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We have grown nitrogen-doped MgxZn1−xO:N films on Zn-polar ZnO single crystal substrates by
molecular beam epitaxy. As N-sources, we employed NO-plasma or NH3 gas itself. As x increased,
optimum growth temperature window for smooth film morphology shifted to higher temperatures,
while maintaining high N-concentration ��1�1019 cm−3�. The heterosructures of MgxZn1−xO:N
�0.1�x�0.4� /ZnO were fabricated into light emitting diodes of 500-�m-diameter. We observed
ultraviolet near-band-edge emission ���382 nm� with an output power of 0.1 �W for a
NO-plasma-doped LED and 70 �W for a NH3-doped one at a bias current of 30 mA. © 2010
American Institute of Physics. �doi:10.1063/1.3459139�

ZnO, with a room-temperature direct band gap of
3.37 eV ��=369 nm� and a large exciton binding energy
�60 meV�, is a promising candidate for making cost-
competitive ultraviolet light emitting diodes �LEDs�.1–4 ZnO
is an as-grown n-type semiconductor due to crystalline de-
fects serving as donors.5 Tsukazaki et al.6,7 clearly indicated
that the major carrier type can be turned into p-type and
demonstrated p-n junction LEDs. However, the experiments
reported previously involved certain challenges in extending
the technology to industrial mass-production.

First, Tsukazaki et al. employed ScAlMgO4 �SCAM�
substrates to grow high-quality ZnO films. One advantage of
SCAM as a substrate material is that it has an excellent
lattice-matched condition. However, SCAM has some prob-
lems; for example, it is an expensive compound because Sc
is a rare element, it is difficult to grow large crystals,8 and it
is an insulator, which results in a complicated LED structure
because the device geometry requires two electrical contacts
fabricated on one side of the substrate �this is also the case
for GaN-based LEDs on sapphire�.9,10 Second, Tsukazaki
et al. utilized a pulsed-laser deposition �PLD� technique that
involves the critical difficulty that impurities in the
starting materials �targets� are inevitably transferred into the
grown films. Single-crystal ZnO with high purity can be
used for PLD-ZnO growth but the unavoidable choice of a
sintered “ceramic” MgxZn1−xO target to produce p-type
MgxZn1−xO gives rise to contamination with typical donor
elements such as Si and Al at a level of a few hundred ppm.11

Third, the growth temperature �Tg� was repeatedly modu-
lated between low ��400 °C� and high ��1000 °C� levels
while growing N-doped ZnO �ZnO:N� films for doping and
activating N as an acceptor. This process is not suited for
production because it is difficult to keep both low and high
Tg stable simultaneously throughout the entire growth pro-

cess. Note that the need for this process is due to the less
efficient N-incorporation for the O-polar surface of ZnO
films than for the Zn-polar surface.12

Our solution to the first problem is to adopt n-type single
crystalline ZnO substrates, which facilitate a vertical contact
geometry �a standard configuration of LEDs�. Recently, ZnO
bulk crystal substrates of up to 3 in. in diameter have become
commercially available due to the advancement of a modi-
fied hydrothermal method.13 For the second problem, we
have employed molecular beam epitaxy, a mature technology
in the field of III-V and II-V compound semiconductors. The
authors have overcome the third problem by utilizing Zn-
polar ZnO substrates, which allow N-doping even at a high
Tg,14 leading to an optimal growth conditions for N-doping
where deterioration of the N-doped film crystalline quality
can be avoided.

We selected ZnO substrates from which Li was elimi-
nated by thermal annealing �Tokyo Denpa Co. Ltd.�.13 Their
Zn-polar surfaces were chemomechanically polished so that
0.26 nm high steps �half of the c-axis lattice constant of a
ZnO unit cell� and atomically flat terraces were clearly ob-
served by atomic force microscopy �AFM� inspection �Mit-
subishi Chemical Corporation�. The source materials were
7N Zn, 6N Mg, 6N O2 gas, 4N NO gas, and 5N NH3 gas.
The growth conditions of MgxZn1−xO:N on Zn-polar c-plane
ZnO substrates were optimized at the highest allowable tem-
perature, while maintaining an atomically smooth surface
and a nitrogen concentration as high as 1�1019 cm−3.
Radio-frequency plasma sources were used to crack O2 and
NO molecules into O radicals and mixture of O and N radi-
cals, respectively. NH3 gas was directly supplied through a
nozzle to the growing surface without any thermal or plasma
cracking. The MgO molar fraction x, relating to the band gap
energy of the MgxZn1−xO, was controlled by adjusting the
Mg/Zn flux ratio and was calibrated using x-ray diffraction,
photoluminescence characteristics, and Auger electron
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spectroscopy.14,15 Nitrogen concentration was determined by
secondary ion mass spectroscopy.

We first focused our efforts on growing highly crystal-
line MgxZn1−xO films on ZnO substrates. The most critical
condition for the substrate was found to be adjustment of the

miscut angle: 0.5° off toward the �101̄0� direction.16 The
straight step edges remained intact after growth for this
particular condition but tended to meander and bunch for
the other conditions, indicating stable crystallinity with the

�101̄0� m-plane. Figure 1�a� shows an AFM image of the
ZnO film grown under the optimum conditions �Tg
=750 °C with O2 radical at a flow rate �FL�O2�� of 1.0 stan-
dard cubic centimeter per minute �SCCM��. The surface mor-
phology is very similar to that of the substrate �not shown�.
When we switched the gas source from O2 to NO �FL
=0.5 SCCM� for making the ZnO:N at Tg=750 °C, the sur-
face became rough �Fig. 1�b��, although a high level
�3�1019 cm−3� of N was incorporated. With this gas condi-
tion, we found that higher Tg was necessary to obtain a flat
surface �not shown� similar to that of original substrate.
The increase in x in MgxZn1−xO tended to shift the optimum
Tg upward.14 This trend resembles those for AlxGa1−xAs and
AlxGa1−xN alloy growths, where Al has lower surface diffu-
sivity than Ga due to larger bond energy with As or N.17,18

This scenario is thought to be applied in case of MgxZn1−xO
as well. When we grew undoped MgxZn1−xO films
�x�0.12� at Tg=870 °C, the surfaces remained smooth
�not shown�. The excellent quality of the MgxZn1−xO films
was confirmed by the observation of a high-mobility
two-dimensional electron gas �2DEG� confined at the
ZnO /MgxZn1−xO interfaces.19,20

We now show the results for MgxZn1−xO:N films grown
using NO gas at Tg=870 °C. As stated above, smooth
MgxZn1−xO:N films could be grown at such a high Tg
value, as shown in Fig. 1�c�. The surfaces exhibited many
coarse step edges, indicating that step bunching took place
while growing in a step-flow mode. A typical terrace width
was 300 nm, ruled by �3 nm high bunched steps. The
N-concentration was kept at reasonably high level of 8
�1018 cm−3, demonstrating a significant advantage of Zn-
plane growth. We also examined the possibility of NH3 as a
N-dopant in view of the proposal by Van de Walle who
claimed that the use of NH3 lead to easier incorporation of N
in ZnO.21 Optimization of film growth processes were car-
ried out to identify a set of conditions �FL�NH3�=3 SCCM,
FL�O2�=3 SCCM, and Tg=870 °C� resulting in films with
smooth surface similar to that shown in Fig. 1�c� and
N-concentration of 1�1019 cm−3. It was not possible to
prove the p-type conduction in our Mg1−xZnxO:N films by
such conventional measurements as Hall or Seebeck effects

due to the parallel conduction path in the n-type substrates. If
it were n-type, we should have observed high in-plane con-
ductivity due to 2DEG at the ZnO /MgxZn1−xO interfaces.20

We have never observed 2DEG in the Mg1−xZnxO:N /ZnO
using above mentioned films, supporting the depletion of
2DEG by the presence of p-type Mg1−xZnxO:N.

We employed 400 nm thick Mg0.1Zn0.9O:N films shown
in Fig. 1�c� for fabricating LEDs A and B whose structures
are schematically illustrated in Figs. 2�a� and 2�b�, respec-
tively. The current-voltage �I-V� characteristics of the LEDs
A and B exhibited a rectifying property with a turn-on volt-
age of approximately 3 V, as shown in Fig. 2�c�. The elec-
troluminescence �EL� spectra of these devices are shown in
Fig. 2�d�. Both LEDs showed a sharp EL peak at the near-
band-edge �NBE, �=380–400 nm�, which was sharper and
shorter in wavelength than that of a ZnO p-n junction re-
ported previously ��=430 nm�.7 The result implies an
effective blocking of electrons by the wide band gap
Mg0.1Zn0.9O:N layers, leading to efficient exciton recombi-
nation in the n-type ZnO layers. In fact, a characteristic or-
ange emission ��=610 nm� observed in the PL spectrum
�not shown� of the Mg0.1Zn0.9O:N film was absent in the EL
spectra of the LEDs. Another characteristic green emission
around 500 nm, however, was observed in the EL spectra. A
similar emission band was also observed in the PL spectrum
of the ZnO substrate. By inserting an undoped ZnO epitaxial
film, the green emission was considerably suppressed, indi-
cating that the homoepitaxial ZnO was of better quality than
the ZnO substrates and most of the radiative recombination
took place in the ZnO film.

0.08 nm
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35 nm

(b)

0.72 nm 5 μm
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FIG. 1. AFM images �10�10 �m2� of the films �a� undoped ZnO grown at
750 °C, �b� N-doped ZnO grown at 750 °C, and �c� N-doped Mg0.1Zn0.9O
grown at 870 °C. The root-mean-square value of roughness is given in each
image.
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FIG. 2. �Color online� �a� and �b� depict cross-sectional schematics for LED
A and those of B–D, respectively. The device was 500 �m in diameter and
the back side of the ZnO substrates was bonded to a metal plate with In. The
top electrode in �a� was formed as Au �200 nm�/Ni �10 nm� with a diameter
of 250 �m. That of �b� consists of a semitransparent electrode of Au
�4 nm�/Ni �2 nm� with a diameter of 500 �m and a contact pad of Au
�500 nm�/Ni �2 nm� with a diameter of 350 �m. �c� The rectifying I-V
curve measured for LEDs A, B, C, and D. �d� EL spectra from LEDs A–C.
All spectra were measured at room temperature. Forward bias operation
conditions are also shown.
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We also fabricated LED C and D whose structure is
shown in Fig. 2�b� with employing Mg0.4Zn0.6O:N grown
with NH3. Although the turn-on voltage is as high as 10 V as
shown in Fig. 2�c�, presumably due to poor electrical contact
with Ni and highly resistive Mg0.4Zn0.6O:N layer, clear rec-
tification was observed as shown in Fig. 2�c�. The EL of
LED C was much more intense by a factor of 800 than those
of LED A and B and the spectral weight was more concen-
trated in NBE emission.

The NBE emission spectra of LEDs B and D are shown
in Fig. 3�a�. The EL peak energies were slightly lower than
the PL peak energy of ZnO �broken line�. One of the reasons
is self-absorption of the ZnO emission in the thick ZnO sub-
strate. In addition, both LEDs showed a clear redshift ten-
dency as the operating current increased. Therefore, a heat-
ing effect is also likely. Actually, the PL peak shifted to
longer wavelengths at 0.06 nm / °C, yielding device tem-
peratures of 67 °C at 23 A cm−2 operation in LED B and
175 °C at 18 A cm−2 operation in LED D. These devices
broke down when we were measuring spectra at higher cur-
rents. We assume that the severe heating was due to the high
contact resistance at the Ni /Mg0.1Zn0.9O:N interfaces. Re-
ducing the contact resistance is an essential pathway for im-
proving device performance. Figure 3�b� shows the inte-
grated NBE emission of these LEDs as a function of the
forward current density. Our EL measurement system was
calibrated by using a commercial InxGa1−xN based LED hav-
ing similar peak wavelength, whose output power was mea-
sured by a calibrated integrating sphere system. The output
power ranged from 0.1 to 70 �W at the maximum attainable
operation current �typically 30–40 mA�.

The LED D was coated with a 0.1-mm-thick epoxy resin
containing 5 wt % �BaEu��MgMn�Al10O17 �LP-G3, Mitsub-
ishi Chemical� green phosphor. This structure is similar to
the combination of commercial white LED composed of
470 nm blue �InGa�N LED and a garnet yellow phosphor, the
only material choice with a high excitation efficiency by the
blue LED. As shown in Fig. 3�c�, a part of ultraviolet NBE
was converted into green. The UV emission of ZnO LED
will make it possible to excite many existing phosphors de-
veloped for fluorescent tube, enabling better color rendering.

In conclusion, we have optimized the MBE conditions of
N-doped MgxZn1−xO films on Zn-polar ZnO substrates to
obtain smooth surface films with a nitrogen concentration of
�1�1019 cm−3. NBE emission was clearly observed in the
EL spectra from LEDs. Further improvements in material
quality, LED design, and processing are of interest. It is a
promising fact that NH3 worked as N dopant because NH3 is
more suitable than radical nitrogen sources for the future
challenge of making ZnO based LEDs by use of an industry-
suited growth method of metal organic chemical vapor depo-
sition.
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FIG. 3. �Color online� �a� EL spectra of the LEDs B and D operated with
various current densities. �b� Integrated EL intensity for the spectra shown in
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