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Abstract: Nitrogen balance index (NBI) is an important indicator for scientific diagnostic and quan-
titative research on crop growth status. The quick and accurate assessment of NBI is necessary for
farmers to make timely N management decisions. The objective of the study was to estimate winter
wheat NBI based on canopy hyperspectral features between 400–1350 nm combined with machine
learning (ML) methods in the individual and whole growth stages. In this study, 3 years of winter
wheat plot experiments were conducted. Ground-level canopy hyperspectral reflectance and corre-
sponding plant NBI values were measured during the jointing, booting, flowering and filling stages.
Continuous removal spectra (CRS) and logarithmic transformation spectra (LOGS) were derived
from the original canopy spectra. Sensitive bands and vegetation indices (VIs) highly correlated with
NBI under different spectral transformations were selected as hyperspectral features to construct
the NBI estimation models combined with ML algorithms. The study indicated that the spectral
transformation significantly improved the correlation between the sensitive bands, VIs and the NBI.
The correlation coefficient of the sensitive band in CRS in the booting stage increased by 27.87%,
reaching −0.78. The leaf chlorophyll index (LCI) in LOGS had the highest correlation with NBI in
the filling stage, reaching a correlation coefficient of −0.96. The NBI prediction accuracies based
on the sensitive band combined with VIs were generally better than those based on the univariate
hyperspectral feature, and the prediction accuracy of each growth stage was better than that of the
whole growth stage. The random forest regression (RFR) method performed better than the support
vector regression (SVR) and partial least squares regression (PLS) methods. The NBI estimation
model based on the LOGS-RFR method in the filling stage could explain 95% of the NBI variability
with relative prediction deviation (RPD) being 3.69. These results will provide a scientific basis for
better nitrogen nutrition monitoring, diagnosis, and later for field management of winter wheat.

Keywords: nitrogen balance index; hyperspectral feature; vegetation index; machine learning

1. Introduction

Nitrogen (N) content is second only to carbon in crops and is an important component
of proteins, nucleic acids, enzymes, chlorophyll, and other cellular metabolites [1,2]. Farm-
ers generally agree that high N fertilization ensures crop growth and increases yields [3].
However, N fertilizer that exceeds the needs of the plant is not only detrimental to plant
growth, but also causes environmental pollution and fertilizer waste [4,5]. Therefore, ad-
justing the N application rate according to the needs of crops is a key factor to improve
nitrogen utilization efficiency [6–8]. The primary task to achieve this goal is to quickly and
accurately assess the N status of crops [9,10].

During crop growth, once leaves and plants are deficient in nitrogen, the contents of
chlorophyll (Chl) decreases and epidermal polyphenolics (Phen) increase [11]. The nitrogen
balance index (NBI) is defined as the ratio of chlorophyll to epidermal flavonoids (Chl/Flav),
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and it is used for assessing the N nutrition of crops in precision agriculture [12]. Epidermal
flavonoids belong to epidermal polyphenolics, which are part of a large branch of epidermal
polyphenolics [13]. NBI corresponds to the chlorophyll concentration corrected by the dry
leaf mass per unit area [14]. It is considered to be an important fluorescence parameter as
well as an indicator of the N content of crops. NBI is much less sensitive to phenology and
reflects the N availability better than either Chl or Phen used individually [15]. Cerovic et al.
(2015) confirmed that NBI was the best estimator of leaf nitrogen content (LNC) measured
by the Dumas or Kjeldahl method with a root mean square error (RMSE) smaller than 2 mg
of N g−1 dry weight and proposed NBI threshold values for grapevines under different
N deficiency conditions [16]. Generally, the higher the NBI values, the more sufficient the
N content, and the higher the nitrogen utilization efficiency [17,18]. It was also capable
of indirect evaluation of in-season soil NO3

− N accumulation [19], crop yield and crop
quality (protein content, etc.) [20]. Chen et al. (2021) found that the NBI was significantly
positively correlated with LNC, shoot nitrogen accumulation, and yield. It could be used
for rapid N nutrition diagnosis and yield prediction of super high-yield hybrid rice [21].
Recent studies showed that hyperspectral remote sensing technology has become a major
development trend in monitoring the N content of crops due to its high spectral resolution,
simplicity, effectiveness, and non-destructiveness [22–24]. Hyperspectral features, such
as reflectance of sensitive band, “three edge” parameters, and vegetation indices (VIs)
were used to identify sensitive regions to specific crop parameters [25]. Numerous studies
showed the feasibility of using hyperspectral remote sensing for real-time monitoring of
crop N nutrition status [26], such as leaf chlorophyll content (LCC) [27], LNC [28], leaf
nitrogen accumulation (LNA) [29], plant nitrogen concentration (PNC) [30], plant nitrogen
uptake (PNU) [31], nitrogen nutrition index (NNI) [32], etc. VIs by comprehensive analyses
on canopy spectral reflectance from visible to near-infrared light were regarded as the most
important hyperspectral features for monitoring crop N content. Xu et al. (2021) found
that coverage-adjusted spectral indices (CASIs) accurately estimated the LNC of maize [33].
Zhao et al. (2018) developed a normalized difference spectral index (NDSI (R710, R512)) for
maize NNI estimation. They found that the performance was better than the existing
vegetation indices (ratio vegetation index (RVI) and modified soil adjusted vegetation index
(MSAVI)) [34]. The research by Peng et al. (2021) showed that sensitive bands and the VIs
derived from different platforms were equally suited as input predictors for assessing plant
N status, including the PNU, PNC and NNI [31].

Recently, multiple Vis of hyperspectral features from transformed spectra and machine
learning (ML) techniques have been combined and are widely used to build predictive
models with improved prediction accuracy. Li et al. (2019) showed that hyperspectral
features from log transformation spectra (LOGS) and continuous removal transformation
spectra (CRS) could improve the wheat LNC estimation to different degrees compared
with raw canopy spectra [35]. Guo et al. (2021) found that the best LNA estimation model
could be constructed by support vector machine (SVM) regression when the reflectance
values of the chlorophyll absorption band were normalized with the CRS [29]. Additionally,
artificial neural network (ANN) and random forest (RF) algorithms all showed promising
performance in crop N monitoring using hyperspectral remote sensing [36]. Overall,
hyperspectral remote sensing can be used for precision nutrient management to assess
plant N status in a real-time manner.

Thus far, less is known about the ability to estimate NBI using hyperspectral remote
sensing. Studies have shown that NBI was closely related to VIs that characterize crop
growth status [37]. However, limited to a few VIs, we need to add more VIs to reflect the
degree of response to NBI. Quemada et al. (2014) found a significant correlation between
the transformed chlorophyll absorption in the reflectance index/optimized soil-adjusted
vegetation index (TCARI/OSAVI) and NBI based on hyperspectral indices obtained from
field observation data and airborne images in the study of N fertilizer implementation in
maize [38]. Li et al. (2015) found that the dark color green index (DGCI) was significantly
correlated with NBI and could be used to explain 77.1% of the variability in NBI [11].
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The challenges are to further confirm the response of sensitive bands and VIs to NBI and
increase the estimation accuracy of NBI. Since crop N changes over the course of plant
growth, early nitrogen status is closely related to crop growth, while nitrogen status at
maturity determines crop yield. Further research should be conducted to understand how
accurately it can be estimated during hyperspectral remote sensing under different spectral
processing and modeling methods in each growth stage.

Therefore, based on the canopy hyperspectral reflectance of winter wheat, the objec-
tives of this study are to: (1) find the hyperspectral features (sensitive bands and VIs) highly
correlated with NBI under different spectral transformations in each growth stage and the
whole growth stage; (2) analyze whether the sensitive bands and VIs under transformed
spectra can enhance the correlation between original spectra and NBI; (3) explore the poten-
tial of ML algorithms in NBI estimation. The research results will provide a technical basis
for the potential application of hyperspectral remote sensing technology in N monitoring
and diagnosis in winter wheat production.

2. Materials and Methods
2.1. Experimental Design

Field trials of winter wheat were conducted are the Northwest A&F University ex-
perimental station in the Yangling Agricultural Demonstration Zone, Shaanxi Province
(34◦14′N, 108◦10′E), and Qinan village, Xianyang City, Shaanxi Province, China (34◦38′N,
108◦07′E). The soil types in both stations were loam. The common winter wheat cultivar
“Xiaoyan 22” was planted in early October and harvested at the end of May of the following
year. N, P and K fertilizers in the two experimental sites were broadcast at one time before
planting. No top-dressing was applied during the growing season. Field management
measures were the same as local conventions.

A total of 40 plots were established in the Qinan experimental station in 2016 (36 small
plots and 4 on-farm plots). Three treatments and six levels in each treatment were conducted
in 36 small plots. Each treatment had only one nutrient rate being changed. Each plot
area was 9 × 10 m. Six N rates (0, 30, 60, 90, 120 and 150 kg/ha), six P rates (0, 22.5, 45,
67.5, 90 and 112.5 kg/ha) and six K rates (0, 15, 30, 45, 60 and 75 kg/ha) were applied and
replicated twice. The basal fertilizers for N, P and K treatments were applied with 60 kg/ha
K2O and 45 kg/ha P2O5, 60 kg/ha K2O and 90 kg/ha N, and 90 kg/ha N and 45 kg/ha
P2O5. In the 4 on-farm plots, each plot was about 480 m2. The rates of N were 0, 60, 120
and 180 kg/ha. The basal P and K fertilizers were 60 and 45 kg/ha.

In 2017 and 2020, 20 small plots were set up at the Northwest A&F University station.
Each plot was 5.5 × 6 m. Replicated N and P fertilizer rate trials involved the application of
N fertilizer at 0, 45, 90, 135 and 180 kg/ha for each treatment. The application of K fertilizer
was 0, 22.5, 45, 67.5 and 90 kg/ha for each treatment.

2.2. Data Collection
2.2.1. Hyperspectral Data Determination

The canopy spectrum of winter wheat in each growth stage was measured by using
the SVC HR-1024I field spectroradiometer during the period of 10:30–14:00 in sunny and
windless weather. The wavelength range was 350–2500 nm, with spectral resolutions of 3.5,
9.5 and 6.5 nm at 350–1000, 1000–1850 and 1850–2500 nm, respectively [35]. A 25◦ viewing
angle lens was set one meter above the winter wheat canopy and vertically downward
during the observation. The sensor was calibrated using a standard whiteboard before
each measurement and was set to repeat 10 times during each measurement. Two sample
points were taken in the diagonal direction of each plot, and the mean value of the spectral
measurements of the sample points was the canopy spectrum of the plot. In this study, the
canopy spectrum of winter wheat was measured at the jointing, booting, flowering and
filling stages.
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2.2.2. Determination of NBI

After canopy hyperspectral measurements, the NBI of winter wheat was determined
using Dualex Scientific+ (Force-A, Orsay, Paris, France). Dualex Scientific+ is a new multi-
function leaf measuring instrument, which can accurately measure the chlorophyll content
of leaves, flavonoids and anthocyanin content of leaf surface in real time non-destructively.
The chlorophyll content was calculated from the far-red light absorbed by chlorophyll
and the transmittance of near-infrared light as a reference. The flavonoid content and
anthocyanin content were calculated from the different ratios of chlorophyll fluorescence
in the epidermis of leaves. The nitrogen balance index is the ratio of chlorophyll and
flavonoids. When the plant was in a healthy state, the chlorophyll content was high,
and the polyphenols (flavonoids) produced at this time were relatively small. Once the
plant was deficient in nitrogen, it would affect the synthesis of chlorophyll and produce
large amounts of polyphenols (flavonoids). Therefore, by measuring the nitrogen balance
index of plants, the nitrogen nutrition status of plants can be quickly and effectively
evaluated, which is more advantageous than the traditional single chlorophyll evaluation
method [12,39]. The instrument calibration was completed before the NBI measurement
following instructions of the manufacturer. Nine fresh leaves from the two sample points
were measured and averaged as the NBI value in each plot. Each leaf was measured 3 times
from petiole to leaf tip (avoiding the vein part), taking the average as the NBI value of
each leaf [13]. Through the experiments, 248 sample data were obtained. The number of
samples in each growth stage was 56, 60, 76 and 56.

2.3. Canopy Hyperspectral Transformation

Due to the influence of the instrument itself and background environmental factors,
the canopy hyperspectral data contained not only the spectral signals of ground objects
but also noise information. Among them, there were several strong absorption interference
locations corresponding to moisture of the instrument at 1350–2500 nm. Studies have
shown that the spectral reflectance in the visible–near-infrared band was closely related
to nitrogen accumulation [23]. Therefore, this study performed an NBI analysis based on
hyperspectral reflectance in the range of 400–1350 nm. The collected spectral data were
resampled to the interval of 1 nm. With a quadratic polynomial and 9 smoothing points,
the Savitzky–Golay smoothing filter was used for fitting and filtering to remove noise from
the resampled reflectance spectral curve. The denoised hyperspectral spectrum was labeled
as the original spectrum (OS). In this study, two different spectral transformations were
performed to extract the sensitive bands and VIs. CRS was obtained by normalizing the
absorption valley in the spectral curve onto the continuum line of the absorption valley,
so that the spectral absorption characteristics and hyperspectral features could be better
analyzed and selected [40]. LOGS was determined by calculating a log function of the
spectral reflectance’s reciprocal, which could improve the sensitivity of canopy spectra to
NBI [41].

2.4. Selection of VIs

The VI is defined as the combination of reflectance in a certain specific wavelength,
which is related to leaf pigment, photosynthesis, and plant growth. Twenty-three VIs highly
correlated with plant N status were selected for this analysis. The calculation and literature
source of each VI are presented in Table 1.

2.5. Model Development

Hyperspectral features, including sensitive bands and vegetation indices (VIs), highly
correlated with NBI under different spectral transformations were selected as independent
variables. The Dualex-measured NBI values were the dependent variable. The univariate
regression (UR), partial least squares regression (PLS), random forest regression (RFR) and
support vector regression (SVR) methods were used to construct the NBI estimation models.
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Table 1. VIs and their definitions in this study (Ri denotes spectral reflectance at i nm).

Spectral Indices Definitions

OSAVI (Optimized soil-adjusted vegetation index) [38] (1 + 0.16) (R800 − R670)/(R800 + R670 + 0.16)
mSR705 (Modified red edge simple ratio index) [42] (R750 − R445)/(R705 − R445)

MTCI (MERIS terrestrial chlorophyll index) [35] (R754 − R709)/(R709 − R681)
SIPI (Structure intensive pigment index) [25] (R800 − R445)/(R800 − R680)

NPCI680 (Normalized pigment chlorophyll index) [25] (R680 − R430)/(R680 + R430)
NRI (Nitrogen reflectance index) [35] (R570 − R670)/(R570 + R670)

NDRE (Normalized difference red-edge) [35] (R790 − R720)/(R790 + R720)
DCNI (Double-peak canopy nitrogen index) [42] (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03)

GNDVI (Green normalized difference vegetation index) [35] (R750 − R550)/(R750 + R550)

MCARI2 (Modified triangular vegetation index 2) [35] 1.5(1.2(R800 − R550) − 2.5(R670 − R550))/
sqrt((2R800 + 1)2 − (6R800 − 5sqrt(R670)) − 0.5)

CI red (Red-edge chlorophyll index) [43] R790/R720 − 1
CI green (Green chlorophyll index) [43] R790/R550 − 1

RVI800 (Ratio vegetation index) [43] R800/R680
NDCI (Normalized difference chlorophyll index) [44] (R762 − R527)/(R762 + R527)

GRVI (Green ratio vegetation index) [25] (R620 − R506)/(R620 + R506)
TCARI (Transformed chlorophyll absorption in reflectance index) [38] 3 [(R700 − R670) − 0.2(R700 − R550)/(R700/R670)]

NPCI642 (Normalized pigment chlorophyll index) [25] (R642 − R432)/(R642 + R432)
PPR (Plant pigment ratio) [25] (R503 − R436)/(R503 + R436)

NDSI (Normalized difference spectral index) [25] (R813 − R763)/(R813 + R763)
LCI (Leaf chlorophyll index) [25] (R850 − R710)/(R850 − R680)

PRI (Photochemical reflectance index) [42] (R570 − R539)/(R570 + R539)
VOG (Vogelman red edge index) [42] R740/R720

REP LI780 (Red edge position: linear interpolation method) [42] 700 + 40 [(R670 + R780)/2 − R700]/(R740 − R700)

2.5.1. Univariate Regression

Univariate regression refers to a method in which there is only one independent
variable correlated with one dependent variable [41]. In this study, the hyperspectral
feature was used as an independent variable to build the NBI univariate regression model
(NBI-UR), in which the exponential, linear, logarithmic, polynomial and power functions
were tried.

2.5.2. Partial Least Squares Regression

PLS is a combination of multiple linear regression analysis, canonical correlation
analysis and principal component analysis. It is a commonly used multivariate statistical
regression method to deal with the highly collinear variables, which is useful in dealing
with a small number of samples in the spectral analysis [45]. In this study, the number
of latent variables is selected on the basis of the standard error of leave-one-out cross-
validation. Modeling and parameter optimization were performed based on Matlab2019a
software and Minitab19 software.

2.5.3. Random Forest Regression

RFR is an ensemble ML method for building decision trees by bootstrap sampling and
random subspace methods. During the operation, only randomly selected predictors are
used for each tree. The final prediction result is determined by the average of all decision
trees. The “ntree” (the number of decision trees) and “mtry” (the number of segmentation
nodes) are two key parameters that need to be optimized in RFR. In this study, “mtry” was
set to 1/3 of the number of independent variables, as suggested by Breiman (2018) [46], and
“ntree” was trained through tuneGrid, and the value of “ntree” as 500 was finally selected.
This process was implemented in the randomForest package of the R statistical software.

2.5.4. Support Vector Regression

As an ML method, SVR transforms the actual problem into a high-dimensional feature
space and constructs a linear decision function in high-dimensional space corresponding
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to a nonlinear decision function in the original space. It can subtly solve the dimensional
problem and ensure good generalization ability, and the algorithm complexity is not related
to the sample dimension [47]. In this study, the radial basis function (RBF) kernel and
grid search method were used to select the optimal parameters for SVR-based NBI model
building. The penalty parameter (C) and the kernel parameter (γ) were optimized within
[2−1–21] and [e−2–e4], respectively. The process was carried out in the e1071 package of the
R statistical software.

2.6. Evaluation Metrics for Model Accuracy

The sample data of each growth stage were randomly divided into a modeling dataset
and a validation dataset according to the radio of 2:1. The dataset in each stage was pooled
together as the dataset of the whole growth stage (Sall). The description of NBI is shown in
Table 2. The determination coefficient (R2), RMSE and relative prediction deviation (RPD)
were used for model verification. R2 and RMSE indicate the degree of fit and the degree
of deviation between the predicted and the measured NBI values. RPD evaluates the
predictive ability of a model by measuring the relative deviation between the predicted and
measured values. It is an indicator of the reliability and usefulness of the model [48]. The
higher the R2 and the lower the RMSE, the better the prediction model for NBI. Models with
RPD < 1.5 are not convincing, models with 1.5 < RPD < 2.0 have a good ability to estimate
samples, and RPD > 2.0 indicates that the model has an excellent ability to interpret the
dependent variable. The calculation of RPD is shown in Formula (1):

RPD = SD/RMSE (1)

where SD and RMSE are the standard deviation and root mean square error of the validation
set respectively.

Table 2. Statistics of winter wheat NBI ground truth measurements in each growth stage. (Sall

presents the whole growth stage; the same as below).

Dataset Growth Stage Sample
Numbers Range Mean Standard

Deviation
Coefficient of
Variation/%

Modeling set

Jointing 37 15.06–28.87 23.56 3.61 15.32
Booting 40 16.95–33.23 26.83 4.02 14.98

Flowering 51 12.13–32.44 24.85 4.99 20.08
Filling 37 10.16–33.45 23.49 6.81 28.99

Sall 165 10.16–33.23 24.74 5.14 20.78

Validation set

Jointing 19 16.48–29.62 23.72 3.60 15.18
Booting 20 18.99–32.84 26.85 3.94 14.67

Flowering 25 13.15–30.89 24.68 4.98 20.18
Filling 19 11.69–33.39 23.87 6.82 28.57

Sall 83 11.69–33.39 24.79 5.17 20.86

3. Results
3.1. Descriptive Analysis of Nitrogen Balance Index

Ground truth measurement statistics of winter wheat nitrogen balance index (NBI) in
each growth stage are shown in Table 2. NBI values ranged from 10.16 to 33.39, and the
coefficient of variation varied from 14.67% to 28.99%. The greatly varying NBI values of
winter wheat reflect the effective utilization of N in different growth stages. N accumulated
continuously before the booting stage. The mean values of NBI decreased from the booting
to the filling stage due to the dilution effects [49]. The largest coefficient of variation was
found in the filling stage, with values of 28.99% in the modeling set and 28.57% in the
validation set. The coefficient of variation values were relatively uniform at other growth
stages, indicating moderate temporal variation. The small difference between modeling
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and validation sets in mean and standard deviation metrics enhanced the feasibility of
the study.

3.2. Hyperspectral Features and Nitrogen Balance Index
3.2.1. Sensitive Bands and NBI

Figure 1 shows the correlation coefficient between the transformed spectra and ground
truth NBI measurements in each growth stage of winter wheat. Figure 1a shows that the
correlation coefficient values were quite different from the visible and near-infrared bands.
The significant change at the red edge indicated that spectral reflectance in this region
was particularly sensitive to N content in crop leaves [29]. At the jointing, booting, filling
and Sall stages, the OS was positively correlated with NBI below 760 nm and negatively
correlated above 760 nm. The OS and NBI were always positively related at the flowering
stage. Under the LOGS, the correlation was opposite to that of OS in each growth stage. The
correlation between the CRS and NBI fluctuated strongly. The CRS and LOGS increased
differences in the correlation coefficient for visible light, especially at the flowering stage
(Figure 1b). According to the principle of highest correlation, the sensitive band positions
of each transformation spectrum in each growth stage were screened as shown in Table 3.
All the sensitive bands passed the significance test. The locations of sensitive bands were
in the range of 692–1336 nm, 10 of which were in the visible light region. The sensitive
bands of CRS were negatively correlated with NBI in each growth stage. The highest
correlation coefficient values with NBI at the jointing, booting, filling and Sall stages were
given by the CRS, with values of −0.79, −0.78, −0.95 and −0.63, respectively. LOGS
performed the best in the flowering stage, and the correlation coefficient was −0.62. On the
whole, the correlation between the transformed spectrum and NBI was stronger than that
of the original canopy spectrum, indicating that the spectral transformation significantly
improved the sensitivity of the canopy spectrum to NBI.
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Figure 1. Correlations between different spectra and nitrogen balance index in each growth stage.
(a) Different spectral transformations at the same growth stage; (b) The same spectral transformation
at different growth stages (Sall presents the whole growth stage. OS, CRS, LOGS represent original
spectrum, continuous removal spectrum, and logarithmic transformation spectrum, respectively).

3.2.2. VIs and NBI

Figure 2 showed the correlation between VIs and NBI under different transformed
spectra of winter wheat in different growth stages. In the jointing stage, all the VIs except
for TCARI and NDSI in OS, and NDSI and mSR705 in CRS, passed the 0.01 significance
test. In the booting stage, the NRI performed poorly under different transformations. In
the flowering stage, 47.83%, 43.48% and 82.61% of VIs in OS, CRS, and LOGS, respectively,
were correlated with NBI at the significance level of 0.01. In the filling stage, except for
DCNI in LOGS, and mSR705 in CRS, all the other VIs were significantly correlated with
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NBI. Most of the absolute values of the correlation coefficient between VI and NBI were
above 0.8, indicating a good response of VI to NBI in filling stage. In the Sall stage, only the
NDSI in OS and CRS failed the significance test of 0.01. Overall, the spectral transformation
had little effect on improving the correlation between VI and NBI. VIs that passed 0.01
significance for all growth stages included OSAVI, GNDVI, NDCI, GRVI, NPCI642 and LCI.

Table 3. Locations of sensitive bands in each growth stage and their correlation with ground truth
NBI measurements (Sall presents the whole growth stage. OS, CRS, and LOGS present the original
spectrum, continuous removal spectrum, and logarithmic transformation spectrum, respectively).

Growth
Stage

OS CRS LOGS

Wavelength/nm Correlation
Coefficients Wavelength/nm Correlation

Coefficients Wavelength/nm Correlation
Coefficients

Jointing 929 0.72 733 −0.79 867 −0.75
Booting 709 −0.61 749 −0.78 1135 −0.62

Flowering 748 0.60 1336 −0.45 784 −0.62
Filling 692 −0.87 736 −0.95 694 0.87

Sall 817 0.59 708 −0.63 817 −0.60
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Figure 2. The correlation coefficient between VI and nitrogen balance index in each growth stage. JO,
BO, FL, FI, and Sall present jointing, booting, flowering, filling, and the whole growth stage, respec-
tively. OS, CRS, LOGS represent original spectrum, continuous removal spectrum, and logarithmic
transformation spectrum, respectively. The size of the circle represents the absolute value of the
correlation coefficient, and the color represents the level of the correlation coefficient. The higher the
value, the bigger the circle and the darker the color.

3.3. NBI Estimation Model

After analyzing the correlations between 23 VIs and NBI under different transformed
spectra in each growth stage, it was found that the correlation coefficient values between
VIs and NBI at each growth stage were quite different; thus, it was not appropriate to
choose a unified VI for further research, and it was necessary to use different VIs for further
research. Therefore, in combination with the sensitive band, the top five VIs significantly
correlated with NBI at the 0.01 level were selected in each growth stage to build the
multivariate models for NBI. Since there were two VIs with the same correlation coefficient
in the jointing stage, seven characteristic parameters were finally involved in the model
construction. Six characteristic parameters were used for the model construction in each of
the other growth stages. The selected hyperspectral features are listed in Table 4.
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Table 4. The feature variables used for model construction in each growth stage (SB means sensitive
band, Sall means the whole growth stage).

Growth Stage Variables

Jointing SB, NDRE, GNDVI, CI red, CI green, NDCI, VOG
Booting SB, MTCI, NDRE, CI red, LCI, REP, LI780

Flowering SB, OSAVI, NPCI680, GRVI, NPCI642, PPR
Filling SB, MTCI, NDRE, CI red, LCI, VOG

Sall SB, OSAVI, NDRE, NDCI, LCI, REP, LI780

3.3.1. Univariate Regression Model for NBI Estimation (NBI-UR)

Taking the sensitive band and the optimal VI in OS, CRS and LOGS as independent
variables, a univariate regression model of winter wheat NBI in each growth stage was
established. Figure 3 illustrates the R2 and RMSE of each estimation model, and the
explanatory power of the best estimation model for each growth stage is presented in
Figure 4. Under different transformation spectra, the explanatory power of NBI at the
filling stage was the highest, followed by the jointing stage and the booting stage, and the
NBI explanatory power at the flowering stage and the Sall stage was poor.
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Figure 3. R2 and RMSE distributions of the univariate model under different spectral transfor-
mations in each growth stage (OS, CRS, LOGS, R2, RMSE and Sall represent original spectrum, con-
tinuous removal spectrum, logarithmic transformation spectrum, determination coefficient, root 
mean square error, and the whole growth stage, respectively). 

Figure 3. R2 and RMSE distributions of the univariate model under different spectral transformations
in each growth stage (OS, CRS, LOGS, R2, RMSE and Sall represent original spectrum, continuous
removal spectrum, logarithmic transformation spectrum, determination coefficient, root mean square
error, and the whole growth stage, respectively).
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Figure 4. Distribution of measured and predicted univariate regression model values of winter 
wheat nitrogen balance index (OS, CRS, LOGS, R2, RMSE, RPD, and Sall represent original spec-
trum, continuous removal spectrum, logarithmic transformation spectrum, determination coeffi-
cient, root mean square error, relative prediction deviation, and the whole growth stage, respec-
tively). 
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Figure 4. Distribution of measured and predicted univariate regression model values of winter
wheat nitrogen balance index (OS, CRS, LOGS, R2, RMSE, RPD, and Sall represent original spectrum,
continuous removal spectrum, logarithmic transformation spectrum, determination coefficient, root
mean square error, relative prediction deviation, and the whole growth stage, respectively).

From the jointing to the filling stage, the best hyperspectral feature for NBI was LOGS-
NDCI, CRS749, LOGS-OSAVI and CRS736, which explained 67%, 63%, 53% and 93% of the
variation in NBI, respectively. The best parameter in the Sall stage was LOGS-LCI, which
explained only 48% of the variability in NBI. On the whole, most of the NBI-UR models
were simple nonlinear models. In each growth stage, the models constructed by the VI
were better than the sensitive band with OS. The explanatory power of the NBI estimation
models constructed by univariate parameters under CRS and LOGS was higher than that
of the OS models. It was expected that VIs could eliminate the influence of vegetation
coverage and growth status to a certain extent through the combination of characteristic
bands, and they could improve the responsiveness to NBI [50]. However, the models
constructed with the VI did not significantly improve the estimation ability of NBI, which
was consistent with the previous studies on LNA in winter wheat with hyperspectral
reflectance [29].

3.3.2. Multivariate Regression Model for NBI Estimation (NBI-MR)

Previous studies have demonstrated that the explanatory power of the estimation
model constructed using multiple VIs was higher than for models constructed using a
single VI. Using multiple VI could effectively improve the prediction power of physiological
and biochemical parameters of crops [51]. In this study, the multivariate regression (MR)
models were constructed by using the sensitive band combined with the optimal VI under
the different transformation spectrums in each growth stage. The R2 and RMSE of each
estimation model are shown in Figure 5, and the scatter plot of the best estimation model
for each growth stage is shown in Figure 6.

From the jointing to the filling growth stage, the best multivariate models for predicting
NBI were OS-RFR, CRS-SVR, OS-SVR and LOGS-RFR, which could explain 72%, 65%, 80%
and 95% of the NBI variation, respectively (Figure 5). All the NBI-MR models in the filling
stage had an excellent ability to estimate NBI. In the Sall stage, the R2 of the best estimation
model was improved from 0.48 (LOGS-LCI model) to 0.72 (LOGS-RFR model). Overall, the
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combination of multiple variables improved the explanatory power of NBI estimation. As
a multiple regression model, the performance of PLS was better than that of the univariate
regression model in each growth stage. The explanatory power of the winter wheat NBI
model constructed based on an ML algorithm was higher than that of the PLS model, and
the distribution of the measured and the estimated NBI values was closer to the 1:1 line.
The RFR model showed high prediction power in the modeling sets of each and the whole
growth stage, but for the validation set, the RFR and SVR models performed unevenly
in different growth stages, which may indicate an overfitting problem in the modeling
process [45].
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Figure 5. R2 and RMSE distributions of multivariate models under different spectral transformations 
in each growth stage (OS, CRS, LOGS, R2, RMSE, Sall, PLS, RFR, and SVR represent original spec-
trum, continuous removal spectrum, logarithmic transformation spectrum, determination coeffi-
cient, root mean square error, the whole growth stage, partial least squares regression, random for-
est regression, and support vector regression, respectively). 
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Figure 6. Distribution of measured and multivariate regression model-predicted values of winter 
wheat nitrogen balance index (OS, CRS, LOGS, R2, RMSE, RPD, Sall, PLS, RFR, and SVR represent 
original spectrum, continuous removal spectrum, logarithmic transformation spectrum, determina-
tion coefficient, root mean square error, relative prediction deviation, the whole growth stage, par-
tial least squares regression, random forest regression, and support vector regression, respectively). 

3.4. Model Accuracy Comparison 
As shown in Figure 7, the RPD values of the best NBI-UR models were 3.68, 1.67, 

1.61, 1.46 and 1.38 at the filling, jointing, booting, flowering and Sall stages, respectively. 
The prediction accuracy results of the NBI-UR models demonstrated that the estimation 
ability was better in each growth stage than that in the Sall stage (Figure 4). The NBI-UR 
models in the filling stage could accurately evaluate the NBI distribution. In this stage, the 
RPD of all sets of the NBI-UR models was greater than 2.0, except for the sensitive band 
at 692 nm in OS. The RPD values of each model based on the VI in LOGS at the jointing 
stage and the sensitive band at 749 nm in CRS at the booting stage were higher than 1.50. 
All the NBI-UR models in the flowering and Sall stage were less than 1.5. 

As shown in Figure 8, the RPD values of the best NBI-MR models were 3.69, 2.00, 
1.88, 1.80 and 1.69 at the flowering, booting, Sall, filling and jointing stages, respectively. 
The NBI model by LOGS-RFR in the filling stage was outstanding, with the best RPD at 

Figure 5. R2 and RMSE distributions of multivariate models under different spectral transformations
in each growth stage (OS, CRS, LOGS, R2, RMSE, Sall, PLS, RFR, and SVR represent original spectrum,
continuous removal spectrum, logarithmic transformation spectrum, determination coefficient, root
mean square error, the whole growth stage, partial least squares regression, random forest regression,
and support vector regression, respectively).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

O
S-

PL
S

O
S-

RF
R

O
S-

SV
R

CR
S-

PL
S

CR
S-

RF
R

CR
S-

SV
R

LO
G

S-
PL

S
LO

G
S-

RF
R

LO
G

S-
SV

R
O

S-
PL

S
O

S-
RF

R
O

S-
SV

R
CR

S-
PL

S
CR

S-
RF

R
CR

S-
SV

R
LO

G
S-

PL
S

LO
G

S-
RF

R
LO

G
S-

SV
R

O
S-

PL
S

O
S-

RF
R

O
S-

SV
R

CR
S-

PL
S

CR
S-

RF
R

CR
S-

SV
R

LO
G

S-
PL

S
LO

G
S-

RF
R

LO
G

S-
SV

R
O

S-
PL

S
O

S-
RF

R
O

S-
SV

R
CR

S-
PL

S
CR

S-
RF

R
CR

S-
SV

R
LO

G
S-

PL
S

LO
G

S-
RF

R
LO

G
S-

SV
R

O
S-

PL
S

O
S-

RF
R

O
S-

SV
R

CR
S-

PL
S

CR
S-

RF
R

CR
S-

SV
R

LO
G

S-
PL

S
LO

G
S-

RF
R

LO
G

S-
SV

R0.0

0.2

0.4

0.6

0.8

1.0 RMSE

R2

Jointing Booting Flowering FillingR2 Sall

2

4

6

8

10

RM
SE

 
Figure 5. R2 and RMSE distributions of multivariate models under different spectral transformations 
in each growth stage (OS, CRS, LOGS, R2, RMSE, Sall, PLS, RFR, and SVR represent original spec-
trum, continuous removal spectrum, logarithmic transformation spectrum, determination coeffi-
cient, root mean square error, the whole growth stage, partial least squares regression, random for-
est regression, and support vector regression, respectively). 

8 12 16 20 24 28 32 36

8

12

16

20

24

28

32

36

8 12 16 20 24 28 32 36

8

12

16

20

24

28

32

36

8 12 16 20 24 28 32 36

8

12

16

20

24

28

32

36

Pr
ed

ic
te

d 
N

B
I

Measured NBI

OS-RFR
y = 0.58x + 9.98
R2 = 0.72
RMSE = 2.19
RPD = 1.80

Jointing

Pr
ed

ic
te

d 
N

B
I

Measured NBI

CRS-SVR
y = 0.62x + 10.20
R2 = 0.65
RMSE = 2.60
RPD = 1.69

Booting

Pr
ed

ic
te

d 
N

B
I

Measured NBI

OS-SVR
y = 0.63x + 9.72
R2 = 0.80
RMSE = 2.75
RPD = 2.00

Flowering

8 12 16 20 24 28 32 36

8

12

16

20

24

28

32

36

8 12 16 20 24 28 32 36

8

12

16

20

24

28

32

36

Pr
ed

ic
te

d 
N

BI

Measured NBI

LOGS-RFR
y = 0.87x + 3.15
R2 = 0.95
RMSE = 1.96
RPD = 3.69

Filling

Pr
ed

ic
te

d 
N

BI

Measured NBI

Sall
LOGS-RFR
y = 0.68x + 8.19
R2 = 0.72
RMSE = 2.84
RPD = 1.88

 
Figure 6. Distribution of measured and multivariate regression model-predicted values of winter 
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tion coefficient, root mean square error, relative prediction deviation, the whole growth stage, partial
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3.4. Model Accuracy Comparison

As shown in Figure 7, the RPD values of the best NBI-UR models were 3.68, 1.67, 1.61,
1.46 and 1.38 at the filling, jointing, booting, flowering and Sall stages, respectively. The
prediction accuracy results of the NBI-UR models demonstrated that the estimation ability
was better in each growth stage than that in the Sall stage (Figure 4). The NBI-UR models in
the filling stage could accurately evaluate the NBI distribution. In this stage, the RPD of all
sets of the NBI-UR models was greater than 2.0, except for the sensitive band at 692 nm in
OS. The RPD values of each model based on the VI in LOGS at the jointing stage and the
sensitive band at 749 nm in CRS at the booting stage were higher than 1.50. All the NBI-UR
models in the flowering and Sall stage were less than 1.5.
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Figure 7. RPD distribution of univariate models under different spectral transformations in each
growth stage (ROS, CRS, LOGS, RPD, and Sall represent original spectrum, continuous removal
spectrum, logarithmic transformation spectrum, relative prediction deviation, and the whole growth
stage, respectively).

As shown in Figure 8, the RPD values of the best NBI-MR models were 3.69, 2.00, 1.88,
1.80 and 1.69 at the flowering, booting, Sall, filling and jointing stages, respectively. The NBI
model by LOGS-RFR in the filling stage was outstanding, with the best RPD at 3.69, and the
lowest RPD greater than 2.0. Some of the NBI estimation models had a good explanatory
ability with RPD values greater than 1.5 and less than 2.0 at other growth stages. The RFR
algorithm had better accuracy than PLS and SVR in NBI estimation.
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Figure 8. RPD distribution of multivariate models under different spectral transformations in each
growth stage (OS, CRS, LOGS, R2, RMSE, RPD, Sall, PLS, RFR, and SVR represent original spectrum,
continuous removal spectrum, logarithmic transformation spectrum, determination coefficient, root
mean square error, relative prediction deviation, the whole growth stage, partial least squares
regression, random forest regression, and support vector regression, respectively).

From the comparison of the best NBI-UR and NBI-MR models, the NBI-MR models
significantly improved the estimation accuracy of NBI in each growth stage, especially
in the flowering and Sall stages (Figure 9). The NBI-MR estimation models significantly
improved the estimation accuracy of NBI in each growth stage (Figure 9), especially during
the flowering and the whole growth stages. The R2 and RPD of the best estimation models
for the flowering stage were improved from 0.53 (LOGS-OSAVI) to 0.80 (OS-SVR), and
from 1.46 to 2.00, respectively. The R2 of the Sall stage was increased from 0.48 (LOGS-LCI)
to 0.72 (LOGS-RFR), and the RPD was increased from 1.38 to 1.88. On the whole, estimating
NBI in each growth stage was more accurate than in the whole growth stage (Sall), and the
performance in each growth stage was significantly different. The NBI estimation model
in the filling stage was the highest in both the NBI-UR and NBI-MR models. The best
NBI-MR model based on the RFR algorithm could be used for accurate NBI estimation in
each growth stage.
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4. Discussion

N is a key nutrient required to maintain crop growth. NBI can quickly provide
feedback on the N nutrition of crops. For real-time assessment and monitoring of NBI,
studies have been conducted using passive and active remote-sensing techniques [18,19].
In this study, the relationship between winter wheat canopy hyperspectral reflectance at
400–1350 nm and NBI estimation was explored. Based on sensitive bands and VIs, NBI-
based N monitoring models were constructed in different growth stages using different
regression methods.
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4.1. Feasibility of Sensitive Bands and VIs to Estimate NBI

The positions of the sensitive bands in each growth stage and Sall stage were roughly
the same both in the visible and near-infrared regions (Table 3), which might be attributed to
the fact that the spectral reflectance in these regions was closely related to the Chl of winter
wheat [52]. Meanwhile, chlorophyll content proved to be the best predictor for monitoring
N status [22]. The most important criteria for choosing a VI are high correlation with the
target variable (NBI in this case) and low sensitivity to other confounding factors [53]. The
23 VIs selected in the study were highly correlated with NBI because NBI was quantitatively
correlated with LNC [15]. However, these VIs responded differently across different growth
stages. This study found that some VIs performed better in all growth stages of winter
wheat and were selected as the best VI in some growth stages, such as NDRE, CI red and
LCI. Among them, the NDRE was the ratio of near-infrared and red edge reflectance, which
could more sensitively reflect the chlorophyll content of vegetation and could still be used
as one of the options in future research.

It was found that sensitive bands and VIs under transformed spectra (CRS and LOGS)
were more sensitive to NBI than the OS. The correlation between the sensitive bands
and VIs with NBI in the flowering growth stage was inferior to that of other individual
growth stages, despite the spectral transformation. The main reason was that in this
growth stage, there was senescence in canopy leaves, which led to a decline in the quality
of spectral information, indicating that crop status was significantly different between
different growth stages and seasons [54]. This did not mean that the selected VI had a
weak correlation with NBI. After integrating data across all growth stages, it was found
that the correlation between NBI and a single VI decreased significantly. Individual VI
had varying relationships with canopy characteristics at different growth stages, likely as a
result of changes in canopy biomass and LNC. These changes in VI accuracy affected the
accuracy of predicting NBI as a whole. A similar phenomenon was also found in the study
by Gitelson et al. (2017) [55].

4.2. Potential for Estimating NBI in Each Growth Stage

LNC changes over the course of plant growth. Monitoring crop N status at different
time periods is of interest to guide crop management, as the development of growth stages
is accompanied by changes in canopy structure and N allocation [56]. For early growth
stages, monitoring N status is critical to help guide fertilization strategies [57], while in the
growing stage near maturity, N status will determine the quality of the grain [58]. Previous
studies showed different views on the optimal growth stage for physical and chemical
parameter inversion in different crops. Li et al. (2021) explained that the flowering and
filling stages were the best timing for leaf area index (LAI) estimation [59]. The results of
Zhang et al. (2021) revealed that the use of the whole growth stage model could obtain a
better prediction effect of the above-ground biomass of maize than any individual growth
stage [60]. Cerovic et al. (2015) recommended performing leaf N diagnosis somewhere
between flowering and canopy closure [16].

Our results revealed that the NBI estimation accuracy was higher in individual growth
stages than across all growth stages, and the NBI prediction model in the filling growth
stage was stable and had the highest accuracy. This might be because the NBI takes into
account not only the surface-based variability in N needs in the photosynthetic machinery
but also the variation in leaf mass per area (LMA). Studies have shown that when biomass
dominates canopy reflectivity, the rate of aboveground biomass production exceeded the
rate of N uptake by plants. Conversely, when plant N dominates canopy reflectivity,
biomass increased more slowly [61]. Therefore, N content was sufficient when winter
wheat gradually approached the mature stage. The accurate monitoring of N nutrition in
the filling stage is of great significance for the prediction of winter wheat grain quality in
the later growth stages [62]. LNA at the jointing and booting stages accounts for almost half
of the total N accumulation in these key periods for the formation of crop yield and quality
and has large implications for precision fertilization and field management decisions [63].
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During these periods, it is necessary to provide timely feedback to farmers on nitrogen
status. Therefore, improving the NBI estimation accuracy at these stages is the most
important task in future research. We speculate that spectral information that highlights
seasonally important growth stage features and spatial texture features can be studied to
further improve the prediction accuracy of NBI monitoring.

4.3. Model Selection for NBI

In this paper, the NBI-UR and NBI-MR models were used to estimate the NBI of winter
wheat. Only a few sensitive bands and VIs met the estimation accuracy requirements
(RPD > 1.5) in the NBI-UR models. NBI-MR models provided better performance than
NBI-UR models. For example, LOGS-OSAVI in the NBI-UR models was the best for
predicting NBI in the flowering stage with R2 and RPD values of 0.53 and 1.46, respectively.
In contrast, the OS-SVR in NBI-MR models greatly improved the NBI accuracy with R2

and RPD values of 0.80 and 2.0, respectively. A significant improvement also was found
during the Sall stage. The reason why the NBI-MR model performed better in each growth
stage was that the MR model involved multiple hyperspectral features and fully exploited
the potential of hyperspectral data information. However, different MR methods yielded
highly variable estimation accuracy. The PLS model is a promising technique that could
be integrated into crop monitoring systems. Although there was a certain overfitting
phenomenon in machine learning, they were more suitable for solving some nonlinear
problems as long as the parameters were adjusted accurately [41]. Wang et al. (2020)
compared the effects of MK-SVR, multiple linear regression, PLS, and neural network
methods in estimating leaf nitrogen concentration and found that the MK-SVR model
was the most accurate [64]. Studies confirmed that the SVR and RFR models had similar
advantages in estimating orchard apple chlorophyll content [25]. Our results showed that
although the NBI-UR model was computationally simple and highly interpretable, its
accuracy and reproducibility were low due to less use of rich spectral information. Thus,
the NBI-UR models were not recommended. Compared with the NBI-MR model, the PLS,
RFR and SVR models could use more band information to establish the model, which had
higher accuracy and better stability in estimating NBI. Overall, the ML methods in this
study performed better in the estimation of NBI in different growth stages, and the RFR
model had the highest accuracy in each growth stage.

4.4. Challenges and Future Research

Based on the commonly used sensitive bands and VIs related to nitrogen, the NBI
estimation models for different growth stages and the whole growth stage were constructed
in this study. Although good prediction accuracy has been achieved, in terms of sensi-
tive band screening, the canopy hyper-spectra may not be expressed prominently. New
algorithms, such as successive projections algorithm (SPA) [65], uninformative variable
elimination (UVE) [66] and competitive adaptive reweighted sampling (CARS) [67], could
be combined to further improve the accuracy and stability of the NBI prediction, especially
in the key growth stages. In addition, further verification research based on different
locations and years is needed to expand the applicability of the NBI models.

5. Conclusions

Canopy spectroscopy can be used to estimate the NBI of winter wheat crops and
provide effective information to help decide on N fertilization in precision farming systems.
This study showed that from the jointing stage to the filling stage, the sensitive bands of
the original hyperspectral of NBI located at 929, 709, 748, 692 and 817 nm, and the corre-
lation coefficients with NBI were 0.72, −0.61, 0.60, −0.87 and 0.59, respectively. Spectral
transformation significantly improved the correlation between the sensitive bands and NBI.
The prediction accuracies of the NBI-MR models based on the sensitive band combined
with the VIs were better than that of the NBI-UR models. The best NBI estimation model
was obtained by the LOGS-RFR method in the filling stage (R2 = 0.95, RPD = 3.69). This
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study can provide a more accurate NBI estimation model for monitoring the nitrogen
status of winter wheat and can provide a theoretical basis for subsequent crop yield and
quality research.
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