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Abstract Primary productivity is limited by the availability of nitrogen (N) in most of the coastal Arctic, as a

large portion of N is released by the spring freshet and completely consumed during the following summer.

Thus, understanding the fate of riverine nitrogen is critical to identify the link between dissolved nitrogen

dynamic and coastal primary productivity to foresee upcoming changes in the Arctic seas, such as increase

riverine discharge and permafrost thaw. Here we provide a field-based study of nitrogen dynamic over the

Laptev Sea shelf based on isotope geochemistry. We demonstrate that while most of the nitrate found under

the surface freshwater layer is of remineralized origin, some of the nitrate originates from atmospheric input

and was probably transported at depth by the mixing of brine-enriched denser water during sea ice

formation. Moreover, our results suggest that riverine dissolved organic nitrogen (DON) represents up to 6

times the total riverine release of nitrate and that about 62 to 76% of the DON is removed within the shelf

waters. This is a crucial information regarding the near-future impact of climate change on primary

productivity in the Eurasian coastal Arctic.

Plain Language Summary Climate change will enhance the release of organic nitrogen to the

Arctic via increased river runoff and permafrost thawing. Here we show that more than half of this

nitrogen can be used directly, or after recycling, by marine organisms and thus should be taken into

consideration when investigating the global primary productivity of the Arctic coastal ecosystem.

1. Introduction

The Arctic and the high latitudes underwent dramatic change over the past decades. In fact, the 20th century

has been the warmest in the Arctic for at least the past 44,000 years [Miller et al., 2013]. Observed changes

notably include increased discharge from the Eurasian rivers, permafrost thaw, and decline of snow cover

and sea ice extent [Peterson et al., 2002; Macdonald et al., 2005]. Permafrost thaw and enhanced river

discharge represent a direct increase in the input of nutrients [Treat et al., 2016]. The effect of increased

delivery of nitrogen (N), phosphorous, and other nutrients by river runoff and permafrost thaw in the

Arctic marine system is still unresolved because there are still major gaps in our knowledge regarding the fate

of those nutrients on Arctic shelves [Tank et al., 2012; Le Fouest et al., 2013; Torres-Valdes et al., 2016]. It has

been recently suggested from flux estimations that riverine nitrate would contribute only to a small amount

of the total Arctic Ocean productivity (<10%) and that a similar number could be attributed to dissolved

organic nitrogen (DON) regeneration and assimilation in nearshore regions, notably in the Laptev Sea

[Tank et al., 2012; Le Fouest et al., 2013, 2015]. However, our knowledge of the actual transformation processes

controlling the nitrogen dynamic is limited [Torres-Valdes et al., 2013], and thus, is it hard to accurately predict

the fate of Arctic riverine nitrogen in a warming world.

The Siberian part of the Arctic Ocean (0–180°E) is characterized by an inflow of marine water from the Atlantic

via the Norwegian Sea. Over the Siberian shelves the circulation is generally cyclonic, from the east over the

Barents Sea shelf, passing into the Kara Sea [Macdonald et al., 2004; Aksenov et al., 2011], eventually reaching

the Laptev and East Siberian Seas where it meets inflowing waters from the Pacific Ocean [Jones et al., 1998].

The Laptev Sea thus receives surface waters from the West (Figure 1) that are quite depleted with respect to

nitrate [Letscher et al., 2013]. Surface waters are indeed nitrate-depleted during summer but Atlantic-derived

subsurface water (referred to as modified-Atlantic water) is advected over the Laptev Sea shelf and contains a

relatively high concentration of nitrate [Bauch et al., 2014]. Beside the import of modified-Atlantic water, the

hydrography of the Laptev Sea is impacted by the 530 to 581 km3 of freshwater runoff from the Lena River
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each year, mostly during spring [Le Fouest et al., 2013]. The fate of the Lena freshwater plume during the

following summer is controlled by atmospheric forcing: the freshwater is directly pushed northward

during offshore years, while the plume is constrained on the shelf and pushed toward the East Siberian

Sea during onshore years [Dmitrenko et al., 2005; Bauch et al., 2011a; Thibodeau et al., 2014]. This

freshwater discharge carries 15 to 24 × 109 g N in the form of nitrate but also between 80 and 245 × 109 g N

of DON [Dittmar and Kattner, 2003; Le Fouest et al., 2013]. While the mean riverine nitrate contribution to

ocean primary production is generally low in the Arctic with about 5% in the Laptev Sea [Le Fouest et al., 2013],

Figure 1. Major currents driving the surface circulation of the Laptev Sea. The red color represents the Atlantic-derived
water flowing along the continental slope and branching onto the shelf (referred here as modified-Atlantic water), the
light blue color represents the freshwater discharge (from Lena and Khatanga River), and the green color represents the
water originating from the Kara Sea. (bottom) The structure of the water column based on water mass fraction (% of river
water) calculated from salinity and δ

18O of the water in a 60 m deep cross section sampled at 131°E (dashed black line on
the main panel).
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rapid uptake of dissolved inorganic nitrogen (DIN) coupled with relatively high rates of DON regeneration

in N-limited nearshore regions could potentially lead to high rates of localized riverine-supported photo-

synthesis [Tank et al., 2012]. Consequently, there are still multiple questions related to the importance and

the mechanisms controlling DON-based primary productivity. Interestingly, recent pan-Arctic modeling

efforts suggest that removal of riverine DON by bacterioplankton and summertime primary productivity

fueled by recycled ammonium increased by 26 and 18%, respectively, over the last two decades [Le Fouest

et al., 2015]. We therefore used, for the first time, field measurement of multiple stable isotopes to investigate

the sources (Atlantic-derived versus Lena River) of DIN and DON and their respective cycling (denitrification,

assimilation, nitrification) within the Laptev Sea shelf.

Nitrate N isotopes (δ15NN) and O isotopes (δ18ON) can serve as tracers to distinguish nitrate sources or inves-

tigate the importance of N-cycling processes such as denitrification, assimilation, or nitrification. The dual

isotope approach is based on the fact that nitrate from different origins has distinct isotopic signature ranges

[Kendall et al., 2008]. The isotopic composition of Laptev Sea nitrate, for example, may reflect terrestrial and

marine sources. Moreover, it may also depend on isotopic fractionation during local biological processes.

Thus, dual isotopic analysis of nitrate coupled with other environmental data as the δ18O of the water

(δ18Ow) is used to identify simultaneous processes such as (1) N removal by denitrification, (2) N assimilation

by phytoplankton, (3) recycling via nitrification, and (4) input from multiple external sources. Moreover,

recent developments allow the measurement of δ15N values in DON (δ15NDON) in seawater [Knapp et al.,

2005; Thibodeau et al., 2013a]. This technique is very useful in water depleted with respect to nitrate and

elevated in DON as it is the case for the surface water of the Laptev Sea in summer and may allow for the

identification of DON sources.

In this study, we used dual isotope data of nitrate to identify the different sources of nitrogen and, in conjunc-

tion with water isotopes, look for the presence of denitrification, assimilation, and nitrification over the Laptev

Sea shelf. We then used the first Arctic δ15NDON data to trace the origin of the DON found within the Laptev

Sea shelf and identify which active processes control the DON dynamic over the Laptev Sea shelf.

2. Methods

2.1. Sampling

Samples were taken in September 2014 with a Seabird conductivity-temperature-depth rosette with water

bottles. Bottle salinity was determined from the same water samples taken for δ18O analysis using an

AutoSal 8400A salinometer (Fa. Guildline) with a precision of ±0.003 and an accuracy of at least ±0.005.

Water samples for isotope measurements in nitrate and DON were taken from GF/F filtered (0.45 μm,

precombusted at 450°C for 2 h) seawater in separate acid-cleaned vials. Nitrite was removed according to

Granger and Sigman [2009] to ensure no interference with the isotope signature of trace amounts of nitrite.

Samples were immediately frozen on board at �20°C.

2.2. Nitrate and Dissolved Organic Nitrogen Measurement

Samples were unfrozen in the laboratory, and 10 mL was used to measure nitrate using a QuAAtrop from

SEAL analytical. Then, 40 mL of sample was transferred to clean 60 mL Teflon tubes (3 h at 200°C). Then

we added 10 mL of persufate oxidizing reagent (POR) prepared the same day (25 g K2S2O3 (Merck 1.05092

N-poor), 7.5 g NaOH, and 15 g H3BO3 dissolved in 500 mL MilliQ). Samples and POR are then gently mixed

and put in the microwave digestion system (Mars Express, CEM coorp.) which can take up to 40 samples at

a time. Along with the samples, four blanks and 12 standards were digested for at least 2 h at 180°C. After

the samples, blanks, and standards were cooled down to room temperature, total nitrate concentration in

the solution was determined with the spongy cadmium method [Jones, 1984]. Only samples were taken

where recovery rates of the standards of the same run were between 95 and 105%. The DON concentra-

tion was estimated after subtracting the NO3
� concentrations. It is noteworthy that our DON actually

includes DON + NH4
+; however, NH4

+ levels were found to be constantly much lower than nitrate, thus

negligible, even in the river-influenced part of the Laptev Sea [Nitishinsky et al., 2007]. Moreover, all our

DON measurements were performed from surface samples where nitrate was depleted by biological

assimilation, suggesting that NH4
+ was most probably also depleted as it is extremely bioavailable and

short-lived in nutrient-depleted environment [McCarthy and Goldman, 1979; Dortch, 1990].
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2.3. Stable Isotope Measurements

The δ15N-NO3
� and δ18O-NO3

� were

measured for all samples with nitrate

concentration > 1 μmol L�1 accord-

ing to the denitrifier method

[Sigman et al., 2001; Casciotti et al.,

2002a]. Briefly, nitrate is microbially

converted to nitrous oxide (N2O)

and the resulting N2O gas measured using a gas bench connected to a CF-IRMS system (Delta V advantage,

Thermo). The method makes use of the N2O-reductase-deficient bacterial strain Pseudomonas aureofaciens

(ATTC 13985) or chlororaphis (ATTC#43928), which quantitatively convert NO3
� and NO2

� to N2O. For the

analysis of δ15N from the total nitrogen samples (where nitrate concentration < 1 μmol L�1) the strain P.

chlororaphiswas used since only N isotopes are measured. The sample volume was always adjusted to obtain

a final N2O concentration of 10 nmol in the sample. Two standards were used: U.S. Geological Survey (USGS)

34 (δ15N = 1.8‰ versus atmospheric N2 and δ18O = �27.9‰ versus Vienna SMOW (VSMOW)) and

International Atomic Energy Agency (IAEA)-N3 (δ15N = 4.7‰ versus atmospheric N2 and δ
18O = 25.9‰ versus

VSMOW) [Böhlke et al., 2003;McIlvin and Casciotti, 2011]. Isotope values were corrected following Sigman et al.

[2009]. The analytical precision was ±0.2‰ for both the δ
15NN and δ

18ON values based on >30 measure-

ments of international standard (USGS-34 and IAEA-N3) done on multiple different days. The δ15NDON

analytical precision based on standard error of 15 different samples analyzed in duplicate or triplicate was

better than ±0.35‰ 14 times out of 15 with an average of ±0.2‰. Oxygen isotope of the water (δ18O) was

analyzed using the classical CO2-water equilibration method [Epstein and Mayeda, 1953]. The overall

measurement precision for all δ18O analysis was ±0.04‰ or better. The 18O/16O ratio is given in respect to

VSMOW in the δ notation [Craig, 1961].

2.4. Mass-Balance Equation to Estimate the Fraction of River Water

The freshwater contribution to each sample can be quantified by using a mass balance calculation based on

three end-members [Bauch et al., 1995]. We assumed that each sample is a mixture between marine water

(fmar), river runoff (friv), and sea ice meltwater (fsim). From this we can adopt the following equations

fmar þ f riv þ f sim ¼ 1

fmar
�Smar þ f riv

� Sriv þ f sim
�Ssim ¼ Smeasured

fmar
�Omar þ f riv

� Oriv þ f sim
�Osim ¼ Omeasured

where fmar, friv, and fsim are the fraction of each end-member in a water parcel and Smar, Sriv, Ssim, Omar, Oriv,

and Osim are the corresponding salinities and δ18O values of the end-members; Smeasured and Omeasured are

the salinities and δ
18O values of the water samples [Bauch et al., 2005]. Respective end-members S and O

values (Table 1) were chosen accordingly to study conducted in the Laptev Sea [Bauch et al., 1995, 2010,

2011b, 2014; Thibodeau and Bauch, 2016]. The analytical errors estimated from δ18O and salinity measure-

ments add up to ±0.3% of each fraction (fmar, friv, and fsim) to which should be added an additional systematic

error related to the exact choice of end-member within the uncertainties (Table 1). The systematic error is

estimated to be up to 1% in all fraction, but relative results are always conserved even considering extreme

variations in end-member values [Bauch et al., 2012].

2.5. Rayleigh Equations-Based Model

We build a relatively simple “boxes-and-fluxes” model using Stella® Architect software (V1.2) based on

Rayleigh equations (Figure S1 and Text S1 in the supporting information). This model was used to test

different hypothesis regarding potential routes of DON uptake. Briefly, the model calculates the isotopic

fractionation linked to DON uptake via photoammonification, bacterial degradation (ammonification),

and direct uptake by phytoplankton (via peptide hydrolysis). For each reaction, the model computes the

following:

1. the evolution of the accumulated product

Table 1. End-Member Values for Mass Balance Calculationsa

End-Member Salinity δ
18O

Marine 34.92(5) 0.3(1)
River 0 �20(1)
Sea Ice 4(1) surface + 2.6(1) or �7 + 2.6(1)

aNumbers in parentheses are the estimated uncertainties within the last
digit of each end-member value.
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δpacc ¼ δsini þ ε
� ln ƒð Þ� ƒ= 1� ƒð Þ

2. the evolution of the substrate pool

δst ¼ δsini � ε
� ln ƒð Þ

where δpacc, δsini, and δst are respectively the isotope composition of the accumulated product, the initial

substrate, and the substrate at time t. Parameter ƒ represent the fraction of the substrate pool remaining,

and ε is the enrichment factor (in per mil).

3. Results

3.1. Water Mass Distribution

The main hydrographic feature of the Laptev Sea is the large freshwater input from the Lena River, which is

clearly defined by the increasing trend for salinity and δ18Ow and decreasing percentages calculated for the

river water seaward from the mouth of the Lena (Figures 1 and 2). The fresh and relatively warm surface layer

sits on top of a strong pycnocline that separates it from the cold salty water that is advected on the shelf

(Figures 1 and 2). The two water masses are also very different regarding their geochemical composition.

3.2. Nutrient Concentration

Nitrate was depleted (<1 μmol L�1) in the Lena-influenced water mass in the top 20 m of the water column

(Figure 3). No clear pattern could be discerned apart the slightly higher nitrate concentration near the Lena

River ~1 μmol L�1 compared to<0.5 μmol L�1 in the western and northern parts of the shelf. Subsurface (20

to 30 m) nitrate concentration was between 2 and 6 μmol L�1 (Figure 3), again without any strong spatial

pattern. Nitrate concentration increased with depth, with the highest value found at 30 m. Phosphate was

not depleted, even at the surface, and was characterized by higher value near the Lena River at all depth.

(Figure 3). The N:P ratio was low (<10) at all depth. The surface concentration of dissolved organic nitrogen

was found relatively high (up to 10 μmol L�1) near the river mouth and lower in more marine-dominated

water (Figure 3).

3.3. Isotopic Signature of Nitrate and Dissolved Organic Nitrogen

Nitrate isotope measurement was only performed on subsurface samples as nitrate was below 1 μmol L�1 in

the surface water. The subsurface (~30 m) distribution of δ15NN and δ18ON values was surprisingly different

with strong heterogeneity in the δ18ON (mean value of 10.4‰ with a standard deviation of 13.3) and little

variability in the δ
15NN (mean value of 4.7‰ with a standard deviation of 1.0) (Figure 4). On the other hand,

δ15NDON shared a similar pattern than [DON], which follow the distribution in fraction of river water. We found

a significant relationship between both the [DON], δ15NDON, and the fraction of river water (Table 2 and

Figure 5). Assuming a linear relationship between these variables, we calculated the theoretical values of

both marine and freshwater end-members (Table 3). We found no relationship between δ15NN and nitrate

concentration (Table 2). We found a significant relationship between δ18ON and δ18Ow, suggesting the

presence of nitrification [Buchwald and Casciotti, 2010], but also between δ
18ON and [NO3

�] (Table 2). The

shape of the monotonic relationship between δ18ON and [NO3
�] being logarithmic, we compared δ18ON

against 1/[NO3
�] to decipher if simple mixing of fractionation process was responsible for the relationship

(Figure 6). This test suggested that mixing, rather than isotopic fractionation, was responsible for the relation-

ship as fractionation would create an inverse exponential relationship rather than a linear one [Kendall et al.,

2008]. Moreover, the absence of relationship between δ18ON and δ15NN also argues against fractionation

processes affecting both isotopes such was assimilation or denitrification as they would fractionation both

isotopes (Table 2).

3.4. Dissolved Organic Nitrogen Model of Isotopic Fractionation

Our simple Rayleigh fractionation-based model computed the evolution of the substrate δ
15NDON under

multiple scenarios (model available from http://web.hku.hk/~bthib/gbc_thibodeau_2017.html). Here the
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model was used to test the effect of

the three major DON removal process

active in this region [Le Fouest et al.,

2013, 2015]: photo-ammonification,

bacterial degradation (ammonifica-

tion), and direct uptake by phyto-

plankton (via peptide hydrolysis).

Since all three reactions break N bond

(reviewed by Sipler and Bronk [2015]),

we expect them to induce isotopic

fractionation and thus isotopically

enrich the substrate as its concentra-

tion decreases [Knapp et al., 2012].

Our initial scenarios considered the

DON riverine pool to be around 40%

labile [Dittmar et al., 2001] which

was increased to up to 52% to

account for the observed decrease

in [DON] in our data set. This labile

DON was available for microbial

degradation [Jørgensen et al., 1999]

and phytoplankton assimilation

[Bronk et al., 2007]. Of the remaining

refractory fraction, we considered

16% to be photoammonified

(0.60 × 0.16 = 0.096), roughly one

quarter of the total labile fraction

[Xie et al., 2012]. We report here two scenarios: (1) with the three removal modes active with equal isotopic

fractionation and (2) without direct assimilation by phytoplankton (Figure 6a). We refer to these scenarios

as the three and two process scenarios, respectively. Both scenarios were run with two different set of initial

conditions for the riverine end-member: (1) with the value estimated from the extrapolation of our data set

[DON] = 13.9 μmol L�1 and δ15NDON = 2.1‰ and (2) with concentration values earlier in the summer (July)

[DON] = 21.8 μmol L�1 and δ
15NDON = 2.1‰ to test the potential aging of the DON (Figure 6b). When run

with the extrapolated initial value, themodel yields an isotope fractionation factor of 6.5‰when considering

three processes and 5.6‰ when considering only two processes. When run with the July value the model

yields an isotope fractionation factor of 5.2‰when considering three processes and 4.2‰when considering

only two processes.

4. Discussion

4.1. Nitrogen Sources in Laptev Sea Shelf Bottom Water

The Laptev Sea summer hydrography is dominated by the massive Lena River plume flowing seaward at the

surface, while the advected modified-Atlantic water is transported over the shelf at depth (Figure 1). The

circulation is thus somehow estuarine with a strong pycnocline at around 18 m depth that prevents mixing

of the plume waters with the ones below (Figure 1). On the other hand, this feature leads to nitrate depletion

within the surface layer, as all nitrate is presumably assimilated by primary producers (Figure 2). Almost all our

nitrate-isotope data are from below 20 m depth because nitrate is depleted in surface water; thus, they

mostly come from the modified Atlantic water advected on the shelf. Our average isotope value of δ15NN

(4.7 ± 1‰) is within the typical ocean interior range of values (5.0 ± 0.5‰) [Sigman et al., 2000]. This suggest

that no detectable isotopic enrichment signal due to the presence of denitrification or N assimilation is

recorded in our isotope data from below the surface waters, which is also supported by the lack of a relation-

ship between δ15NN and δ18ON values (Table 2). The absence of denitrification in a presumably

well-oxygenated water column (>2 mg O2 L�1) is not surprising but does not completely rule out the

presence of benthic denitrification, which can happen without strong isotopic fractionation as long as the

Figure 2. Surface distribution of salinity, δ18O of the water, and the calcu-
lated fraction of river water over the Laptev Sea shelf.
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process goes to complete nitrate removal [Lehmann et al., 2007]. Moreover, the absence of assimilation signal

is predictable as all surface nitrate is consumed at the end of the summer, but subsurface nitrate

concentration is relatively high, suggesting that the subsurface pool of N is not used in situ for assimilation

during spring and summer (Figure 2).

The advected water is relatively old and should contain mostly remineralized nitrate and should be charac-

terized by fractionation taking place during nitrification. The δ
18ON of nitrified nitrate should be slightly

enriched (+2 to +3‰) compared to the δ18Ow in which it was nitrified [Casciotti et al., 2002a; Thibodeau

et al., 2013b]. Here the averaged δ18Ow is around �2 ± 2.2‰, which would yield a δ18ON of around

1 ± 2.2‰ for nitrified nitrate. Indeed, most of the sample carried a relatively low δ18ON (median = 2.6) that

is coherent with a nitrified source of nitrate [Buchwald and Casciotti, 2010]. However, we observed only a rela-

tively weak relationship between δ18Ow and δ18ON (Table 2). The absence of strong relationship implies that

while the average is within the expected range of values for nitrified nitrate, the large variability of δ18ON

suggests that the nitrate pool was formed by nitrification at different locations, where the δ18Owwas different

as well. This is plausible for a shelf dominated by significant river discharge with a δ18Ow value of�20‰ and

marine water with δ
18Ow close to zero.

4.2. Atmospheric Nitrate at Depth: The Potential Role of Winter Mixing and Brine Formation

We observed extremely high values of δ18ON, reaching almost 60‰ (Figure 4), which is usually an indicator of

atmospheric nitrate contribution [Kendall et al., 2008]. This is surprising because the surface layer is ~20m thick

and separated by a pronounced thermocline from deeper layers, therefore, the advection of atmospheric

nitrate to 70 m depth is difficult to explain. One explanation could be that nitrate was transported from the

surface to depth during winter mixing or any other deepmixing event before stratification took place or trans-

ported by injection of dense water during sea ice formation in early winter. This would be coherent with the

weak but significant relationship (Table 2) between the fraction of brine in a sample and the δ18ON, which sug-

gest that brine could have transported nitrate with elevated δ18ON originating from atmospheric deposition.

Thus, this would suggest that climatic teleconnection as the Arctic Oscillation can influence the distribution

of atmospheric nitrate, as it controls the fate of brine over the Laptev Sea shelf [Thibodeau and Bauch,

2016]. In conclusion, the isotopic signature of nitrate over the Laptev Sea shelf can be generated by mixing

between nitrate regenerated locally, nitrate advected from the Arctic Ocean (regenerated within the

Atlantic water), and atmospheric nitrate that is transported into the subsurface layer by sea ice-driven

Figure 3. Distribution of nitrate, phosphate, nitrate to phosphate ratio, and dissolved organic nitrogen at the surface, 20m and 30m depth over the Laptev Sea shelf.
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convection or winter mixing of surface water containing atmospheric nitrate. The finding of an atmospheric

signature in the nitrate isotope is interesting as it suggests that atmospheric deposition of nitrate should not

be ruled out of coastal Arctic N budget, as it may leave its isotopic imprint until the next summer. In order to

quantify its relative importance as a source and its potential influence on primary productivity, a sea ice

survey to investigate N cycling and regeneration within the sea ice should be carried-out [Fripiat et al., 2014].

4.3. Potential Sources of Riverine DON in the Laptev Sea Shelf

Despite being based on the extrapolation of the relationship between [DON] and the fraction of river water in

a sample (Figure 5), our estimation of the end-members [DON] is coherent with previously published values

for the waters from the Lena River and below the halocline (Table 3). Previous concentration measurements

of Lena River waters were 12.1 ± 2.2 μmol L�1 and for the surface water of the Laptev Sea and the halocline

Figure 4. Distribution of δ15N of dissolved organic nitrogen in the surface water and δ
15N and δ

18O of nitrate at 20 m and
30 m depth over the Laptev Sea shelf.

Table 2. Spearman’s Correlation Coefficient (Estimated Using Prism 6©) Between the Different Parameters Measureda

ƒr ƒSIM δ
18Ow [NO3

�] δ
18ON δ

15NN

[DON] 0.66* �0.67* �0.66* 0.28* X X
δ
15NDON �0.70* 0.58* 0.70* �0.37* X X
δ
18ON 0.52* �0.58* �0.52* �0.71* X �0.14
δ
15NN 0.02 0.04 �0.02 �0.07 �0.14 X

aSignificant correlation (<0.05) is marked by an asterisk.
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6.2 ± 0.4 and 4.5 ± 0.3 μmol L�1, respectively [Kattner et al., 1999; Dittmar et al., 2001]. Thus, we are confident

that our calculated end-member’s concentrations are robust and can be further used to study sources and

sinks of DON within the Laptev Sea shelf. An interesting observation from the relationship between the

estimated end-member values is the low δ
15NDON calculated for the riverine DON end-member. Such a

low isotope value suggests a high proportion of nitrogen originating from atmospheric deposition and/or

N2 fixation. While the presence of aquatic N2 fixation in the Russian Arctic is not impossible as suggested

by reports of N2 fixation by diastrophism in Canadian Arctic [Blais et al., 2012] and subarctic rivers [DeLuca

et al., 2013], the most plausible origin for this organic nitrogen is terrestrial N2 fixation (~ �0.5‰) and atmo-

spheric deposition (~ �6.5‰) [Bobbink et al., 2010; Stewart et al., 2011a, 2011b; Lett and Michelsen, 2014;

Skrzypek et al., 2015; Rousk and Michelsen, 2016]. Another potential source of organic nitrogen within Arctic

tundra is bird feces, which carries an enriched value of around 8‰ [Skrzypek et al., 2015]. Unfortunately, with

three potential sources of nitrogen and only one isotope measured it is not possible to precisely quantify the

importance of each. Using the Isosource software [Phillips and Gregg, 2003] and the Arctic tundra

end-member isotopic value estimated previously [Skrzypek et al., 2015], we calculated that bird feces could

represent 44 ± 19% of the organic nitrogen found in the Lena River, with potential contribution from

22 ± 22% for atmospheric deposition and 38 ± 38% for N2 fixation. Interestingly, despite the obvious large

uncertainties, the proportion are similar to what was observed in Svalbard where 38% of the N was found

to be originating from bird feces [Skrzypek et al., 2015]. The potentially higher proportion of N from bird feces

in the coastal Laptev Seamight be linked to the unusually high density or birds (245 to 641 birds km�2) found

in the Lena Delta [Gilg et al., 2000]. Irrespective of the large uncertainties our result highlights the importance

of bird-derived N for the Arctic coastal ecosystem.

Figure 5. Dissolved organic nitrogen isotopic composition and concentration (in μmol L�1) against the fraction of river
water. Both linear regressions (p < 0.0001) are used to extrapolate the relationship to estimate the end-members value.

Table 3. Estimated Values of Dissolved Organic Nitrogen Concentration ([DON] in μmol L�1) and of Its Isotopic Signature
(δ15N in ‰) for Each End-Member Based on the Relationship Between the Calculated Fraction of River Water and [DON]
and δ

15N, Respectively

Freshwater Marine

δ
15N 2.1 6.7
[DON] 13.9 5.3
[DON]

a
12.1 ± 2.2 6.2 ± 0.4 and 4.5 ± 0.3

aData from Kattner et al. [1999] and Dittmar et al. [2001].
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4.4. 15N Isotopic Enrichment and Nonconservative Behavior of DON Over the Laptev Sea Shelf

While there is a positive significant relationship between the fraction of river water and both the DON

concentration and isotopic signature (Figure 5) it does not necessarily imply that the DON distribution is

due to a simple mixing between the fresh and seawater end-members. We plotted the δ
15NDON against

the inverse of the DON concentration to highlight the fact that mixing can only explain very few of the

δ
15NDON data point (Figure 7a). These plots suggest that isotope fractionation is active and affect the

Figure 6. The δ
18O of the nitrate against (left) the nitrate concentration and against (right) the inverse nitrate concentra-

tion with the linear regression (black line) and its 95% confidence interval (dashed lines).

Figure 7. Dissolved organic nitrogen isotopic composition against the inverse DON concentration (in μmol L�1). The
mixing between two end-member results in a straight line while fractionation processes yield curved lines in both panel.
(top) Single Rayleigh fractionation process of 3 and 10‰, respectively, is represented by the light and dark green lines.
The red and orange dotted lines represent the results of our model using two or three processes, respectively. (bottom)
The same data and mixing line are shown but the riverine end-member [DON] was increased to 21.8 μmol L�1. The light
and dark blue lines represent the results of our model using two or three processes, respectively. The blue boxes denote the
end-member values.
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δ
15NDON. While production of DON

through cell lysis or solubilization of

organic matter should not be accom-

panied by an isotopic effect [Knapp

et al., 2011], the release of bioavail-

able nitrogen fromDON by photoam-

monification, peptide hydrolysis, and

deamination would induce isotopic

fractionation between 3 and 10‰

[O’Leary and Kluetz, 1972; Macko

et al., 1986; Bada et al., 1989; Silfer

et al., 1992; Knapp et al., 2012]. While

all our data are contained by the 3

and 10‰ Rayleigh fractionation iso-

lines, the model cannot reproduce

the exact observed pattern, espe-

cially for a group of data points that

are more enriched than our model

prediction (Figure 7a). This discre-

pancy might be explained by the

aging of the water mass. In fact, dur-

ing spring and early summer (i.e.,

May to July) the concentration of

DON is higher than our end-member

reconstruction and is around

22 μmol L�1 and can reach up to

30 μmol L�1 [Le Fouest et al., 2013].

Using the July value, we obtained a

pretty good modeled evolution of

the isotopic signature of the DON

pool (Figure 7b), which suggest that

samples that fit the modeled results

from July initial condition (dark and

light blue in Figure 7b) would be

slightly older (at least 2 months).

If we consider that indeed N removal

via photoammonification, microbial

degradation, and/or phytoplankton uptake drives the [DON] decrease over the Laptev shelf, it would imply

a consumption of about 8.6 μmol L�1 (from our estimated riverine end-member of 13.9 μmol L�1) or

16.5 μmol L�1 (from the July riverine end-member of 21.8 μmol L�1) of DON to reach the end-member value

of 5.3 μmol L�1. This would indicate that about 62 to 76% of the DON released by the Lena river during spring

is removed over the Laptev Sea shelf within couples of months. These findings are coherent with earlier esti-

mation based on outer shelf samples where 70% of the terrestrial DON originating from the Arctic rivers was

removed before reaching the marine end-member [Letscher et al., 2013].

4.5. Implications for the Coastal Eurasian Arctic N-Budget

All three removal processes considered here (uptake, remineralization, and denitrification) are to ultimately

support directly (phytoplankton uptake) or indirectly (food web remineralization) the total pelagic primary

production (reviewed by Sipler and Bronk [2015]). The importance of the cycling of riverine input of DON

for primary productivity over Eurasian Arctic shelves was already suggested by a modeling study that noticed

a threefold increase in primary productivity (from 30 to 90 g C m�2 yr�2) when they added DON removal by

bacterioplankton and its remineralization within the model [Le Fouest et al., 2015]. It is important to note that

the primary productivity data generated after DON removal are in better agreement with satellite-derived

Table 4. Total Input of Nitrate, Soluble Reactive Phosphorus (SRP), and
Dissolved Organic Nitrogen (DON) in Major Eurasian Rivers Compiled by
Le Fouest et al. [2013]

Nitrate SRP DON
109 g N 109 g P 109 g N

Yenisey Le Fouest et al. [2013]a 20.4 14.3
Le Fouest et al. [2013] 29 5.4 132

Gordeev et al. [1996] 8.7 5.8
Holmes et al. [2000] 18.4 6.2

Dittmar and Kattner [2003] 82
Holmes et al. [2011] 49 111

Average 25.1 7.9 108.3

Lena Le Fouest et al. [2013]a 15.6 4.2 158
Le Fouest et al. [2013] 17.7 4.8

Gordeev et al. [1996] 22 4.9 243
Holmes et al. [2000] 19.5 3.5

Dittmar and Kattner [2003] 162.5
Holmes et al. [2011] 24 135

Average 19.8 4.4 174.6

Ob Le Fouest et al. [2013] 22 19.6 114
Gordeev et al. [1996] 9.4 18.2
Holmes et al. [2000] 34.8 23.5

Dittmar and Kattner [2003] 66
Holmes et al. [2011] 57 110

Average 30.8 20.4 96.7

Kolyma Le Fouest et al. [2013]a 3.7 2
Le Fouest et al. [2013] 4 0.6 17.3

Gordeev et al. [1996] 3.7 1.22 52.8
Holmes et al. [2000] 2.5 0.76

Dittmar and Kattner [2003] 16
Holmes et al. [2011] 5 17

Average 3.8 1.1 25.8

Indigirka Le Fouest et al. [2013] 2 0.35
Gordeev et al. [1996] 1.7 0.4 24.4
Holmes et al. [2000] 2.3 0.35

Dittmar and Kattner [2003] 8.4
Average 2.0 0.4 16.4

Total 109 g N 81.4 34.2 421.8
109 mol 5.8 1.1 30.1

aSee original paper for calculation details.
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estimated>100 g C m�2 yr�2 [Sakshaug, 2004]. This is caused by the fact that bacterioplankton recycle DON

nitrate or ammonium, which can both be used by phytoplankton and bacterioplankton [Le Fouest et al., 2015,

and reference theirin]. Moreover, bacterioplankton and phytoplankton can be grazed by mesozooplankton,

and thus, DON removal can have a significant effect on coastal primary productivity. However, this model

does not seem to allow the direct uptake of DON by phytoplankton, which explain the absence of significant

increase in the new primary productivity (<17 to <20 g C m�2 yr�2). Unfortunately, we also cannot clearly

distinguish the relative importance of the different potential removal processes with our data set because

of the overlap of the potential isotopic effect. Our data set can be explained with the presence of direct

DON uptake by phytoplankton or without (Figure 6). Despite this uncertainty, our field data and our model

suggest the presence of processes that removed 62 to 76% of the total riverine DON input and created an

isotopic enrichment in the residual DON pool (Figure 7). Our estimation of riverine DON removed is >50%

higher than the sum of the 8 to 19% available to bacterioplankton estimated previously for the Eurasian

Rivers [Wickland et al., 2012; Le Fouest et al., 2015] and the 16% removed by photo-ammonification [Xie

et al., 2012]. This is important to better understand the biogeochemistry of Eurasian Arctic shelves as the

Lena discharge about 175 × 109 g N of DON (Table 4), compared to 20 × 109 g N in the form of nitrate each

year (Table 4). This almost ninefold difference is the largest when considering all Eurasian major rivers as the

total release of DON add to ~420 × 109 g N, while nitrate add up to ~80 × 109 g N, a fivefold difference.

Considering previous estimation of removable DON (24 to 35%) we calculated that about 5 to 7.4 × 109mol N

of DON released in summer (70% of total DON) is either transformed by photoammonification or assimilated

by bacterioplankton or phytoplankton over all Eurasian shelves. However, from our result (62 to 76%) this

estimation now ranges from 13 to 16 × 109 mol N of DON, which is up to 3 times the value of river nitrate

(5.8 × 109 mol N of DON). However, it is important to note that even when considering our suggested high

proportion of bioavailable DON for all Eurasian major rivers, the Arctic coastal ecosystem would still be N

limited as it would consume an extra 0.4 to 0.8 × 109 mol P (assuming a 14:1 ratio), which would leave the

Arctic Ocean with a positive P balance of over 8.5 × 109 mol P [Le Fouest et al., 2013]. Even when considering

a potential increase in 50% river input of DON, the Eurasian shelves will remain N limited. Thus, our results

highlight the need to better understand the exact dynamic of DON recycling over the Arctic shelves if we

are to improve our capacity to foresee potential change in Arctic coastal primary productivity and what will

be the direct impact of increased nutrient load via river discharge and permafrost thaw. As nutrient dynamic

can differ between Arctic shelves [e.g., Carmack and Wassman, 2006] we recommend this method to be

tested at other locations in the Arctic.
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