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M
arine microbial communities play a critical role in bio-
geochemical fluxes and regulating climate1–3, but their 
activity in the euphotic zone of low latitude oceans is 

often limited by the availability of inorganic fixed nitrogen4,5. 
Thus, biological fixation of gaseous dinitrogen in the surface 
ocean is a globally important process that contributes to the 
ocean’s productivity and can potentially enhance the sequestra-
tion of carbon through the biological pump6,7. Microbial popu-
lations that can fix nitrogen (termed diazotrophs) encompass a 
wide range of archaeal and bacterial lineages8,9. However, diazo-
trophs within the bacterial phylum Cyanobacteria, in particular, 
are considered to be responsible for a substantial portion of nitro-
gen input in the surface ocean10–12. Studies employing cultivation 
and flow cytometry13–17 have characterized multiple cyanobacte-
rial diazotrophs and shed light on their functional lifestyles18–20. 
PCR amplicon surveys of the nitrogenase reductase nifH gene 
have indicated that the ability to fix nitrogen is also found in bac-
terial lineages that include the phyla Proteobacteria, Firmicutes 
and Spirochaetes9,21,22, suggesting the presence of heterotrophic 
bacterial diazotrophs (HBDs) that contribute to the introduc-
tion of fixed nitrogen in the surface ocean. Quantitative surveys 
of non-cyanobacterial nifH genes have indicated that HBDs are 
diverse and active, but relatively rare in the surface ocean23–29, and 
efforts to access genomic representatives through cultivation and 
culture-independent techniques have so far only been successful 
in coastal waters30,31, limiting our understanding of their ecophys-
iology in the open ocean.

Here, we have used metagenomic assembly, binning and cura-
tion strategies to create a non-redundant database of archaeal, bac-
terial and eukaryotic genomes from the TARA Oceans project32. 
We characterized nearly one thousand microbial genomes from 
the surface samples of four oceans and two seas, revealing nitro-
gen-fixing populations within the phylum Proteobacteria, as well 
as in the Planctomycetes, which is a widespread phylum33 that has 
never been linked to nitrogen fixation previously. These discover-
ies enable the genome-wide tracking of these populations, through 
which we determined that putative HBDs are orders of magnitude 
more abundant in surface seawater across large regions of the global 
open ocean compared to previous estimates that relied on PCR 
amplifications.

Results
The 93 TARA Oceans metagenomes we analysed correspond to a 
size fraction targeting free-living microorganisms (0.2–3 μ m) from 
61 surface samples and 32 samples from the deep chlorophyll maxi-
mum layer of the water column (Supplementary Table 1). Presumed 
absent from this size fraction are the majority of those bacterial 
and archaeal cells that have a symbiotic relationship with eukary-
otes, form large aggregates or attach to large particles. Of 33.7 bil-
lion metagenomic reads, 30.9 billion passed quality control criteria 
and were used as input for 12 metagenomic co-assemblies (1.14–
5.33 billion reads per set) using geographically bounded samples 
(Supplementary Fig. 1). A total of 42,193,607 genes were identi-
fied in scaffolds longer than 1,000 nucleotides (see Supplementary 
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Table 2 for a summary of the assembly statistics). A combination 
of automatic and manual binning was applied to each co-assembly 
output, which resulted in 957 manually curated, non-redundant 
metagenome-assembled genomes (MAGs) containing 2,288,202 
genes (Supplementary Fig. 1; also see ref. 34 for an automatic bin-
ning effort that includes larger size fractions).

Our MAGs belonged to the domains Bacteria (n =  820), 
Eukarya (n =  72) and Archaea (n =  65) (Supplementary Table 3), 
and recruited 2.11 billion quality controlled reads (6.84% of the 
data set) when we mapped the metagenomic data back to this 
collection. The genomic completion estimates for archaeal and 
bacterial MAGs based on domain-specific single-copy core genes 
averaged to 79% and 76.1%, respectively, and resolved to the phyla 
Proteobacteria (n =  432), Bacteroidetes (n =  113), Euryarchaeota 
(n =  65), Verrucomicrobia (n =  65), Planctomycetes (n =  43), 
Actinobacteria (n =  37), Chloroflexi (n =  34), Candidatus 
Marinimicrobia (n =  27), Acidobacteria (n =  6), Cyanobacteria 
(n =  6), Spirochaetes (n =  5), Firmicutes (n =  2), Ignavibacteriae 
(n =  1) and diverse members of the Candidate Phyla Radiation 
(n =  4). We could assign only 6.33% of the bacterial and archaeal 
MAGs to described genera. Eukaryotic MAGs were substan-
tially larger than bacterial and archaeal MAGs (7.24 Mbp versus 
2.26 Mbp and 1.47 Mbp on average, respectively) and were domi-
nated by a small number of genera: Micromonas (n =  14), Emilliana 
(n =  14), Bathycoccus (n =  8) and Ostreococcus (n =  4). Recovery of 
these MAGs complements decades of cultivation efforts by pro-
viding genomic context for lineages missing in culture collections 
(for example, Euryarchaeota and Candidatus Marinimicrobia), 
and allowed us to search for diazotrophs within a large pool of 
marine microbial populations.

Genomic stability of a well-studied nitrogen-fixing symbiotic 
population at large scale. Our genomic collection included six cya-
nobacterial MAGs, one of which (ASW 00003) contained genes that 
encode the catalytic (nifHDK) and biosynthetic (nifENB) proteins 
required for nitrogen fixation8. This MAG, which we recovered 
from the Atlantic southwest metagenomic co-assembly, showed 
remarkable similarity to the genome of the symbiotic cyanobac-
terium ‘Candidatus Atelocyanobacterium thalassa’35,36 (previously 
known as UCYN-A) sorted by flow cytometry from the North 
Pacific gyre (GenBank accession no. CP001842.1). Besides their 
comparable size of 1.43 Mbp (MAG ASW 00003) and 1.46 Mbp 
(consensus genome from isolated cells), their average nucleotide 
identity was 99.96% over the 1.43 Mbp alignment. ‘Ca. A. thalassa’ 
is a diazotrophic taxon that lacks key metabolic pathways and lives 
in symbiosis with photosynthetic eukaryotic cells19,36. The high 
genomic similarity between ASW 00003 and the ‘Ca. A. thalassa’ 
genome sorted by flow cytometry demonstrates the accuracy of our 
metagenomic workflow.

Genomic evidence for nitrogen fixation by Proteobacteria and 
Planctomycetes. Besides the cyanobacterial MAG, we also identi-
fied seven Proteobacteria and two Planctomycetes MAGs in our 
collection that contained the complete set of genes for nitrogen 
fixation. To the best of our knowledge, these MAGs (HBD-01 to 
HBD-09) represent the first genomic evidence of putative HBDs 
inhabiting the surface of the open ocean (Table 1). They were 
obtained from the Pacific Ocean (n =  6), Atlantic Ocean (n =  2) 
and Indian Ocean (n =  1), and possessed relatively large genomes 
(up to 6 Mbp and 5,390 genes) and a GC content ranging from 50% 
to 58.7%. One of the Proteobacterial MAGs resolved to the genus 
Desulfovibrio (HBD-01). The remaining MAGs from this phy-
lum correspond to lineages within the orders Desulfobacterales 
(HBD-02), Oceanospirillales (HBD-03, HBD-04, HBD-05) and 
Pseudomonadales (HBD-06, HBD-07) (Table 1). The phyloge-
netic assignment of one Planctomycetes MAG (HBD-08) with 

a low completion estimate (33.5%) could not be resolved beyond 
the phylum level, possibly due to missing phylogenetic marker 
genes for taxonomic inferences. However, the length of this MAG 
(4.03 Mbp) suggests that its completion may have been underes-
timated, as we have observed in previous studies37,38. The second 
Planctomycetes MAG (HBD-09) was affiliated with the family 
Planctomycetaceae (order Planctomycetales) based on its single-
copy core genes. This MAG contained a large fragment of the 16S 
rRNA gene (1,188 nt; Supplementary Table 4) for which the best 
match to any characterized bacterium in the NCBI’s non-redundant 
database was Algisphaera agarilytica (strain 06SJR6-2, NR_125472)  
with 88% identity.

We placed the nine HBDs in a phylogenomic analysis of the 
432 Proteobacteria and 43 Planctomycetes MAGs using a set of 37 
marker gene families (Fig. 1a; for an interactive version see https://
anvi-server.org/merenlab/tara_hbds). The two deltaproteobacte-
rial HBDs were closely related to each other, but not adjacent in 
the phylogenomic tree. The HBDs within Oceanospirillales (n =  3), 
Pseudomonadales (n =  2) and Planctomycetes (n =  2) formed three 
distinct phylogenomic lineages. These results suggest that closely 
related populations of diazotrophs inhabit the surface ocean, and 
nitrogen fixation genes occur sporadically among diverse puta-
tively heterotrophic marine microbial lineages, consistent with  
previous investigations39.

Our initial binning results included 120 redundant MAGs 
that were observed multiple times in independent co-assemblies 
(Supplementary Table 5). Although they are not present in our 
final collection of 957 non-redundant MAGs (for an accurate 
assessment of the relative abundance of microbial populations), 
we used this redundancy to investigate the stability of the phy-
logeny and functional potential of populations recovered from 
multiple geographical regions. For instance, we characterized 
the genomic content of HBD-06 from the Atlantic northwest 
(5.49 Mbp) and from each of the three Pacific Ocean regions 
(5.56, 5.33 and 5.29 Mbp in regions PON, PSW and PSE, respec-
tively) (Table 1 and Supplementary Table 5). Average nucleo-
tide identities between the Atlantic MAG and three Pacific 
MAGs ranged from 99.89% to 99.97% over more than 97% of 
the genome length. We observed similar trends for HBD-07 and 
HBD-09 (Table 1 and Supplementary Table 5). The complete set 
of nitrogen fixation genes was present in all of the redundant 
MAGs, demonstrating the large-scale stability of this functional 
trait in these HBDs.

On average, the proportion of genes of unknown function 
was 27.6% (± 2.63%) for the proteobacterial HBDs and 49.3%  
(± 0.5%) for the Planctomycetes HBDs, reflecting our greater lack 
of functional understanding of the latter taxonomic group of diazo-
trophs. The 37,582 total genes identified in the nine HBDs encoded 
for 5,912 known functions (Supplementary Table 6), and a net-
work analysis of HBDs based on known functions organized them 
into four distinct groups corresponding to Deltaproteobacteria, 
Oceanospirillales, Pseudomonadales and Planctomycetes (Fig. 1b), 
mirroring the results of our phylogenomic analysis. A large num-
ber of the functions identified in these HBDs (4,224 out of 5,912) 
were unique to one of the four groups (Fig. 1b and Supplementary 
Table 6). The relatively weak overlap of known functions between 
these groups indicates that the ability to fix nitrogen in marine 
populations may not be associated with a tightly defined functional 
lifestyle. The HBDs we characterized appeared to be involved in 
different steps of the nitrogen cycle (for example, denitrification 
for HBD-06) and possessed distinct strategies regulating nitrogen 
fixation (see section ‘Functional differences between HBDs’ in the 
Supplementary Information for additional functional insights), but 
shared traits related to energy conservation, motility, nutrient acqui-
sition and gene regulatory processes. Swimming motility, which has 
previously been suggested as a potential mechanism to find anaer-
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obic microniches favourable to nitrogen fixation28,40, was a com-
mon trait we observed in all the HBDs and may be an indication  
of particle-attached lifestyle rather than the symbiotic lifestyles 
observed in some cyanobacterial diazotrophs.

The taxonomy of HBDs is coherent with the phylogeny of 
nitrogen fixation genes. Our phylogenetic analysis of the cata-
lytic nifH and nifD genes from a wide range of diazotrophs placed 
our HBDs in four distinct lineages (Fig. 2). Also included in this 
analysis were the genomic replicates that were removed from the 
non-redundant genomic collection. These replicates clustered 
with their representative MAGs in the phylogenetic tree, revealing 
near-identical nitrogen fixation genes in geographically distant 
HBDs. HBD-01 (Desulfovibrio) and HBD-02 (Desulfobacterales) 
were clustered with close taxonomic relatives. In addition, the 
gammaproteobacterial HBDs were most closely related to refer-
ence genomes of the genera Pseudomonas and Azotobacter from 
the same class. Finally, the nifD and nifH genes we identified in 
the Planctomycetes HBDs formed distinct clusters, which was 
particularly apparent for nifD (Fig. 2). All of the catalytic and 
biosynthetic genes for nitrogen fixation were located in a single 
operon in the Planctomycetes HBD-09 genome (HBD-08 was 
too fragmented to determine their organization). The agreement 
between the taxonomy of HBDs and their placement in the func-
tional gene-based phylogeny, along with the synteny of genes 
involved in nitrogen fixation (see Supplementary Information), 
both favour a scenario where transmission of these genes is 
mainly vertical in the surface ocean, contributing to the ongo-
ing debate regarding the extent of horizontal transmission for this 
key functionality9,30,41.

HBDs are not only diverse but are also abundant in the surface 
ocean. The cumulative relative abundance of the Planctomycetes 
and Proteobacteria HBDs in the metagenomic data set averaged 
0.01% and 0.05%, respectively. In particular, HBD-06, the diaz-
otrophic population that recruited the largest number of reads 
with an average and maximum relative abundance of 0.025% 
and 0.33% across all metagenomes, ranked 47th in our database 
of 957 MAGs (Supplementary Table 3). The relative abundance 

of Proteobacteria and Planctomycetes HBDs was very low in 
the Mediterranean Sea and Red Sea (0.00064% on average). In 
contrast, they were substantially enriched in metagenomes from 
the Pacific Ocean (0.14% on average) compared to the other 
regions (Fig. 3). In fact, the Pacific Ocean metagenomes con-
tained 81.4% of the 17.8 million reads that were recruited by the 
HBD MAGs from the entire metagenomic data set. In particu-
lar, the two most abundant Proteobacteria and Planctomycetes 
HBDs (HBD-06 and HBD-09) showed a broad distribution (Fig. 
3) and were significantly enriched in this ocean (Welch’s test, 
P <  0.005). HBD-06 was also abundant in the northwest region of 
the Atlantic Ocean and to a lesser extent in the Southern Ocean, 
revealing that the ecological niche of a single HBD population 
can encompass multiple oceans and a wide range of temperatures 
(Supplementary Table 3). Interestingly, HBD-07 and HBD-08, 
which are phylogenetically and functionally closely related to 
HBD-06 and HBD-09, respectively, were not only less abundant, 
but also exhibited a different geographical distribution (Fig. 3).  
We could not explain the increased signal for the nine HBDs in a 
few geographic regions using temperature, salinity or the concen-
tration of essential inorganic chemicals including oxygen, phos-
phate and nitrate (Supplementary Table 1).

To reconcile the abundance of nitrogen-fixing populations in the 
surface of the open ocean with the inclusion of HBDs described in 
this study, we used the previous PCR-based estimations of the abun-
dance of non-cyanobacterial nifH gene phylotypes. Quantitative 
PCR (qPCR) surveys have estimated that non-cyanobacterial nifH 
gene phylotypes generally range from 10 to 1,000 copies, and rarely 
reach 0.1 million copies per litre23–27,42. We translated genome-wide 
quantitative read recruitment of our HBDs into cells per litre (see 
Supplementary Information for details). Our estimates suggest that 
the nine populations of HBDs characterized in this study collec-
tively correspond to 0.72 million cells per litre on average (and up 
to 3.16 million cells) in the surface of the Pacific Ocean, and 0.077 
million cells per litre in the other regions. HBD-06 alone might 
contribute about 0.31 million cells per litre in the Pacific Ocean. 
These results indicate that HBD populations are orders of magni-
tude more abundant than previously thought in metagenomes cov-
ering large regions of the surface ocean.

Table 1 | Summary of the genomic features of HbDs

Population Status Region Length 
(Mbp)

N50 No. of contigs gC (%) C/R (%) Taxonomy

HBD-01 Reference PSW 3.67 48,153 118 52.56 97.7/4.4 Proteobacteria (genus Desulfovibrio)

HBD-02 Reference PSW 6.00 20,964 405 53.07 97.1/5.9 Proteobacteria (family Desulfobacteraceae)

HBD-03 Reference ION 4.47 57,949 110 52.39 97.5/8.1 Proteobacteria (family Oceanospirillaceae)

HBD-04 Reference PON 4.29 48,897 138 52.41 89.7/6.1 Proteobacteria (family Oceanospirillaceae)

HBD-05 Reference PSE 4.15 65,098 94 53.27 47.7/5.8 Proteobacteria (family Oceanospirillaceae)

HBD-06 Reference ANW 5.49 76,792 112 54.23 98.1/5.6 Proteobacteria (order Pseudomonadales)

Redundant PON 5.56 65,956 134 53.69 86.8/5.6 Proteobacteria (order Pseudomonadales)

Redundant PSW 5.33 101,765 128 54.14 98.3/8.7 Proteobacteria (order Pseudomonadales)

Redundant PSE 5.29 51,046 226 54.46 98.3/7.4 Proteobacteria (order Pseudomonadales)

HBD-07 Reference ANW 3.99 10,488 487 58.72 91.2/4.3 Proteobacteria (order Pseudomonadales)

Redundant ANE 3.14 5,704 610 58.71 66.5/1.8 Proteobacteria (order Pseudomonadales)

HBD-08 Reference PSW 4.03 10,413 480 52.57 33.5/6.0 Planctomycetes

HBD-09 Reference PSW 5.86 79,495 113 49.98 97.3/4.6 Planctomycetes (family Planctomycetaceae)

Redundant PSE 5.68 10,913 655 49.98 83.0/4.7 Planctomycetes (family Planctomycetaceae)

For each HBD population, the status column differentiates MAGs that were included as reference in our non-redundant genomic collection from the ones that were also recovered from other geographic 

regions. Regions of recovery include ANW (Atlantic northwest), ANE (Atlantic northeast), ION (Indian Ocean north), PON (Pacific Ocean north), PSE (Pacific Ocean southeast) and PSW (Pacific Ocean 

southwest). The column ‘C/R’ displays the completion and redundancy estimates for each MAG. The phylum-level taxonomy, as well as the lowest taxonomic for which the MAG was assigned below 

phyla, is displayed in the column ‘Taxonomy’.
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PCR assays confirm the occurrence of Planctomycetes nifH 
genes in the surface ocean. We tracked HBDs at the long-term 
field study of Station ALOHA (22° 45′  N, 158° 00′  W) in the oli-
gotrophic North Pacific Subtropical Gyre to compare the sensi-
tivity of metagenomics and PCR surveys. The nine HBDs were 
below the detection limit in a data set of 624.2 million metage-
nomic reads originating from Station ALOHA43, indicating that 
HBDs are not as abundant at this location as they are in other 
regions of the Pacific Ocean (Supplementary Table 7). We devel-
oped digital droplet (dd)PCR assays for the two Planctomycetes 
nifH genes, and could detect HBD-08 at ~750 copies per litre 
in samples from Station ALOHA44 (Supplementary Table 7). We 
could also detect HBD-09 at levels near the limit of detection, 
confirming the occurrence of Planctomycetes nifH genes in the 
surface ocean.

Reconstructed nifH genes are more abundant than previously 
characterized nifH genes in surface ocean metagenomes. The 
non-redundant collection of 957 curated MAGs in which we 
searched for HBDs encompassed only 5.42% of the genes in our 
metagenomic assembly outputs. To identify more nifH genes, we 
also investigated those occurring in the remaining ‘orphan’ scaf-
folds (39,510,139 genes). Our search based on amino acid sim-
ilarity with the HBD database resulted in the recovery of nine 
additional non-redundant nifH genes (Fig. 4 and Supplementary 
Table 8). Eight of them originated from the Pacific Ocean metage-
nomic co-assemblies, substantiating the unequal distribution pat-
terns for nitrogen fixation genes we observed at the MAG level 
(Fig. 3). Phylogenetic analysis on these nifH genes affiliated them 
with Elusimicrobia (n =  2), Firmicutes (n =  2), Proteobacteria 
(n =  1), Spirochaeta (n =  1), Verrucomicrobia (n =  1), a group 
of uncultured bacteria (n =  1), and Euryarchaeota (n =  1) 
(Supplementary Fig. 1). This primer-independent survey identi-

fied a wide range of nifH gene lineages that spanned all four of 
the previously described phylogenetic clusters45 (Supplementary 
Table 8). The average nucleotide identity of short metagenomic 
reads each nifH gene recruited was between 97.4% and 100%, and 
above 99% for each of the nine HBDs (Supplementary Table 8), 
suggesting that these nifH gene sequences correspond to highly 
homogeneous phylotypes. Despite their high abundance in the 
surface ocean, most of these nifH genes were not in the NCBI 
non-redundant database, or reference nifH collections46,47, and 
none of them occurred in a large-scale amplicon survey of the 
surface ocean39, even when considering the subtle variations these 
phylotypes maintain in the environment (Supplementary Table 8).  
Our in silico analysis of widely used primer sequences (see 
Methods) revealed mismatches to these nifH genes, which is a 
likely reason for this discrepancy (Supplementary Table 8).

We used previously characterized reference and amplicon nifH 
gene sequences to recruit reads from metagenomes to estimate 
their relative abundance (see Methods). The large majority of these 
sequences were undetected in the TARA Oceans metagenomes 
(Supplementary Table 9), and the few sequences recruiting reads 
were less abundant than the nifH genes we reconstructed, con-
firming the remarkable abundance of the HBDs we characterized 
(Fig. 4). A notable exception was the ‘Ca. A. thalassa’ sequence, 
which was also present in our MAG database. Finally, the number 
of reads orphan nifH genes recruited suggests that HBDs abun-
dant in the surface ocean might not be limited to Planctomycetes 
and Proteobacteria (Fig. 4).

A binomial naming for the HBDs characterized from multiple 
geographic regions. Most of the MAGs we characterized in our 
study correspond to unknown genera, but the lack of cultured rep-
resentatives prevents a formal taxonomic characterization of these 
lineages. Here we suggest tentative names for the HBDs we indepen-
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dently characterized from multiple geographic regions (that is, those 
for which we have genomic replicates) using the candidatus status 
and binomial naming system: ‘Candidatus Azoaequarella praeva-
lens’ gen. nov., sp. nov. (HBD-06) and ‘Ca. Azopseudomonas oce-
ani’ gen. nov., sp. nov. (HBD-07) within the order Pseudomonadales 
(unknown family), and ‘Ca. Azoplanctomyces absconditus’ 
gen. nov., sp. nov. (HBD-09) within the phylum Planctomycetes 
(unknown order and family).

Discussion
The nine HBDs we describe in this study represent the first 
genomic insights into nitrogen-fixing surface ocean populations 
that are not affiliated with Cyanobacteria, and their high-reso-
lution niche partitioning through genome-wide read recruit-
ment. These HBDs include two Planctomycetes populations, 
which is the first observation of diazotrophy in this phylum. 
Seawater samples analysed from Station ALOHA in the Pacific 
Ocean substantiated the presence of Planctomycetes nifH genes 

using metagenomic-guided ddPCR. These findings complement 
decades of PCR amplicon surveys, and corroborate the relevance 
of metagenomic assembly and binning strategies to improve our 
understanding of microbial communities inhabiting the largest 
biome on Earth. For instance, HBDs were mostly enriched in 
regions of the Pacific Ocean where iron bioavailability is known 
to be a limiting factor for cyanobacterial diazotrophs7. Iron bio-
availability is required for nitrogen fixation but is also particularly 
important for photosynthesis48. Thus, marine systems co-limited 
by nitrogen and iron may represent appropriate ecological niches 
for HBDs, where they could be the main sources of inorganic 
fixed nitrogen input into the surface ocean.

Our study reveals that populations of HBDs within 
Proteobacteria and Planctomycetes, as well as putative diazo-
trophs within other archaeal and bacterial phyla, can be abun-
dant in the surface ocean, occasionally across wide ecological 
niches spanning a large range of temperatures. Our investi-
gation takes advantage of unprecedented amount of shotgun 
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metagenomic sequencing data to investigate the diversity of 
nifH genes without primer bias, which led to the identifica-
tion of a mismatch in nifH4, a widely used degenerate PCR 

primer targeting the nifH gene39,49,50. Although these findings  
substantiate the previous observations made through PCR ampli-
con surveys regarding the diversity of HBDs in the surface of the 
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ocean23–27,39, they also demonstrate that amplicon surveys may 
have underestimated the abundance of HBDs by multiple orders 
of magnitude, and provide a potential explanation for the para-
dox between high nitrogen fixation rates in the Pacific Ocean and 
the low abundance of diazotrophs previously estimated in this 
region50. Overall, our investigation emphasizes the need to reassess 
the role of HBDs in oceanic primary production. As their contri-
bution to the nitrogen cycle has yet to be demonstrated, additional 
environmental surveys, transcriptomic analyses and cultivation  
efforts will be essential to establish the lifestyles of HBDs in the 
open ocean, and to determine the mechanisms and environmen-
tal conditions supporting nitrogen fixation in the water column.

Methods
The URL https://merenlab.org/data/2017_Delmont_et_al_HBDs/ contains 
a reproducible workflow that extends the descriptions and parameters of the 
programs used here for (1) metagenomic binning, (2) identification and curation of 
MAGs, (3) identification of Candidate Phyla Radiation MAGs and (4) profiling of 
MAGs and nifH genes in the entire metagenomic data set.

TARA Oceans metagenomes. We acquired 93 metagenomes from the European 
Bioinformatics Institute (EBI) repository under project ID ERP001736, and quality 
filtered the reads using the illumina-utils library51 v1.4.1 (available from https://
github.com/meren/illumina-utils). Noisy sequences were removed using the 
program ‘iu-filter-quality-minoche’ with default parameters, which implements 
a noise filtering as described in ref. 52. Supplementary Table 1 reports accession 
numbers and additional information (including the number of reads and 
environmental metadata) for each metagenome.

Metagenomic co-assemblies, gene calling and binning. We organized the data set 
into 12 ‘metagenomic sets’ based on the geographic coordinates of metagenomes 
(Supplementary Table 1). We co-assembled reads from each metagenomic set 
using MEGAHIT53 v1.0.3, with a minimum scaffold length of 1 kbp, and simplified 
the scaffold header names in the resulting assembly outputs using anvi’o38 v2.3.0 
(available from https://merenlab.org/software/anvio). For each metagenomic set, 
we then binned scaffolds > 2.5 kbp (> 5 kbp for the Southern Ocean) following the 
workflow outlined in ref. 38. Briefly, (1) anvi’o was used to profile the scaffolds using 
Prodigal54 v2.6.3 with default parameters to identify genes (Supplementary Table 
2), and HMMER55 v3.1b2 to identify genes matching to archaeal56 and bacterial57–60 
single-copy core gene collections; (2) Centrifuge61 was used with NCBI's NT 
database to infer the taxonomy of genes (as described in https://merenlab.
org/2016/06/18/importing-taxonomy); (3) short reads were mapped from the 
metagenomic set to the scaffolds using Bowtie262 v2.0.5 and the recruited reads 
stored as BAM files using samtools63; (4) anvi’o was used to profile each BAM file 
to estimate the coverage and detection statistics of each scaffold, and to combine 
mapping profiles into a merged profile database for each metagenomic set. We 
then clustered scaffolds with the automatic binning algorithm CONCOCT57 by 
constraining the number of clusters per metagenomic set to 100 to minimize the 
‘fragmentation error’ (when multiple clusters describe one population), with the 
exception of the Southern Ocean (25 clusters) and the Pacific Ocean southeast 
(150 clusters) metagenomic sets. Finally, we manually binned each CONCOCT 
cluster (n =  1,175) using the anvi’o interactive interface. Supplementary Table 10 
reports the genomic features (including completion and redundancy values) of the 
characterized bins.

Identification and curation of MAGs. We defined all bins with > 70% 
completeness or > 2 Mbp in length as MAGs (Supplementary Table 2). We then 
individually refined each MAG as outlined in ref. 64, and renamed scaffolds they 
contained accordingly to their MAG ID to ensure that the names of all scaffolds in 
MAGs we characterized from the 12 metagenomic sets were unique.

Taxonomic and functional inference of MAGs. We used CheckM65 to infer the 
taxonomy of MAGs based on the proximity of 43 single-copy gene markers within 
a reference genomic tree. We also used Centrifuge, RAST66 and manual BLAST 
searches of single-copy core genes against the NCBI's non-redundant database 
to manually refine the CheckM taxonomic inferences, especially regarding the 
archaeal and eukaryotic MAGs. We also used the occurrence of bacterial single-
copy core genes to identify MAGs affiliated to the Candidate Phyla Radiation 
(as described in https://merenlab.org/2016/04/17/predicting-CPR-Genomes/). 
Supplementary Table 4 reports our curated taxonomic inference of MAGs. We used 
KEGG (the 14 April 2014 release) to identify functions and pathways in MAGs. 
We also used RAST to identify functions in 15 MAGs that contained the complete 
set of nitrogen fixation genes (originally identified from the KEGG pathways). 
Supplementary Tables 6 and 11 report the RAST and KEEG results, respectively. 
We used Gephi67 v0.8.2 to generate a functional network using the Force Atlas 2 

algorithm to connect MAGs and RAST functions. Node sizes were correlated to 
the number of edges they contained, which resulted in larger nodes for MAGs 
compared to functions.

Characterization of a non-redundant database of MAGs. We concatenated 
all scaffolds from the genomic database of MAGs into a single FASTA file 
and used Bowtie2 and samtools to recruit and store reads from the 93 
metagenomes. We used anvi’o to determine the coverage values, detection 
and relative distribution of MAGs and individual genes across metagenomes 
(Supplementary Table 12). The Pearson correlation coefficient of each pair 
of MAGs was calculated based on their relative distribution across the 
93 metagenomes using the function ‘cor’ in R68 (Supplementary Table 5). 
Finally, NUCmer69 was used to determine the average nucleotide identity 
(ANI) of each pair of MAGs affiliated to the same phylum for improved 
performance (the Proteobacteria MAGs were further split at the class level) 
(Supplementary Table 5). MAGs were considered redundant when their ANI 
reached 99% (minimum alignment of > 75% of the smaller genome in each 
comparison) and the Pearson correlation coefficient was above 0.9. We then 
selected a single MAG to represent a group of redundant MAGs based on the 
largest ‘completion minus redundancy’ value from single-copy core genes for 
Archaea and Bacteria, or longer genomic length for Eukarya. This analysis 
provided a non-redundant genomic database of MAGs. We performed a final 
mapping of all metagenomes to calculate the mean coverage and detection of 
these MAGs (Supplementary Table 3 reproducible workflow).

Statistical analyses. STAMP70 and Welch’s test were used to identify non-
redundant MAGs that were significantly enriched in the Pacific Ocean compared 
to all the other regions combined. Supplementary Table 3 reports the P values for 
each MAG.

World maps. We used the ggplot271 package for R to visualize the metagenomic 
sets and relative distribution of MAGs in the world map.

Phylogenomic analysis of MAGs. We used PhyloSift72 v1.0.1 with default 
parameters to infer associations between MAGs in a phylogenomic context. 
Briefly, PhyloSift (1) identifies a set of 37 marker gene families in each genome, (2) 
concatenates the alignment of each marker gene family across genomes, and (3) 
computes a phylogenomic tree from the concatenated alignment using FastTree73 
v2.1. We rooted the phylogenomic tree to the phylum Planctomycetes with 
FigTree74 v1.4.3, and used anvi’o to visualize it with additional data layers.

Binomial naming of HBDs. The following is a brief explanation of the 
binomial naming of three populations of HBDs we characterized from multiple 
geographic regions:

Azoaequarella praevalens (N.L. n. azotum [from Fr. n. azote (from Gr. 
prep. a, not; Gr. n. zôê, life; N.Gr. n. azôê, not sustaining life)], nitrogen; 
N.L. pref. azo-, pertaining to nitrogen; L. v. aequare, to equalize; N.L. fem. n. 
Azoaequarella, the nitrogen equalizer; L. part. adj. praevalens, very powerful, 
very strong, here prevalent).

Azopseudomonas oceani (N.L. n. azotum [from Fr. n. azote (from Gr. prep. a, not; 
Gr. n. zôê, life; N.Gr. n. azôê, not sustaining life)], nitrogen; N.L. pref. azo-, pertaining 
to nitrogen; Gr. adj. pseudês, false; Gr. fem. n. monas, a unit, monad; N.L. fem. n. 
Azopseudomonas, nitrogen-fixing false monad; L. gen. n. oceani, of the ocean).

Azoplanctomyces absconditus (N.L. n. azotum [from Fr. n. azote (from Gr. prep. 
a, not; Gr. n. zôê, life; N.Gr. n. azôê, not sustaining life)], nitrogen; N.L. pref. azo-, 
pertaining to nitrogen; Gr. adj. planktos, wandering, floating; Gr. masc. n. mukês, 
fungus; N.L. masc. n. Azoplanctomyces, nitrogen-fixing floating fungus; L. part. 
adj. absconditus, hidden).

Identification of additional nifH sequences in orphan scaffolds. DIAMOND75 
was used to generate a database of nifH genes we identified in the nine HBDs, 
and to search for additional nifH amino acid sequences within the genes Prodigal 
identified in scaffolds longer than 1,000 nucleotides. We considered only hits with 
an e-value of < 1e-50, and defined them as nifH genes only when (1) ‘nitrogenase’ 
was the top blastx hit against the NCBI’s nr database, and (2) the characteristic 
[4Fe-4S]-binding site (Prosite signature PDOC00580) was present in their amino 
acid sequence.

Variation of metagenomic reads the nifH genes recruit. We concatenated all 
nifH genes (orphan genes, as well as those in HBDs) into a single FASTA file. 
To study their variation in the environment, we used this FASTA file to recruit 
reads from all metagenomes, and profiled the resulting mapping results with 
anvi’o as described in the section ‘Metagenomic co-assemblies, gene calling and 
binning’. We created an anvi’o collection linking each gene to a unique bin ID, 
and then used the program ‘anvi-get-short-reads-from-bam’ to extract from the 
BAM files metagenomic reads each nifH gene recruited. Finally, we used blastn to 
estimate the average nucleotide identity of metagenomic reads to the nifH genes. 
Supplementary Table 8 reports the search results.
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Affiliating nifH genes with predetermined phylogenetic clusters. We affiliated 
the TARA Oceans nifH genes with predetermined phylogenetic clusters and 
subclusters using a classification and regression tree method76.

Searching nifH genes in existing sequence databases and amplicons. We searched 
TARA Oceans nifH genes in three databases, and a large amplicon survey. These 
databases included (1) ‘NCBI nr’, NCBI non-redundant database, (2) the ‘FunGene 
database’, nifH genes curated from NCBI GenBank database and stored in the 
FunGene database46 (available from https://fungene.cme.msu.edu/), and (3) the 
‘Zehr Database’, a nifH gene repository curated from the NCBI GenBank database 
and maintained by the Zehr Laboratory47 (June 2017 release, available from https://
www.jzehrlab.com). We also used the amplicon sequences from a large-scale survey 
of the nifH genes in the surface ocean using nested degenerate primers39. To search 
for our sequences in these resources, we used blastn77 with default parameters and 
only considered matches with a minimum alignment length of 100 nt.

Identifying mismatches between nifH genes and degenerate primers. We created 
a program (see Code availability) to determine all sequence combinations of 12 
commonly used degenerate primers and compare them to the TARA Oceans nifH 
genes to assess their compatibility.

Mean coverage of nifH gene sequences from reference collections and 
amplicons. We included the 18 non-redundant nifH genes we recovered in our 
study in each of the three non-redundant reference collections: the FunGene 
database (genes that were not affiliated with nifH based on their functional 
annotation were removed), the ‘Zehr Database’, and the nifH amplicon sequences 
from ref. 39. We then used CD-HIT78 with a 99% sequence similarity cutoff to 
independently remove redundancy in these three collections. To estimate the mean 
coverage of all nucleotide sequences from these three non-redundant collections, 
we recruited reads from all metagenomes and profiled the resulting mapping 
results with anvi’o as described in the section ‘Metagenomic co-assemblies, gene 
calling and binning’. For the analysis of the amplicon sequences, we used blastn 
to search amplicon sequences that recruited any read from the metagenomes in 
the FunGene database (with a minimum alignment of 100 nt) to identify those 
that correspond to nifH. We then used blast to combine all nifH amplicons that 
match to the nifH gene of ‘Ca. A. thalassa’, and combined all matches into a single 
unit corresponding to this population. We used the R package ggplot271 to display 
the interquartile range of the mean coverage of nifH genes across metagenomes 
as violin plots, and finalized this figure and others using the open-source vector 
graphics editor Inkscape (https://inkscape.org/).

Phylogenetic analysis of nifD and nifH genes. We built a database using the 
amino acid sequences of nifD and nifH genes identified in this study, as well as the 
protein reference sequences for nifD and nifH genes we identified in the NCBI’s 
non-redundant database, and imported it into ARB v.5.5-org-916779. In ARB, we 
aligned sequences to each other using ClustalW80, manually refined alignments, 
and calculated phylogenetic trees with PhyML81 using the ‘WAG’ amino acid 
substitution model, and a 10% conservation filter.

Quantification using ddPCR analysis of nifH genes. We designed primers 
specifically targeting the two Planctomycetes population nifH genes using 
primer382 (Supplementary Table 7), and analysed samples from the ALOHA station 
in the Pacific Ocean44 with ddPCR on a Bio-Rad QX200 Droplet Digital PCR 
system in a reaction volume of 20 μ l following the protocols of the manufacturer 
(Bio-Rad Laboratories). The samples were also tested using the previously 
described primers for the ϒ -24774A11 target27. Artificial constructs of each 
expected amplicon served as positive controls. We verified ddPCR results for the 
HBD-09 target using endpoint PCR employing forward and reverse primers and 
gel visualization (if sample material was available).

Code availability. The URL https://merenlab.org/data/2017_Delmont_et_al_
HBDs serves a reproducible bioinformatics workflow, and https://goo.gl/fZPvWw 
serves the ad hoc program to identify mismatches between nifH genes assembled 
from metagenomes and commonly used degenerate primers.

Data availability. All data our study used or generated are publicly available. 
Accession ID ERP001736 serves TARA Oceans metagenomes through the 
European Bioinformatics Institute. We stored scaffolds of > 2.5 kbp generated from 
the 12 metagenomic co-assemblies in NCBI Bioproject PRJNA326480. We have 
also made publicly available the raw assembly results that include scaffolds >  1 kbp 
(https://doi.org/10.6084/m9.figshare.4902920), amino acid sequences for 42.2 
million genes identified in raw assembly results  
(https://doi.org/10.6084/m9.figshare.4902917), the FASTA files for our 
final collection of 957 non-redundant MAGs (https://doi.org/10.6084/
m9.figshare.4902923), the anvi’o summary of non-redundant MAGs and their 
distribution across metagenomes (https://doi.org/10.6084/m9.figshare.4902926), 
the self-contained anvi’o split profiles for each non-redundant MAG  
(https://doi.org/10.6084/m9.figshare.4902941), short reads our nifH genes 
recruited from TARA Oceans metagenomes along with their identity statistics 

to the consensus gene sequence (https://doi.org/10.6084/m9.figshare.5259424), 
and the redundant and non-redundant versions of the FunGene database, 
Zehr database and nifH amplicon sequences we used in our study (https://doi.
org/10.6084/m9.figshare.5259421).
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anvio. Other software used to analyze the data include MEGAHIT v1.0.3, 

Prodigal v2.6.3, HMMER v3.1b2, Centrifuge, Bowtie2 v2.0.5, CONCOCT, 
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Indicate whether there are restrictions on availability of unique 

materials or if these materials are only available for distribution by a 

for-profit company.

No unique material was used.
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No eukaryotic cell lines were used.
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