measure

the NO release was by exposure to a steady stream of wet gas with controlled humidity.

Using a stream of nitrogen at 11% relative humidity (RH), these materials were shown to
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release 1.02 μmol NO per mg of zeolite over 2500 s with an associated half-life of ~340 s.

Altering the humidity of the gas influenced the NO kinetics. More humid gas (22% RH)

decreased the half-life to 208 s, while a drier gas (1.5% RH) increased the NO release half-

life to >3000 s. The identity and amount of the metal ion (e.g., Co, Ni, Cu, Mn, and Na)

within the zeolite channels was also shown to influence NO release based on the affinity of

each metal to bind NO, with Co storing the greatest amount.

Xiao et al. first reported the ability to store NO using a MOF consisting of copper benzene

tricarboxylate referred to as HKUST-1.42 The material was synthesized by mixing

Cu(NO3)2·3H2O and benzene 1,3,5-tricarboxylic acid in a 50:50 ethanol:water solution for

30 min at ambient temperature followed by heating at 383 K for 24 h. The dried material

was then loaded with NO by exposure to pressurized NO gas (1 bar) at 196 K. The

HKUST-1 could adsorb ~9 μmol of NO per mg of MOF. Desorption of the material

revealed that most of the NO was physisorbed within the pores of the material, but roughly

2.21 μmol mg−1 was strongly chemisorbed to open metal sites (i.e., unsaturated with

ligands) at approximately 1 NO equivalent per dicopper(II) tetracarboxylate group.

Exposing the NO-loaded HKUST-1 to a stream of wet nitrogen gas resulted in water

displacing only a fraction of the chemisorbed NO (~1 nmol NO per mg of MOF).41 The lack

of dispersal in solution, the inaccessibility of the total NO stored payloads, and potential

cytotoxicity to healthy cells circumvents therapeutic use or potential of this MOF scaffold at

this stage. Of note, more recent NO-releasing MOFs have shown improved delivery

behavior over HKUST-1 with nearly total release (~7 μmol NO per mg of MOF) achieved

in one example.43

To overcome the finite reservoir of available NO, Böes et al. synthesized copper-containing

zeolites that both released ~0.002 μmol of chemisorbed NO per mg of scaffold within ~60

min of solution immersion and then catalytically produced NO via reduction of nitrite at

Cu(I) sites.44 However, the potential toxicity of the Cu(I) sites lessens the enthusiasm for

these materials as therapeutics.

Other researchers have focused on overcoming the rapid release of chemisorbed NO

coordinated to metal sites in conventional MOF structures.45–47 For example, Nguyen et al.

attempted to incorporate NO donors within MOF scaffolds by employing 2-amino-1,4-

benzenedicarboxylic acid as an organic linker between metal sites.46 By forming N-

diazeniumdiolates on pendant amines of the linker, the resulting materials released up to

~0.51 μmol NO per mg of MOF. Unfortunately, the release was still rapid (~5 min) and the

materials lost ~20% of their NO payload after 10 d of storage due to the well-known

instability of primary amine-based diazeniumdiolates.9 Of note, the parent MOFs (i.e.,

IRMOF-3 and UMCM-1-NH2) used for these studies lack open metal sites characteristic of

the aforementioned NO-releasing MOFs (e.g., HKUST-1). Thus, the NO was not

chemisorbed at metal centers concomitantly with diazeniumdiolate formation on the organic

linkers of these scaffolds (Figure 3). A MOF design that incorporates both features of NO

functionalization may hold greater therapeutic potential.

5.3 Silica particles

Silica-based materials have become ubiquitous in the biomedical arena due to their straight

forward synthesis that enables customization of size, morphology, and composition.48–51

Furthermore, silica is well regarded as a stable and nontoxic drug delivery vehicle. Among

the first reports of silica as a macromolecular scaffold for NO release, Zhang et al. grafted

aminosilanes to the surface of fumed silica particles (0.2–0.3 μm).52 Roughly, 50–70% of

the surface silanols were functionalized. As a result, NO storage was rather limited (~0.6

μmol NO per mg of silica). While the structure of the precursor amine influenced the rate of

NO release, the dissociation kinetics were complex with little correlation to structure.
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However, the NO release half-lives of the particles were significantly longer than their

solution phase LMW analogs. This phenomenon was attributed to local surface increases in

pH due to the large concentration of amines at the silica surface following NO donor

decomposition, illustrating a benefit afforded solely by the macromolecular scaffold.

In subsequent work, Frost et al. grafted fumed silica particles (7–10 nm) with APTMS and

then linked cysteine, N-acetyl-L-cysteine, or N-acetyl-DL-penicillamine to the particles

using amide chemistry.53 The derivatization yielded free thiols up to ~0.142 μmol per mg of

particles. Upon treatment with an organic nitrosating agent (i.e., t-butylnitrite), RSNOs were

formed on the silica scaffolds, with the S-nitroso-N-acetylpenicillamine (SNAP) storing the

greatest payload (~0.138 μmol NO per mg). The authors postulated that the smaller size of

the protected thiolactone for the SNAP coupling led to more thiol and resulting NO loading.

Similar to LMW RSNO analogs, the NO release levels of the particles were found to be

dependent on the concentration of copper and light exposure.

Although capable of imparting NO release, a disadvantage of surface grafting as a strategy

for functionalizing silica is the limited and low NO loading per particle.52, 53 In contrast,

sol-gel chemistry is the hydrolysis and condensation of silanes that allows for the formation

of silica scaffolds with organo functionalities throughout, enabling unparalleled tunability in

terms of particle, size, morphology, and composition.48 Shin et al. first reported the co-

condensation of a number of aminoalkoxysilane precursors including N-(6-aminohexyl)-3-

aminopropyltrimethoxysilane (AHAP3), (aminoethylamino-

methyl)phenethyltrimethoxysilane (AEMP3), and N-(2-aminoethyl)-3-

aminopropyltrimethoxysilane (AEAP3) with either tetramethoxysilane (TMOS) or

tetraethoxysilane (TEOS) in solutions of alcohol, water, and ammonia.54 As anticipated,

both the aminosilane concentration and size of the particles were tunable from ~10–77 mol

% and ~20–500 nm, respectively. Exposing the particles to NO gas (5 atm) in a mixture of

N,N-dimethylformamide, methanol, and sodium methoxide for 3 d resulted in NO storage

ranging from ~0.05–1.78 μmol per mg of silica, with the greatest NO storage attainable for

77 mol% AHAP3/TMOS. Of note, this value is roughly three times larger than fumed silica

grafted with equivalent NO donors.52 In addition, the sol-gel-derived silica particles released

NO for significantly longer periods (12 vs. 2.4 h half-lives for sol-gel vs. surface grafted

fumed silica, respectively).52

Despite achieving NO release levels that were significantly greater than prior NO-releasing

silica particle systems, the authors noted limited (~5–50 %) NO donor conversion

efficiencies.54 Although sol-gel chemistry allows for incorporation of amine functionalities

throughout the silica scaffold, the limited particle porosity and amine mobility result in

lower than expected diazeniumdiolation and NO donor stabilization, respectively. In a

subsequent paper, Shin and Schoenfisch improved the NO storage/release from these

vehicles by forming the diazeniumdiolate groups on the aminosilane precursors before

particle synthesis.55 As shown in Figure 4, this synthetic strategy enhances the degree of NO

donor functionality incorporation within the particle when compared to surface grafting and

post-synthesis diazeniumdiolate modification routes. In addition to NO donor conversion

efficiencies approaching 99%, the total NO storage for these particles ranged from 0.5–11.3

μmol mg−1. The greatest NO storage (11.3 μmol mg−1) was achieved using N-

diazeniumdiolated N-(6-aminohexyl)aminomethyltrimethoxysilane (AHAM3). While the

NO release kinetics of AHAM3 particles were rapid (NO release half-lives of 4 min), other

particle systems (e.g., AEMP3 and (3-trimethoxysilylpropyl)diethylenetriamine (DET3))

were shown to release NO for significantly greater periods (253 min and 101 h,

respectively.) The assorted NO release characteristics for NO donor-modified silica

exemplify the benefit of the sol-gel approach for creating diverse NO release scaffolds.
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Riccio et al. also employed sol-gel chemistry to synthesize S-nitrosothiol-modified silica

particles using 3-mercaptopropyltrimethoxysilane (MPTMS).56 The ratio of MPTMS to

either TMOS or TEOS was tuned to achieve thiol concentrations up to 85 mol%. After

exposure to acidified nitrite, the incorporated thiols were converted to S-nitrosothiol form

with corresponding NO storage approaching 4.40 μmol per mgof particle. As anticipated,

the particles exhibited NO release levels dependent on heat, light, and/or copper

concentration. At 37 °C in PBS the particles released only ~37% of their total NO storage,

illustrating the extended release duration achievable with S-nitrosothiol-modified silica. The

MPTMS-based silica also exhibited much greater control over particle monodispersity, size,

and morphology than the previous N-diazeniumdiolate systems54, 55 due in part to the

controlled addition of silane precursors to the ethanol, water, and ammonia solution via a

syringe pump. Additionally, only specific reaction conditions (e.g., high ammonia

concentration, low total silane concentration) yielded spherical, non-aggregated particles

ranging in size from ~250–700 nm depending on MPTMS, backbone silane (i.e., TEOS vs.

TMOS), and water concentrations. Generally, greater amounts of water in the reaction

mixture yielded smaller particles without significantly altering the sulfur weight percent and

corresponding NO storage.

To control both particle size and monodispersity for aminosilane-derived silica particles,

Carpenter et al. developed a reverse microemulsion sol-gel chemistry method in which

reaction solvent, volume, and time were varied.57 Tuning particle size into the nanometer

range while maintaining monodispersity necessitated a core/shell design. While this design

restricted the aminosilane content to the shell, the concentration of aminosilane was

consistent for three particle sizes (50, 100 and 200 nm in diameter) as verified by elemental

analysis. Of note, the N-diazeniumdiolate conversion efficiency was greater for 50 nm

particles, compared to the two larger particles. The authors attributed the enhanced NO

donor formation to an increased surface area to volume ratio resulting in more amines

accessible at the surface. Nevertheless, the NO release kinetics were comparable for all sizes

with NO storage totals of ~1.0–1.5 μmol NO per mg of scaffold.

6. Nitric Oxide-Releasing Coatings

6.1 Coatings with noncovalently incorporated LMW NO donors

The vast NO release characteristics achievable with macromolecular scaffolds has enabled

the development of NO release materials for specific biomedical applications (see Nitric

Oxide Release Part II: Therapeutic Applications). For applications that necessitate NO

release directed at an interface (e.g., an indwelling medical device), NO-releasing polymeric

coatings have been synthesized to elicit localized NO release from a surface. In the first

report of NO-releasing coatings, Smith et al. doped LMW NO donor compounds

noncovalently within polymeric matrices (Figure 5A) to establish NO-releasing polymers.58

More specifically, N-diazeniumdiolated DETA and polycaprolactone were mixed to yield a

biodegradable polymer that released NO upon breaking down (56 nmol of NO per mg over 1

week). In attempting to design hydrophobic NO-releasing polyurethanes and poly(vinyl

chloride)s (PVC), Mowery et al. observed leaching of LMW NO donors, raising concerns

about cytotoxicity and nonlocalized NO release.59 To avoid leaching, Batchelor et al.

designed LMW NO donors to be more lipophilic (e.g., N-diazeniumdiolated

dialkylhexamethylenediamines with alkyl groups ranging from methyl to didodecyl) and

thus enhance their retention within hydrophobic polymers.60 In this work, a correlation

between water uptake by dioctyl sebacate-plasticized PVC and NO release kinetics was

reported. As expected, films with greater polymer-to-plasticizer ratio (2:1 vs. 1:2) were

characterized by decreased water uptake and NO flux (~17 pmol cm−2 s−1 vs. ~100 pmol

cm−2 s−1) with extended release duration (100 vs. 25 h). While leaching was not quantified,
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it was surmised to be negligible based on the NO donor structure and slowed NO release

kinetics.

6.2 Coatings with covalently attached NO donors

As shown in Figure 5B, an alternative strategy for alleviating LMW dopant leaching is

covalent binding of the NO donor or NO donor precursor to the polymer backbone. In the

earliest report of NO-releasing polymers,58 Smith et al. crosslinked poly(ethylenimine) with

1,4-dibutanediol diglycidyl to form an insoluble amine-containing polymeric coating

material. After NO donor formation on the secondary amines, the materials released NO for

up to 5 weeks. While the NO release levels were low (i.e., ~0.33 pmol mg−1 s−1), larger

levels approaching ~30 pmol mg−1 s−1 were achieved with thicker coatings. Additional

examples of covalent coupling of diazeniumdiolates to polymeric scaffolds include PVC,61

silicone rubber,62 and polyurethane.63 Likewise, S-nitrosothiol NO donors have been

covalently linked to polyester64, 65 and polyurethane.66 For a more detailed description of

NO-releasing polymers the reader is directed to reviews by Frost et al.,11 Hetrick and

Schoenfisch,12 and Varu et al.13

Akin to the synthesis of silica nanoparticles, sol-gel chemistry has been used to prepare NO-

releasing xerogel films, with the earliest reports combining aminosilanes and

isobutyltrimethoxysilane to yield amine-modified xerogels.67–69 Varying the aminosilane

concentration resulted in xerogels with tunable NO release. As expected, the chemical

environment around the aminosilane affected NO storage and release kinetics. For example,

xerogels comprised of DET3 exhibited the greatest diazeniumdiolate conversion efficiency

due to the enhanced deprotonation resulting from the additional amines. Nitric oxide fluxes

approaching 400 pmol cm−2 s−1 were achieved using AHAP3-derived xerogels on stainless

steel substrates, illustrating versatility of the sol-gel method (for coating almost any

substrate).70 In some cases, the xerogel integrity was found to be compromised upon

immersion in physiological solution (i.e., PBS). Nablo et al. applied thin (i.e., 10–30 μm)

PVC films over the N-diazeniumdiolated xerogels to inhibit undesirable continued

hydrolysis of the siloxane backbone, thus enhancing stability and reducing fragmentation.71

Additionally, the hydrophobic PVC was shown to hinder water diffusion, thus reducing the

initial NO flux and prolonging NO release duration.

In a subsequent study, Riccio et al. designed thiol-modified xerogels derived from MPTMS

and methyltrimethoxysilane.72 Subsequent nitrosation resulted in the formation of S-

nitrosothiols. These xerogel films exhibited negligible network fragmentation and NO fluxes

dependent on the MPTMS concentration, analogous to the diazeniumdiolate-modified

xerogels. Furthermore, NO release could be triggered thermally and/or upon copper or light

exposure. Under physiological conditions, the films released NO for up to 2 weeks with a

maximum NO flux and total payload of ~600 pmol cm−2 s−1 and 1.31 μmol mg−1,

respectively. While the enhanced stability and larger NO storage suggest these films may be

highly promising for biomedical applications, the lack of commercially available

mercaptosilane precursors limits the tunability of NO release kinetics from these materials.

Furthermore, they must be stored at cold temperatures and in the dark to circumvent

premature breakdown of the RSNO NO donor.

6.3 Macromolecular scaffold-doped coatings

Due to leaching of LMW NO donors and limited NO payloads for covalently bound NO

donors, recent studies have evaluated the incorporation of macromolecular dopants within

polymers whereby the larger size and greater reservoir of NO inherent to these scaffolds

may circumvent their leaching and enhance NO storage/delivery from the coating (Figure

5C). Indeed, a number of the aforementioned macromolecular scaffolds (e.g., zeolites and
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silica particles) have been subsequently used as NO-releasing dopants within polymeric

coatings.41, 52–54, 73, 74 For example, Koehler et al. encapsulated SNAP within ~150 nm

liposome vesicles and then immobilized the liposomes within a TMOS xerogel to create a

composite capable of releasing ~14 pmol NO cm−2 s−1 after photoirradiation.75 While the

authors postulated that the liposome barrier would hinder SNAP leaching, the NO release

studies indicated SNAP associated with the exterior of the vesicles during liposome

preparation. Thus, additional washing of the liposomes was necessary to ensure removal of

any non-encapsulated SNAP before incorporation within the composite film. In other work,

Wheatley et al. reported on pressed poly(tetrafluoroethylene) and poly(dimethylsiloxane)

discs using NO-releasing zeolites.41 The addition of the polymer matrix enabled zeolite

immersion in water (not possible for zeolite powders) and extended NO release durations

(half-lives approaching ~1 h). Of note, the zeolites were loaded with NO after polymer

embedding thus sacrificing the total achievable NO payload (only up to ~0.02 μmol per

mg).

Zhang et al. doped N-diazeniumdiolated surface-grafted silica within polyurethane at 20 wt

% to enable NO release at a flux of ~7 pmol cm−2 s−1.52 Likewise, Frost and Meyerhoff

doped RSNO-modified surface-grafted silica particles within trilayer polymeric films.53, 73

However, the hydrophobicity of the particle-doped silicone rubber blocked diffusion of

copper ions into the film. As such, light irradiation was the only means of initiating NO

release with fluxes approaching only ~1 pmol cm−2 s−1 depending on the light intensity,

polymer film thickness, and identity and concentration of the grafted RSNO. Most recently,

Koh et al. doped N-diazeniumdiolate- and S-nitrosothiol-based silica nanoparticles into a

range of polyurethane blends to create an array of NO-releasing membranes.76 The reported

NO release durations (16 h to 14 d) were dependent on both the type and concentration of

the macromolecular dopant with NO fluxes approaching ~2500 pmol cm−2 s−1. As might be

expected, the NO release kinetics from polymers doped with N-diazeniumdiolate-modified

particles could be further tuned by altering the chemical identity and thickness of the

polyurethane matrix, as water uptake by the polymer will dictate diazeniumdiolate

decomposition.

7. Conclusions

As summarized in Table 1, the development of macromolecular NO release scaffolds is a

burgeoning field with great therapeutic potential due to widely tunable NO release

characteristics (e.g., payload, duration, and level of release) and scaffold properties (e.g.,

size, surface functionalities, chemical composition). While strategies to enhance the amount

and sustain the duration of NO release have marked the early development of such materials,

precise control over the delivery location is still lacking. Future research is focused on

multifunctionalization of such scaffolds to enable more targeted NO delivery (Figure 6).

Targeting strategies that have been developed for other therapeutics including the use of

magnetic cores and antibody ligands should be feasible with NO-releasing macromolecular

vehicles.77 Ultimately, the fate and interaction of the vehicles in vivo must be understood to

fully realize the potential of NO-releasing macromolecular scaffolds. Fortunately, the

chemical flexibility of these scaffolds also enables the ability to incorporate tracking

moieties (e.g., fluorescent labels) to aid in such investigations.

With respect to devices whereby the physiological interface is critical to biocompatibility,

the design of polymeric coatings capable of releasing NO from a surface represents a fresh

strategy for addressing biofouling-related problems (e.g., platelet and bacterial adhesion).

The use of macromolecular NO release scaffolds as polymeric dopants represents a

promising strategy for imparting NO release to the medical device with minimal impact on

its function. Indeed, the size and NO storage amounts inherent to such NO release scaffolds
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enhances both material stability (i.e., no dopant leaching) and NO delivery. As the

development of NO-releasing surfaces continues, future research may include materials

capable of generating NO from endogenous sources (i.e., RSNOs). Meyerhoff and

coworkers have recently derivatized polymers with Cu(II)-cyclen moieties that produce NO

fluxes approaching ~75 pmol cm−2 s−1 in physiological solutions containing GSNO and

glutathione.78

Arguably, NO-releasing materials with complete spatial and temporal control represent the

ultimate goal in this field. Precisely controlled NO release, for instance when triggered by

photoirradiation,15 would enable a clearer understanding of the NO release levels and

durations required to elicit specific physiological responses. With the widespread and

concentration dependent roles of NO in physiology and pathophysiology, such knowledge is

paramount to harnessing the therapeutic potential of NO pharmacologically.
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Figure 1.
Representation of macromolecular vesicles encapsulating A) gaseous NO or B) LMW NO

donor compounds (blue spheres). Nitric oxide freely diffuses from the scaffold when

encapsulated as a gas, but water diffusion through the scaffold shell is necessary to initiate

NO release when LMW NO donors are employed.
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Figure 2.
Representation of generation 3 polyamidoamine (PAMAM) dendrimer as a typical dendritic

scaffold exhibiting highly branched and defined architecture with resulting surface

functionalities modified as NO donors (blue spheres)..
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Figure 3.
Representations of A) a MOF with chemisorbed NO at its metal sites (red spheres) and B) of

IRMOF-3 with diazeniumdiolate formation on its organic bridging ligands.
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Figure 4.
Representations of NO-releasing silica particles modified with NO donors (blue spheres) A)

via surface grafting, B) after particle synthesis and C) on silane precursors before particle

synthesis via sol-gel chemistry. Cross section of particle interior depicts a lack of

functionality within surface-grafted particles and the presence of non-modified precursor

functionalities (white circles) within traditional sol-gel synthesized particles.
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Figure 5.
Representations of strategies to fabricate NO-releasing surfaces including A) doping of

LMW NO donors (small blue spheres), B) covalent tethering of NO donor functionalities to

the polymer backbone, and C) doping of NO-releasing macromolecular scaffolds (large blue

spheres) within the polymer. Leaching of LMW dopants and the limited NO reservoir of

covalently-modified polymers are schematically depicted.

Riccio and Schoenfisch Page 20

Chem Soc Rev. Author manuscript; available in PMC 2013 May 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6.
Representation of a multifunctionalized NO release scaffold outfitted with multiple NO

donors (blue spheres), fluorescent labels (pink stars) for vehicle tracking, and targeting

ligands (orange cubes) and a magnetic core (green sphere) for targeted NO delivery.
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Scheme 1.
N-Diazeniumdiolate formation and decomposition of representative secondary amine-

bearing compounds, illustrating the difference between metal cation and protonated amine

formation and stabilization.

Riccio and Schoenfisch Page 22

Chem Soc Rev. Author manuscript; available in PMC 2013 May 21.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 2.
S-Nitrosothiol formation and decomposition.
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