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Abstract

Pepper (Capsicum annuum L.) and tomato (Solanum lycopersicum L.), which belong to the Solanaceae family, are 
among the most cultivated and consumed fleshy fruits worldwide and constitute excellent sources of many essential 
nutrients, such as vitamins A, C, and E, calcium, and carotenoids. While fruit ripening is a highly regulated and com-
plex process, tomato and pepper have been classified as climacteric and non-climacteric fruits, respectively. These 
fruits differ greatly in shape, color composition, flavor, and several other features which undergo drastic changes dur-
ing the ripening process. Such ripening-related metabolic and developmental changes require extensive alterations 
in many cellular and biochemical processes, which ultimately leads to fully ripe fruits with nutritional and organoleptic 
features that are attractive to both natural dispersers and human consumers. Recent data show that reactive oxygen 
and nitrogen species (ROS/RNS) are involved in fruit ripening, during which molecules, such as hydrogen peroxide 
(H2O2), NADPH, nitric oxide (NO), peroxynitrite (ONOO–), and S-nitrosothiols (SNOs), interact to regulate protein func-
tions through post-translational modifications. In light of these recent discoveries, this review provides an update on 
the nitro-oxidative metabolism during the ripening of two of the most economically important fruits, discusses the 
signaling roles played by ROS/RNS in controlling this complex physiological process, and highlights the potential 
biotechnological applications of these substances to promote further improvements in fruit ripening regulation and 
nutritional quality. In addition, we suggest that the term ‘nitro-oxidative eustress’ with regard to fruit ripening would 
be more appropriate than nitro-oxidative stress, which ultimately favors the consolidation of the plant species.
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Fruit ripening: pepper and tomato are 
agronomically important model plants

Fruit ripening is a highly regulated developmental process 

involving drastic internal transcriptional and biochemi-

cal modi�cations which coincide with seed maturation. 

Alterations in fruit coloration, texture, and palatability to 

animals make ripening a key evolutionary process which 

facilitates seed dispersal over great distances (Gapper et al., 

2013; Karlova et al., 2014; Kumar et al., 2014; Giovannoni 

et  al., 2017). Tomato and pepper are examples of the two 

main groups of climacteric and non-climacteric �eshy fruit 

species, respectively, according to their respiration pro�les 

and dependence on the phytohormone ethylene during the 
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ripening process (Palma et al., 2009; Cherian et al., 2014; Liu 

et al., 2015). With regard to the consumption of these fruits, 

tomatoes are almost exclusively consumed at the ripe stage 

(red, orange, or yellow in color), while peppers can be con-

sumed at both the green (immature) and red/yellow/orange/

purple stages, with the latter possessing greater economic 

market values. Though largely consumed when fresh, tomato 

and pepper are also used in the food, medical, and pharma-

ceutical industries.

Production and consumption of tomato and pepper, which 

constitute an important source of nutrients, such as vita-

mins A and C, in many countries, are increasing worldwide. 

According to data provided by the United Nations Food and 

Agriculture Organization (http://www.fao.org), between 1994 

and 2014, world tomato production increased 2.1-fold from 

83 Mt to 171 Mt. Likewise, pepper fruit production rose 2.4-

fold from 13 Mt to 31 Mt in the same period.

Nitro-oxidative metabolism in higher plants

Plant nitro-oxidative metabolism has hitherto been regarded 

as a plant response to external and potentially harmful en-

vironmental conditions which can lead to cellular damage or 

even cell death (Pascual et al., 2010; Airaki et al., 2012; Begara-

Morales et al., 2013; Corpas and Barroso, 2013; Signorelli et 

al., 2013; Simontacchi et al., 2015; Corpas, 2017; Houmani 

et al., 2017). However, it has now been demonstrated that 

some of the molecules—both reactive oxygen and nitrogen 

species (ROS and RNS, respectively)—involved in this plant 

response play a regulatory and signaling role in many plant 

physiological processes including seed germination, develop-

ment, vegetative growth, and reproduction (Camejo et al., 

2010; Martí et al., 2011; Airaki et al., 2015; Huan et al., 2016; 

Zafra et al., 2016; Jiménez-Quesada et al., 2017).

Hydrogen peroxide (H2O2) and nitric oxide (·NO) are 

among the most representative and studied molecules in the 

ROS and RNS families. However, given their mediation in 

post-translational modi�cations of  macromolecules which 

affect their cellular functions, several H2O2- and NO-related 

substances, including superoxide radicals (O2·
–), peroxyni-

trite (ONOO–), S-nitrosoglutathione (GSNO), and, more 

recently, nitro-fatty acids, are also of  considerable physiolog-

ical and biochemical importance (Huber and Hardin, 2004; 

Wang et al., 2006; Lindermayr and Durner, 2009; Airaki et 

al., 2011; Leterrier et al., 2011; Astier et al., 2012; Hu et al., 

2017; Mata-Pérez et al., 2017). Table 1 summarizes the main 

components of  these two families of  inorganic and organic 

molecules in radical and non-radical species, among others. 

There is growing evidence to show that the increased cellular 

production of  some of  these molecules, such as O2·
–, H2O2, 

and ONOO–, is associated with cellular damage to biomol-

ecules, with lipid oxidation/nitration and protein oxidation 

of  sulfur-containing methionine and nitration of  tyrosines 

being used as potential cellular markers of  nitro-oxidative 

processes (Corpas et al., 2009; Arasimowicz-Jelonek and 

Floryszak-Wieczorek, 2011; Jacques et al., 2013; Farmer 

and Mueller, 2013). However, these molecules can also play 

a regulatory role through the direct or indirect modi�cation 

of  proteins such as S-nitrosylation (formerly S-nitrosation), 

which are then endowed with a signaling function (Corpas et 

al., 2015). Thus, some proteins involved in the plant immune 

responses have been studied in depth. For example, the 

TGA1 transcription factor and the non-expresser of  patho-

genesis-related gene1 (NPR1) are two proteins involved 

in the systemic acquired resistance in plants which can be 

S-nitrosylated. Accordingly, in the presence of  NPR1, the 

S-nitrosylation at Cys260 and Cys266 of  TGA1 enhances 

the DNA binding activity (Lindermayr et al., 2010). Another 

example is the Arabidopsis thaliana respiratory burst oxidase 

homolog D (AtRBOHD also known as NADPH oxidase) 

which can be S-nitrosylated at Cys890, provoking a decrease 

in ROS production and consequently limiting the hypersen-

sitive response (Yun et al., 2011).

Pepper fruits: ripening-associated changes 
in ROS and RNS metabolism

The genus Capsicum, a member of the Solanaceae fam-

ily, includes ~25 species. Of the �ve domesticated species of 

Capsicum (C. annuum, C. baccatum, C.  frutescens, C. pube-

scens, and C.  chinense), the most agronomically important 

is C. annuum, which is extensively cultivated and consumed 

around the world. This species has many varieties, whose 

fruits differ in size, shape, color, and pungency, which makes 

it possible to distinguish between hot and sweet peppers. 

Depending on their shape, sweet peppers can be further clas-

si�ed into California, Lamuyo, and Dulce Italiano categories. 

California sweet peppers have similarly sized transverse and 

longitudinal axes (Fig. 1A), while Lamuyo and Dulce Italiano 

Table 1. Main ROS and RNS including inorganic and organic 

molecules

Non-radicals Radicals

Inorganic molecules

 Hydrogen peroxide (H2O2) Superoxide radical (O2·
–) 

 Singlet oxygen (1O2) Hydroxyl radical (·OH)

 Ozone (O3) Alkoxyl radicals (RO·)

 Hypochlorous acid (HClO) Peroxyl rdicals (ROO·)

 Nitroxyl anion (NO-) Nitric oxide (·NO)

 Nitrosonium cation (NO+) Nitrogen dioxide (·NO2)

 Nitrous acid (HNO2)

 Dinitrogen trioxide (N2O3)

 Dinitrogen tetroxide (N2O4)

 Peroxynitrite (ONOO–)

 Peroxynitrous acid (ONOOH)

Organic molecules Organic molecules

 Nitrotyrosine (Tyr-NO2) Lipid peroxyl radicals (LOO·)

 Nitrosoglutathione (GSNO)

 Nitrosothiols (SNOs)

 Nitro-γ-tocopherol

  Nitro-fatty acids (NO2-FA) 
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peppers have longer longitudinal axes. It is important to note 

that, unlike tomato, the genetic engineering of Capsicum has 

been very limited due to the lack of effective Agrobacterium-

mediated genetic transformation protocols for this plant 

genus (Heidmann and Boutilier, 2015). Thus, the important 

improvements in different agronomic pepper varieties have, 

up to now, been obtained through conventional breeding.

Pepper fruits contain metabolites, such as ascorbic acid 

(vitamin C), carotenoids (provitamin A), �avonoids, and 

capsaicinoids (unique to hot peppers), which, given their 

antioxidant capacities, contain potential health-promot-

ing properties. However, the content of these components 

depends on both internal genotypic and developmental fac-

tors as well as external environmental growth conditions 

(Wahyuni et al., 2011, 2013). For example, the red color of 

ripe pepper fruit is due to the high level of accumulated total 

carotenoids, with the expression of genes encoding key ca-

rotenoid biosynthetic enzymes, such as phytoene synthase 

(PSY), phytoene desaturase (PDS), and capsanthin-capsoru-

bin synthase (CCS), being relatively higher in red fruits (Ha 

et al., 2007; Li, 2013; Lado et al., 2016).

To the best of  our knowledge, most studies of  ROS 

and RNS metabolism in peppers have been carried out on 

sweet peppers (C. annuum), particularly on the California 

phenotype (Mateos et  al., 2003, 2013; Palma et  al., 2015; 

Chaki et al., 2015; Rodríguez-Ruiz et al., 2017a, b). Recent 

data reveal that NO and RNS pro�les can be used as an 

index of  ripening progression in pepper fruit, which makes 

this species an excellent model to study the metabolism of 

antioxidants, ROS, and RNS during non-climacteric fruit 

ripening.

Ascorbate and other antioxidant systems 
during pepper fruit ripening

Ascorbate: a central player in the ascorbate–glutathione cycle

Pepper, which contains the highest level of ascorbic acid 

among �eshy fruits (>100 mg 100 g–1 FW), constitutes an im-

portant source of vitamin C in the human diet. From a plant 

perspective, this high vitamin C content plays a key physio-

logical role due to its powerful antioxidative capacity (Palma 

et al., 2011). In this respect, increasing data demonstrate that 

sweet pepper ripening involves an active ROS metabolism 

in the different subcellular compartments including peroxi-

somes (Mateos et  al., 2003), mitochondria (Jiménez et  al., 

2002a), and chloroplasts/chromoplasts (Martí et  al., 2009), 

where ascorbate may alleviate potential ripening-related 

damage given its ubiquitous presence in cell compartments 

(Palma et al., 2015).

Among the different possible pathways of  ascorbate bio-

synthesis in plants, the most consensual route is the L-galac-

tose pathway (Valpuesta and Botella, 2004), with the �nal 

step requiring L-galactono-1,4-lactone (GalL) oxidation to 

Fig. 1. Temporal changes in nitro-oxidative metabolism during pepper fruit ripening. (A) Representative picture of sweet pepper (Capsicum annuum 
L. California phenotype) fruits at different ripening stages which can be found in the same plant at the same time. (B) Schematic representation of the 
temporal changes in ROS/RNS metabolism during pepper fruit ripening. GSNOR, nitrosoglutathione reductase.
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ascorbic acid in a reaction catalyzed by the mitochondrial 

membrane-bound L-galactono-1,4-lactone dehydrogenase 

(GalLDH). This enzyme, whose activity, protein content, 

and gene expression remain virtually unchanged dur-

ing ripening, has been characterized in sweet pepper fruit 

(Rodríguez-Ruiz et  al., 2017a). Ascorbate has also been 

shown to remain at relatively stable levels during pepper rip-

ening (Rodríguez-Ruiz et al., 2017a). In contrast, the pepper 

ripening process is characterized by an active nitro-oxidative 

metabolism and an increase in both lipid peroxidation and 

protein nitration (Chaki et al., 2015; Rodríguez-Ruiz, 2017). 

Consequently, it has been proposed that, by maintaining 

high and constant ascorbate levels through ripening, pep-

per fruits minimize undesirable collateral cellular damage 

which would otherwise be caused by a ripening-associated 

oxidative burst (Palma et al., 2015). In this respect, it is im-

portant to note that in vitro enzymatic assays of  GalLDH in 

the presence of  peroxynitrite, a strong oxidant and nitrating 

molecule, show that the activity was unaffected (Rodríguez-

Ruiz et al., 2017a), which further points to the great physio-

logical importance of  an adequate ascorbate supply during 

the ripening process.

Ascorbate is also part of  the ascorbate–glutathione cycle, 

a key antioxidant mechanism in plants. By oxidizing ascor-

bate, ascorbate peroxidase (APX) activity contributes to the 

regulation of  H2O2 content. A signi�cant increase in APX 

activity (Table 2) has been reported during pepper ripening 

(Mateos et al., 2013). An increase in the activity of  other 

enzymatic components in the ascorbate–glutathione cycle, 

such as monodehydroascorbate reductase (MDAR) and 

glutathione reductase (GR), was also detected during pep-

per ripening (Rodríguez-Ruiz, 2017). All enzymatic compo-

nents in the ascorbate–glutathione cycle have diverse cell 

localizations, such as the cytosol, plastids, mitochondria, 

and peroxisomes. Pepper fruits therefore need to maintain 

an adequate and co-ordinated balance between these com-

ponents, as some of  these organelles, particularly chloro-

plasts, undergo notable structural and metabolic changes 

during ripening (Palma et al., 2015). The RNS-mediated 

post-translational regulation of  APX is of  particular 

importance, as this enzyme can be inactivated by irrevers-

ible nitration and activated by reversible S-nitrosylation 

(Begara-Morales et al., 2014a), with APX highlighting 

the connection between the metabolism of  ROS and RNS. 

Though not yet fully characterized, evidence indicates that 

APX is also subject to �nely tuned modulation by RNS in 

pepper fruits (Rodríguez-Ruiz, 2017).

Reduced glutathione (GSH), which is present in relatively 

high concentrations (millimolar), plays a key role in plant cell 

antioxidant defenses. The thiol group present in GSH can be 

readily oxidized, leading to the formation of  oxidized gluta-

thione (GSSG), which can be recycled by GR activity at the 

expense of  NADPH oxidation. During pepper fruit ripening, 

NADPH supply undergoes a 2-fold increase (Table 2) due to 

the activity of  a group of  NADP-dehydrogenases (NADP-

DHs), which are also necessary to support the cellular anti-

oxidant system (Mateos et al., 2009). Thus, analysis of  the 

main NADP-DH groups, including NADP-isocitrate de-

hydrogenase (NADP-ICDH), NADP-malic enzymes (MEs), 

as well as glucose-6-phosphate dehydrogenase (G6PDH) and 

6-phosphogluconate dehydrogenase (6PGDH), which belong 

to the pentose phosphate pathway, showed that all activities, 

with the exception of  G6PDH, increased by between 54% 

and 100% in ripe pepper fruits (Mateos et al., 2009).

Lipid peroxidation, a recognized marker of oxidative stress, 

increases by ~50% during pepper ripening, indicating active pro-

duction of ROS, particularly superoxide radicals and hydrogen 

peroxide, at this stage of fruit development (Rodríguez-Ruiz, 

2017). Superoxide dismutase (SOD) activity, which regulates 

superoxide radical levels, shows differential responses during pep-

per ripening. Pepper fruits contain at least four SOD isozymes: 

one MnSOD, one FeSOD, and two CuZnSODs (I and II), with 

only CuZnSOD II activity showing a signi�cant increase dur-

ing ripening (Rodríguez-Ruiz, 2017). This increase in at least one 

of the CuZnSOD isozymes resembles that observed in plants 

exposed to speci�c environmental stresses (Manai et al., 2014; 

Table 2. Summary of the specific changes in ROS and RNS metabolism reported in ripening sweet pepper (Capsicum annuum L, 

California phenotype)

Biochemical parameters Green fruit Red fruit Reference

ROS metabolism

Lipid peroxidation (nmol MDA mg–1 protein) 9 36 Rodríguez-Ruiz (2017)

H2O2 (µmol H2O2 g
–1 FW) 96 88 Camejo et al. (2015)

Ascorbate (mg ascorbate 100 g–1 FW) 141 153 Rodríguez-Ruiz et al. (2017a)

Catalase (µmol H2O2 min–1 mg–1 protein) 59 14 Chaki et al. (2015)

Ascorbate peroxidase (nmol ascorbate min–1 mg–1 protein) 700 2100 Mateos et al. (2013); Rodríguez-Ruíz (2017)

SOD isozymesa Increased CuZnSOD II activitya Rodríguez-Ruiz (2017)

NADPH (pmol g–1 FW) 6.1 10.8 Mateos et al. (2009)

RNS metabolism

NO content Decrease Chaki et al. (2015)

GSNOR activity (nmol NADH min–1 mg–1 protein) 66.0 37.5 Rodríguez-Ruiz et al. (2017b)

Nitrated and S-nitrosylated proteins Increasea Chaki et al. (2015); Rodríguez-Ruiz et al. (2017b)

Total SNOs Increasea Chaki et al. (2015); Rodríguez-Ruiz et al. (2017b)

a Evaluated by specific electrophoretic techniques (i.e. isozymatic pattern activity, 2D immunoblot analysis, DAF gels).
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Houmani et  al., 2016), suggesting that particular CuZnSOD 

isozymes are more closely associated with fruit responses to rip-

ening-associated increases in oxidative stress.

Catalase, a key peroxisomal antioxidant enzyme, is 
affected by nitration

Catalase (CAT), another important antioxidant enzyme, is 

exclusively located in peroxisomes, which can be positively 

or negatively modulated depending on the plant species, 

organ, and environmental conditions (Corpas et al., 1999; 

Vandenabeele et  al., 2004; Mhamdi et  al., 2012). During 

pepper ripening, CAT activity is down-regulated (Chaki 

et  al., 2015). Nitro-proteomic analysis of  pepper fruits 

using an antibody against nitro-tyrosine identi�ed CAT as 

a principal target of  nitration, which inhibits its activity 

(Chaki et  al., 2015). This is in line with studies of  other 

plant species which indicate that CAT activity is modulated 

by NO- and ONOO-dependent post-translational modi�-

cations (Clark et al., 2000; Corpas and Barroso, 2017). This 

inhibition of  CAT activity by NO-related molecules may 

reduce H2O2-removing capacity and consequently increase 

ripening-associated nitro-oxidative burst in pepper peroxi-

somes (Corpas et al., 2017).

RNS metabolism is altered during ripening of 
pepper fruit

Data regarding RNS metabolism in pepper fruits are rela-

tively new and focus on the ripening of sweet pepper (C. 

annunm, California phenotype) from the immature green 

to ripe red stages. The endogenous NO content has been 

reported to be down-regulated during pepper ripening, which 

is accompanied by a concomitant increase in S-nitrosothiols 

(SNOs), natural reservoirs of NO (Chaki et al., 2015). This 

process is supported by a ripening-associated reduction in 

S-nitrosoglutathione reductase (GSNOR) activity, which cat-

alyzes the NADH-dependent reduction of GSNO to GSSG 

and ammonium (Leterrier et al., 2011) and consequently 

regulates cellular SNO levels. Recently, a comprehensive ana-

lysis of SNO pools showed that S-nitrosylated proteins also 

increase in ripe pepper fruits (Rodríguez-Ruiz et al., 2017b), 

suggesting that endogenous circulating NO is accumulated as 

SNO in the ripening tissues. This enables an important pro-

tein pool to be regulated via trans-nitrosylation and nitration, 

as observed in the case of pepper CAT, which further high-

lights the recently reported interplay between ROS and RNS 

metabolism (Begara-Morales et al., 2016).

Table  2 summarizes the principal changes observed in 

ROS and RNS metabolism in ripening sweet pepper. Taken 

together, these data con�rm the biochemical co-ordination 

among the different pathways involved in ROS and RNS me-

tabolism in order to support the physiological and biochem-

ical changes associated with progressive and visible changes 

in color during fruit ripening. Figure 1B shows the proposed 

model of ripening-associated temporal �uctuations in ROS 

and RNS metabolism in this plant material.

In an ongoing study, a differential transcriptomic analysis, 

using RNA sequencing (RNA-Seq; Illumina) during pepper 

ripening, of �ve replicates from immature green and ripe red 

fruits harvested from the same pepper plant was carried out. 

This revealed that ~2200 genes are up-regulated during rip-

ening, many of which are involved in responses to different 

stresses such as salinity, cold, heat, oxidative stress, wounding, 

and high light intensity (Fig. 2; SGG, unpublished results). 

These results point to a highly active modulation of stress-

related genes in this physiological process, in which molecules, 

such as H2O2, GSNO, and nitro-fatty acids, may be involved 

(Neill et al., 2002; Quan et al., 2008; Begara-Morales et al., 

2014b; Mata-Pérez et al., 2016).

Tomato fruits: ROS and NO metabolism

ROS metabolism during tomato fruit development and 
ripening

Numerous reports focused on tomato nitro-oxidative metab-

olism can be found in the literature; however, relatively few 

provide comprehensive data concerning the ROS and RNS 

production, scavenging, and signaling through tomato fruit 

development and ripening (Jiménez et  al., 2002b; Mondal 

et  al., 2004; Murshed et  al., 2014). This contrasts with the 

high commercial value of this fruit crop and its worldwide 

adoption as a model species for understanding �eshy fruit de-

velopment and climacteric ripening.

A more complete understanding of the mechanisms behind 

the nitro-oxidative balance in this fruit crop species may have 

important agronomic and economic implications since many 

injuries in tomato fruits are attributed to disturbances in oxi-

dative metabolism, including the sunscald injury caused by 

photo-oxidative stress and fruit tissue damage due to the oxi-

dative burst events after chilling or hypoxia treatments (Stevens 

et al., 2008; Torres et al., 2006). The existence of extensive mu-

tant, transgenic, and introgression lines collections, as well as 

TILLING platforms (Gur et al., 2004; Carvalho et al., 2011; 

Okabe et al., 2011; Saito et al., 2011), also makes the tomato an 

attractive model species for genetic and molecular character-

ization of nitro-antioxidant defenses as well as ROS and RNS 

interaction and signaling in climacteric fruits.

Ripening-associated changes in tomato fruit oxidative 
metabolism

The ripening-associated changes in oxidative metabolism 

have been assessed by monitoring the content of H2O2, pro-

tein/lipid oxidation, as well as the transcript abundance and 

activities of antioxidant enzymes in fruits of wild-type and 

ripening-impaired tomato mutants (Jiménez et  al., 2002b; 

Mondal et  al., 2004; Murshed et  al., 2014). Some stud-

ies revealed high activities of antioxidant enzymes such as 

CAT, SOD, GR, MDAR, and dehydroascorbate reductase 

(DHAR) in immature tomato fruits, presumably re�ecting 

the intensi�ed antioxidant defenses against ROS production 

from photosynthesis-associated processes at this fruit devel-

opmental stage (Jiménez et al., 2002b). However, the activities 
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of these same enzymes are found to be particularly reduced 

before the ripening phase by other authors (Murshed et al., 

2014, 2013), suggesting substantial differences within the 

tomato cultivars and the experimental conditions analyzed.

As tomato fruit ripens, chloroplasts develop into chro-

moplasts, and the photosynthetic apparatus is progressively 

disassembled, presumably leading to a gradual reduction in 

fruit photosynthesis-dependent ROS production. There are 

ample grounds to consider that only a very limited fraction of 

ROS generation in photosynthetic tissues is derived from the 

mitochondrial respiration (Maxwell et  al., 1999), which sug-

gests that oxidants in unripe fruits are mainly derived from the 

photosynthetic activity. However, it seems reasonable to con-

sider that the relative contribution of mitochondrial respiration 

to ROS production may progressively increase as chloroplasts 

develop into chromoplasts (Fanciullino et al., 2014). As most 

of the chromoplast differentiation and the associated accu-

mulation of liposoluble antioxidant compounds, such as lyco-

pene and β-carotene, takes place during the climacteric phase, 

this particular step of the ripening process may involve drastic 

Fig. 2. Differential transcriptomic analysis by RNA-Seq between green and red pepper (Capsicum annuum) fruits. The charts show selected categories 
significantly enriched (P≤0.01). Functional classification of up-/down-regulated genes was achieved by Gene Ontology (GO) according to biological 
processes. Five biological replicates from five different plants each were included in the analysis for the two ripening stages. Total RNA was isolated 
using a two-step method based on Trizol reagent and the RNAesasy Plant Mini Kit (Qiagen), following the manufacter’s instructions. Sequencing was 
performed to generate 2 × 75 bp paired-end reads for transcriptome sequencing on an Illumina NextSeq550 platform. Reads were pre-processed to 
remove low-quality sequences, specific features [such as poly(A) or poly(T) tails, terminal transferase tails, and adaptors], contaminant sequences, and 
trimming the undesired segments, using SeqTrim-Next. Clean reads were assembled using Brujin algorithms (Oases, SOAPdenovo-Trans, and RAY). 
Transcriptomes were analyzed by principal component analysis (PCA) using FactoMineR to find which assembly was closer to the Populus trichocarpa 
and Arabidopsis thaliana complete transcriptomes. Our RNA-Seq analysis pipeline uses Bowtie2 to align the reads to the reference transcriptome and 
Samtools for the quantification of known transcripts (count reads per transcript). The transcriptome reference was annotated against A. thaliana using 
FullLengther-Next. Differential expression analyses were performed using DEgenes-Hunter. Finally, a functional enrichment analysis was conducted using 
PlantRegMap (GO enrichment tool) using default parameters.
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changes in the fruit cell antioxidant scenario (Considine, 2006). 

Coincidently, a transitory rise in H2O2 levels and lipid/protein 

oxidation and reduction in the activities of SOD, CAT, and most 

enzymes associated with the ascorbate–glutathione cycle have 

been described during the breaker stage (Rabinowitch et  al., 

1982; Jiménez et al., 2002b; Malacrida et al., 2006; Kumar et al., 

2016). Moreover, analysis of a large RNA-Seq data set available 

for multiple tomato cultivars revealed marked changes in tran-

script abundance of numerous tomato genes encoding SOD, 

CAT, APX, MDAR, DHAR, and GR during tomato fruit rip-

ening (Fig. 3), further suggesting extensive alterations in oxida-

tive metabolism during climacteric ripening.

Because H2O2 content and the activity of antioxidant 

enzymes are co-ordinately changed at the breaker stage (Fig. 4), 

the peak in ROS levels during the tomato fruit climacteric 

phase is currently interpreted as a highly co-ordinated process 

rather than only the by-product of an increase in respiration 

(Jiménez et al., 2002b). Moreover, as the peak in ROS during 

the breaker stage was signi�cantly reduced in fruits of tomato 

ripening-impaired mutants, the rise in oxidant levels has been 

suggested as a signal to fruits to ripen (Kumar et al., 2016).

While suggesting oxidative stress as an integrative factor 

for triggering tomato fruit ripening has a lot of appeal, one 

may still wonder whether the oxidative burst at the beginning 

of the climacteric phase is a cause or a consequence of the 

ripening process. A  de�nite answer to this question is still 

missing, but accumulating evidence supports the hypothesis 

that the rise in oxidants promotes tomato ripening initiation 

Fig. 3. Transcriptional profile of genes encoding antioxidant enzymes during tomato ripening. (A) The ascorbate–glutathione cycle. (B) Heat map 
representation of the expression pattern of tomato genes encoding antioxidant enzymes during tomato ripening. Blue and red correspond to low 
and high relative expression values, respectively. For a given gene and ripening stage, the expression value corresponds to the mean of normalized 
expression available in the TomExpress platform (including all available RNA-Seq data sets). Only genes whose transcript abundance at BK (Breaker), 
OG (Orange), and RR (Red ripe) stages exceeded a 2-fold variation compared with the MG (mature green) stage are presented. AsA, ascorbate; APX, 
ascorbate peroxidase; CAT, catalase; GSH, reduced glutathione; GSSG, oxidized glutathione; GR, glutathione reductase, DHA(R), dehydroascorbate 
(reductase); MDA(R), monodehydroascorbate (reductase); SOD, superoxide dismutase.
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and progression (Mehta et  al., 2002; Mondal et  al., 2004; 

Zhang et  al., 2013). For example, stage-based comparisons 

performed in two tomato cultivars with distinct ripening pat-

terns revealed increased oxidative stress and reduced radical 

scavenging activity in the cultivar with a shorter shelf  life 

(Mondal et al., 2004), implying that disturbances in ROS pro-

duction or scavenging may be associated with the contrast-

ing ripening patterns observed between these two genotypes. 

These data suggest that the tomato fruit ripening process 

may be accelerated when the reduced ROS scavenging activ-

ity results in excess free radicals. Consistent with this, fruit 

shelf  life can be signi�cantly altered in tomato transgenic 

lines engineered for higher antioxidant levels, as revealed by 

the delayed senescence and reduced ROS levels detected in 

anthocyanin-enriched tomato fruits (Zhang et al., 2013) and 

the extended fruit vine life and increased lycopene content 

observed in lines engineered for increased fruit content of 

spermidine and spermine, two polyamines with important 

antioxidant properties (Mehta et al., 2002).

In wild-type tomato fruits, both ascorbate and glutathione 

levels progressively increase during ripening, reinforcing the 

antioxidant defenses as fruit ripening progresses (Fig.  4B; 

Jiménez et  al., 2002b; Mondal et  al., 2004; Murshed et  al., 

2014). Moreover, the glutathione redox state (i.e. reduced 

glutathione/total glutathione) and GR activity also gradually 

increase throughout ripening (Jiménez et al., 2002b; Andrews 

et  al., 2004). Therefore, maximum levels of antioxidants 

such as carotenoids, �avonoids, tocopherols, ascorbate, and 

reduced glutathione are usually detected in fully ripe tomato 

fruits (Fig. 4B), potentially acting as a mechanism to attenu-

ate the intensive oxidative stress observed at the �nal ripening 

stages. Melatonin, another important antioxidant in biologi-

cal systems, also progressively accumulates during tomato 

fruit ripening (Okazaki and Ezura, 2009; Huang and Mazza, 

Fig. 4. Temporal changes in oxidative metabolism during tomato fruit ripening. (A) Representative picture of tomato (Solanum lycopersicum L., cultivar 
Micro-Tom) fruits at different ripening stages. (B) Schematic representation of the temporal changes in ROS metabolism during tomato fruit ripening. 
AsA, ascorbate; APX, ascorbate peroxidase; CAT, catalase; GSH, reduced glutathione; GSSG, oxidized glutathione; GR, glutathione reductase, DHAR, 
dehydroascorbate reductase; MDAR monodehydroascorbate reductase; Prot, protein; SOD, superoxide dismutase.
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2011; Arnao and Hernández-Ruiz, 2014). Interestingly, recent 

pharmacological evidence indicates that melatonin promotes 

ripening in tomato (Sun et al., 2015); however, whether the 

promotive in�uence of this molecule on tomato ripening is 

related to its action as a free radical scavenger or via some 

direct signaling mechanism remains to be determined.

Despite the progressive increases in antioxidant molecules, 

oxidative stress normally intensi�es during the last stages of 

tomato ripening (Jiménez et al., 2002b; Mondal et al., 2004), 

possibly due to a gradual loss in the capacity of antioxidant 

enzymes to scavenge the excessive free radical production 

in over-ripe fruits. This phenomenon has been proposed as 

an integral part of the tomato ripening program since ROS 

may facilitate the induction of metabolic processes typically 

observed at the �nal ripening stages (Jiménez et al., 2002b; 

Dumville and Fry, 2003). Evidence suggests that the ascor-

bate-dependent generation of ROS in the apoplast facilitates 

the non-enzymatic solubilization of plant cell wall polysac-

charides, particularly pectins, thus promoting tomato fruit 

softening (Dumville and Fry, 2003). Moreover, data also 

indicate that the cellular redox state may either directly or 

indirectly regulate the synthesis of compounds typically accu-

mulated in ripening tomato fruits such as carotenoids and 

phenylpropanoids (Fanciullino et al., 2014). According to the 

current theory, the oxidative stress caused by the ripening-

associated oxidative burst may activate fruit redox-sensitive 

systems to regulate carotenoid biosynthesis-related enzymes 

transcriptionally and post-translationally, thus promoting the 

accumulation of these compounds in ripe fruits. Ripening-

associated oxidative stress may also stimulate the conversion 

of fruit chloroplasts into chromoplasts, which in turn also 

facilitates carotenoid synthesis and accumulation within to-

mato fruit tissues (Fanciullino et al., 2014).

The equilibrium between ROS production and scaveng-

ing in plant vegetative tissues can be disturbed by stress 

stimuli (Sharma et al., 2012). Similarly, tomato fruit oxidant 

metabolism is in�uenced by environmental factors such as 

light, salt, temperature, and oxygen availability (Murshed 

et al., 2014, 2013). Salt and drought stress have been shown 

to stimulate a co-ordinated increment in antioxidant levels 

and antioxidant metabolism, and the intensity of  the salt- or 

drought-induced changes in the fruit antioxidant machinery 

seems to depend on the fruit development stage as well as 

the treatment duration and severity (Murshed et al., 2014). 

Signi�cant differences in the fruit antioxidant responses to 

salinity were also observed within distinct tomato cultivars 

(Gautier et al., 2010).

As in other photosynthetically active tissues, the absorp-

tion of solar energy by the chloroplast-rich pericarp cells of 

immature green fruits may surpass the photosynthetic appar-

atus capacity, leading to photo-oxidative stress (Foyer et al., 

1994). As tomato fruits are virtually devoid of functional sto-

mata, it is believed that light-triggered oxidative stress may 

also be linked to increments in photosynthetically produced 

O2 within the fruit tissues (Cocaliadis et al., 2014). The exces-

sive ROS production under these circumstances may lead to 

fruit plastid bleaching and other agronomical disorders such 

as fruit cracking and heterogeneous ripening. The incidence 

of these agronomical disorders is particularly high in tomato 

cultivars possessing the functional Golden 2-like 2 (GLK2) 

transcription factor gene, which promotes fruit chloroplast 

development (Powell et al., 2012) and consequently increases 

the incidence of oxidative stress under high light conditions 

(Cocaliadis et  al., 2014). The increased susceptibility of 

tomato fruits at mature green and breaker stages to sunscald 

is believed to be associated with the increased superoxide 

production when the photosynthetic apparatus begins to be 

dismantled, giving rise to chromoplasts (Rabinowitch et al., 

1982). Light irradiation has been shown to regulate tomato 

fruit ascorbate and carotenoid accumulation (Alba et  al., 

2000; Gautier et al., 2008, 2009; Bianchetti et al., 2017), but 

the direct in�uence of light on other components of tomato 

fruit antioxidant metabolism remains to be investigated.

In vegetative tissues, temperature stress usually promotes 

ROS production and stimulates ROS detoxi�cation systems 

(Suzuki and Mittler, 2006). As high temperatures accelerate 

fruit metabolism and ripening, low temperatures are fre-

quently employed to extend fruit shelf  life before human 

consumption. However, tomato fruit is especially sensitive to 

chilling injury due to oxidative stress and other physiological 

disturbances when storage is below 10 oC (Malacrida et al., 

2006; Biswas et al., 2016). Studies revealed a positive correl-

ation between MDAR activity and ascorbate levels in tomato, 

particularly during chilling stress, designating this enzyme as 

a priority target for genetically engineering increased post-

harvest chilling resistance (Stevens et al., 2008). Accordingly, 

fruit shelf  life under freezing stress was signi�cantly improved 

in tomato introgression lines exhibiting increased fruit MDAR 

activity (Stevens et al., 2008) whereas fruit tolerance to chill-

ing was slightly reduced in tomato MDAR-down-regulated 

lines (El Airaj et al., 2013). Besides ascorbate, polyamines are 

among the antioxidant compounds typically accumulated in 

cold-treated tomato fruits (Goyal et al., 2016). In line with 

this, the chilling injury symptoms on tomato fruits can be 

ameliorated either by treating wild-type fruits with polyam-

ines or by engineering tomato fruits for the overaccumulation 

of these compounds (Javanmardi et  al., 2013; Goyal et  al., 

2016). Numerous studies also indicate a pivotal role for poly-

amines in regulating chilling responses during tomato vegeta-

tive growth (Song et al., 2014; Diao et al., 2017).

Physiological disorders related to oxidative stress can also 

be observed following fruit storage under controlled atmos-

phere conditions. In mature green tomato, post-anoxia stress 

has been demonstrated to trigger a rapid and co-ordinated 

up-regulation of all ascorbate-related biosynthetic and recy-

cling genes, resulting in a transitory increase in ascorbate lev-

els (Ioannidi et al., 2009). This agrees with the key role played 

by ascorbate in attenuating the burst in ROS production usu-

ally observed within the �rst hours after aerobic conditions 

are re-established (Ioannidi et al., 2009).

Ripening-associated changes in tomato fruit nitrosative 
metabolism

While the metabolism and interaction of NO and other RNS 

in tomato vegetative development and stress responses are 
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increasingly well described (Manai et al., 2014; Melo et al., 

2016; Wen et al., 2016), the nitrosative metabolism and sign-

aling during tomato fruit development and ripening are far 

from being well understood. Most of the current knowledge 

on the relationship between NO and tomato fruit ripening is 

based on pharmacological approaches (Eum et al., 2009; Lai 

et  al., 2011). NO supplementation via either fumigation or 

treatments with NO donors [e.g. sodium nitroprusside (SNP)] 

were demonstrated to delay tomato fruit ripening (Eum et al., 

2009; Lai et al., 2011). An antagonistic interaction between 

NO and ethylene metabolism seems to be responsible for the 

delayed-ripening phenotype of NO-treated tomato fruits, as 

indicated by the reduced ethylene emission detected in both 

intact and fresh-cut tomato fruits exposed to NO treatment 

(Eum et al., 2009; Aboul-Soud, 2010; Lai et al., 2011). The 

exact mechanism behind NO-triggered negative impacts on 

climacteric ethylene production in tomato is far from being 

completely elucidated; however, it seems to involve changes in 

the transcript abundances of speci�c ACS and ACO tomato 

genes (Eum et al., 2009; Aboul-Soud, 2010; Lai et al., 2011). 

In vitro studies suggest that NO may also post-translationally 

regulate ACS and ACO activities (Tierney et al., 2005; Zhu 

et al., 2006); however, the actual implications of such regula-

tory mechanisms during tomato fruit ripening remain unex-

plored. The antagonistic relationship between ethylene and 

NO has also been described during tomato vegetative growth 

(Melo et al., 2016), suggesting some level of conservation of 

this signaling interaction across vegetative and reproductive 

tissues.

Corroborating the pharmacological evidence, recent 

data revealed a delayed-ripening phenotype in fruits of 

the NO-overaccumulating tomato mutant short root (shr) 

(Bodanapu et  al., 2016). Fruit size and metabolite levels in 

the shr mutants signi�cantly differ from that in their wild-

type counterparts; however, as the shr impacts NO levels 

throughout plant vegetative and reproductive growth (Negi 

et  al., 2010) and its molecular nature still remains elusive 

(Bodanapu et  al., 2016), further genetic evidence is still 

required to explain mechanistically the relationship between 

endogenous NO levels and tomato fruit ripening initiation 

and progression.

Very limited information is currently available on the bio-

synthesis, conjugation, and removal of NO and other RNS 

in tomato fruits. However, accumulating data reveal that NO 

production during tomato vegetative growth may involve ei-

ther nitrate reductase (NR) (Graziano and Lamattina 2007; 

Shi et  al., 2015; Melo et  al., 2016) or nitric oxide synthase 

(NOS)-like activities (Negi et al., 2010; Yang et al., 2016). In 

tomato fruit tissues, the application of L-NAME (NG-nitro-L-

arginine methyl ester), an inhibitor of animal NOS enzymes, 

reduced NO and ethylene levels, resulting in delayed ripening 

(Yang et al., 2016). Moreover, some of the phenotypical differ-

ences of the shr mutant have been successfully rescued via the 

application of L-NAME, but remained unchanged upon the 

inhibition of NR activity (Negi et al., 2010). However, since 

L-NAME is an arginine analog, negative collateral impacts in 

global amino acid metabolism and protein synthesis cannot 

be ruled out in these pharmacological approaches.

The mechanisms and relevance of RNS and ROS interaction 

during tomato fruit development and ripening also remain 

elusive. However, data obtained in tomato vegetative tissues 

indicate that NO treatments can signi�cantly alter both ROS 

production and antioxidant metabolism (Manai et al., 2014). 

SNP application has been shown to reduce H2O2 contents and 

increase SOD, APX, and GR activities in tomato leaf tissues 

(Manai et  al., 2014). Conversely, Laxalt et  al. (2007) showed 

that NO was crucial for phosphatidic acid production which, 

in turn, caused an increase in ROS production in tomato cells. 

Moreover, Piterkova et al. (2013) found that NO and ROS inter-

act synergistically to promote the accumulation of a heat-shock 

protein in tomato leaves in response to wounding or heat stress. 

A complex interaction involving NO, ROS, ethylene, and sali-

cylic acid has been demonstrated in tomato cells (Gémes et al., 

2011; Poór et  al., 2013, 2015). Whether similar ROS, RNS, 

and hormonal interactions also take place during tomato fruit 

development and ripening remains to be determined.

Biotechnological applications

It is increasingly evident that both climacteric and non-

climacteric ripening are accompanied by marked changes 

in nitro-oxidative metabolism, which, in turn, may regulate 

ripening-associated processes ranging from modi�cations in 

texture to the accumulation of health-promoting compounds 

(Dumville and Fry, 2003; Fanciullino et al., 2014). Although 

the judicious manipulation of key components of fruit nitro-

oxidative metabolism has enormous potential to adjust agro-

nomically important traits of fruit crops, very few attempts to 

genetically engineer ROS or RNS metabolism in fruit tissues 

have been carried out (Stevens et al., 2008; Javanmardi et al., 

2013; Goyal et al., 2016 ).

Table  3 summarizes some bene�cial effects of exogenous 

applications of NO to both climacteric and non-climacteric 

fruits. In general, NO supplementation has been observed to 

have a bene�cial impact, especially during post-harvest han-

dling given its promotion of fruit quality preservation and 

consequent crop loss reduction. The �nely tuned regulatory 

mechanism, through which NO in�uences fruit ripening, has 

not been fully characterized. Nevertheless, it has been observed 

that NO is capable of repressing ethylene metabolism and sign-

aling, while, at the same time, inducing antioxidative enzymes 

which, in turn, prevent oxidative damage. Given the increas-

ingly reported effectiveness of NO supplementation in extend-

ing fruit shelf life and quality (Manjunatha et al., 2010), other 

gas transmitters with regulatory properties similar to those 

observed for NO, such as hydrogen sul�de (H2S), are now being 

explored for this purpose (Hu et al., 2012; Zhu et al., 2014).

In the speci�c case of C.  annuum, it has recently been 

reported that the application of NO gas (5  ppm for 1  h) to 

sweet pepper fruits at the breaking point stage delays ripen-

ing, as previously described for tomato and other climacteric 

fruits. However, the most important �nding of this study is the 

concomitant increase (24%) in ascorbate content, as a conse-

quence of a simultaneous increment in GalLDH activity and 

gene expression (Rodríguez-Ruiz et  al., 2017a). These data 

highlight the dual bene�cial effects of NO. These involve, �rst, 
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post-harvest regulation of pepper fruit by delaying the ripening 

process and, secondly, increased antioxidant capacity and con-

sequent greater health value for consumers due to higher vita-

min C content (not yet described with regard to other fruits).

Conclusions and future perspectives

Up to now, the reported data indicate that ROS and RNS 

metabolism are prominently involved in pepper and tomato 

fruit ripening, which, according to stress parameters such 

as lipid oxidation and protein nitration, could be classi�ed 

as nitro-oxidative stress. The ripening-associated changes in 

fruit nitro-oxidative metabolism are an integral part of the 

biochemical and genetic reprogramming required for the pro-

gression of both climacteric and non-climacteric ripening. 

This physiological phenomenon can therefore be categorized 

as ‘nitro-oxidative eustress’, a term already used in animal 

biology to describe a stress situation linked to bene�cial 

effects in living systems (Sies, 2017).

Despite the considerable recent advances made in character-

izing ROS and RNS metabolism in climacteric and non-climac-

teric fruits, signi�cant gaps in information remain. For example, 

the discovery of genes and gene networks associated with the 

regulation of ROS and RNS metabolism through analysis 

of transcriptome, proteome, and/or metabolome data could 

facilitate the identi�cation of candidate genes for reverse genet-

ics and biotechnological applications in both climacteric and 

non-climacteric crop fruits. The application of such technolo-

gies to fruit ripening under NO-enriched conditions could pro-

vide important information to improve fruit nutritional quality, 

minimize economic losses due to precocious fruit deteriora-

tion during production and transportation, and also provide 

the safety features required by present-day consumers. Tomato 

and pepper, two representative crop species of the Solanaceae 

family with contrasting ripening behaviors, appear to be par-

ticularly promising model species to decipher further the key 

components and regulatory mechanisms associated with ROS 

and RNS homeostasis and signaling during both climacteric 

and non-climacteric fruit ripening.
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