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Cereals such as maize, rice, wheat and sorghum are the most important crops for

human nutrition. Like other plants, cereals associate with diverse bacteria (including

nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical

fertilizers are used in cereals, it has always been desirable to promote biological

nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long

ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of

diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs

have been found on roots or as endophytes. Recently, culture-independent molecular

approaches have revealed that some rhizobia are found in cereal plants and that

bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation

attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant’s

needs and never as good as those obtained with chemical fertilizers or with rhizobium

in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-

fixation in cereals. In many cases, these efforts have not been successful. However,

new diazotroph mutants with enhanced capabilities to excrete ammonium are being

successfully used to promote plant growth as commensal bacteria. In addition, there are

ambitious projects supported by different funding agencies that are trying to genetically

modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or

to form nodules with nitrogen-fixing symbiotic rhizobia.
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INTRODUCTION

Cereals are grasses from the Poaceae family that were domesticated several thousand years ago in
different geographical regions in order to take advantage of the edible components of their grain.
Maize, rice, wheat, and sorghum are the most widely grown cereals consumed by humans and
this review will focus on these crops. Nitrogen availability often limits cereal crop production.
Adding nitrogen to crops has enhanced food production and has consequently increased the
human population. In fact, the Haber-Bosch process that produces nitrogen fertilizers industrially
has been called the detonator of human population growth (Smil, 2002; Erisman et al., 2008).
Increases in food production are urgently needed, yet fertilizers have already been overused, are
expensive and polluting. Trends in crop management and genetics predict that crop production
will not meet projected food needs in 2050 (Ray et al., 2013). Higher agricultural production
will require enormous additional inputs of nitrogen. Cereal production is highly dependent on
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chemical nitrogen fertilizers and the excessive use of these
fertilizers is negatively impacting human and environmental
health, including significant effects on the generation of
greenhouse gasses and a reduced ozone layer (Reddy et al.,
2002; Stokstad, 2016). With the future menaces of a decline in
petroleum reserves used in the Haber-Bosch process to produce
inorganic fertilizers, besides the low efficiency with which plants
use chemical nitrogen fertilizers, researchers are now seriously
considering alternate sources of nitrogen for crop production.

Biological nitrogen fixation (BNF) is a potentially attractive
alternative source of nitrogen for cereal production (Ladha and
Reddy, 1995; Beatty and Good, 2011; Rogers and Oldroyd, 2014).
In fact, BNF by diazotrophic bacteria, which reduce dinitrogen
to ammonium using nitrogenase enzyme systems, is the major
contributor to the nitrogen economy of the biosphere, accounting
for 30–50% of the total nitrogen in crop fields (Ormeño-Orrillo
et al., 2013). Nitrogen fixation is an energetically expensive
process. In theory, nitrogen fixation could fall under the
black queen hypothesis (Morris et al., 2012). This hypothesis
predicts that in communities of free-living microorganisms,
there are only a few “helpers” that have costly functions,
such as nitrogen fixation, that support the “beneficiaries”
that are dependent on them for nitrogen supplies (Morris
et al., 2012). Consequently, diazotrophs generally correspond to
minor components of the ecosystems. Diazotrophs are found
among alphaproteobacteria, gammaproteobacteria, Firmicutes,
betaproteobacteria, and cyanobacteria but do not seem to be
the most abundant (dominant) bacteria in plant rhizospheres,
so there are possibilities for increasing nitrogen-fixation by
favoring their populations. To enhance their competitiveness,
plants may be selected or modified to increase exudation of
nutrients that would favor the growth of diazotrophs (see
below). Additionally, regular inoculation with diazotrophs as is
common for legumes, could provide enough bacterial cells for
the plant even if bacteria do not persist long in soils. Besides,
low soil persistence may not be a disadvantage because it would
allow subsequent introductions of more efficient symbionts as
inoculants. Inoculant formulations and survival of inoculated
bacteria are not within the scope of this review.

Removing plant products from agricultural fields leads to
nitrogen and other nutrient deficiencies. Therefore, achieving
nitrogen fixation in cereals, like that which occurs in legumes,
has been a long-cherished goal and has been considered as a holy
“grail” (Triplett, 1996). A huge interest in rice nitrogen fixation is
reflected in books devoted to this subject (Khush and Bennett,
1992; Ladha and Reddy, 2000). For many years, researchers
have isolated, identified and tested a very large diversity of
rhizospheric or endophytic isolates from plants. The practical
aim has been to identify nitrogen-fixing bacteria that could be
used as crop inoculants, but this has had limited practical success.
The experience from efforts to increase nitrogen fixation in
legumes showed contrasting results. Hypernodulating soybean
plants resulted in diminished yields in some cases (Pracht et al.,
1994), but in others there was an increased productivity in
subsequent crops (Song et al., 1995).

Diverse microbes are found associated with plants (Bulgarelli
et al., 2012, 2013, 2015; Lundberg et al., 2012; Peiffer et al.,

2013). There are comprehensive reviews on rhizospheric
microbiota (Berg, 2009; Saharan and Nehra, 2011; Mendes
et al., 2013), diazotrophs (Santi et al., 2013) and endophytes
(residing inside plant tissues, Rosenblueth and Martínez-
Romero, 2006; Guo et al., 2008; Liu et al., 2017a) of diverse
plants including cereals, all focusing on bacteria. Rhizospheric
and endophytic bacteria contribute to plant growth promotion by
producing plant hormones, inhibiting pathogens or by enhancing
mineral availability (Matiru and Dakora, 2004; Rosenblueth and
Martínez-Romero, 2006; Friesen et al., 2011). In most cases, there
is not sufficient evidence to consider that nitrogen fixation is a
leading cause of plant growth promotion. For example, there are
many reports on the growth-promoting effects of Azospirillum
inoculation in maize, wheat, rice, and sorghum but these will
not be reviewed here because the main beneficial effects are not
primarily attributed to nitrogen fixation.

In general, the contribution of nitrogen fixation in non-
legumes is limited, however, Beijerinckia spp. inoculants
promoted significant increases in nitrogen content in some
maize hybrids (Govedarica, 1990). In contrast to what occurs
in nodules, it is common that free-living nitrogen-fixing
bacteria (diazotrophs) do not excrete nitrogen compounds
to the host plant with ammonium instead being assimilated
and used by bacteria for their own growth. The use of
genetically modified bacteria was shown to improve plant growth
through nitrogen fixation. For example, ammonium excreting
Azospirillum exhibited enhanced nitrogen supply to wheat plants
(Van Dommelen et al., 2009). Similar mutants of Azospirillum,
Kosakonia, Pseudomonas, and Azotobacter (Zhang et al., 2012;
Setten et al., 2013; Geddes et al., 2015; Ambrosio et al., 2017;
Bageshwar et al., 2017) proved capable of stimulating plant
growth. We would recommend obtaining ammonium-excreting
mutants of Paraburkholderia, Herbaspirillum, or Azoarcus as
well, to test if they also improve plant growth through nitrogen
fixation. Recently, Setten et al. (2013) engineered a root-
colonizing non-diazotrophic endophyte, Pseudomonas protegens
Pf-5, by transferring a stretch of DNA with 52 genes including
the nif gene cluster from P. stutzeri (Vermeiren et al., 1999). The
modified P. protegens strain fixed nitrogen constitutively, even
in the presence of combined nitrogen, and released significant
quantities of ammonium into the surrounding medium. In
greenhouse tests, Fox et al. (2016) demonstrated increased yields
in maize and wheat inoculated with this engineered strain, and
15N isotope dilution analysis confirmed that this positive effect
was clearly due to nitrogen fixation in roots.

In this review we present additional information about
associative nitrogen fixation as well as studies on the genetic
modification of cereals directed toward obtaining nitrogen-fixing
plants by the transfer of nitrogenase or nodulation genes into
plants.

SOURCES OF DIAZOTROPHIC
BACTERIA

Bacteria can get on to the plants either by root colonization
from soil carryover, leaf litter (Pfeiffer et al., 2013), inoculation
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or via seed transmission. Seed endophytes can migrate from
the seed and colonize the plant xylem but can also migrate
from beneath the seed coats with the emerging root or
even after the seed has germinated (Johnston-Monje and
Raizada, 2011) and colonize the rhizoplane and rhizosphere.
Johnston-Monje and Raizada (2011) found that only a few
endophytes are able to spread from the root vascular tissue
into the rhizosphere. The contribution of seed endophytes when
colonizing the rhizosphere may be better observed in soils with
low bacterial diversity.

Seed-borne pathogens spread and perpetuate bacteria in new
plant generations, similarly seeds may also carry beneficial
bacteria that may be inherited to new generations. Non-
pathogenic seed bacteria have been identified in Phaseolus
vulgaris, maize, rice, wheat, alfalfa, and other plants (Okunishi
et al., 2005; Rijavec et al., 2007; Johnston-Monje and Raizada,
2011; Hardoim et al., 2012; López-López et al., 2012; Liu
et al., 2017b; López et al., 2018). Previous analyses of seed
endophytes have shown a large diversity of bacteria (Rijavec
et al., 2007; Johnston-Monje and Raizada, 2011; López-López
et al., 2012; Rosenblueth et al., 2012; Chimwamurombe et al.,
2016). Seed isolates from different plants are able to produce
auxins, gibberellins, siderophores and ACC deaminase, solubilize
phosphates, protect plants against pathogens and fix nitrogen
(Zawoznik et al., 2014; Díaz Herrera et al., 2016; Khalaf and
Raizada, 2016; Shahzad et al., 2016; Wang et al., 2016; Liu et al.,
2017b; Verma et al., 2017).

There are very few studies that analyze bacterial genes required
for seed colonization (Molina et al., 2006; Peralta et al., 2016).
A P. putida mutant in a secretion system had reduced capacity
to colonize maize seeds (Molina et al., 2006). Maize rhizospheric
bacteria are more numerous and more diverse (Chelius and
Triplett, 2001; Gomes et al., 2001; Schmalenberger and Tebbe,
2003; Chauhan et al., 2011; Pereira et al., 2011; Li et al., 2014)
than seed endophytes (Rijavec et al., 2007; Johnston-Monje and
Raizada, 2011; Rosenblueth et al., 2012), suggesting a bottleneck
in the acquisition of bacteria by seeds.

Seedsmay also be colonized by bacteria present on the surfaces
of stems, flowers, and fruits (Compant et al., 2011; Hardoim et al.,
2012; Mitter et al., 2017), as well as from pollen grains, which
also harbor bacteria (Madmony et al., 2005; Fürnkranz et al.,
2012) that can colonize the ovules after pollination (Agarwal and
Sinclair, 1996). Rhizospheric bacteria seem to be mainly acquired
from the soil or from leaf litter (Pfeiffer et al., 2013). Dependant
on crop management history (Isobe and Ohte, 2014) or soil pH
(Andrew et al., 2012; Hardoim et al., 2012). Root endophytic
bacteria are acquired from the rhizosphere and a fraction of them
can move through the xylem to colonize aerial parts, including
seeds (James et al., 2002; Okunishi et al., 2005; Compant et al.,
2011; Liu et al., 2017a).

To study novel sources of maize associated bacteria, we
analyzed the contribution of irrigation and identified bacteria
from the maize rhizoplane by sequence analysis of 16S rRNA
gene amplicons from plants that were irrigated with water
from two different Mexican rivers, Apatlaco and Tembembe
(Merino-Flores, 2012). The maize rhizoplane irrigated with
river water had river-borne bacteria, previously identified as

Pseudomonas (Sachman-Ruiz et al., 2009) and there were
common bacterial species in maize roots irrigated with water
from both rivers, such as Acidovorax, Commamonas, and
Herbaspirillum (Figure 1). From controls, irrigated with sterile
water, only alphaproteobacteria from the Rhizobiales order were
observed (Figure 1) and identified as Methylobacterium and
Rhizobium. As these bacteria were recovered from plants that
were maintained under sterile conditions in sterile vermiculite,
irrigated with sterile water and derived from surface-disinfected
seeds, they probably derived from kernel endophytes that found
their way out of seeds to colonize the rhizosphere. However,
seed-borne bacteria were outcompeted in roots by irrigation-
borne bacteria, thus lowering the proportion of seed bacteria
in the final composition of the plant microbiome from river
water irrigated plants. Bacterial genera identified in the maize
rhizoplane by a culture-dependent approach (Pereira et al., 2011)
were included in this comparison (Figure 1). Pereira et al. (2011)
foundmany Firmicutes in the rhizoplane, similar to other reports
(Han et al., 2011; Compant et al., 2013). Previously we reported
that each kernel had a different subset of endophytes, even when
kernels belonged to the same cob (Rosenblueth et al., 2012). This
indicated that not all seedlings in a germinating population would
have the same bacteria, that would add biodiversity to plants and
perhaps bring adaptive advantages.

CULTURE-INDEPENDENT
IDENTIFICATION OF DIAZOTROPHS IN
CEREALS

By using a culture-independent approach, a better representation
of existing diazotrophs may be obtained while the analysis of
nifH transcripts has provided results on active diazotrophs. This
approach based on nif gene amplification and sequencing has
been used to identify nitrogen-fixing bacteria associated with
rice, sorghum, wheat and maize. There are no universal
nif gene primers and diverse primers should be used
to identify different genera or nitrogen-fixing bacterial
families.

In rice, a diversity of putative diazotrophs have been revealed
by PCR amplification and sequencing of metagenomic DNA
from roots. Ueda et al. (1995) reported 23 nifH sequences
from Oryza sativa cv. Nihonn in Japan which grouped with
deltaproteobacteria (Desulfovibrio), gammaproteobacteria
(Klebsiella-like, Azotobacter) and alphaproteobacteria
(Thiobacillus-like) genes, the former two groups being the
most abundant. Sixteen nifH sequences from rice analyzed
by Engelhard et al. (2000) from DNA from root macerates
clustered with genes from alphaproteobacteria (Bradyrhizobium,
Azorhizobium, and Rhizobium) and betaproteobacteria
(Azoarcus) as well with those from Firmicutes (related to
Clostridium). Proteobacteria was also dominant among
nifH sequences obtained from DNA extracted from rice in
Thailand with betaproteobacteria being the most abundant (e.g.,
Herbaspirillum) (Rangjaroen et al., 2014).

Diazotrophs expressing nitrogenase reductase mRNA
in association with rice have been identified. Elbeltagy
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FIGURE 1 | Comparison of bacterial genera composition found in maize rhizospheres. Sequences from 16S rRNA gene were recovered from plantlets watered with

Apatlaco or Tembembe rivers or with sterile water. Results from Pereira et al. (2011) obtained by a culture dependent approach are also shown. 16S rRNA

sequences that had an identity greater than 95% to other sequences were considered from the same genus. U = unclassified.

and Ando (2008) sequenced 117 nifH transcripts from
O. sativa cv. Sprice and cv. Tetep grown in Japan and found
that most sequences (>70%) belonged to a novel cluster
related to Geobacter sulfurreducens (deltaproteobacteria),
other sequences were affiliated with alphaproteobacteria
(Bradyrhizobium and Methylocystis), betaproteobacteria
(Azovibrio), gammaproteobacteria (Azotobacter), Firmicutes
(related to Heliobacterium) and a polyphyletic group
encompassing anaerobes. Azoarcus seemed as a dominant
active nitrogen fixer in mixed rhizosphere/root samples from rice
cultivated in a paddy soil in China (Wartiainen et al., 2008) while
Mårtensson et al. (2009) found an abundance of proteobacteria-
related sequences from the alpha, beta and gamma subdivisions
as well as fewer sequences from a polyphyletic anaerobe group
when studying samples from the same site just one year later.
In a proteomic approach, dinitrogen reductase proteins from
Bradyrhizobium, Magnetospirillum, and Azospirillum have been
detected in the rhizosphere of rice growing in Philippines (Knief
et al., 2012).

Among 245 nifH sequences obtained from soil DNA of
sorghum (Sorghum bicolor) rhizospheres cultivated in Brazil,
Coelho et al. (2008) found mostly proteobacterial diazotrophs.
Sequences were related to bacteria from the Rhizobiales,
Burkholderiales, Sphingomonadales, Rhodospirillales,

Enterobacteriales, and Bacillales. Diazotrophs with nifH
sequences >98% identical to those of Bradyrhizobium and
Rhizobium were common.

The identity of diazotrophs inhabiting the rhizosphere and
different tissues of maize (roots and stems) was determined
by Roesch et al. (2008) by sequencing nifH amplified from
DNA extracts. They found that Proteobacterial sequences
were the most prevalent in all analyzed tissues and also
in the rhizosphere. Members of the alpha, beta, gamma,
or delta subdivisions were present but the two former
subdivisions were numerically dominant. The most abundant
genera were Azospirillum, Bradyrhizobium, Herbaspirillum,
Ideonella, Klebsiella, and Raoultella.

Naturally-occurring diazotrophs were analyzed in all previous
studies but some studies have evaluated the expression of
nitrogenase genes of inoculated strains. You et al. (2005) reported
the expression of nifH of Herbaspirillum sp. B501 in shoots of
wild rice (O. officinalis) after inoculation of the bacteria to the
seeds. Azospirillum brasilense FP2 applied to wheat (Triticum
aestivum) was shown to express the nifHDK operon when
colonizing roots (Camilios-Neto et al., 2014). Another inoculant
strain, Herbaspirillum seropedicae SmR1, was also able to express
the same genes when attached to wheat roots (Pankievicz et al.,
2016).
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From these studies, it can be concluded that a wide diversity
of bacteria possessing nifH genes are associated with cereals. It
is worth noting that a significant proportion of the sequences
obtained form clusters that are unrelated to known taxonomic
groups. Functional molecular analyses in rice have shown that
not all of these microorganisms are active at nitrogen fixation
in association with the plant. The taxonomic composition of the
active diazotrophs varies from plant to plant but Proteobacteria
are always present and a polyphyletic group of anaerobes are very
common. The presence of the latter group may be related to the
nature of rice cultivation under water. Alphaproteobacteria from
the Rhizobiales order, specifically of the Bradyrhizobium genus,
have been found as active nitrogen fixers both by transcriptomic
and proteomic approaches. Interestingly, in sugarcane, another
member of the Poaceae family, bradyrhizobia also express
nitrogen fixation genes in planta (Thaweenut et al., 2011; Fischer
et al., 2012). Rhizobia in general have been used as biofertilizers
in agriculture for more than a century and it will be worth
exploring if bradyrhizobial inoculants can be developed for
cereals.

DIAZOTROPHS MAY BE HUMAN
PATHOGENS

It is not uncommon to isolate human or plant pathogens from
plants and in many cases they are efficient growth promoting
bacteria. Their use in agriculture should not be encouraged.
Among the nitrogen-fixing bacteria isolated from cereals there
are human pathogens or potential human pathogens (Berg et al.,
2005), such as Burkholderia cepacia and Klebsiella variicola
(Rosenblueth et al., 2004, 2011; Kutter et al., 2006; Martínez-
Romero et al., 2018). B. cepacia complex (BCC) includes
seventeen species, some of them responsible for potentially
lethal pulmonary infection in immuno-compromised or cystic
fibrosis patients, and others are causative agents of infection
in animals and plants (Sawana et al., 2014). Members of this
complex are generally good colonizers of plant rhizosphere and
possess traits to improve plant growth (Fiore et al., 2001; Mendes
et al., 2007). For a long time, B. vietnamensis, found in the
rhizosphere and rhizoplane of maize, coffee, and sorghum plants
(Gillis et al., 1995) was recognized as the only nitrogen-fixing
species belonging to the BCC. However, new species of plant-
associated Paraburkholderia diazotrophs have been reported,
such as P. unamae, P. tropica, P. xenovorans from rhizospheric
or endophytic association with maize, coffee, sorghum, or
sugarcane (Perin et al., 2006). This group of bacteria has been
found to comprise mainly environmental and plant-associated
isolates (Baldani et al., 2000; Chen et al., 2003; Govindarajan
et al., 2006). The presence of two transmissible virulence
factor genes such as the cblA (encoding giant cable pili) and
the epidemic strain marker regulator (esmR) identified among
clinical isolates of opportunistic pathogens of B. cenocepacia
and other species of the BCC have not been detected by
PCR amplification and 32P hybridization in the environmental
diazotrophic isolates of B. unamae and B. tropica. Thus, the lack
of the aforementioned pathogenic traits supports the potential

for using them as plant growth-promoting bacteria, since they
were shown to have the ability to improve maize growth
(Perin et al., 2006). Genomic analysis of the plant-associated
Burkholderia and the pathogen B. cenocepacia for the occurrence
of virulence determinants implicated in pathogenesis as well
as the functional tests to determine pathogenicity showed that
these two phylogenetic groups of Burkholderia belong to two
distinct lineages. Mutualistic strains did not possess the virulence
determinants tested and were susceptible to the vast majority of
antibiotics. They did not kill Caenorhabditis elegans nor lyse of
HeLa cells, unlike the pathogen B. thailandensis (Angus et al.,
2014). Abundance of phylogenetic, biochemical, and molecular
evidences for the occurrence of two different lineages within the
genus Burkholderia finally led to a taxonomic revision with a
split in the genus and allowed the environmental group to be
renamed as Paraburkholderia, which nevertheless still includes
a few human clinical isolates (Estrada-de los Santos et al., 2013;
Angus et al., 2014; Sawana et al., 2014). Thus, some of the
isolates that were formerly classified as Burkholderia species
may still be considered suitable candidates as plant growth
promoters.

Klebsiella has been isolated from several distinct plants
(Chelius and Triplett, 2000; Martínez et al., 2003; Rosenblueth
et al., 2004; Martínez-Romero et al., 2015; Liu et al., 2017b;
Reyna-Flores et al., 2018). However, its use in agriculture
has been discouraged since some strains of Klebsiella were
found to be pathogens or opportunistic pathogens of humans
and animals (Martínez et al., 2004; Davidson et al., 2015;
Martínez-Romero et al., 2018). Comparative genomic analysis
of K. variicola 342 (originally reported as K. pneumoniae) and
K. pneumoniae MGH78578 showed that the latter cannot fix
nitrogen, and there was a difference between these two species
in the presence of genes essential for attachment, transport, and
secretion. K. variicola 342 possesses genes that are involved in
processing plant-derived cellulose and aromatic compounds but
did not have a Type III secretion system that can be used to
secrete effector proteins into the cytoplasm of eukaryotic cells,
promoting their infection, nor genes encoding effector proteins.
It was resistant to antibiotics (Fouts et al., 2008). However,
in the experiments conducted in mice to test pathogenicity,
K. variicola 342 caused urinary tract infection like the clinical
isolate C3091 but showed a significantly lower level of lung
infection.

On the other hand, other plant-associated bacteria such
as Azospirillum (Okon and Itzigsohn, 1995), Herbaspirillum
(Baldani et al., 2000), Gluconacetobacter diazotrophicus
(Muthukumarasamy et al., 2005) and Azoarcus (Reinhold-
Hurek and Hurek, 1997) are considered safe and they are used
as inoculants in agriculture. Azoarcus and Herbaspirillum have
been shown to fix nitrogen in rice (Elbeltagy et al., 2001; Hurek
et al., 2002; Roncato-Maccari et al., 2003). The complete genome
sequence of Herbaspirillum seropedicae SmR1, a spontaneous
streptomycin resistant mutant, reveals it to be a metabolically
versatile bacterium that contains genes coding for degradation
of aromatic compounds. The limited number of genes related
to mobile elements suggests a low rate of DNA transfer in this
microorganism that is presumably due to adaptation to a stable
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microenvironment. H. seropedicae can synthesize plant-growth
promoting substances such as auxins and gibberellins, and fixes
nitrogen. It has a variety of protein secretion systems involved
in plant bacterial recognition (Pedrosa et al., 2011). Likewise,
Azoarcus sp. BH72 genome contains few mobile elements in
comparison to many soil bacteria or pathogens, which indicates
that its genome has low plasticity. The strain appears to be
“disarmed” compared to plant pathogens due to lack of known
toxins as well as Types III and IV secretion systems. The lack
of a N-acyl homoserine lactone-based communication system
argues for a rather exclusive microhabitat and, the presence of
genes coding for nitrogen fixation, chemotaxis, iron acquisition
and biocontrol offer insight into genomic strategies for an
endophytic life style and allow identification of various features
that contribute to its interaction with plants (Krause et al., 2007).

Rhizobia are also considered safe and have been used in
agriculture as legume inoculants for more than one hundred
years and their use in non-legumes is recommended as well.
Bradyrhizobia have been found to be associated with wild
rice in Africa (Chaintreuil et al., 2000), sweet potatoes in
Japan (Terakado-Tonooka et al., 2008) and sugarcane in Brazil
(Fischer et al., 2012). Some Rhizobium genotypes are very
efficient at colonizing maize roots (Gutiérrez-Zamora and
Martínez-Romero, 2001; Rosenblueth and Martínez-Romero,
2004). Rhizobia promote rice growth (Yanni et al., 1997) perhaps
due to nitrogen fixation, and we suppose that bradyrhizobia may
contribute fixed nitrogen to plants since some bradyrhizobial
strains are capable of fixing nitrogen in the free-living state.
A general brief overview of the rhizobial genetic repertoire to
colonize non-legumes was published (López-Guerrero et al.,
2013).

PLANTS AS DETERMINANTS OF
BACTERIAL INTERACTIONS

Nitrogen fixation is highly variable depending on the associated
diazotroph and the plant variety, but the host plant exerts
a determinant effect by supplying the carbon and energy
source for bacterial growth and nitrogen fixation. Aluminum
or acid tolerant plants were found to sustain high levels
of nitrogen fixation due to the exudation of dicarboxylic
acids from their roots (Christiansen-Weniger et al., 1992).
The maize rhizosphere is a habitat favorable for diazotroph
proliferation due to high quantities of exudates [accounting
for 20–40% of all photosynthate (Stevenson and Cole, 1999)],
although unbalanced in C and N. Root exudates and plant
secondary metabolites have a selective or inhibitory effect on
bacteria (Guntli et al., 1999; Bending and Lincoln, 2000).
Sphingomonadales prefer root exudates frommonocotyledonous
plants rather than from other plants (Haichar et al., 2008),
but it may be premature to make general statements. Plant
species, genotype, and age have effects on root microbiota
(Dalmastri et al., 1999; Cavaglieri et al., 2009; Hartmann et al.,
2009; Peiffer et al., 2013; Chaparro et al., 2014; Johnston-
Monje et al., 2014; Wagner et al., 2016; Pfeiffer et al.,
2017).

Phytoalexins and salicylic acid that mediate plant defense in
legumes have inhibitory effects on plant-Rhizobium interactions
(Parniske et al., 1991; González-Pasayo and Martínez-Romero,
2000; Stacey et al., 2006; Lebeis et al., 2015), but less is
known about the effects of defense alkaloids on diazotrophs
in cereals. Maize bacillus and rhizobial endophytes were
found to be resistant to MBOA (Rosenblueth and Martínez-
Romero, 2004), which is a toxic allelochemical in maize
(Abel et al., 1995). Salicylic acid from plants restricts bacterial
root colonization (Lebeis et al., 2015). Additionally, plants
may interfere or stimulate quorum sensing signaling among
bacteria (Bauer and Mathesius, 2004; Venturi and Keel, 2016),
which may have significant effects by changing bacterial gene
expression.

PROSPECTS FOR ENGINEERING
CEREAL PLANTS

Besides using associated bacteria to provide nitrogen to
cereals other strategies involving the genetic modification of
plants have been considered and are reviewed here. Two
major approaches, transferring nitrogenase genes into crop
plants and the development of the root nodular symbiosis in
cereals, were envisioned as important avenues for achieving
this target (Ladha and Reddy, 1995, Ladha and Reddy,
2000; Beatty and Good, 2011). Indeed, all these options
have been considered and initial feasibility studies were
conducted under the auspices of the International Rice
Research Institute-coordinated multinational frontier project
on “Assessing Opportunities for Nitrogen Fixation in Rice”
during 1994–2001 (see Ladha and Reddy, 2000). However,
major breakthroughs in the genomics of diazotrophs and
the genetics of nitrogen fixation, as well as the processes
involved in legume-rhizobia symbioses in recent years have
opened up new avenues to tackle this problem much more
systematically and have prompted the formulation of more
workable schemes aimed at achieving this goal (Beatty and Good,
2011).

For the goal of generating nitrogen-fixing cereal crops,
several analogous projects funded by the Bill and Melinda
Gates Foundation (BMGF, United States), the National Science
Foundation (NSF, United States), the Biotechnology and
Biological Sciences Research Council (BBSRC, United Kingdom)
and the Indian Council of Agricultural Research (ICAR, India)
have recently been initiated with differential emphasis on the
choice of crop or experimental system. Among these, the first
approach considers assembling of an active nitrogenase in plants
through the incorporation and expression of bacterial genetic
machinery to encode and support functional nitrogenase system.
Nitrogen fixation is a highly energy demanding process, and so
chloroplasts and mitochondria are envisaged as suitable sites for
nitrogen fixation since they can meet the energy requirements
for nitrogenase in plant cells. Nitrogenase is extremely sensitive
to oxygen and irreversibly inactivated in air, and so the
oxygen evolved by chloroplasts during photosynthesis may be
detrimental to the maintenance of nitrogenase enzyme complex
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integrity. Thus, expressing functional nitrogenase in chloroplasts
requires temporal (day/night) separation of photosynthesis and
nitrogen fixation by confining nif gene expression only to dark
periods (nights) or, alternatively, by spatially restricting nif
gene expression to non-photosynthetic tissues such as the root
system. As a proof of concept using yeast (a non-photosynthetic
organism) as a model system, López-Torrejón et al. (2016)
engineered nifH, nifM, nifS, and nifU fromAzotobacter vinelandii
into this eukaryotic cell and showed that active nitrogenase
Fe protein can be produced if NifH polypeptide is targeted
to the mitochondrial milieu jointly with the NifM maturase.
They further demonstrated that for the generation of an
active Fe protein, concomitant transfer of the NifH-specific
Fe–S cofactor synthesizing protein components NifU and NifS
into mitochondria is not essential, because NifH is able to
acquire/incorporate endogenously generatedmitochondrial Fe–S
clusters. In a subsequent study, Buren et al. (2017) targeted
a minimum set of nine A. vinelandii nif genes (nifH, nifD,
nifK, nifU, nifS, nifM, nifB, nifE, and nifN) into mitochondria
and demonstrated successful formation of NifDK tetramer, an
essential first step in assembling a functional nitrogenase in a
eukaryotic cell. nif gene transfer has also been attempted in
plants. Ivleva et al. (2016) expressed NifH protein together with
nifM in chloroplasts of tobacco plants, generating functional
NifH, although with low activity. Recently, Allen et al. (2017)
demonstrated the feasibility of expressing the complete range
of biosynthetic and catalytic nitrogenase (Nif) proteins as
mitochondrial targeting transit peptide-Nif fusions in tobacco
leaves. Studies in both yeast and tobacco showed, however, that
NifD polypeptide is prone to degradation in eukaryotic cells
(Allen et al., 2017; Buren et al., 2017), thus warranting a need
for optimizing its amino acid sequence to improve stability
without compromising catalytic activity. We suggest that readers
refer to the excellent recently published review articles for a
comprehensive account of the strategy for nif gene transfer
to eukaryotes (Curatti and Rubio, 2014; Buren and Rubio,
2017).

The second approach envisions the development of legume-
like root-nodule symbioses (RNS) in cereal crop plants (Reddy
et al., 2013; Rogers and Oldroyd, 2014). This approach is
based on contemporary knowledge on the development
of the endosymbiotic associations of most land plants
with endomycorrhizal fungi that form phosphate-acquiring
arbuscular mycorrhizae (AM) in cereals and legumes, and with
diverse diazotrophic rhizobia, to form nitrogen-fixing RNS in
legumes. Genetic constituents that are critical for triggering
initial processes for the development of AM symbiosis (AMS)
are similar in both legumes and rice, and possibly in other cereals
too (Gutjahr et al., 2008). Moreover, in legumes, these same
genetic components play a critical role in aiding initial stages of
RNS development as well. Thus, genetic elements that participate
in promoting both AMS and RNS development constitute the
“common symbiosis pathway” (CSP; Markmann and Parniske,
2008). Current lines of research in cereals are making use of
functionally conserved genetic constituents of the CSP as a
foundation to extend genetic networks to assemble a complete
signaling pathway to support legume-like RNS in cereal crops

(Reddy et al., 2013; Rogers and Oldroyd, 2014; Delaux et al.,
2015; Mus et al., 2016).

An alternative option is to develop cereals that promote
the growth of diazotrophs. Since the population density of
endophytic bacteria in plant tissues is too low to support adequate
nitrogen fixation, it is important to design systems that aid
greater colonization of diazotrophic endophytes for improved
nitrogen fixation in the crop plants. To achieve this, it is critical
to improve the chances that the inoculated diazotroph will
selectively colonize the crop plant. This is essential because
newly introduced bacterial strains are usually out-competed
by the native microbial communities in the rhizosphere of
plants. This impediment could be surmounted by engineering
plants to produce a specific metabolite and thus create a
“biased rhizosphere” to favor the growth of an introduced
diazotroph able to use the novel metabolite (Rossbach et al.,
1994).

WOULD CARBON COSTS INCURRED
DUE TO IN PLANTA NITROGEN
FIXATION REDUCE CROP YIELDS
IN CEREALS?

Nitrogen fixation is a highly energy requiring process and the
factors that limit symbiotic nitrogen fixation have been analyzed
in only few legumes. For example, oxygen diffusion was found
to limit carbon metabolism and nitrogen fixation in nodules
(Vance and Heichel, 1991). In legumes such as soybean, energy
costs are significant for both N2 fixation and NO3 assimilation
but are apparently somewhat greater for the former. Layzell
(2000) estimated that in soybean, 5 CO2 are released per N2

fixed, while during nitrate assimilation approximately 5.7 CO2

are released per nitrogen assimilated in non-photosynthetic
tissue, and 0–2.9 CO2 per nitrogen assimilated in photosynthetic
tissue (see Ladha and Reddy, 2000 for detailed discussion).
While there is no doubt that supplying ammonia (NH3) as a
nitrogen source for plants reduces the energy requirement for
nitrogen assimilation, the proper comparison that should most
often be made (except for paddy rice) is between dinitrogen
(N2) and nitrate as nitrogen sources, since nitrate is the most
common alternative nitrogen source available in aerated soils.
In plants that use nitrate as a source of nitrogen, nitrate first
needs to be converted to ammonia to allow the synthesis of
amino acids. Nitrate uptake and its conversion into ammonia
is an energy requiring process. It has been estimated that
carbon or energy costs for the conversion of NO3 to NH4

+ is:
1G = −605 kJ mol−1 (Pate et al., 1979; Kennedy and Cocking,
1997). Likewise, in the case of nitrogen-fixing legumes, N2 is
first converted into NH4

+, and then into amino acids. It is
calculated that carbon or energy costs for the conversion of N2

to NH4
+ is about −687 kJ mol−1. These theoretical carbon or

energy costs for conversion of NO3 and N2 to NH4
+ are quite

similar.
In legumes, there is no experimental evidence to support

the contention that nitrogen fixation reduces yield. Fertilization
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in field conditions with various forms of combined nitrogen
rarely produced any significant advantage to final yield of plants
(Vance and Heichel, 1991). Under greenhouse conditions as
well, no significant yield differences were observed when the
plants were grown on dinitrogen versus nitrate as a nitrogen
source (Gibson, 1966). This indicates that legumes using BNF
rather than nitrate nitrogen suffer no obvious yield penalties.
Urea and ammonium sulfate are normally used to fertilize
rice. An important point to note here is that in spite of the
greater energy requirement for nitrate assimilation (compared
to ammonia assimilation), rice yields are better when grown
on nitrate combined with ammonia as compared to ammonia
alone (Xiaoe and Xi, 1991; Ancheng et al., 1993). The fact that
no yield penalty exists for rice grown on nitrate and ammonia
rather than ammonia alone suggests that energy may not be
limiting.

The ability of plants to compensate for extra energy
consumption cannot be ignored, as photosynthetic systems
saturate at relatively low light intensity. Nevertheless, since
source and sink metabolisms are tightly coupled, it is reasonable
to assume that the extra energy consumption by roots would
stimulate the production of biomass in shoots. It is well
established that equilibrium between photosynthetic sugar
synthesis in the chloroplast-containing leaf cells (source
tissues) and sugar consumption by roots, fruits and grains
(sink tissues) must be maintained for sustaining plant
growth and survival. In plants under optimal light and at
the normal carbon dioxide levels, sink limitation occurs
when the rate of photosynthesis is limited by insufficient
withdrawal of photosynthetic products generated in the green
tissues through the Calvin–Benson cycle (Sawada et al., 1986;
Sharkey et al., 1986; Paul and Foyer, 2001; Adams et al.,
2013).

It is intuitively envisaged that a nitrogen-fixing symbiosis in
rice may be such a strong sink for photosynthate that yields
would be impacted. Since rice is low in protein, a much lower
rate of nitrogen fixation than in protein-rich legumes will be
needed, with less demand for the plant’s photosynthates (Ladha
and Reddy, 1995). In cereals, it has been estimated that as
much as 29% of photosynthate is released as exudates by roots
into the rhizosphere (Lynch and Whipps, 1990). From this,
it may be inferred that cereals like rice have a capacity to
sustain carbon/energy costs to support nitrogen fixation (through
utilization of root exudates) without causing any strain on
their productivity. Also, incidentally, in rice the actual grain
yields are considerably lower than their maximum genetic
potential. Therefore, in planta nitrogen-fixing attribute may not
significantly impact the present yield levels (Ladha and Reddy,
2000).

CONCLUSION AND PERSPECTIVES

There has been a biotechnological interest to promote associative
nitrogen fixation in non-legume crops that normally use large
amounts of chemical fertilizers. Different nitrogen-fixing bacteria
have been isolated from cereal roots by culture-dependent

methods, and when used as plant inoculants they have varying
degrees and strategies for plant growth promotion (Kennedy
et al., 2004; Bhattacharjee et al., 2008; Santi et al., 2013).
Some past efforts to increase nitrogen fixation in cereals by
promoting pseudonodules with phytohormones failed. Notably,
recently obtained ammonium excreting mutants of some plant-
associated diazotrophs were effective for promoting plant
growth suggesting that they became capable of supplying
nitrogen to their hosts. Even though achieving genetically-
modified nitrogen-fixing cereal crops is a complex process,
the approaches that are being pursued at present are creating
exciting possibilities for generating such plants in the foreseeable
future. If so, the global environmental benefits of a reduced
chemical fertilizer usage will be large, and we suppose that
detrimental ecological consequences of nitrogen fixing cereals
will be minimal. Besides nitrogen, other agricultural inputs,
such as phosphorus and water, may limit crop productivity.
Mycorrhiza and plant cultivars with high phosphate use
efficiency should be considered when developing nitrogen
fixing cereals. However, we consider that not only the use of
microbes and genetically modified plants will be required to
achieve this goal, but a better crop management and efficient
programs to control human population-growth are needed as
well.
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