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Abstract 

Elevated anthropogenic nitrogen (N) deposition has greatly altered terrestrial ecosystem 

functioning, threatening ecosystem health via acidification and eutrophication in temperate 

and boreal forests across the northern hemisphere. However, response of forest soil 

acidification to N deposition has been less studied in humid tropics compared to other 

forest types. This study was designed to explore impacts of long-term N deposition on soil 

acidification processes in tropical forests. We have established a long-term N deposition 

experiment in an N-rich lowland tropical forest of Southern China since 2002 with N 

addition as NH4NO3 of 0, 50, 100 and 150 kg N ha-1 yr-1. We measured soil acidification 

status and element leaching in soil drainage solution after 6-year N addition.  

Results showed that our study site has been experiencing serious soil acidification and 

was quite acid-sensitive showing high acidification (pH(H2O)<4.0), negative water-extracted 

acid neutralizing capacity (ANC) and low base saturation (BS,< 8%) throughout soil profiles. 

Long-term N addition significantly accelerated soil acidification, leading to depleted base 

cations and decreased BS, and further lowered ANC. However, N addition did not alter 
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exchangeable Al3+, but increased cation exchange capacity (CEC). Nitrogen addition-induced 

increase in SOC is suggested to contribute to both higher CEC and lower pH. We further 

found that increased N addition greatly decreased soil solution pH at 20cm depth, but not at 

40cm. Furthermore, there was no evidence that Al3+ was leaching out from the deeper soils. 

These unique responses in tropical climate likely resulted from: exchangeable H+ dominating 

changes of soil cation pool, an exhausted base cation pool, N-addition stimulating SOC 

production, and N saturation. Our results suggest that long-term N addition can contribute 

measurably to soil acidification, and that shortage of Ca and Mg should receive more 

attention than soil exchangeable Al in tropical forests with elevated N deposition in the 

future. 

 

Introduction  

Anthropogenic acid deposition, resulting from increased emissions of SO2 from fossil-fuel 

combustion and NOx from high-energy combustion and agricultural fertilization has greatly 

modified global biogeochemical cycles of nitrogen (N) and sulfur (S) (Vitousek et al., 1997) 

and has resulted in acidification of the biosphere (Galloway, 2001; Bouwman et al., 2002; 

Hicks et al., 2008). Soil acidification has been recognized as a major environmental issue in 

many temperate and boreal regions (Likens et al., 1996; Yang et al., 2012), causing declines 

in terrestrial biodiversity (Bobbink et al., 2010; Lu et al., 2010; Chen et al., 2013)and forest 

productivity (Högberg et al., 2006), and threatening ecosystem health (Bouwman et al., 

2002; Krupa et al., 2003; Burns et al., 2008). 

Although SO2 emissions have declined across Europe and eastern North America since 

the 1990s (Oulehle et al., 2011) and in China since 2005 (Fang et al., 2013), the contribution 
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of anthropogenic N to acid deposition has been an increasing concern, with human activities 

accelerating the globalization of N deposition, which increases at a mean global rate of 105 

Tg N yr-1 (Galloway et al., 2004; Dentener et al., 2006). Currently, 11% of the world’s natural 

vegetation receives N deposition in excess of 10 kg N ha-1 yr-1 (Dentener et al., 2006; Pardo 

et al., 2011). Continuous atmospheric N deposition to terrestrial ecosystems can lead to 

pronounced soil acidification (Van Breemen et al., 1984), resulting in a net decrease in soil 

pH and acid neutralization capacity (ANC) of the soils (Larssen & Carmichael, 2000; Hédl et 

al., 2011). Soils typically go through a transition of different buffering ranges during 

acidification accompanied by weathering and release of different elements (Ulrich, 1986; 

Bowman et al., 2008). Although soils are buffered by bicarbonate in the pH range above 6.5, 

cation exchange between H+ and base cations (Ca2+, Mg2+, K+, and Na+) is the main buffering 

mechanism for acid soils in the pH range 4.2–5.0. Once base cations have been exhausted, 

aluminum (Al) is mobilized from soils, with soil pH buffered by Al compounds at low pH 

(<4.2). These processes are well demonstrated in temperate regions, especially in Europe 

and North America (Krug & Frink, 1983; Boxman et al., 2008; Gruba et al., 2013), where 

atmospheric N deposition commonly exceeds the critical loads of ecosystems, leading to N 

saturation (Aber et al., 1998; Fenn et al., 2006; Thimonier et al., 2010; Pardo et al., 2011). 

Accordingly, acid deposition generally causes persistent declines in soil base cation pool (or 

base saturation, BS), leaching of sulfate and nitrate ions and Al, and acidification of soils and 

surface waters; meanwhile, elevated Al mobilization with its toxicity to soil biota is a 

common characteristic in acidified soil (Dise et al., 2001; Edwards et al., 2002; Driscoll et al., 

2003; Högberg et al., 2006; Warby et al., 2009). 
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Our understanding of how N deposition affects soil acidification is based largely on work 

in temperate ecosystems of the North Hemisphere (Aber et al., 1998; Krusche et al., 2003; 

Boxman et al., 2008; Lu et al., 2009). Comparable data are generally lacking for tropical 

regions, where soil acidification is typically recognized as a major pedogenetic process that 

occurs when precipitation exceeds evapotranspiration (von Uexkull & Mutert, 1995; Larssen 

et al., 1999). Nitrogen cycling in tropical systems is different from those of temperate, 

because tropical forest ecosystems are often N-rich (or N-saturated), with high soil N 

availability, rapid rates of N cycling, and the lack of N limitation to NPP (Matson et al., 1999; 

Wright et al., 2011; Brookshire et al., 2012). Thus, N deposition is less likely to increase 

primary productivity of tropical ecosystems, but may alter other aspects of the N cycle 

(Townsend et al., 1996). Meanwhile, many tropical soils are poorly buffered against acid 

deposition because they are highly weathered with low base cation pools (Sollins et al., 

1988; Matson et al., 1999). As a result, conclusions based on studies conducted in 

temperate regions are of little relevance for the tropics under elevated N deposition. 

   The purpose of this study was to experimentally test how long-term N deposition affects 

soil acidification process in a tropical forest. In 2002, we established long-term N deposition 

research plots in a typical N-rich lowland tropical mature forest at Dinghushan Biosphere 

Reserve of Southern China, where atmospheric N deposition rates are commonly above 19 

kg N ha-1 yr-1  (Mo et al., 2006; Lü and Tian, 2007; Lu et al., 2010, 2013). In fact, long-term 

records have shown a significant decrease in soil pH at this reserve over the past three 

decades (Fig. 1), but reasons remain unclear. Here, we hypothesize that: (1) tropical forests 

are vulnerable to excess inputs of N, with N additions decreasing soil buffering capacity and 
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accelerating soil acidification; and (2) because of their highly-weathered nature, tropical 

forest soils will be more sensitive to N additions than those from temperate forests, as seen 

in changes in acidity of soil and soil solution, soil exchangeable cations, BS, CEC. and cation 

leaching dynamics. 

 

Materials and methods 

Study Site 

We carried out our study at Dinghushan Biosphere Reserve (DBR), an UNESCO/MAB site 

located in the middle of Guangdong Province in southern China (112º10' E, 23º10' N). The 

reserve covers an area of 1,155 ha within the subtropical/tropical moist forest life zone. The 

monsoon climate of this site averages 1927 mm precipitation per years with approximately 

75% occurring between March and August, and 6% between December and February.  

Relative humidity averages 80% throughout the year. Mean annual temperature is 21.0 °C, 

ranging from mean coldest in January (12.6 °C) and hottest in July (28.0 °C). DBR has 

experienced high rates of atmospheric N deposition (21-38 kg N ha-1 yr-1 as inorganic N in 

bulk precipitation) since 1990’s (Huang et al., 1994; Lu et al., 2013 and references there). In 

2009-2010, total wet N deposition was 34.4 kg N ha-1 yr-1, with 18.2 kg ha-1 dissolved 

inorganic N (7.7 kg ha-1 NO3
--N and 10.5 kg ha-1 NH4

+-N, respectively) and 16.2 kg ha-1 

dissolved organic N (calculated as differences between total dissolved N and dissolved 

inorganic N), respectively (Lu et al., 2013); total wet S deposition was 32.6 kg S ha-1 yr-1(2009 

July-2010 June; Xiankai Lu, unpublished data).  
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We established the research site in the monsoon evergreen broadleaf forest in 2002 

between 250 and 300 m above sea level. According to 14C measurement, forest stands have 

been protected from direct human disturbance for > 400 years (Shen et al., 1999).  These 

support a rich assemblage of plant species, most of which are evergreen tree species native 

to the tropics and subtropics.  These include Castanopsis chinensis Hance, Schima superba 

Chardn. & Champ., Cryptocarya chinensis (Hance) Hemsl., Cryptocarya concinna Hance, 

Machilus chinensis (Champ. Ex Benth.) Hemsl., and Syzygium rehderianum Merr. & Perry. 

Canopy closure is typically above 95% (Lu et al., 2010). Soils are oxisols (lateritic red earths) 

formed from sandstone approximately 30 cm to 70 cm in depth. 

 

Experimental treatments 

Nitrogen addition experiments were initiated in July 2003, with four N addition rates used: 

Control (0 N added), Low-N (50 kg N ha-1 yr-1), Medium-N (100 kg N ha-1 yr-1) and High-N (150 

kg N ha-1 yr-1). A buffer strip of at least 10-m width surrounded each of 12 10-m x 20-m 

plots, with plots and treatments replicated in triplicate and randomly located within the 

study area.  Monthly applications of NH4NO3 solution were added by hand to the forest 

floor of these plots as 12 equal applications over the whole year. Fertilizer was weighed and 

mixed with 20 L of water, with solution added via backpack sprayer below the canopy. Two 

passes were made across each plot to ensure an even distribution of fertilizer. Control plots 

received an equivalent volume of deionized water. 
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Field soil sampling and laboratory analysis 

Soil samples were collected in August 2009 with a 5-cm-diameter corer at 10 cm depth 

intervals down to 40 cm depths, where bedrocks exist widely. For the 0–10 cm soils, the 

cores were taken beneath the loose litter layer (Oi) and were comprised of Oe and Oa 

horizon plus mineral soil to a total depth of 10 cm. The corer was then driven to a depth of 

20 cm to collect the sample from the 10-20 cm depth. By using this method, the 20-30 cm 

and 30-40cm soils were collected, respectively. Three randomly selected locations were 

sampled in each plot. Altogether, there were three subsamples for each layer per plot. In 

the laboratory, soils from each subsample were sieved (2 mm) to remove roots and stones, 

and mixed thoroughly by hand for subsequent chemical analysis. We analyzed each 

subsample separately. We got an average value from the data of three subsamples, and 

then had a further statistical analysis. 

 

   Soil pH was measured with a glass electrode using a 1:2.5 soil-water suspension. 

Exchangeable cations (H+, K+, Na+, Ca2+, Mg2+, Al3+, Fe3+) and water-soluble ions (K+, Na+, 

Ca2+, Mg2+, NH4
+, NO3

-, SO4
2-, F-, Cl-) were extracted with 0.1mol/L BaCl2 (50:1, solution:soil) 

and deionized water (5:1, water: soil), respectively. After centrifugation and filtration 

through 0.45 μm cellulose–acetate filters, the filtrates were analyzed for cations and anions. 

Exchangeable H+ and Al3+ were determined by NaOH neutralization titration after BaCl2 

extraction. Cations of K+, Na+, Ca2+, Mg2+ and Fe3+ were determined using an  inductively 

coupled plasma optical emission spectrometer (ICP-OES, Perkin Elmer, USA.). Water-soluble 
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inorganic nitrogen (NH4
+-N and NO3

--N) was measured using a Lachat QC8000 Flow Injection 

Analyzer. Anions of SO4
2-, F- and Cl- were determined using Dionex DX-120 

Ion-Chromatography. Total soil organic carbon (SOC) was measured by dichromate 

oxidation before titration with Fe2+ solution.  Subsamples of soil were oven-dried at 105°C 

to a constant weight (at least 24 hr) to allow reporting soil results on an oven-dry basis.  

 

Field water sampling and laboratory analysis 

We collected soil solution from all plots at 20 cm and 40 cm soil depth in the studied forest. 

At 20 cm soil depth, two replicate zero-tension tray lysimeters (755 cm2 per tray) per plot 

were installed in April/May 2003 three to four months before the experiment. Each 

lysimeter was connected to a 10 L bottle using site slope to facilitate water flow and 

sampling. At 40 cm soil depth, two acid-washed ceramic suction cup lysimeters (except in 

one of the medium-N plots due to its shallow soil and rocky substrate) were installed per 

plot to sample percolating water. The applied suction was -50 kPa, and water sample was 

collected about 24 hours later.  

Water samples were taken from May 2009 to July 2010. We took soil solution samples 

after each rain event (especially for heavy rainstorm events). Altogether, there were 

thirty-six samplings: three samplings/month in May-July, October and December, 2009, and 

May and July, 2010; two samplings/month in August and September, 2009, and 

January-April, and June, 2010; and one sampling in November, 2009. For all soil solution 

samples, water volume was recorded and combined into one for the same soil layer within a 
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plot on the date of collection. Water collectors were washed with distilled water 

immediately after each collection. All water samples were filtered through 0.45 mm micron 

filters within 24-48 h of collection in the laboratory, and later stored in plastic bottles at 4°C 

until later chemical analysis. Concentrations of NH4
+-N, NO3

--N, K+, Na+, Ca2+, Mg2+, Al3+ and 

Fe3+ and water pH (before filtration) were determined for each sample date as described 

above.  

 

Data analyses 

ANC was calculated as the difference between sum of water-soluble base cations and sum 

of water-soluble acid anions on an equivalent basis (Vogt et al., 2006); that is, 

water-extracted ANC= (2[Ca2+] + 2[Mg2+] + [K+] + [Na+] + [NH4
+]) - (2[SO4

2−] + [NO3
−] + [Cl−] + 

[F−]). ANC was used in this study because ion-exchange occurs at the interface between 

mineral and solution and ANC of waters is commonly used to quantify the sensitivity of 

drainage water to acidification (Sullivan et al., 1989; Hemond, 1990; Neal et al., 1999). Soil 

cation exchange capacity (CEC) was calculated as sum of exchangeable cations (i.e., K+, Na+, 

Ca2+, Mg2+, H+, Al3+, Fe3+) on an equivalent basis. Fraction of Al and base cations (i.e., K+, Na+, 

Ca2+, Mg2+) in CEC were calculated as soil Al saturation and soil base saturation (BS), 

respectively (Mulder and Stein, 1994). We also calculated the relative composition of soil 

exchangeable cations, expressed as percentage charge of total CEC. To investigate how 

solubility of Al responded to elevated N addition in the acid forest soils, we estimated the 

activities of Al in soil solutions, using the methods developed in acid forest soils (Mulder and 
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Stein, 1994; Gruba and Mulder, 2008). The activities of free Al were calculated from the 

concentrations of Al and DOC (published data in Lu et al., 2013) and solution pH, after ionic 

strength (fixed at 0.001 mol/L) and temperature (at 25°C) correction using Visual MINTEQ 

(http://vminteq.lwr.kth.se/download/; verified on 13 June, 2014).  

 

Repeated measures analysis of variance (ANOVA) was performed to examine the effects 

of N treatments on the leaching dynamics (monthly average) of soil solution chemistry (i.e., 

concentrations of NH4
+-N, NO3

--N, Al3+, Ca2+, Mg2+, and pH) during the study period. 

One-way ANOVA with Fisher LSD (Least-significant difference) multiple range test was 

employed to identify N treatment effects on soil exchangeable cations, BS, CEC, soil pH, 

SOC, and ANC. A paired t-test was applied to the differences of these parameters between 

soil depths. We used Pearson correlation analysis to address the relationships between soil 

solution cations (Ca, Mg and Al) and inorganic N, pH, and N treatment levels at 20 cm and 40 

cm soil depth. We conducted the planned contrast analysis to test differences between 

Control plots and N-treatment plots. Linear regression analysis was also used to examine the 

relationships between CEC and SOC in soils, and relationships between the solubility of Al 

and solution pH in soil solutions. Because concentrations of Al3+ were below detection in 

most solution samples at 40cm soil depth, we only focused on the activities of Al3+ at 20 cm 

soil depth. All analyses were conducted using SPSS 14.0 for Windows® (SPSS, Chicago, IL, 

USA), with significant differences set with P < 0.05, unless otherwise stated. 
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Results  

Soil pH and water-extracted acid neutralizing capacity (ANC) 

Soil pH was commonly less than 4.0 in all plots, and increased significantly with increased 

soil depth (Fig. 2a). Nitrogen additions decreased soil pH, and the decreases were significant 

under the Medium-N and High-N treatments in the upper 0-30 cm depth. ANC was typically 

negative (< -0.3 m molc/kg) across all plots for any soil layer (Fig. 2b). Nitrogen additions 

further decreased ANC in all soil layers; these decreases were significant under High-N 

treatments at 0-10 cm soil, and under the Medium-N and High-N treatments at 10-30 cm 

soil depth. 

 

Soil exchangeable cations 

In control plots, concentrations of soil exchangeable cations decreased significantly with 

depth (Fig. 3). For the given soil layer, elevated N additions significantly increased soil 

exchangeable H+, especially for the upper three layers (Fig 3a), but decreased soil 

exchangeable Ca2+ and Mg2+ in all layers (Fig. 3 c and d). However, N treatments generally 

had no significant effects on soil exchangeable Al3+, K+ and Na+ at any soil layer (Fig. 3 b, e 

and f). 

Al3+ and H+ accounted for more than 90% of total exchangeable cations, with the 

dominant component being Al3+, comprising about 60-90% of the total (Fig. 4). Base cations 

(K+, Na+, Ca2+ and Mg2+) accounted for less than 10% of total exchangeable cations, and Fe3+ 
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accounted for less than 1% of the total along the soil profiles. However, elevated N 

additions significantly increased the relative proportion of H+, which had become the 

second-most important exchangeable cation, while relative proportion of Al3+decreased 

greatly, especially in the upper layers (Fig. 4). Meanwhile, relative proportion of base cations 

decreased significantly in N-treatment plots at any soil layer.  

Soil BS was typically less than 8% at all soil layers. The decreases in base cations (Ca2+ 

and Mg2+) significantly lowered soil BS with N additions at any soil layer (Fig. 5a). At 0-10 cm 

layer, for example, BS was 7%, 6%, 5% and 5% in the Control, Low-N, and Medium-N and 

High-N treatments, respectively. However, soil CEC increased greatly at 0-10 cm layer in 

response to Medium-N and High-N treatments (Fig. 5b). For the deeper soil layers the 

increase in CEC was generally not significant. Linear regression analysis revealed significant 

relationships between CEC and SOC across all plots along whole soil profiles (Fig. 6) 

 

Leaching dynamics of ions and pH in soil solutions 

In all plots, concentrations of NO3
--N generally showed increasing trends from 20 cm soil 

depth to 40cm soil depth during the study period (Fig.7 a, b). At 20 cm solutions, repeated 

measures ANOVA revealed that N additions significantly increased concentrations of NO3
--N 

at P=0.09 level. At 40 cm solutions, concentrations of NO3
--N in N-treatment plots were 

generally higher than that of the Controls, and there were significant interactions between 

treatment and time (months) on NO3
--N (P=0.01).  
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Concentrations of NH4
+-N (commonly less than 1 mg N /L as mean values for the whole 

period) were much lower than those of NO3
--N at both 20 cm and 40 cm soil depth (Fig.7 c, 

d). In contrast to the response of concentrations of NO3
--N, no significant response was 

found for NH4
+-N concentrations to N addition across all plots and sampling times. This is 

further confirmed by the result of repeated measures ANOVA (P=0.31 and 0.38 at 20 cm and 

40 cm depth, respectively).  

Soil solution pH showed significant difference between 20 cm and 40 cm soil depth at all 

plots (Fig.7 e, f). Solution pH at 20 cm was near to that of the upper 0-20 cm soils, but 

solution pH at 40 cm increased greatly and was significantly higher than soil pH at any layer. 

Repeated measures ANOVA showed that N addition significantly (P<0.001) decreased soil 

solution pH at 20 cm soil depth, whereas soil solution pH at 40 cm depth showed a slight but 

no significant increasing trend with elevated N addition. 

 

Concentrations of Al3+ differed greatly depending on soil depth, with significant higher 

values at 20 cm depth (Fig.7 g, h). Repeated measures ANOVA showed that N addition 

significantly increased the concentrations of Al3+ at 20 cm soil solutions (P=0.001), while 

there were no significant N treatment effects at 40 cm. There was significant negative 

relationship between Al activity and solution pH (Fig. 8). 

In contrast to Al3+, concentrations of Ca2+ increased significantly along the soil depth 

(Fig.7 i, j). For example, concentrations of Ca2+ ranged from 20-350 μmol·L-1 at 20 cm soil 

solutions, but ranged from 500-1500 μmol·L-1 at 40 cm. There were decreasing trends at 20 
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cm soil solutions, but increasing trends in 40 cm soil solutions with elevated N addition. 

Repeated measures ANOVA showed there were significant interactions between treatment 

and time at both 20 cm and 40 cm soil solutions (P<0.001 and P=0.04, respectively).  

 

With the increase of soil depth, concentrations of Mg2+ also increased greatly (Fig.7 k, l). 

Contrary to Ca2+, N additions increased Mg2+ at 20 cm soil solution, and repeated measures 

ANOVA revealed there were significant interactions between treatment and time (P<0.001). 

At 40 cm solution, N additions significantly increased concentrations of Mg2+, especially in 

High-N plots. Repeated measures ANOVA confirmed the great N-treatment effects and 

interactions between treatment and time (P=0.078 and P<0.001, respectively). 

 

Pearson correlation analysis (Table 1) showed that Ca2+ concentrations were significantly 

and negatively (P<0.05) related to N treatment, but positively (P<0.001) correlated with 

solution pH at 20 cm soil depth; at 40cm depth, concentrations of Ca2+ were positively 

(P<0.001) related with N treatment, NO3
-, and pH, but not for NH4

+. Mg2+ concentrations 

were significantly and positively related to N treatments and inorganic N and pH at both 20 

cm and 40 cm, except for pH at 40 cm depth. There were significantly positive relationships 

between Al and N treatments and NO3
-, but negatively with pH at 20 cm soil solution. 
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Discussion 

Acidification characteristics of tropical forest soil  

Results indicate that these tropical forest soils are highly acidified (Fig. 2) with related low 

base cation content and exchangeable Al3+ predominating soil cation exchange sites 

throughout the profile (Fig. 3 and 4). These conditions are common in tropical forest 

ecosystems (Krusche et al., 2003; Vogt et al., 2006; Quesada et al., 2010), and contrast 

sharply with most temperate ecosystems, wherein exchangeable base cations generally 

dominate soil cation pools (Watmough & Dillon, 2003; Fernandez et al., 2003; Högberg et 

al., 2006). It is further notable that H+, rather than base cations, co-dominated soil cation 

pool with Al3+. The reaction of soil minerals with H+ may release base cations to soil solution, 

which are leachable from soil as a result of charge balance with acid anions, as soil solution 

drains from the watershed (Tomlinson, 2003). Considering that H+ concentration in soil 

water is buffered by Al3+ dissolution, the concentration of Al3+ increases exponentially with 

decreasing pH. Consequently, dissolved Al3+ competes more effectively with exchangeable 

base cations, because of higher adsorption affinities of Al3+ to colloidal particles than base 

cations. Hence, a high leaching potential for base cations can occur, when strong acids 

derived from acid deposition enter the soil solution (Tomlinson, 2003).  

 There are two main geographical regions of acid soils (defined as soils with pH <5.5 in 

their surface layers) in the world: the northern belt, with cold, humid temperate climate, 

and the southern tropical belt, with warmer, humid conditions (von Uexkull & Mutert, 

1995). Acid soils from northern belt also show comparable soil acidification characteristics 
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with our study (Skyllberg et al., 2001; Johnson, 2002; Gruba et al., 2013). The sharpest 

contrast, however, between these belts is that the southern tropical belt is dominated by 

Ultisols and Oxisols and highly weathered, and supplies less base cations than many 

younger, glaciated temperate soils (Soil Survey Staff, 1999; von Uexkull & Mutert, 1995). 

Furthermore, the humid tropical climate with high rainfall and temperature favors rapid 

dissolution and leaching of weatherable minerals. As such, resultant soils are poor in base 

cations and rich in kaolinitic clays and sesquioxides, which possess pH-dependent charges. 

We further found the dominance of K+ among exchangeable soil base cations at this site 

(Fig. 3), indicating the leaching of Ca2+ and Mg2+ by selective weathering (Ca>Na>Mg>K; 

after Likens and Bormann, 1994). Base cation budgets show that all cations except K+ tend 

toward entire depletion (see Supplementary Methods and Supplementary Table 1). High 

weathering rates and strong leaching of base cations should reduce the pool of base cations 

and consequently soil ANC. However, because of greater output of base cations via stream 

flow, the atmospheric input of base cations (plus weathering supply) did not neutralize soil 

acidity, suggesting eventual exhaustion of soil base cations. The negative ANC (Fig. 2b) and 

low BS (Fig. 5a) at our site indicates low soil buffering capacity to external acid inputs. 

Hence, the humid tropics deserve greater attention. 

 

Effects of N addition on soil acidification 

Our results show that long-term N addition significantly accelerated soil acidification and 

depleted soil base cations, similar to large areas of Europe and North America, where high 
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atmospheric N deposition has been experienced during the last decades (Likens et al., 1996; 

Högberg et al., 2006; Fenn et al., 2006; Bowman et al., 2008; Lucas et al., 2011). Driscoll et 

al. (2003) suggested that depletion may occur when nutrient cations were displaced from 

soils by acidic deposition at a rate faster than they can be replenished by slow mineral 

weathering or deposition of nutrient cations from atmosphere.  

Our study site is highly acid-sensitive, so that the depletion of base cations may be 

attributed to a limited adsorption capacity for N and consequent leaching of NO3
-, 

confirmed by decreasing ANC. Earlier studies have shown that our study site is N saturated, 

with elevated N addition leading to large loss of NO3
- (Mo et al.,2006; Fang et al., 2009). 

Indeed, in this study, significant increases of soil solution NO3
- fluxes at both 20-cm and 

40-cm resulted from N additions (Fig. 7a, b). Ca2+ and Mg2+ leaching and mobilization with 

NO3
- (see Fig 7i-l, Table 1), as the solution drains from the soil, further support this 

suggestion.  

We further found that H+ concentration and its proportion among soil extractable 

cations increased significantly for all soil layers under N treatments, which arises from 

increasing competitiveness of protons relative to base cations for cation exchange sites (van 

Breeman et al., 1984). With H+ remaining in the system, soil acidification continues, and 

many more base cations will be replaced by H+ and thus leach out (Schulze, 1989; Edwards 

et al., 2002; Tomlinson, 2003). 

However, we found that long-term N addition did not change soil exchangeable Al3+ (Fig 

3b), which is in sharp contrast to results from other studies (Warby et al., 2009; Perry et al., 
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2012). Chronic acid deposition typically leaches base cations out of soil profile, 

simultaneously increasing exchangeable Al3+concentrations. Release of Al3+ is an important 

acid buffering process in acid soils (Mulder et al., 1989; Berggren & Mulder, 1995; Larssen et 

al., 1999). Considering the depletion of base cations from the soil complex under N 

treatments (Fig 5a), a consequence of elevated H+ production (low pH) is the dissolution of 

Al from soil (van Breemen et al., 1983; Schulze, 1989; Krusche et al., 2003). To balance the 

leaching of mobile NO3
-, more free Al3+ was leached out (Fig. 7g, and Fig. 8), whereas N 

addition had no effects on soil exchangeable Al3+. These findings suggest that soil buffering 

may be accompanied by a progressive shift in exchangeable cation composition from Al3+ to 

H+ (Fig 3a) and Fe3+ (Lu et al., 2013), with Al3+ being desorbed and progressively mobilized 

from the exchange surface as the pH falls below 3.8 (Ulrich, 1986).  

 

With the depletion of base cations and increases of acid cation H+, soil BS decreased 

sharply in N-treatment plots of this study. Our results showed that BS was typically less than 

8% along all soil profiles, which was greatly lower than other sites in tropical zones with low 

atmospheric N deposition (Krusche et al., 2003; Xu et al., 2012). Research on soil 

acidification in southern China and SE Asia suggested that 20% of BS could be used as a 

threshold for estimating acidification damage (Hicks et al., 2008).  

Meanwhile, we found that N addition greatly increased soil CEC while decreasing pH. 

This finding contradicts the positive correlation between pH and CEC typically found in 

variable-charge soils (Foth & Ellis, 1997; Johnson, 2002). Generally, soil CEC decreases in 
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response to excess N input in temperate ecosystems, considering that protons induced by N 

addition can occupy cation exchange sites (Ludwig et al., 2001; Tomlinson, 2003). At a 

long-term N fertility trial in South-Central Wisconsin, USA, Barak et al. (1997) found 

decreases in CEC were accompanied by decreases in BS (mainly caused by decreases in 

exchangeable Ca2+ and Mg2+). Considering that SOC can be the main cation exchanger and 

the predominant source of soil surface charge (Johnson, 2002; Gruba & Mulder, 2008; 

Gruba et al., 2013), we suspect that CEC may increase simultaneously with the increase in 

SOC. Our further finding supports this, showing that there are positive relationships 

between CEC and SOC across all plots (Fig. 6). Another parallel study from this site also 

showed the significantly larger contents of SOC in N-treatment plots, and N addition was 

suggested to contribute to the increased SOC (Lu et al., 2013). Hence, N addition-induced 

increase in SOC may be an important reason for the increase in CEC. In this study, however, 

we found the significant increases in acid cation H+ in N-treatment plots. In most soils, 

carboxyl groups provide CEC of organic matter by dissociation of H+, which may decrease 

soil pH (Foth & Ellis, 1997). Therefore, a greater organic content could contribute to both 

higher CEC and lower pH in this study. 

 

Responses of soil solution pH and free Al to elevated N additions 

Interestingly, soil solution pH showed significantly vertical patterns between 20 cm and 40 

cm soil depth at all plots (Fig. 7e and f). Nitrogen addition only significantly decreased soil 

solution pH at 20 cm depth, but had no effects at 40 cm depth. At 20 cm, the lower pH could 
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be related more to significantly higher concentrations of Al3+ than to Ca2+ and Mg2+.  

Increasing neutralization of H+ by Al solubility caused Al3+ concentrations to increase under 

elevated N addition, which suggests that Al dissolution is the major acid neutralizing process 

in upper soils. At 40 cm, however, increased cation concentrations were dominated by Ca2+ 

and Mg2+ (especially for Ca2+) rather than Al3+. Higher leaching losses of NO3
- were likely 

responsible for the greater amounts of Ca2+ and Mg2+, as accompanying ions, especially 

under N-treatments plots. These data indicate pronounced acid neutralization through 

mobility of Ca2+ (and some Mg2+), associated with significant immobilization of Al3+, 

reinforcing the importance of alkaline ion inputs for the acid neutralization of drainage 

waters in much of south China (e.g. Larssen et al., 2006). In addition, our soils are acidic and 

non-calcareous soils, such that CaO is commonly less than 0.3% in the whole mineral soils, 

with the highest at surface soils (Zhang, 2011). Hence, both great mobilization of base 

cations (Ca2+ and Mg2+) to deeper soils and immobilization of Al3+ therein may contribute to 

high soil solution pH at 40 cm. These response patterns in vertical profiles contrast with acid 

temperate forests in the Netherlands, wherein soil solutions were extremely acidic even at 

60 cm depth soil (e.g., soil solution pH values were as low as 4.0), and Al3+ was the dominant 

cation in solution at a charge basis and increased with depth, while concentration of Ca2+ 

was fairly constant with depth (Mulder & Stein, 1994). In addition, we should have a caution 

that a contamination in lysimeters may be possible in similar studies, so that small amounts 

of easy-soluble carbonates or silicates seem to increase the solution pH.  

   We further found a negative relationship between the solubility of Al and solution pH 

(Fig. 8) at 20 cm equilibrium solution, suggesting that the activities of Al are pH-dependent, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

consistent with conclusions from studies of highly acid soils in temperate and boreal forests 

(Gruba & Mulder, 2008; Gruba et al., 2013). Hence, if Al in solutions leached from 0-20 soil 

layers, it will threaten the health of downstream aquatic ecosystems under high acidic 

deposition. However, there is relatively little Al mobility at 40cm soil depth (Fig. 7 g and h) 

because of potential co-sorption of Al3+ and SO4
2- in deeper soil layers (Vogt et al., 2007), 

and probably the leaching to stream water is limited. 

 

Implications  

Although soil acidification has been observed in temperate/boreal regions, studies such as 

ours in tropical forest soils represent sharp contrasts to these regions, because high 

weathering rates and associated leaching predisposes such soils to chronic low soil buffering 

capacity toward extrinsic acid inputs in tropical ecosystems. Soils at our study site were 

highly acid-sensitive, and long-term N addition significantly accelerated soil acidification, 

leading to depleting base cations and decreasing BS, which is similar to findings in 

temperate and boreal ecosystems. However, long-term N addition did not change soil 

exchangeable Al3+, but significantly increased exchangeable H+ proportion in soil cation 

pools and soil CEC. Nitrogen addition-induced increase in SOC is suggested to contribute to 

both higher CEC and lower pH. We further found that elevated N addition greatly decreased 

soil solution pH at 20 cm soil depth, but not at 40 cm, where soil solution pH was 

significantly higher than that at 20 cm. These response patterns are distinctly different from 

other studies. All these findings suggest that external N additions decrease soil buffering 
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capacity and contribute to soil acidification, and that high N deposition may play an 

important role in declining soil pH during the past three decades at Dinghushan Biosphere 

(Fig. 1). However, considering the background of high S deposition at this site, whether 

sulfate is one of the main driving forces of soil acidification under elevated N addition 

deserve our further study in the future. 

 

This is the first study on how long-term N addition affects soil buffering capacity in 

typical N-rich forest ecosystems not experiencing glaciation. Our results suggest that, even 

though S emissions and deposition has decreased in response to policy, excess N can 

contribute measurably to soil acidification.  We further suggest that the observed lack of 

base cations (especially for Ca2+ and Mg2+) should receive more attention rather than soil 

exchangeable Al3+ and thus its possible phytotoxicity in tropical forest ecosystems. Our 

findings also raise questions about current projections of ecosystem productivity and floral 

and faunal diversity based on large-scale vegetation censuses without considering long-term 

high N input into forests.  This is especially important considering that tropical forests 

contain about half of vegetation C stock among terrestrial biomes and have the highest 

biodiversity of all terrestrial ecosystems in the biosphere.  Therefore, N deposition-induced 

soil acidification and its ecological effects on biota are worthy of further study and 

validation in other tropical ecosystems experiencing elevated N deposition. 
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Tables 

Table 1 Pearson correlation coefficients between concentrations of cations (Ca, Mg and Al) 

and inorganic N, pH and N treatment (N addition rates) in soil solutions at 20 cm and 40 cm 

soil depth in the lowland tropical forest of Southern China. Notes: * Correlation is significant 

at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed); *** 

Correlation is significant at the 0.001 level (2-tailed).  

 20cm soil solution 40 cm soil solution 

Parameters Ca Mg Al Ca Mg Al 

N treatment -0.15* 0.21** 0.34*** 0.28*** 0.68*** 0.04 

NH4
+ 0.04 0.15* 0.05 0.03 0.20** -0.05 

NO3
- -0.02 0.25*** 0.38*** 0.24*** 0.26*** 0.25*** 

pH 0.51*** 0.18* -0.183* 0.51*** 0.10 -0.60*** 

  

Figure legends 

Figure 1 Soil pH(water) changing trend at upper 20 cm soils during the last three decades in 

the lowland tropical forest (monsoon evergreen broadleaf forest) of Dinghushan 

Biosphere Reserve in Southern China. Notes: The data set used here was compiled 

from the published papers, which focused on the same forest to this study. The upper 

20 cm of the mineral soil (below the forest floor) was sampled. Method for 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

determination of soil pH is the same as this study, using the national standard of China 

(GB7859-87). These published papers are listed in Supplementary references. 

Figure 2 Responses of soil pH and water-extracted acid neutralizing capacity (ANC) to 

long-term N addition in the lowland tropical forest of Southern China. Note: Error bar 

means standard error; Asterisks (*), (**) and (***) indicate that there are significant 

differences at P <0.1, P <0.05 and P <0.01 levels between N treatments and the 

Controls, respectively. 

Figure 3 Responses of soil exchangeable cations to long-term N addition in the lowland 

tropical forest of Southern China. Asterisks (*), (**) and (***) indicate that there are 

significant differences at P <0.1, P <0.05 and P <0.01 levels between N treatments and 

the Controls, respectively. 

Figure 4 Effects of long-term N additions on relative composition of soil exchangeable 

cations (percentage charge of total CEC) in 0-10 cm (a), 10-20 cm (b), 20-30 cm (c) and 

30-40 cm (d) soils. Notes: BC, the total base cations of K+, Na+, Ca2+ and Mg2+.  

Figure 5 Responses of soil base saturation (BS, a) and cation exchange capacity (CEC, b) to 

elevated N addition in the lowland tropical forest of Southern China. Asterisks (*), (**) 

and (***) indicate that there are significant differences at P <0.1, P <0.05 and P <0.01 

levels between N treatments and the Controls, respectively. 

Figure 6 Relationships between soil cation exchange capacity (CEC) and soil organic carbon 

(SOC) across all plots along the whole soil profiles from 0-40 cm depth. 
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Figure 7 Responses of NO3
--N (a, b), NH4

+-N (c, d), pH(e, f), Al3+(g, h), Ca2+ (i, j) and Mg2+ (k, l) 

dynamics to long-term N addition in soil solutions at 20 cm (left panel) and 40 cm (right 

panel) soil depth. Water samples were taken from May 2009 to July 2010. Asterisks (*) 

indicates that there are significant differences at P<0.05 levels between N treatments 

and the Controls using planned contrast analysis. 

Figure 8 Relationships between the activities of Al and pH in the solutions at 20 cm soil 

depth across all plots during the study period. 
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