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NITROGEN DEPOSITION ONTO THE UNITED STATES AND WESTERN
EUROPE: SYNTHESIS OF OBSERVATIONS AND MODELS

ELISABETH A. HOLLAND,1,3 BOBBY H. BRASWELL,2 JAMES SULZMAN,1,4 AND JEAN-FRANCOIS LAMARQUE1

1Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, Colorado 80305 USA

2Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824 USA

Abstract. The documented acceleration of NH3 and NOx (NO 1 NO2) emissions over
the last 150 years has accelerated N deposition, compromising air and water quality and
altering the functioning of terrestrial and aquatic ecosystems worldwide. To construct con-
tinental-scale N budgets, we produced maps of N deposition fluxes from site-network
observations for the United States and Western Europe. Increases in the rates of N cycling
for these two regions of the world are large, and they have undergone profound modification
of biospheric–atmospheric N exchanges, and ecosystem function. The maps are necessarily
restricted to the network measured quantities and consist of statistically interpolated fields
of aqueous NO3

2 and NH4
1, gaseous HNO3 and NO2 (in Europe), and particulate NO3

2 and
NH4

1. There remain a number of gaps in the budgets, including organic N and NH3 de-
position. The interpolated spatially continuous fields allow estimation of regionally inte-
grated budget terms. Dry-deposition fluxes were the most problematic because of low station
density and uncertainties associated with exchange mechanisms. We estimated dry N de-
position fluxes by multiplying interpolated surface-air concentrations for each chemical
species by model-calculated, spatially explicit deposition velocities. Deposition of the ox-
idized N species, by-products of fossil-fuel combustion, dominate the U.S. N deposition
budget with 2.5 Tg of NOy-N out of a total of 3.7–4.5 Tg of N deposited annually onto
the conterminous United States. Deposition of the reduced species, which are by-products
of farming and animal husbandry, dominate the Western European N-deposition budget
with a total of 4.3–6.3 Tg N deposited each year out of a total of 8.4–10.8 Tg N. Western
Europe receives five times more N in precipitation than does the conterminous United
States. Estimated N emissions exceed measured deposition in the United States by 5.3–
7.81 Tg N, suggesting significant N export or under-sampling of urban influence. In Europe,
estimated emissions better balance measured deposition, with an imbalance of between
20.63 and 2.88 Tg N, suggesting that much of the N emitted in Europe is deposited there,
with possible N import from the United States. The sampling network in Europe includes
urban influences because of the greater population density of Western Europe. Our analysis
of N deposition for both regions was limited by sampling density. The framework we
present for quantification of patterns of N deposition provides a constraint on our under-
standing of continental biospheric–atmospheric N cycles. These spatially explicit wet and
dry N fluxes also provide a tool for verifying regional and global models of atmospheric
chemistry and transport, and they represent critical inputs into terrestrial models of bio-
geochemistry.

Key words: ammonium; atmospheric chemistry; biosphere–atmosphere N exchange; dry depo-
sition; N deposition patterns; N deposition, United States and Western Europe; Western Europe; NOx;
wet deposition.

INTRODUCTION

Increases in human population, fossil-fuel con-
sumption, deforestation, and intensification of agri-
culture have altered the global nitrogen cycle, leading
to an acceleration of emission and deposition of ni-
trogenous trace gases over the last century and a half
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Corresponding Editor: W. L. Silver.
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4 Present address: Oregon State University, Corvalis,
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(Mayewski et al. 1990, Galloway et al. 1995, Matson
et al. 1997, Smil 1997, Vitousek et al. 1997, Holland
et al. 1999). More than 50% of annual global reactive
N emissions are generated directly or indirectly by
human activities (Vitousek et al. 1997). This pertur-
bation to the global N cycle is proportionally larger
than the anthropogenic perturbation to the global car-
bon cycle (Schimel 1995). For short-lived gases like
NOx (NO 1 NO2) and NH3, with tropospheric lifetimes
of 1–5 days (Dentener and Crutzen 1994, Prather et
al. 2001), increases in emissions lead to increased
atmospheric concentrations and to deposition down-
wind of source regions, which decrease with distance
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from the source, until the gases and their reaction
products are removed by precipitation or dry depo-
sition to Earth’s surface.

There is no global network of N-deposition mea-
surements, and large terrestrial areas are unsampled,
though global chemical model results and a limited
number of network observations over land are available
(Whelpdale and Kaiser 1997). Measurements of N de-
position onto oceans are rare, with only a few long-
term measurement stations (e.g., Bermuda, Whelpdale
and Kaiser 1997, Whelpdale et al. 1997). Despite these
observational limitations, the extant information clear-
ly shows that increases in deposition have been greatest
in developed regions of the Northern Hemisphere. Al-
though substantial NOx and SO2 emission increases in
Asia and in the Tropics are projected due to expansion
of industrialization, human population, and agriculture
in developing countries (Galloway et al. 1994, Mat-
thews 1994, Howarth et al. 1996, Lee et al. 1997, Vi-
tousek et al. 1997, Whelpdale and Kaiser 1997, Whelp-
dale et al. 1997), we focus on deposition in two regions
of the Northern Hemisphere (the continental United
States and Western Europe), which have received
chronic and increasing loads of N input since the In-
dustrial Revolution (Mayewski et al. 1990, Holland et
al. 1999).

The consequences of increased nitrogen deposition
are profound and influence many aspects of the earth
system, from human health to the sustainability of ag-
riculture. The many adverse effects of N deposition
and acidic precipitation on specific ecosystems are well
documented for both American and European sites
(Water, Soil and Air Pollution 85 [1995]; Global Bio-
geochemical Cycles 11 [1997]; Atmospheric Environ-
ment 34 [2000], 35 [2001], and 36 [2002] [all three are
National Atmospheric Deposition special issues]; also
see Church and Driscoll 1997, Grennfelt and Galloway
1997, Schulze 2000, Vitousek et al. 1997). Nitric acid,
measured as aqueous NO3

2 in wet-deposition mea-
surements, is one of three acids comprising acid rain
(the others are sulfuric and carbonic acid). Acid de-
position, via the introduction of anions and H1, is as-
sociated with reductions in lake and soil pH, and results
in losses of soil nutrients and mobilization of poten-
tially toxic cations (e.g., Al31) (Schindler 1988, Hedin
et al. 1994, Hedin and Likens 1996, Likens et al. 1996).
Furthermore, high concentrations of tropospheric NOx

act as a principal catalytic precursor to tropospheric
ozone (Liu et al. 1980, 1987, Albritton et al. 1994,
Logan 1994), which is a strong oxidant and is known
to damage living tissues and decrease plant production
(Ollinger et al. 1997, Ollinger and Aber 2002). At the
community scale, plant species shifts can be induced
by N additions, leading to species-distribution change
that often favor weeds over native plants, which in turn
can reduce species diversity and change ecosystem
function (Aerts et al. 1990, Berendse et al. 1992, Bob-

bink et al. 1992, Sutton et al. 1993, Chapin et al. 1997,
Hooper and Vitousek 1997, Tilman et al. 1997).

The impacts of N deposition on global carbon cy-
cling are uncertain, but it is likely that some terrestrial
ecosystems have been fertilized by the additional N,
and may currently be sequestering between 0.1–1.5 Pg
C per year globally (Peterson and Melillo 1985, Gal-
loway et al. 1996, Townsend et al. 1996, Wedin and
Tilman 1996, Holland et al. 1997, Jenkinson et al. 1999,
Nadelhoffer et al. 1999a, b, Sievering 1999). For heavi-
ly impacted systems, however, sustained C sinks are
unlikely (Schulze et al. 1989). Nitrogen-enhanced CO2

uptake by ecosystems will eventually be compromised
by soil acidification and O3 pollution, and the other
deleterious effects associated with N deposition.

Anthropogenic inputs of N have similar implications
for the world’s hydrologic systems. Large amounts of
N introduced into coastal oceans and estuaries have
resulted in widespread eutrophication and declining
productivity of coastal marine fisheries (Howarth et al.
1996). Riverine inputs into the North Atlantic basin
from Europe have increased by a factor of 3.5–10.6
relative to preindustrial inputs during the middle of the
1800s. Similarly, N fluxes into North American rivers
have increased by a factor of 1.7–5.3, (Howarth et al.
1996). The potential for groundwater contamination is
also high.

Developing mass-balance budgets of the important
N species, which include surface exchange and at-
mospheric transport, is critical for a comprehensive
understanding. Comparing estimates of N emissions to
N deposition, where sufficient deposition data are
available, provides an important check on estimates of
emissions. Indeed, the fact that N can be emitted in
one country and deposited in another is the cornerstone
of the Transboundary Air Pollution agreement of the
European Community and the Clean Air Act of the
United States (Whelpdale et al. 1997). However, it is
only recently that we have sufficient measurements to
evaluate the implications of increasing N emissions at
continental and global scales (Whelpdale et al. 1997).

Evaluation of the patterns of N deposition on re-
gional scales requires estimation of spatially continu-
ous fields from scattered point data. The associated
estimates of uncertainty and some confidence that the
extrapolation/interpolation procedure is statistically ro-
bust are also important. There has been a great deal of
work in the development of techniques to apply to this
area (Haas 1990, 1995, van Leeuwen et al. 1996, Lynch
et al. 2000). Our work builds on the previous mapping
work, and offers new perspectives: (1) the U.S. and
European data are treated in as consistent a manner as
possible for comparison, (2) it covers a longer time
span than previous efforts (1978–1994), and (3) we
construct N budgets by comparing estimated emissions
and deposition, pointing out gaps in the measurements
and our understanding. Our analysis is restricted to the
measurements and sites participating in the U.S. and
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TABLE 1. Summary of measurements used in the analysis and mapping of N deposition, and the sources of data.

Measurement‡

Data source†

United States Western Europe

Wet deposition
NH4

1 (aq) NADP/NTN EMEP
NO3

2 (aq) NADP/NTN EMEP
DON (aq) not available not available

Ambient air concentrations
NH3 (g) not available not available
Particulate NH4

1 NDDN/CASTNet EMEP
HNO3 (g) NDDN/CASTNet too few measurements
Particulate NO3

2 NDDN/CASTNet too few measurements
HNO3 (g) 1 particulate NO3

2 measured separately EMEP
Organic nitrates not available not available

† NADP/NTN 5 National Atmospheric Deposition Program/National Trends Network; NDDN 5 National Dry Deposition
Network; CASTNet 5 Clean Air Status and Trends Network; EMEP 5 European Monitoring and Evaluation Programme.

‡ Key to abbreviations: aq, aqueous; g, gaseous.

FIG. 1. Measurement sites for each of the U.S. networks
considered: (a) wet-deposition measurements of NH4

1 and
NO3

2 from the NADP/NTN network with 237 sites, spanning
the years 1978–1994 (site information available online:
^http://nadp.sws.uiuc.edu/&); (b) ambient concentration mea-
surements of HNO3 and particulate NO3

2 and NH4
1 from the

NDDN/CASTNet network with 65 sites spanning the years
1988–1995 (site information available online: ^http://www.
epa.gov/castnet&).

Western European networks. Various species of inor-
ganic-N deposition, organic-N deposition (Neff et al.
2002) and NH3 exchange (Atmospheric Environment
35 [2001]) have been measured, but these measure-
ments are not inter-calibrated or inter-compared, nor
are they compiled at a central location. Compilation of
these hundreds and thousands of measurements is be-
yond the scope of this paper and of resources available
for the analysis. We hope that the framework we present
lays out sufficient justification for such a compilation
with full participation of the scientific community led
by an international scientific organization, i.e., World
Meteorological Organization (WMO), United Nations
Environmental Programme (UNEP), and/or Scientific
Council on Problems of the Environment (SCOPE).
The data used in this analysis, including standardiza-
tion, quality control, and spatial maps, are archived and
publicly available online.5

DATA AND METHODS

We compiled observations from monitoring net-
works in the United States and Europe, in order to
construct 0.5 3 0.5 degree resolution maps of N de-
position by species (Table 1). In the United States, wet-
deposition data were provided by the National Atmo-
spheric Deposition Program/National Trends Network
(NADP/NTN, 1996, 2001, Lamb and Bowersox 2000).
Measurements of ambient air concentrations, used to
calculate dry-deposition fluxes, were provided by the
National Dry Deposition Network (NDDN) and the
Clean Air Status and Trends Network (CASTNet) (Fig.
1; Edgerton et al. 1992). In Europe, measurements of
wet-deposition fluxes of NO3

2 and NH4
1 and ambient

air concentrations of HNO3, NO2, particulate NO3
2, and

particulate NH4
1 were provided by the Cooperative

Programme for Monitoring and Evaluation of the Long-
Range Transmission of Air Pollutants in Europe (Eu-
ropean Monitoring and Evaluation Programme, EMEP).

5 ^http://www.daac.ornl.gov&

Both the U.S. and European measurements span the
1978–1994 time period with some sites beginning later
than others.

Wet-deposition measurements

At the NADP/NTN sites within the United States,
precipitation is accumulated in buckets that are trig-
gered to open at the onset of rain. Samples from pre-
cipitation buckets are gathered weekly at sites through-
out the United States (Fig. 1) and are sent to a central
laboratory for chemical analyses. The chemical anal-
yses include measurement of concentrations of hydro-
gen ions (H1), associated anions (SO4

22, NO3
2, Cl2),
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and base cations (NH4
1, Ca21, Mg21, K1, and Na1).

Quality control is also checked by evaluation of the
charge balance of the samples. In Europe, the method
of sampling varied from location to location, country
to country, and, in general, differed from the method
used in the United States. In Europe, samples of pre-
cipitation were collected daily using either the precip-
itation-only samplers (described above) or bulk sam-
pling devices that are continually open to the atmo-
sphere, and are thus more subject to contamination (Er-
isman et al. 1994, van Leeuwen et al. 1995, 1996,
Hjellbrekke et al. 1997). Chemical sampling and anal-
yses were usually done on a country-by-country basis
and inter-laboratory tests were conducted annually
(Dovland and Pedersen 1997). Some of the sites col-
lected data monthly rather than daily (Lazaropole, for-
mer-Yugoslovia; Neuglobsow, Germany; Jarczew, Po-
land; Rarau, Seminic, Paring, Fundata, Turia, and Ma-
sun, Romania; and Ivan Sedlo, Bosnia-Herzogovina).
These data were the only available observations for
large areas and so we included them in our analysis
despite the potential problems associated with monthly
sampling. The European data were published as ‘‘Data
report 1995’’ (Hjellbrekke et al. 1997).

The wet-deposition data were averaged annually for
each measurement site. For the United States, annual
means were acquired directly from the NADP/NTN.
For the European EMEP data sets, we followed the
same quality-assurance plan used by NADP to ensure
comparability. The quality-assurance criteria required
in order to include a site for a year are the following:
(1) There must be valid samples for at least 75% of
the summary period. (2) For at least 90% of each
month, there must be precipitation data either from the
rain gauge or from the sample volume. (3) There must
be valid samples for at least 75% of the total precip-
itation reported for the summary period. (4) For the
entire summary period the total precipitation as mea-
sured for the sample volume must be at least 75% of
the total precipitation measured by the rain gauge for
all valid samples where both values are available. Cri-
terion 4 does not pertain to the EMEP data set, because
data from a separate rain collector were not reported.
In the United States, the number of sites that met the
completeness criteria varied between 21 and 203 with
a mean of 156 sites over the time period. The number
of sites was smallest as the network was starting in the
late 1970s, and largest between 1985 and 1994, when
the number of sites rose to ;200. Across Europe, data
from 113 out of 188 sites satisfied the completeness
criteria. There were 18 sites at the beginning of the
monitoring period, growing to 50–75 participating sites
during 1986–1994, with a mean of 50 sites in any given
year.

For both the United States and Europe, wet depo-
sition was calculated as follows:

n

(C P )O i i
i51C 5 (1)w n

(P )O i
i51

where Cw is the precipitation-weighted mean concen-
tration in units of milligrams per liter, calculated from
the n valid samples for the season. (Each individual
valid sample concentration Ci is weighted by the in-
dividual precipitation amount Pi for the sample. This
calculation makes the assumption that the chemistry of
the invalid samples is represented by the chemistry of
the valid samples for that summary period:

F 5 C Pwet w t (2)

where Fwet is the wet-deposition flux (in nanomoles per
liter), and Pt, (in millimeters of H2O) is the total pre-
cipitation over the averaging time period (i.e., (mmoles
3 molecular weight/L 3 mm precipitation)/100 5 kg/
ha).

Dry-deposition measurements

For both regions, dry-deposition fluxes were calcu-
lated by multiplying the mapped ambient air concen-
tration of the chemical species by a calculated mapped
deposition velocity. In the United States, atmospheric
concentrations of trace species were measured by
pumping ambient air through a filter pack containing
three filters: a Teflon filter for dry deposition of aerosols
(particulate NO3

2 and NH4
1), a nylon filter for collec-

tion of gaseous HNO3, and dual potassium carbonate-
impregnated cellulose filters for collection of SO2 (Ed-
gerton et al. 1992). The filter packs were changed week-
ly, and filter extracts were analyzed in a central labo-
ratory within 72 h of filter extraction. Similarly, in
Europe the atmospheric concentrations of trace species
were made by pumping ambient air through a filter pack
(Hjellbrekke et al. 1997). However, the filters and flow
rates varied from country to country. For example, in
Italy, particulate ammonium was sampled using a Tef-
lon filter (Gelman Zeflour, with a 1 micron pore size)
with a flow rate of 17·m3·d21. In Hungary, particulate
ammonium was sampled using a Teflon filter (Kipzer
Paraplan) with a flow rate of 25·m3·d21. There were
similar contrasts for gas sampling. For example, in Italy
NO2 concentrations were measured by a chemi-lumi-
nescence technique, while in Hungary NO2 was mea-
sured using a Triethanolamine solution with a 0.5 m3/
d flow rate. The measurement techniques are summa-
rized in the EMEP data report (Hjellbrekke et al. 1997:
43–46 [Tables 1.1–1.3]). In addition, there was year-
to-year variation in the measurement techniques. Hicks
et al. (1991) compare various approaches and review
the associated problems.

Neither the European nor the U.S. dry-deposition
measurements spanned the whole 1978–1994 time pe-
riod. In the United States, some sites began measure-
ments in 1989 with additional sites added in 1990 for
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TABLE 2. Pairing of DeFries and Townsend (1995) vegetation classes to the vegetation classes set up by Weseley (1988,
1989) for deposition velocity calculations.

Weseley

Type Description

DeFries and Townsend

Description Type

1 urban land/almost no vegetation ···
2 agricultural land, usually well watered croplands 11
3 rangeland, usually with low soil grasses 10
4 deciduous forest evergreen broadleaf forest 2

deciduous forest 4
woodlands 6

5 coniferous forest evergreen needleleaf forest 1
deciduous needleleaf forest 3

6 mixed forests, including wetland mixed forests 5
7 water, salt and freshwater oceans 0
8 barren land, mostly desert bare 12
9 non-forested woodland ···

10 mixed agricultural and rangeland ···
11 rocky open areas occupied by low-growing

shrubs
wooded grasslands/shrubs 7

closed brushlands or shrublands 8
open shrublands 9
mosses and lichens 13

a total of 65 sites. In Europe, the number of sites varied
with the chemical species considered: 33 sites sampled
gaseous HNO3 and particulate NO3

2, 39 sites sampled
particulate NH4

1, and 50 sites sampled gaseous NO2.
For both the United States and Europe we used the
available data to calculate monthly average concentra-
tions, averaging over the time span of available mea-
surements and taking into account the differences in
sampling frequency.

We calculated the deposition velocity in a way that
was consistent for both the United States and Europe,
estimating surface exchanges of chemical species based
on the resistance approach developed by Weseley
(1989). The dry-deposition flux, Fdry (molecules per
square meter per second) was calculated as the product
of deposition velocity, Vd, (meters per second) and con-
centration, Cn (molecules per meter cubed),

F 5 V Cdry d n (3)

and the deposition velocity was assumed to be inversely
proportional to the sum of three resistances,

21V 5 (r 1 r 1 r )d a b c (4)

where ra is the aerodynamic resistance, rb the resistance
of the laminar sub-layer between the surface and the
turbulent boundary layer, which depends on the dif-
fusivity of the species, and rc the bulk surface resistance
that depends on land surface characteristics and on the
solubility and reactivity of the chemical species. In
general, rb is small, and ra and rc depend on a variety
of parameters, which in turn depend on both the land
cover and the chemical species considered. For partic-
ulate fluxes, we assumed that the relevant particles had
a diameter between 0.1 and 1 mm (Wyers and Duyzer
1997), and applied the u* parameterizations suggested

by Weseley et al. (1985) and Erisman and Draaijers
(1995).

The Vd calculation requires maps of meteorological
variables and land cover. Site-specific meteorological
data were not available for many of the European sites.
Therefore we used model results from the NCAR/
NCEP reanalyses (Kalnay et al. 1996) to provide a
regionally consistent and spatially explicit data set con-
taining the meteorological information necessary to
compute deposition velocities: pressure, temperature,
wind, and precipitation.

To assign land cover classes, we used the 8-km res-
olution land cover map of Defries and Townsend
(1995), spatially re-aggregated to 0.5 3 0.5 degrees,
in order to assign land-cover classes. Implementation
of the resistance model (which has its own land surface
types) was accomplished by matching the Weseley
(1998, 1989) land-cover classes to the DeFries and
Townsend (1995) classes (Table 2). To match the rel-
atively high resolution of the land-cover data, the me-
teorological data were also interpolated from their orig-
inal resolution (T42 or ;2.88 (‘‘T42’’ 5 an equally
spaced grid overlaid on the earth’s surface consisting
of 128 cells of longitude and 64 cells of latitude; spac-
ing is ;2.88 longitude 3 2.88 latitude)) to 0.5 3 0.58
resolution. All Vd output was mapped at 0.5 3 0.58
resolution globally. Finally, dry-deposition fluxes were
mapped by statistically interpolating the ambient con-
centrations of each chemical species and then multi-
plying the interpolated concentrations by the calculated
deposition velocities for each 0.58 grid cell.

Critical evaluation of the initial Vd maps for the Unit-
ed States and Europe uncovered a problem introduced
by the mismatch in spatial resolution of the land cover
map (8 3 8 km) and the meteorological data (2.5 3
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2.58). The high wind speed modeled over the oceans
introduced spuriously high deposition velocities for
some of the coastal grid cells because the meteorolog-
ical data were produced on a much larger grid than the
land-cover data. The actual Vd calculations were done
in an intermediate grid size (0.5 3 0.58) to try to reduce
the problems associated with the spatial mismatch, but
did not solve the problem entirely. The deposition ve-
locities calculated on land with the high ocean wind
speeds were excluded from our calculations by gen-
erating a cell-masking routine. The average deposition
velocity of surrounding grid cells with the same veg-
etation type was re-substituted to complete the maps
of Vd. The problem underscores the difficulty and im-
portance of careful spatial analysis.

Deposition of aerosols on forests differs from de-
position onto low-stature vegetation (Jonas and Hei-
nemann 1995, Weseley and Hicks 1999). A physically
based parameterization distinguishing the two classes
would be ideal but is problematic for a one-dimensional
model because of sub-grid-scale horizontal heteroge-
neity. Therefore we relied on the empirical derivation
of Weseley (1989) to calculate the deposition velocities
for particulate NO3

2 and NH4
1. To further examine the

sensitivities of the calculation, we revised the model
to include the influence of forest type as described by
Jonas and Heinemann (1995):

V 5 «Vd,i d,ref (5)

where Vd,ref is the deposition velocity of the ‘‘reference
forest type,’’ « is a multiplying factor, and Vd,i repre-
sents the modeled Vd for individual forest types in the
domain. The multiplying factor was calculated as the
mean of the factors calculated for all of the forest types
sampled, to yield 6.71 for deciduous forests and 10.4
for evergreen forests, the only vegetation types to
which we applied Eq. 5.

A further complication was introduced by the fact
that in Europe, HNO3 (gaseous, g) and particulate NO3

2

were combined and reported as a single value by EMEP.
It was impossible to partition out the sums into their
individual components based on the available data.
Thus, for the sum of HNO3 (g) plus particulate NO3

2,
we calculated two dry-deposition fluxes as a means of
bracketing the estimate: one as if the flux were made
up entirely of particulate NO3

2 and another as if the
flux were made up entirely of the HNO3 (g). This nec-
essarily introduces an additional uncertainty because
the deposition velocities of the HNO3 (g) and partic-
ulate NO3

2 differ by as much as five-fold.

Statistical treatment

To create the interpolated fields of wet-deposition
flux and dry-species concentrations, we used a variant
of a standard geostatistical method, the moving-win-
dow residual-Kriging (MWRK) algorithm developed
by Haas (1990, 1995). This analysis/interpolation tool
was developed originally for use with atmospheric-

deposition network data. Kriging is a statistical method
of providing unbiased estimates of variables in regions
where the available data exhibit spatial autocorrelation,
and ‘‘Kriging estimates’’ are obtained in such a way
that they have minimum variance (Cressie 1991). In
the Haas (1995) algorithm, a moving window is used
to isolate subregions of the data for calculation of var-
iograms, which is critical because the distribution of
deposition at the continental scale is typically not nor-
mal. This Kriging application also allows the appli-
cation of prior information (covariates) that are cor-
related with the data of interest and available at all
grid-cell locations.

We found the MWRK method to be a satisfying al-
ternative to other interpolation methods (e.g., cubic
splines, bilinear/nearest neighbor approaches) for sev-
eral reasons: (1) It allows the use of spatial covariates
such as precipitation and elevation. (2) It allows tem-
poral correlations in the data to be included in the local
model. (3) It provides estimates of uncertainty via
cross-validations (site-by-site removal) and by includ-
ing confidence intervals for the estimates (based upon
Kriging variance). The uncertainty estimates also pro-
vide a means to evaluate the importance of the inclu-
sion of spatial covariates, and the value of including
the temporal correlation in the spatial estimate. The
spatial–temporal aspect of the analysis also allows ex-
amination of regionally integrated trends using simple
regression techniques, thereby avoiding the need for
multi-layer hypothesis testing (e.g., Stoddard 1994,
Stoddard et al. 1998), which is a common approach.

Kriging of the wet-deposition measurements and the
dry-deposition measurements were handled somewhat
differently. Spatial interpolation of the annual mean
site observations of wet deposition of NO3

2 and NH4
1

were performed using moving-window (no time di-
mension) Kriging (Haas 1990) with precipitation and
elevation covariates. The analysis was performed using
237 sites for the wet-deposition estimates within the
United States, and 115 sites for the wet-deposition es-
timates within Europe (Figs. 1 and 2). Data from three
European sites were excluded from the Kriging analysis
because they contained questionably high deposition
values: Lesogorrsky, Russia; Stina de Vale, Romania;
and Ispra, Italy.

The choice of precipitation and elevation as covar-
iates was made after evaluating the effects of a wide
range of variables (e.g., temperature, humidity) on
Kriging model statistics. These statistics were based
on a series of cross-validation studies where each site
(in turn) is withheld from the analysis, and the distri-
bution of residuals (modeled minus predicted deposi-
tion) is examined (Table 1, Fig. 3). For the United
States, we used gridded precipitation and elevation in-
formation from the VEMAP Phase I data set (Kittel et
al. 1995). For Europe, we used the Leemans and Cra-
mer (1991) global data set. All covariates and our de-
sired output base map for both regions are defined as
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FIG. 2. Measurements sites for the European deposition measurements from the EMEP network spanning the years 1978–
1994 (site information available online: ^http://emep.int&): (a) wet-deposition measurements of NH4

1 and NO3
2 with 106 sites

meeting the completeness criteria described in Data and Methods and spanning the years 1978–1994; (b) ambient-concentration
measurements of HNO3 (gaseous, g) plus particulate NO3

2 with 33 sites; (c) ambient-concentration measurements of particulate
NH4

1 with 21 sites; (d) ambient-concentration measurements of NO2 with 61 sites.

before on a 0.58 3 0.58 grid (see Dry-deposition mea-
surements; see also Figs. 4 and 5).

Kriging of the ambient concentrations of dry species
(HNO3, NO2, particulate NH4

1, particulate NO3, HNO3

plus particulate NO3
2, and particulate NH4

1 plus NH3)
was performed using a modification of the MWRK
called ‘‘moving-cylinder residual Kriging’’ (Haas
1995). This approach extends the circular spatial win-
dow along the time axis to form a cylinder. The time
dimension is included in order to exploit the existence
of temporal correlations in the observations (Haas
1995), which are significant in the dry-species con-
centrations. This approach is based on the addition of
temporal variograms in the Kriging estimation. Cross-
validation analysis yielded a ‘‘cylinder length’’ of three
months so that an estimate at time t used information
(observations) from times t 2 1 (month) and t 1 1
month. In Europe, the dry-deposition data lacked the
temporal coherence needed to defend application of the
moving-cylinder residual-Kriging technique. Thus,
Kriging of the ambient concentrations of NO2, HNO3

and particulate NO3
2, and particulate NH4

1 were done
using the MWRK with no covariates.

RESULTS AND DISCUSSION

The magnitude and spatial patterns of the interpo-
lated, annual-mean nitrogen-deposition fluxes differ

significantly by species and by region (Figs. 4 and 5).
These characteristic differences arise from the geog-
raphy of emission of the various sources gases, the
atmospheric lifetimes and properties of the chemical
species involved from emission to deposition, and the
strength of atmospheric transport. In addition, the spa-
tial patterns of wet deposition, gaseous dry deposition,
and particulate/aerosol dry deposition generally differ
because the physical deposition processes themselves
are so different.

The spatial distributions of NOy- and NHx-deposition
fluxes are generally distinct from one another because
their sources (NOx and NH3) are distributed differently.
The primary sources of NOx are fossil-fuel combustion
(40–58%), followed by soils (13–20%), lightning (8–
17%), biomass burning (12–17%), photochemical ox-
idation of NH3 (5–8%), aircraft (1%), and transport
from the stratosphere (0.2–0.3%), though continental
proportions may differ from these global proportions.
The release of NH3 to the atmosphere is a result of both
agricultural activities and natural sources. Contribu-
tions to atmospheric NH3 include animal husbandry
(49–63%), fertilizer application (11–12%), oceanic
emissions (14–17%), soil emissions (10–13%), bio-
mass burning (4–7%), human excrement (5–8%), and
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FIG. 3. Cross-validation produced from the Kriging in-
terpolation for the United States; the units are kg N·ha21·y21:
(a) wet-deposition flux of NO3

2 based on 237 NADP sites,
r2 5 0.93; (b) dry-deposition flux of gaseous HNO3 based on
60 NDDN sites, r2 5 0.48. These correlations were produced
by removing a single site from the interpolation and esti-
mating the value for that site based on all of the other sur-
rounding sites. The predicted value is then compared to the
value measured at that site.

coal combustion and automobiles (3–4%) (Holland et
al. 1999, Prather et al. 2001).

Wet-deposition fluxes

In the United States the patterns of wet deposition
of NH4

1 and NO3
2 differed significantly from one an-

other in both distribution and intensity (Figs. 4a and
b). In the conterminous United States, NH4

1 wet de-
position was greatest over the upper Midwest with a
broad feature of high wet deposition values (Fig. 4a).
Peak wet-deposition NH4

1 fluxes were greater than 3.27
kg N/ha, with an average wet-deposition flux of 1.38
kg N/ha over the continent (Fig. 4a). By contrast, NO3

2

wet deposition was greatest over the Northeastern Unit-
ed States, with peak values of .5 kg N/ha, but with
an average deposition flux of 1.64 kg N/ha (Fig. 4b).
The NO3

2 fluxes in the highest quartile covered a small-
er area than the NH4

1 fluxes in the highest quartile.
Overall the wet deposition flux of NO3

2 slightly ex-
ceeded that of NH4

1 with 1.28 and 1.08 Tg N, respec-
tively, deposited onto the conterminous United States.

In Europe the spatial patterns of wet deposition of
NH4

1 and NO3
2 were similar but the intensity of NH4

1

and NO3
2 deposition differed even more than for the

United States (Figs. 5a and b). Peak NH4
1 wet-depo-

sition fluxes of .17 kg N/ha were centered over eastern
Europe, but fluxes .6 kg N/ha were widespread
throughout Eastern and Central Europe (Fig. 5a). The
peak European fluxes were much greater than the peak
U.S. fluxes. Across Europe the average NH4

1 deposi-
tion fluxes were 4.2 kg N/ha, more than twice the U.S.
average. Nitrate wet-deposition fluxes peaked at .8 kg
N/ha over Central Europe with average wet-deposition
fluxes of 2.56 kg N/ha over the European continent,
much larger than the U.S. average NO3

2 deposition
fluxes (Fig. 5b). Over both continents the wet-depo-
sition fluxes were broadly positively correlated with
precipitation. Inclusion of precipitation as a covariate
significantly reduced the uncertainty associated with
the Kriging extrapolation of the wet deposition. Both
NH4

1 and NO3
2 wet-deposition fluxes were greater and

the regions of high deposition more extensive over Eu-
rope than the conterminus United States.

Dry-deposition fluxes

In the United States, only three chemical species
were measured as part of the dry-deposition network:
nitric acid (HNO3 [gaseous, g]), particulate nitrate
(NO3

2), and particulate ammonium (NH4
1). Over the

United States the gas-phase HNO3 deposition was the
largest flux, with peak-deposition fluxes of .5.7 kg
N·ha21·y21, and a continental average flux of 1.35 kg
N·ha21·y21 (Fig. 4d). Particulate NO3

2 fluxes were sub-
stantial over the upper Midwest, with peak fluxes of
.1.85 kg N·ha21·y21 covering a limited area, but the
continental average particulate NO3

2 flux was an order
of magnitude smaller at 0.18 kg N·ha21·y21 (Fig. 4e).
Peak particulate NH4

1 fluxes of 0.76 kg N·ha21·y21 were

much smaller than peak NO3
2 fluxes (Figs. 4c and e).

However, the extensive spatial coverage of high par-
ticulate ammonium fluxes translated into a slightly
higher continental average of 0.23 kg N·ha21·y21. The
highest particulate NO3

2 fluxes overlaid the areas with
the highest NH4

1 fluxes, arguing for deposition as am-
monium nitrate. For the United States, the dry depo-
sition of oxidized nitrogen dominated the measured
dry-deposition budgets (Table 5). Ammonia, NO2 (g),
and oxidized and reduced organic-N exchange were not
sampled by the networks and are not included in the
analysis but may be important contributors to the over-
all N budgets (Langford et al. 1992, Lerdau et al. 2000,
Neff et al. 2002).
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FIG. 4. Spatial distribution of the N deposition flux estimated for each of the individual N species measured (kg N/ha)
for the conterminous United States: (a) wet-deposition flux of NH4

1 (aq); (b) wet-deposition flux of NO3
2 (aq); (c) dry-

deposition flux of particulate NH4
1; (d) dry-deposition flux of gaseous HNO3 (g); (e) dry-deposition flux of particulate NO3

2.
Wet-deposition flux data were provided by the NADP/NTN network, and ambient concentrations for the calculation of the
dry-deposition fluxes were provided by the NDDN/CASTNet network. See Data and methods: Statistical treatment and Dry-
deposition measurements for explanation of statistical interpolation procedure and for an explanation of how dry-deposition
fluxes were calculated. The peak value on each color bar represents the 95th percentile for each chemical species. The data
and mapped fluxes are available online (Holland et al. 2004).

In Europe a different collection of chemical species
was measured extensively enough to make spatial in-
terpolations: NO2 (g), particulate ammonium, and the
sum of nitric acid and particulate nitrate (HNO3 (g) 1
particulate NO3

2). All attempts at separating the
summed group of HNO3 1 particulate nitrate further,
including methodologically (Hjellbrekke et al. 1997)
and statistically based on SO4

22 or NH4
1 concentra-

tions, were unsuccessful (Langford et al. 1992). As
mentioned above, we calculated two deposition veloc-
ities for the summed species, one assuming that the
total quantity was HNO3 (g), and the other assuming
that the total quantity was particulate NO3

2. Thus, the
HNO3 (g) flux and particulate NO3

2 fluxes presented
represent the upper and lower limit, respectively, of the
expected flux (Figs. 5d and e). Among the chemical
species measured in Europe, the HNO3 (g) flux was the
greatest, with peak deposition rates of .11 kg
N·ha21·y21 and an average deposition rate of 2.34 kg
N·ha21·y21 (Fig. 5e). The particulate NO3

2 deposition
velocity applied to the measured HNO3 1 particulate
NO3

2 concentration produced smaller fluxes, with peak
deposition rates of 3.1 kg N·ha21·yr21 and mean de-
position rates of 0.58 kg N·ha21·yr21 (Fig. 5d). The
estimated NO2 dry-deposition flux was higher with

peak deposition rates .11.2 kg N·ha21·yr21 and mean
deposition rates of 1.3 kg N·ha21·yr21 (Fig. 5f). For
Europe the particulate NH4

1 flux was more than twice
that estimated for the United States, with peak depo-
sition rates of almost 1.9 kg N·ha21·yr21 and average
deposition rates of 0.34 kg N·ha21·yr21 (Fig. 5c).

The patterns of dry deposition for all species are
driven by the calculated Vd together with the atmo-
spheric concentrations (Eqs. 3 and 4). The maps of the
calculated deposition velocities for the two regions are
provided in Figs. 6 and 7. For both regions, the HNO3

(g) Vd’s fell within the wide range of measured Vd’s
(Table 3). Many of Vd’s calculated for particulate NH4

1

and NO3
2 fell at the upper end of the range or above

the range of compiled estimates (Table 3). The Vd’s
calculated for NO2 were at the upper end of the range
reported in Hanson and Lindberg (1991) and above
many of the other compiled estimates. We used the
Weseley (1989) method for estimating the NO2 Vd, and
this does not adequately account for the leave uptake
and release and so may have resulted in an overestimate
of the deposition velocity (Lerdau et al. 2000).

Estimated dry-deposition fluxes lack the spatial co-
herence of the wet-deposition fluxes over both conti-
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FIG. 5. Spatial distribution of the N deposition flux estimated for each of the individual N species measured (kg N/ha)
for Europe: (a) wet deposition flux of NH4

1 (aq); (b) wet-deposition flux of NO3
2 (aq); (c) dry-deposition flux of particulate

NH4
1; (d) dry-deposition flux of particulate NO3

2; (e) dry-deposition flux of gaseous HNO3 (g); (f) dry-deposition flux of
gaseous NO2 (g). The fluxes of HNO3 and particulate NO3

2 are representative of the spatial patterns of deposition for each
of the species, but the magnitudes of the fluxes are likely overestimated because some chemical species with different
deposition velocities were reported as a sum (see Data and methods). Both the wet-deposition data and the ambient con-
centrations used to calculate the dry-deposition fluxes were provided by the EMEP network. Dry-deposition fluxes were
calculated by multiplying the interpolated concentrations by model-estimated deposition velocities. See Data and methods:
Dry-deposition measurements for explanation of statistical interpolation procedure and for an explanation of how dry-
deposition fluxes were calculated. The peak value on each color bar represents the 95% percentile for each chemical species.
The data and mapped fluxes are available online (Holland et al. 2004).

nents. The flux was calculated as a product of spatially
interpolated concentrations and the deposition velocity
calculated for each grid cell, based on meteorological
data and land cover (Figs. 6 and 7). The deposition
velocities and thus the underlying land cover had sub-
stantial impact on the overall pattern of the dry-de-
position fluxes with discrete land-cover boundaries
rather than natural spatial variability associated with
natural ecotones (Fig. 6 and 7). The dependence on
land cover was emphasized when we implemented the
increased Vd for particulate fluxes suggested by Jonas

and Heinemann (1995) (Table 4). Overall, the increased
Vd’s for particulate NH4

1 onto deciduous, coniferous,
and mixed forests increased the spatially integrated de-
position by between 3.4- and 5.7-fold. The increase
was greater in the United States compared to Europe
because of their greater spatial extent of coniferous
forests and the associated higher Vd. The different dry-
deposition modeling approaches yield substantially dif-
ferent estimates of fluxes, underscoring the need for
regional dry-deposition models that have been exten-
sively compared to the growing number of direct flux



48 ELISABETH A. HOLLAND ET AL. Ecological Applications
Vol. 15, No. 1

TABLE 3. Comparison of deposition velocities Vd estimated in this study with modeled and measured deposition velocities
for reactive N gases.

Reference
Estimation
technique

Vd (cm/s)

HNO3 (g) NOy NO2 (g)
Particulate

NO3
2

Particulate
NH4

1

This study modeled
Europe average 1.36 ··· 0.34 0.35 0.08
U.S. average 1.54 ··· ··· 0.27 0.05

Baldocchi (1985) measured 2–5 ··· ··· ··· ···
big-leaf model 2–4.3 ··· ··· ··· ···
Eulerian model 2.2–4 ··· ··· ··· ···
Lagrangian model 2.8–3.8 ··· ··· ··· ···

Bengtsson et al.
(1982)

measured ··· ··· 0.17–0.43
day

··· ···

0.07–0.2
night

Brook et al.
(1996)

modeled, LUM
model

0.97–2.81 ··· ··· ··· ···

modeled, NOON
model

1.60–1.91 ··· ··· ··· ···

Brook et al.
(1997)

three models 1.55–3.49 ··· ··· ··· ···

Duyzer et al.
(1997)

gradient measurement ··· ··· ··· ··· 0.18

Erisman (1994) gradient measurement ··· ··· 0.1–0.4 ··· ···
Erisman (1997) gradient method ··· ··· ··· 1–2 1–2
Fowler et al.

(1989)†
measured 0.52–5.0 ··· ··· ··· ···

Ganzeveld and Le-
lieveld (1995)

modeled 0.4–7.5 ··· 0.18–0.33 ··· ···

Hanson and Lind-
berg (1991)

summary of measure-
ments and some
models

0.03–26 ··· 0.1–2.8 day 0.1–3.7 0.01–1.3

0.07–0.42
night

Johannsson et al.
(1987)

branch chamber mea-
surements

··· ··· 0.1–0.2
day‡

··· ···

0.05–0.2
night

Lefer (1997), Le-
fer et al. (1999),
and Lefer and
Talbot (2001)

gradient measure-
ment, and referenc-
es therein

1–6 ··· ··· 0.02–0.4 0.02–0.4

Lovett and Lind-
bergh (1993)

modeled 1.3–6 ··· ··· 0.2–0.4 0.2–0.4

Lovett (1994) summary of models
and measurements

1–5 ··· 0.1–0.5 for
open sto-
mata

··· ···

Meyers et al.
(1998)

modified Bowen ratio
modeled

1–6
1–4.2

···
···

···
···

···
···

···
···

Müller et al. (1993) modified Bowen ratio
measured

2.2
0.6–5.0

···
···

···
···

···
···

0.2–7
···

Munger et al.
(1996)

eddy covariance ··· 1.5–2 day ··· ··· ···

0.5 night
Peters and Bruck-

er-Schatt (1995)
modeled 11 ··· ··· 1.85 0.47

Rondón et al.
(1993)

branch chamber mea-
surements

··· ··· 0.08–0.21
day‡

··· ···

0.03–0.08
night

Ruijgrok et al.
(1994)

foliar extraction
surrogate surface

···
···

···
···

···
···

0.13–0.43
0.13–0.69

···
···

throughfall ··· ··· ··· 0.33–2.25 ···
Ruijgrok et al. simplified model ··· ··· ··· 1.47 6 1.43§ 1.13 6 1.00§

(1997) filter pack measure-
ment

··· ··· ··· 1.2 6 1.1§ ···

Sirois and Barrie
(1988)

1.11–2.94 ··· 0.10–0.23 0.35–0.65 ···
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TABLE 3. Continued.

Reference
Estimation
technique

Vd (cm/s)

HNO3 (g) NOy NO2 (g)
Particulate

NO3
2

Particulate
NH4

1

Wyers and Duyzer
(1997)

Slinn et al. (1992)
model\

··· ··· ··· 1.76 6 2.04§ 1.22 6 1.02§

gradient model ··· ··· ··· 1.1 ···

† Summarized in Meixner (1994).
‡ Calculated on a ‘‘per unit needle area’’ basis.
§ These values are reported 61 SD.
\ Modification described in Ruijgrok et al. (1994).

FIG. 6. Spatial distribution of the calculated deposition velocities (Vd; cm/s) for each of the gases and aerosols considered
for the United States: (a) HNO3 (g), (b) particulate NO3

2, and (c) particulate NH4
1.
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FIG. 7. Spatial distribution of the calculated deposition velocities (Vd; cm/s) for each of the gases and aerosols considered
for Europe: (a) HNO3 (g), (b) particulate NO3

2, (c) particulate NH4
1, and (d) NO2 (g).

TABLE 4. Comparison of dry deposition onto different bi-
ome types using the Weseley method (Weseley et al. 1985,
Weseley 1988, 1980) and the modified deposition velocity
measured by Jonas and Heinemann (1985).

Biome

Particulate NH4
1 deposition

(Gg N/yr)

Weseley
Jonas and

Heinemann

Conterminous United States
Deciduous 7.64 41.69
Coniferous 20.93 113.90
Mixed 22.01 125.40

Europe
Deciduous 5.46 18.39
Coniferous 17.87 74.76
Mixed 6.97 31.12

Note: According to Jones and Heinemann (1985: Table 2),
the average deposition velocity (Vd) ratios are: coniferous
forest : grass, 10.4; deciduous forest : grass, 6.7; and mixed
forest : grass, 8.6.

measurements of many of these species (Weseley and
Hicks 1999).

Uncertainties, caveats, and sensitivities

The maps of N deposition presented highlight a num-
ber of issues concerning our understanding of N-de-
position. First, what is N deposition? The summary N-
deposition maps presented in Fig. 8 represent the sums
of different quantities and are incomplete. The maps
for the United States and Europe are comparable for
the wet-deposition components NH4

1 and NO3
2, but

not for dry deposition. Important constituents of both
wet and dry deposition have been neglected in the mea-
surements networks in both the United States and Eu-
rope, most notably wet and dry deposition of oxidized
and reduced organic nitrogen and NH3 exchange (Lang-
ford et al. 1992, Neff et al. 2002). First, NO2 (g) con-
centrations were measured only in Europe. Critical
evaluation of the estimated NO2 deposition is required
because of the balance between leaf uptake and release
of NO2 (Lerdau et al. 2000). Second, there are sub-
stantial differences in sampling density and location
between the United States and Europe. Third, the net-
work should include a series of sites where complete
N-deposition fluxes, including NH3, particulate N, and
organic-N concentrations and exchanges are measured
(Munger et al. 1996, 1998, Bouwman et al. 1997, Pryor
et al. 2000, Neff et al. 2002).

Estimates of dry-deposition fluxes are less robust
than estimates of wet-deposition fluxes despite simi-

larities in the magnitude of the two types of fluxes
(Figs. 3–5). In Europe, only 115 sites were used to
estimate the spatial distribution of aqueous N deposi-
tion over an area 15% bigger than the size of the con-
terminous United States. The United States has 237
sites (used in this analysis) for the measurement of wet
deposition (Fig. 2). Only 70 of the European sites mea-
sured deposition for more than five years. The numbers
of samples used to extrapolate dry deposition over the
United States were even smaller, at 68 sites, with only
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FIG. 8. Estimated N deposition fluxes summed and integrated over the conterminous United States (top) and Western
Europe (bottom). The N species considered for Europe were wet deposition of NH4

1-N and NO3
2-N, and dry deposition of

HNO3-N (g) (using the Vd for HNO3), NO2 (g), and particulate NH4
1. The area of the conterminous United States is 31.01

3 106 km2 compared to 35.7 3 106 km2 in continental Western Europe (excluding some of the small islands of the Norwegian
archipelago and portions of Eastern Europe outside the measurement network). The mapped fluxes are available online
(Holland 2004).

four years of data for many of the sites. Consequently,
the estimated fluxes are uncertain to a degree that is
difficult to quantify, but uncertainty associated with
interpolation alone ranges from 12% to .100% (based
on the estimated Kriging variance). Based on our cross-
validation analyses of wet- and dry-deposition fluxes
for the conterminus United States, the squared corre-
lation coefficients (r 2) for wet and dry deposition were
0.93 and 0.48, respectively. This difference in the un-
certainties of the estimates must be kept in mind when
evaluating the regional N budgets presented below. A
comprehensive comparison of dry-deposition model
estimates and direct flux measurements is called for
(Sutton et al. 1993, Munger et al. 1998, Lefer et al.
1999, Pryor et al. 2000, Holland and Carroll 2003).

Within the United States, the practice of locating
sites at remote locations far from sources undersamples
deposition. The lifetime of NOx and NOy in urban and

power-plant plumes is estimated to be between 2.80 to
4.2 h for NOx and 7.0 to 7.7 h for NOy. These lifetimes
with the corresponding relatively short transport dis-
tances in the boundary layer and lower troposphere,
the significant nonlinearities in the NOx / ozone chem-
istry, the large uncertainties in dry deposition, and the
remote location of the NADP sampling stations argue
for expanding the NADP, NDDN, CASTnet networks
to include urban influences (Nunnermaker et al. 2000,
Ryerson et al. 2001, Kleinman et al. 2002). Measure-
ment of deposition in precipitation is a relatively in-
expensive means of monitoring the impact and extent
of human activities on air chemistry, but it is a mission
beyond the original deposition network objective of
measuring acidic deposition and its impact on remote
areas. To accomplish these expanded objectives, and
to provide accurate measurements of reactive N de-
position for terrestrial and atmospheric studies, the
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TABLE 5. Budget of estimated N emissions and deposition for the conterminous United States (units are teragrams of N
per year).

Emissions NOx NH3 NOx 1 NH3

Estimated emissions† 6.24–6.35‡ 3.6–5.2§ 9.84–11.55

Deposition NOy\ NHx¶ NOy 1 NHx

Integrated deposition
Wet deposition fluxes 1.28 1.08 2.36
Dry deposition fluxes

Particulate NO3 1.20
Particulate NH4

1 0.18–0.98
S Dry deposition fluxes 1.38–2.18
Total wet 1 dry 2.48 1.26–2.06 3.74–4.54

Imbalance 3.76 to 3.87 1.54 to 3.94 5.30 to 7.81

† See Results and discussion for discussion of emission estimates.
‡ Sources: Benkovitz et al. (1996) from NAPAP inventory by Saeger et al. (1989); U.S. EPA national trends estimated

for fossil-fuel estimates only (1978–1994 time period), EPA-454/R-97011.
§ Sources: Dentener and Crutzen (1994) and Bouwman et al. 1997 (estimated for all of North America).
\ NOy includes measured wet deposition of NO3

2 and dry deposition of HNO3 (g) and particulate NO3
2.

¶ NHx includes wet deposition of NH4
1 and dry deposition of particulate NH4

1, but it does not include dry deposition of
NH3. The range is determined by the different approaches to calculating particulate deposition, see Table 4 and Results and
discussion: Dry-deposition fluxes.

measurements, methods, spatial distribution, and
chemical species sampled requires reevaluation.

Within Western Europe there are hundreds of sites
where N deposition in precipitation is measured but not
reported to the European Monitoring and Evaluation
Program (EMEP). For example, a compilation of NH4

1

and NO3
2 wet-deposition data for 1989 included 750

stations, more than six times the number of stations
providing data to EMEP (van Leeuwen et al. 1995,
1996). However, the majority of the additional stations
were located in areas that were already sampled, rather
than filling in the spatial gaps in the countries with few
measurement stations. The requirement that EMEP sta-
tions report data daily requires tremendous person pow-
er and resources. Not having the data available in a
coordinated way is a waste of public resources.

For both regions, the estimated N deposition did
not balance estimated emissions (Tables 5 and 6). The
imbalance in emission and deposition for the two re-
gions has several likely explanations. First, there may
be transport of N deposition into or out of the region.
The United States may be exporting significant quan-
tities of N offshore for deposit downwind onto the
North Atlantic or Europe (Galloway et al. 1996, Pros-
pero et al. 1996). The pattern of greater deposition
along the U.S. Eastern seaboard is consistent with this
idea. Second, N emissions may be underestimated.
Fossil-fuel emissions, which are quantified with the
most confidence, carry an estimated uncertainty of
630% (Benkovitz et al. 1996). Estimates of natural
emissions carry a much greater uncertainty and can
exceed 100%, but natural emissions are a relatively
small contributor to the reactive-N budgets outside of
the tropics (Lamarque et al. 1995, Bouwman et al.
1997, Lee et al. 1997). A third explanation is that N-
deposition budgets are incomplete for both the United

States and Europe. In both networks, the deposition
of organic nitrogen and exchanges of NH3 are not
measured, but these fluxes have been shown to be
important (Langford et al. 1992, Bouwman et al. 1997,
Neff et al. 2002). The European measurements rep-
resent a more complete estimation of the suite of N
species involved, but both networks fall short. Finally,
the networks are inadequate to measure the spatial
distribution of N deposition, especially the influence
of urban and power plumes for the reasons discussed
above. The countries within Europe that have the
greatest emissions have devoted the most effort to
deposition measurements, providing a bias towards
higher estimates of deposition (Erisman et al. 1994,
van Leeuwen et al. 1996). The U.S. network provides
a bias towards lower estimates of deposition by sam-
pling only remote areas, and fails to adequately cap-
ture the influence of urban emissions and emissions
from point sources, despite the 237 measurement
sites.

This budgetary analysis highlights the need for ad-
equate sampling and refocusing the efforts of the Eu-
ropean and U.S. networks. Key issues include the need
for coordination with existing air pollution monitoring
efforts, complete sampling of chemical constituents,
expansion of the existing network to include urban in-
fluences, and comparison with time-varying emission
estimates.

CONCLUSIONS

The analysis presented here represents a framework
for producing mapped atmospheric-deposition products
for use in studying the changing biospheric–atmo-
spheric cycle of nitrogen. Our confidence in the esti-
mated N-deposition patterns over both continents is,
however, limited by irregular and incomplete spatial
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TABLE 6. Budget of estimated N emissions and deposition for Europe (units are teragrams of N per year).

Emissions NOx NH3 NOx 1 NH3

Estimated emissions† 6.1‡ 4.1–5.2§ 10.2–11.3

Deposition NOy\ NHx¶ NOy 1 NHx

Deposition fluxes
Wet deposition fluxes 2.34 3.96 6.30
Dry deposition fluxes#

HNO3 1 particulate NO3
2 0.55–2.27 0.55–2.27

NO2 1.24 1.24
Particulate NH4

1 0.33–1.34 0.33–1.34
S Dry deposition fluxes 1.79–3.52 0.33–1.34 2.12–4.85
Total wet 1 dry 4.13–5.85 4.29–5.30 8.42–11.15

Imbalance 1.97 to 0.25 20.10 to 1.20 20.15 to 2.88

† See Results and discussion for discussion of emissions.
‡ Source: Fossil fuel emission estimates are from Corinair project of the Coordination of Information Environmentale and

EMEP inventories for 1985 included in Dentener and Crutzen (1994).
§ Sources: Dentener and Crutzen (1994) and Bouwman et al. (1997).
\ NOy includes measured wet deposition of NO3

2, and dry deposition of NO2 (g) and HNO3 (g) and particulate NO3
2.

¶ NHx includes wet deposition of NH4
1 and dry deposition of particulate NH4

1, but it does not include dry deposition of
NH3. The range is determined by the different approaches to calculating dry deposition; see Table 4 and Results and discussion:
Dry-deposition fluxes.

# The dry deposition range for NOy is based on the use of two different deposition velocities (Vd’s), one for particulate
NO3

2 and one for HNO3. See Results and discussion: Dry-deposition fluxes for further explanation.

sampling, and by the lack of an adequate procedure for
estimating dry-deposition velocities of N-containing
gases and particulates. For both the United States and
Europe, deposition of NH4

1 in precipitation was the
most significant flux of N observed, but because of the
uncertainties associated with determining the dry-de-
position fluxes, a strict ranking of the fluxes remains
problematic. Despite the large uncertainties, there ap-
pear to be large differences in the chemical climates
of two major portions of the developed world. Over
the United States, only 40% of the estimated emissions
were captured by the deposition measurements. By
contrast, in Western Europe deposition measurements
captured a much higher proportion of emissions, and
some calculations suggested Western Europe received
more N than it emitted, arguing for net N import to the
region (Tables 5 and 6).

The levels of N being deposited over most of Europe
exceed the many estimates of critical loads of between
10–20 kg N·ha21·y21. Fewer such severely impacted
areas appear in the analysis of the U.S. data. The like-
lihood that a region will undergo N saturation depends
on the interactions among soil properties, land use,
stand age (for forests), climate variation, and the rates
and history of N deposition (Aber et al. 1989, 1993,
1995, 1997, 1998, Ollinger et al. 1993, Aber and Dris-
coll 1997). Substantial areas of both the United States
and Europe have been receiving large quantities of N
for longer than the period of measurement, and there-
fore must be monitored directly.

The establishment of both the EMEP and NADP/
NTN networks was originally motivated by concern
over acid rain and its effects on rural and remote re-
gions, and continuing collection of this valuable set of

measurements is essential. After years of acid rain re-
search, we know the problems and how to design an
effective sampling network, but the scientific issues
have shifted from quantifying acid deposition with em-
phasis on sulfuric acid deposition to a growing focus
on nitrogen deposition and base cations (Hedin et al.
1994, Likens et al. 1996, Aber et al. 1997). The data
are essential to address emerging questions such as the
quantification of N deposition fluxes over large areas,
the influence of N deposition on changing species com-
position in terrestrial and aquatic ecosystems, and
large-scale changes in ecosystem biogeochemistry.
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