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Abstract. Atmospheric fine-particle (PM2.5) pollution is fre-

quently associated with the formation of particulate nitrate

(pNO−

3 ), the end product of the oxidation of NOx gases

(NO + NO2) in the upper troposphere. The application of sta-

ble nitrogen (N) (and oxygen) isotope analyses of pNO−

3 to

constrain NOx source partitioning in the atmosphere requires

knowledge of the isotope fractionation during the reactions

leading to nitrate formation. Here we determined the δ15N

values of fresh pNO−

3 (δ15N–pNO−

3 ) in PM2.5 at a rural

site in northern China, where atmospheric pNO−

3 can be at-

tributed exclusively to biomass burning. The observed δ15N–

pNO−

3 (12.17 ± 1.55 ‰; n = 8) was much higher than the

N isotopic source signature of NOx from biomass burning

(1.04 ± 4.13 ‰). The large difference between δ15N–pNO−

3
and δ15N–NOx (1(δ15N)) can be reconciled by the net N iso-

tope effect (εN) associated with the gas–particle conversion

from NOx to NO−

3 . For the biomass burning site, a mean

εN(≈ 1(δ15N)) of 10.99 ± 0.74 ‰ was assessed through a

newly developed computational quantum chemistry (CQC)

module. εN depends on the relative importance of the two

dominant N isotope exchange reactions involved (NO2 re-

action with OH versus hydrolysis of dinitrogen pentoxide

(N2O5) with H2O) and varies between regions and on a

diurnal basis. A second, slightly higher CQC-based mean

value for εN (15.33 ± 4.90 ‰) was estimated for an urban

site with intense traffic in eastern China and integrated in

a Bayesian isotope mixing model to make isotope-based

source apportionment estimates for NOx at this site. Based

on the δ15N values (10.93 ± 3.32 ‰; n = 43) of ambient

pNO−

3 determined for the urban site, and considering the

location-specific estimate for εN, our results reveal that the

relative contribution of coal combustion and road traffic to

urban NOx is 32 % ± 11 % and 68 %± 11 %, respectively.

This finding agrees well with a regional bottom-up emis-

sion inventory of NOx . Moreover, the variation pattern of OH

contribution to ambient pNO−

3 formation calculated by the
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CQC module is consistent with that simulated by the Weather

Research and Forecasting model coupled with Chemistry

(WRF-Chem), further confirming the robustness of our esti-

mates. Our investigations also show that, without the consid-

eration of the N isotope effect during pNO−

3 formation, the

observed δ15N–pNO−

3 at the study site would erroneously

imply that NOx is derived almost entirely from coal com-

bustion. Similarly, reanalysis of reported δ15N–NO−

3 data

throughout China and its neighboring areas suggests that

NOx emissions from coal combustion may be substantively

overestimated (by > 30 %) when the N isotope fractionation

during atmospheric pNO−

3 formation is neglected.

1 Introduction

Nitrogen oxides (NOx = NO + NO2) are among the most

important molecules in tropospheric chemistry. They are in-

volved in the formation of secondary aerosols and atmo-

spheric oxidants, such as ozone (O3) and hydroxyl radicals

(OH), which control the self-cleansing capacity of the at-

mosphere (Galloway et al., 2003; Seinfeld and Pandis, 2012;

Solomon et al., 2007). The sources of NOx include both an-

thropogenic and natural origins, with more than half of the

global burden (∼ 40 Tg N yr−1) currently attributed to fos-

sil fuel burning (22.4–26.1 Tg N yr−1) and the rest primar-

ily derived from nitrification/denitrification in soils (includ-

ing wetlands; 8.9 ± 1.9 Tg N yr−1), biomass burning (5.8 ±

1.8 Tg N yr−1), lightning (2–6 Tg N yr−1) and oxidation of

N2O in the stratosphere (0.1–0.6 Tg N yr−1) (Jaegle et al.,

2005; Richter et al., 2005; Lamsal et al., 2011; Price et al.,

1997; Yienger and Levy, 1995; Miyazaki et al., 2017; Dun-

can et al., 2016; Anenberg et al., 2017; Levy et al., 1996).

The main/ultimate sinks for NOx in the troposphere are

the oxidation to nitric acid (HNO3(g)) and the formation of

aerosol-phase particulate nitrate (pNO−

3 ) (Seinfeld and Pan-

dis, 2012), the partitioning of which may vary on diurnal and

seasonal timescales (Morino et al., 2006).

Emissions of NOx occur mostly in the form of NO (Se-

infeld and Pandis, 2012; Leighton, 1961). During daytime,

transformation from NO to NO2 is rapid (few minutes) and

proceeds in a photochemical steady state, controlled by the

oxidation of NO by O3 to NO2 and the photolysis of NO2

back to NO (Leighton, 1961):

NO + O3 −→ NO2 + O2, (R1)

NO2 + hv −→ NO + O, (R2)

O + O2
M

−→ O3, (R3)

where M is any non-reactive species that can take up the en-

ergy released to stabilize O. NOx oxidation to HNO3 is gov-

erned by the following equations. During daytime,

NO2 + OH
M

−→ HNO3. (R4)

During nighttime:

NO2 + O3 −→ NO3 + O2, (R5)

NO3 + NO2
M

−→ N2O5, (R6)

N2O5 + H2O(surface)
aerosol
−→ 2HNO3. (R7)

HNO3 then reacts with gas-phase NH3 to form ammonium

nitrate (NH4NO3) aerosols. If the ambient relative humid-

ity (RH) is lower than the efflorescence relative humid-

ity (ERH) or crystallization relative humidity (CRH), solid-

phase NH4NO3(s) is formed (Smith et al., 2012; Ling and

Chan, 2007):

NH4NO3 ⇋ HNO3 (g) + NH3 (g) . (R8a)

If ambient RH exceeds the ERH or CRH, HNO3 and NH3

dissolve into the aqueous phase (aq) (Smith et al., 2012; Ling

and Chan, 2007):

HNO3 (g) + NH3 (g) ⇋ NO−

3 (aq) + NH+

4 (aq). (R8b)

While global NOx emissions are well constrained, individual

source attribution and their local or regional role in particu-

late nitrate formation are difficult to assess due to the short

lifetime of NOx (typically less than 24 h) and the high degree

of spatiotemporal heterogeneity with regards to the ratio be-

tween gas-phase HNO3 and particulate NO−

3 (pNO−

3 ) (Dun-

can et al., 2016; Lu et al., 2015; Zong et al., 2017; Zhang et

al., 2003). Given the conservation of the nitrogen (N) atom

between NOx sources and sinks, the N isotopic composition

of pNO−

3 can be related to the different origins of the emit-

ted NOx and thus provides valuable information on the par-

titioning of the NOx sources (Morin et al., 2008). Such a N

isotope balance approach works best if the N isotopic com-

position of various NOx sources display distinct 15N/14N ra-

tios (reported as δ15N =

(

15N/14N
)

sample
−(15N/14N)N2

(15N/14N)N2

× 1000).

The δ15N–NOx of coal-fired power plant (+10 ‰ to +25 ‰)

(Felix et al., 2012, 2013; Heaton, 1990), vehicle (+3.7 ‰

to +5.7 ‰) (Heaton, 1990; Walters et al., 2015; Felix and

Elliott, 2014; Felix et al., 2013; Wojtal et al., 2016) and

biomass burning (−7 ‰ to +12 ‰) emissions (Fibiger and

Hastings, 2016), for example, is generally higher than that

of lightning (−0.5 ‰ to +1.4 ‰) (Hoering, 1957) and bio-

genic soil (−48.9 ‰ to −19.9 ‰) emissions (Li and Wang,

2008; Felix and Elliott, 2014; Felix et al., 2013), allowing

the use of isotope mixing models to gain insight on the NOx

source apportionment for gases, aerosols and the resulting

nitrate deposition (−15 ‰ to +15 ‰) (Elliott et al., 2007,

2009; Zong et al., 2017; Savarino et al., 2007; Morin et

al., 2008; Park et al., 2018; Altieri et al., 2013; Gobel et

al., 2013). In addition, because of mass-independent frac-

tionation during its formation (Thiemens, 1999; Thiemens

and Heidenreich, 1983), ozone possesses a strong isotope

anomaly (117O ≈ δ17O − 0.52×δ18O), which is propagated
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into the most short-lived oxygen-bearing species, including

NOx and nitrate. Therefore, the oxygen isotopic composition

of nitrate (δ18O, 117O) can provide information on the oxi-

dants involved in the conversion of NOx to nitrate (Michalski

et al., 2003; Geng et al., 2017). Knopf et al. (2006, 2011)

and Shiraiwa et al. (2012) have shown that NO3 can be

taken up efficiently by organic (e.g., levoglucosan) aerosol

and may dominate oxidation of aerosol in the polluted urban

nighttime (Kaiser et al., 2011). Globally, theoretical model-

ing results show that nearly 76 %, 18 % and 4 % of annual

inorganic nitrate are formed via pathways/reactions involv-

ing OH, N2O5, and dimethyl sulfide or hydrocarbons, re-

spectively (e.g., Alexander et al., 2009). The stable O iso-

topic composition of atmospheric nitrate is a powerful proxy

for assessing which oxidation pathways are important for

converting NOx into nitrate under changing environmental

conditions (e.g., polluted, volcanic events, climate change).

Along the same lines, in this study, the average δ18O value

of pNO−

3 in Nanjing was 83.0±11.2 ‰ (see Discussion sec-

tion), suggesting that pNO−

3 formation is dominated by the

pathways of “OH + NO2” and the heterogeneous hydrolysis

of N2O5.

δ15N-based source apportionment of NOx requires knowl-

edge of how kinetic and equilibrium isotope fractionation

may impact δ15N values during the conversion of NOx to

nitrate (Freyer, 1978; Walters et al., 2016). If these isotope

effects are considerable, they may greatly limit the use of

δ15N values of pNO−

3 for NOx source partition (Walters et

al., 2016). Previous studies did not take into account the po-

tentially biasing effect of N isotope fractionation, because

they assumed that changes in the δ15N values during the

conversion of NOx to nitrate are minor (without detailed ex-

planation) (Kendall et al., 2007; Morin et al., 2008; Elliott

et al., 2007) or relatively small (e.g., +3 ‰) (Felix and El-

liott, 2014; Freyer, 2017). However, a field study by Freyer

et al. (1993) has indicated that N isotope exchange may

have a strong influence on the observed δ15N values in at-

mospheric NO and NO2, implying that isotope equilibrium

fractionation may play a significant role in shaping the δ15N

of NOy species (the family of oxidized nitrogen molecules

in the atmosphere, including NOx , NO3, NO−

3 , peroxyacetyl

nitrate, etc.). The transformation of NOx to nitrate is a com-

plex process that involves several different reaction pathways

(Walters et al., 2016). To date, few fractionation factors for

this conversion have been determined. Recently, Walters and

Michalski (2015) and Walters et al. (2016) used computa-

tional quantum chemistry methods to calculate N isotope

equilibrium fractionation factors for the exchange between

major NOy molecules and confirmed theoretical predictions

that 15N isotopes get enriched in the more oxidized form of

NOy and that the transformation of NOx to atmospheric ni-

trate (HNO3, NO3(aq), NO3(g)) continuously increases the

δ15N in the residual NOx pool.

As a consequence of its severe atmospheric particle pollu-

tion during the cold season, China has made great efforts to-

ward reducing NOx emissions from on-road traffic (e.g., im-

proving emission standards, higher gasoline quality, vehicle

travel restrictions) (Li et al., 2017). Moreover, China has con-

tinuously implemented denitrogenation technologies (e.g.,

selective catalytic reduction) in the coal-fired power plants

sector since the mid-2000s and has been phasing out small

inefficient units (Liu et al., 2015). Monitoring and assess-

ing the efficiency of such mitigation measures, and optimiz-

ing policy efforts to further reduce NOx emissions, require

knowledge of the vehicle- and power-plant-emitted NOx to

particulate nitrate in urban China (Ji et al., 2015; Fu et al.,

2013; Zong et al., 2017). In this study, the chemical compo-

nents of ambient fine particles (PM2.5) were quantified, and

the isotopic composition of particulate nitrate (δ15N–NO−

3 ,

δ18O–NO−

3 ) was assessed in order to elucidate ambient NOx

sources in the city of Nanjing in eastern China. We also in-

vestigated the potential isotope effect during the formation

of nitrate aerosols from NOx and evaluated how disregard

of such N isotope fractionation can bias N-isotope-mixing-

model-based estimates on the NOx source apportionment for

nitrate deposition.

2 Methods

2.1 Field sampling

In this study, PM2.5 aerosol samples were collected on pre-

combusted (450 ◦C for 6 h) quartz filters (25 × 20 cm) on a

day–night basis, using high-volume air samplers at a flow

rate of 1.05 m3 min−1 in Sanjiang and Nanjing (Fig. 1). After

sampling, the filters were wrapped in aluminum foil, packed

in air-tight polyethylene bags and stored at −20 ◦C prior to

further processing and analysis. Four blank filters were also

collected. They were exposed for 10 min to ambient air (i.e.,

without active sampling). PM2.5 mass concentration was an-

alyzed gravimetrically (Sartorius MC5 electronic microbal-

ance) with a ±1 µg precision before and after sampling (at

25 ◦C and 45% ± 5 % during weighing).

The Sanjiang campaign was performed during a period

of intensive burning of agricultural residues between 8 and

18 October 2013, to examine if there is any significant dif-

ference between the δ15N values of pNO−

3 and NOx emit-

ted from biomass burning. The Sanjiang site (in the fol-

lowing abbreviated as SJ; 47.35◦ N, 133.31◦ E) is located at

an ecological experimental station affiliated with the Chi-

nese Academy of Sciences located in the Sanjiang Plain,

a major agricultural area predominantly run by state farms

in northeastern China (Fig. 1). Surrounded by vast farm

fields and bordering far-eastern Russia, SJ is situated in a

remote and sparsely populated region, with a harsh climate

and rather poorly industrialized economy. The annual mean

temperature at SJ is close to the freezing point, with daily

minima ranging between −31 and −15 ◦C in the coldest

month, January. As a consequence of the relatively low tem-
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Figure 1. Location of the sampling sites Sanjiang and Nanjing. The

black dots indicate the location of sampling sites (sites are located

in the area of mainland China and the Yellow, East China and South

China seas) with δ15N–NO−

3 data from the literature (see also Ta-

ble S4).

peratures (also during summer), biogenic production of NOx

through soil microbial processes is rather weak. SJ is there-

fore an excellent environment in which to collect biomass-

burning-emitted aerosols with only minor influence from

other sources.

The Nanjing campaign was conducted between 17 De-

cember 2014 and 8 January 2015 with the main objective to

examine whether N isotope measurements can be used as a

tool to elucidate NOx source contributions to ambient pNO−

3
during times of severe haze. Situated in the lower Yangtze

River region, Nanjing is, after Shanghai, the second-largest

city in eastern China. The aerosol sampler was placed at the

rooftop of a building on the Nanjing University of Informa-

tion Science and Technology campus (in the following abbre-

viated as NJ; 18 m a.g.l.; 32.21◦ N, 118.72◦ E; Fig. 1), where

NOx emissions derive from both industrial and transportation

sources.

2.1.1 Laboratory analysis

The mass concentrations of inorganic ions (including SO2−

4 ,

NO−

3 , Cl−, NH+

4 , K+, Ca2+, Mg2+ and Na+), carbonaceous

components (organic carbon, or OC; elemental carbon, or

EC) and water-soluble organic carbon were determined using

an ion chromatograph (761 Compact IC, Metrohm, Switzer-

land), a thermal-optical OC–EC analyzer (RT-4 model, Sun-

set Laboratory Inc., USA) and a total organic carbon analyzer

(Shimadzu, TOC-VCSH, Japan), respectively. Importantly,

levoglucosan, a molecular marker for the biomass combus-

tion aerosols, was detected using a Dionex™ ICS-5000+ sys-

tem (Thermo Fisher Scientific, Sunnyvale, USA). Chemical

aerosol analyses, including sample pre-treatment, analytical

procedures, protocol adaption, detection limits and experi-

mental uncertainty were described in detail in our previous

work (Cao et al., 2016, 2017).

For isotopic analyses of aerosol nitrate, aerosol subsam-

ples were generated by punching 1.4 cm disks out of the fil-

ters. In order to extract the NO−

3 , sample discs were placed

in acid-washed glass vials with 10 ml deionized water and

placed in an ultra-sonic water bath for 30 min. Between one

and four disks were used for NOx extraction, dependent on

the aerosol NO−

3 content of the filters, which was determined

independently. The extracts were then filtered (0.22 µm) and

analyzed the next day. N and O isotope analyses of the ex-

tracted/dissolved aerosol nitrate (15N/14N, 18O/16O) were

performed using the denitrifier method (Sigman et al., 2001;

Casciotti et al., 2002). Briefly, sample NO−

3 is converted to

nitrous oxide (N2O) by denitrifying bacteria that lack N2O

reductase activity (Pseudomonas chlororaphis ATCC 13985;

formerly Pseudomonas aureofaciens, referred to below as

such). N2O is extracted, purified and analyzed for its N and

O isotopic composition using a continuous-flow isotope ra-

tio mass spectrometer (Thermo Finnigan Delta+, Bremen,

German). Nitrate N and O isotope ratios are reported in the

conventional δ notation with respect to atmospheric N2 and

Vienna standard mean ocean water, respectively. Analyses

are calibrated using the international nitrate isotope standard

IAEA-N3, with a δ15N value of 4.7 ‰ and a δ18O value of

25.6 ‰ (Böhlke et al., 2003). The blank contribution was

generally lower than 0.2 nmol (as compared to 20 nmol of

sample N). Based on replicate measurements of standards

and samples, the analytical precision for δ15N and δ18O was

generally better than ±0.2 ‰ and ±0.3 ‰ (1σ ), respectively.

The denitrifier method generates δ15N and δ18O values of

the combined pool of NO−

3 and NO−

2 . The presence of sub-

stantial amounts of NO−

2 in NO−

3 samples may lead to errors

with regards to the analysis of δ18O (Wankel et al., 2010). We

refrained from including a nitrite-removal step, because ni-

trite concentrations in our samples were always < 1 % of the

NO−

3 concentrations. In the following δ15NNOx and δ18ONOx

are thus referred to as nitrate δ15N and δ18O (or δ15NNO3 and

δ18ONO3 ).

In the case of atmospheric or aerosol nitrate samples with

comparatively high δ18O values, δ15N values tend to be over-

estimated by 1–2 ‰ (Hastings et al., 2003) if the contribu-

tion of 14N14N17O to the N2O mass 45 signal is not ac-

counted for during isotope ratio analysis. For most natural

samples, the mass-dependent relationship can be approxi-

mated as δ17O ≈ 0.52 × δ18O, and the δ18O can be used

for the 17O correction. Atmospheric NO−

3 does not follow

this relationship but inhabits a mass-independent component.
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Thus, we adopted a correction factor of 0.8 instead of 0.52 for

the 17O-to-18O linearity (Hastings et al., 2003).

2.2 Calculation of N isotope fractionation value (εN)

As we described above, the transformation process of NOx to

HNO3 or NO−

3 involves multiple reaction pathways (see also

Fig. S1 in the Supplement) and is likely to undergo isotope

equilibrium exchange reactions. The measured δ15N–NO−

3
values of aerosol samples are thus reflective of the combined

N isotope signatures of various NOx sources (δ15N–NOx)

plus any given N isotope fractionation. Recently, Walter and

Michalski (2015) used a computational quantum chemistry

approach to calculate isotope exchange fractionation fac-

tors for atmospherically relevant NOy molecules; based on

this approach, Zong et al. (2017) estimated the N isotope

fractionation during the transformation of NOx to pNO−

3
at a regional background site in China. Here we adopted,

and slightly modify, the approach by Walter and Michal-

ski (2015) and Zong et al. (2017), and assumed that the

net N isotope effect εN (for equilibrium processes A ↔ B:

εA↔B =

(

(heavy isotope/light isotope)A
(heavy isotope/light isotope)B−1

)

· 1000 ‰; εN refers to

εN
(NOx↔pNO−

3
)

in this study unless otherwise specified) during

the gas-to-particle conversion from NOx to pNO−

3 formation

(1
(

δ15N
)

pNO−

3 −NOx
= δ15N–pNO−

3 −δ15N–NOx ≈ εN) can

be considered a hybrid of the isotope effects of two dominant

N isotopic exchange reactions:

εN = γ × εN
(NOx↔pNO−

3 )OH

+ (1 − γ ) × εN
(NOx↔pNO−

3 )H2O

= γ × εN(NOx↔HNO3)OH
+ (1 − γ ) × εN(NOx↔HNO3)H2O

, (1)

where γ represents the contribution from isotope frac-

tionation by the reaction of NOx and photochemically

produced OH to form HNO3 (and pNO−

3 ), as shown

by εN(NOx↔HNO3)OH
(εN

(NOx↔pNO−

3 )OH

). The remainder is

formed by the hydrolysis of N2O5 with aerosol water

to generate HNO3 (and pNO−

3 ), namely, εN(NOx↔HNO3)H2O

(εN
(NOx↔pNO−

3 )H2O

). Assuming that kinetic N isotope frac-

tionation associated with the reaction between NOx and OH

is negligible, εN
(NOx↔pNO−

3 )OH

can be calculated based on

mass-balance considerations:

εN
(NOx↔pNO−

3 )OH

= εN(NOx↔HNO3)OH
= εN(NO2↔HNO3)OH

= 1000 ×

[

(

15αNO2/NO−1

)(

1 − fNO2

)

(

1 − fNO2

)

+
(

15αNO2/NO × fNO2

)

]

,
(2)

where 15αNO2/NO is the temperature-dependent (see Eq. 7

and Table S1 in the Supplement) equilibrium N isotope frac-

tionation factor between NO2 and NO, and fNO2 is the frac-

tion of NO2 in the total NOx . fNO2 ranges from 0.2 to 0.95

(Walters and Michalski, 2015). Similarly, assuming a negli-

gible kinetic isotope fractionation associated with the reac-

tion N2O5 + H2O + aerosol → 2HNO3, εN
(NOx↔pNO−

3 )H2O

can be computed from the following equation:

εN
(NOx↔pNO−

3 )H2O

= εN(NOx↔HNO3)H2O
=

εN(NOx↔N2O5)H2O
= 1000 ×

(

15αN2O5/NO2−1
), (3)

where 15αN2O5/NO2 is the equilibrium isotope fractionation

factor between N2O5 and NO2, which also is temperature-

dependent (see Eq. 7 and Table S1).

Following Walter and Michalski (2015) and Zhong et

al. (2017), γ can then be approximated based on the O iso-

tope fractionation during the conversion of NOx to pNO−

3 :

εO
(NOx↔pNO−

3 )
= γ × εO

(NOx↔pNO−

3 )OH

+(1 − γ ) × εO
(NOx↔pNO−

3 )H2O

= γ × εO(NOx↔HNO3)OH
+ (1 − γ ) × εO(NOx↔HNO3)H2O

, (4)

where εO
(NOx↔pNO−

3 )OH

and εO
(NOx↔pNO−

3 )H2O

represent the O

isotope effects associated with pNO−

3 generation through the

reaction of NOx and OH to form HNO3, and the hydrolysis

of N2O5 on a wetted surface to form HNO3, respectively.

εO
(NOx↔pNO−

3 )OH

can be further expressed as

εO
(NOx↔pNO−

3 )OH

= εO(NOx↔HNO3)OH
=

2

3
εO(NO2↔HNO3)OH

+
1

3
εO(NO↔HNO3)OH

=
2

3

[

1000
(

18αNO2/NO−1
)(

1 − fNO2

)

(

1 − fNO2

)

+
(

18αNO2/NO × fNO2

) +

(

δ18O − NOx

)

]

+

1

3

[(

δ18O − H2O
)

+ 1000
(

18αOH/H2O − 1
)]

,

(5)

and εO
(NOx↔pNO−

3 )H2O

can be determined as follows:

εO
(NOx↔pNO−

3 )H2O

= εO(NOx↔HNO3)H2O
=

5

6

(

δ18O − N2O5

)

+
1

6

(

δ18O − H2O
)

, (6)

where 18αNO2/NO and 18αOH/H2O represent the equilibrium O

isotope fractionation factors between NO2 and NO between

and OH and H2O, respectively. The range of δ18O–H2O can

be approximated using an estimated tropospheric water vapor

δ18O range of −25 ‰ to 0 ‰. The δ18O values for NO2 and

N2O5 range from 90 ‰ to 122 ‰ (Zong et al., 2017).
15αNO2/NO, 15αN2O5/NO2 , 18αNO2/NO and 18αOH/H2O in

these equations are dependent on the temperature, which can

be expressed as
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1000
(

mαX/Y − 1
)

=
A

T 4
× 1010

+
B

T 3
× 108

+
C

T 2
× 106

+
D

T
× 104, (7)

where A, B, C and D are experimental constants (Table S1

in the Supplement) over the temperature range of 150–450 K

(Walters and Michalski, 2015; Walters et al., 2016; Walters

and Michalski, 2016; Zong et al., 2017).

Based on Eqs. (4)–(7) and measured values for δ18O–

pNO−

3 of ambient PM2.5, a Monte Carlo simulation was per-

formed to generate 10 000 feasible solutions. The error be-

tween predicted and measured δ18O was less than 0.5 ‰. The

range (maximum and minimum) of computed contribution

ratios (γ ) was then integrated in Eq. (1) to generate an esti-

mate range for the nitrogen isotope effect εN (using Eqs. 2–

3). δ15N–pNO−

3 values can be calculated based on εN and the

estimated δ15N range for atmospheric NOx (see Sect. 2.4).

2.3 Bayesian isotope mixing model

Isotopic mixing models allow estimating the relative contri-

bution of multiple sources (e.g., emission sources of NOx)

within a mixed pool (e.g., ambient pNO−

3 ). By explicitly

considering the uncertainty associated with the isotopic sig-

natures of any given source, as well as isotope fractionation

during the formation of various components of a mixture,

the application of Bayesian methods to stable isotope mixing

models generates robust probability estimates of source pro-

portions and is often more appropriate when targeting natu-

ral systems than simple linear mixing models (Chang et al.,

2016a). Here the Bayesian model MixSIR (a stable isotope

mixing model using sampling, importance and resampling)

was used to disentangle multiple NOx sources by generating

potential solutions of source apportionment as true probabil-

ity distributions, which has been widely applied in a num-

ber of fields (e.g., Parnell et al., 2013; Phillips et al., 2014;

Zong et al., 2017). Details on the model frame and comput-

ing methods are given in Sect. S1 in the Supplement.

Here, coal combustion (13.72 ± 4.57 ‰), transportation

(−3.71 ± 10.40 ‰), biomass burning (1.04 ± 4.13 ‰) and

biogenic emissions from soils (−33.77±12.16 ‰) were con-

sidered to be the most relevant contributors of NOx (Table S2

and Sect. S2). The δ15N of atmospheric NOx is unknown.

However, it can be assumed that its range in the atmosphere is

constrained by the δ15N of the NOx sources and the δ15N of

pNO−

3 after equilibrium fractionation conditions have been

reached. Following Zong et al. (2017), δ15N–NOx in the

atmosphere was determined by performing iterative model

simulations, with a simulation step of 0.01 times the equilib-

rium fractionation value based on the δ15N–NOx values of

the emission sources (mean and standard deviation) and the

measured δ15N–pNO−

3 of ambient PM2.5 (Fig. S2).

3 Results

3.1 Sanjiang in northern China

The δ15N–pNO−

3 and δ18O–pNO−

3 values of the eight sam-

ples collected from the Sanjiang biomass burning field ex-

periment ranged from 9.54 ‰ to 13.77 ‰ (mean: 12.17 ‰)

and 57.17 ‰ to 75.09 ‰ (mean: 63.57 ‰), respectively. In

this study, atmospheric concentrations of levoglucosan quan-

tified from PM2.5 samples collected near the sites of biomass

burning in Sanjiang vary between 4.0 and 20.5 µg m−3, 2

to 5 orders of magnitude higher than those measured dur-

ing non-biomass-burning season (Cao et al., 2017, 2016).

Levoglucosan is an anhydrosugar formed during pyrolysis

of cellulose at temperatures above 300 ◦C (Simoneit, 2002).

Due to its specificity for cellulose combustion, it has been

widely used as a molecular tracer for biomass burning (Si-

moneit et al., 1999; D. Liu et al., 2013; Jedynska et al.,

2014; Liu et al., 2014). Indeed, the concentrations of lev-

oglucosan and aerosol nitrate in Sanjiang were highly cor-

related (R2 = 0.64; Fig. 2a), providing compelling evidence

that particulate nitrate measured during our study period was

predominately derived from biomass burning emissions.

3.2 Nanjing in eastern China

The mass concentrations
(

meanmax
min ± 1σ,n = 43

)

of PM2.5

and pNO−

3 measured in Nanjing were 122.1227.8
39.0 ± 47.9 and

17.845.2
4.0 ± 10.3 µg m−3, respectively. All PM2.5 concentra-

tions exceeded the Chinese Air Quality Standards for daily

PM2.5 (35 µg m−3), suggesting severe haze pollution during

the sampling period. The corresponding δ15N–pNO−

3 val-

ues (raw data without correction) ranged between 5.39 ‰

and 17.99 ‰, indicating significant enrichment in 15N rel-

ative to rural and coastal marine atmospheric NO−

3 sources

(Table S4). This may be due to the prominent contribution of

fossil-fuel-related NOx emissions with higher δ15N values in

urban areas (Elliott et al., 2007; Park et al., 2018).

4 Discussion

4.1 Sanjiang campaign: theoretical calculation and

field validation of N isotope fractionation during

pNO−

3 formation

To be used as a quantitative tracer of biomass-combustion-

generated aerosols, levoglucosan must be conserved during

its transport from its source, without partial removal by re-

actions in the atmosphere (Hennigan et al., 2010). The mass

concentrations of non-sea-salt potassium (nss-K+ = K+ −

0.0355 × Na+) is considered as an independent/additional

indicator of biomass burning (Fig. 2b). The association of

elevated levels of levoglucosan with high nss-K+ concen-

trations underscores that the two compounds derived from

the same proximate sources and thus that aerosol levoglu-
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Figure 2. (a) Correlation analysis between the mass concentrations of levoglucosan and aerosol nitrate during the Sanjiang sampling cam-

paign; (b) variation of fractions of various inorganic species (MSA− stands for methyl sulphonate) during day–night samplings at Sanjiang

between 8 and 18 October 2013 (sample ID 1 to 8). The higher relative abundances of nss-K+ and Cl− are indicative of a biomass-burning-

dominated source. For sample ID information and exact sampling dates, refer to Table S3.

cosan in Sanjiang was indeed pristine and represented a re-

liable source indicator that is unbiased by altering processes

in the atmosphere. Moreover, in our previous work (Cao et

al., 2017), we observed that there was a much greater en-

hancement of atmospheric NO−

3 compared to SO2−

4 (a typical

coal-related pollutant). This additionally points to biomass

burning, and not coal-combustion, as the dominant pNO−

3
source in the study area, making SJ an ideal “quasi-single-

source” environment for calibrating the N isotope effect dur-

ing pNO−

3 formation.

Our δ18O–pNO−

3 values are well within the broad range

of values in previous reports (Zong et al., 2017; Geng et al.,

2017; Walters and Michalski, 2016). However, as depicted in

Fig. 3, the δ15N values of biomass-burning-emitted NO−

3 fall

within the range of δ15N–NOx values typically reported for

emissions from coal combustion, whereas they are signifi-

cantly higher than the well-established values for δ15N–NOx

emitted from the burning of various types of biomass (mean:

1.04 ± 4.13 ‰; range: −7 to +12 ‰) (Fibiger and Hastings,

2016). Turekian et al. (1998) conducted laboratory tests in-

volving the burning of eucalyptus and African grasses, and

determined that the δ15N of pNO−

3 (around 23 ‰) was 6.6 ‰

higher than the δ15N of the burned biomass. This implies sig-

nificant N isotope partitioning during biomass burning. In the

case of complete biomass combustion, by mass balance, the

first gaseous products (i.e., NOx) have the same δ15N as the

biomass. Hence any discrepancy between the pNO−

3 and the

δ15N of the biomass can be attributed to the N isotope frac-

tionation associated with the partial conversion of gaseous

NOx to aerosol NO−

3 . Based on the computational quantum

chemistry (CQC) module calculations, the N isotope frac-

tionation εN

(

meanmax
min ± 1σ

)

determined from the Sanjiang

data was 10.9912.54
10.30 ± 0.74 ‰. After correcting the primary

δ15N–pNO−

3 values under the consideration of εN, the re-

sulting mean δ15N of 1.172.98
−1.89 ± 1.95 ‰ is very close to the

N isotopic signature expected for biomass-burning-emitted

NOx (1.04 ± 4.13 ‰) (Fig. 3) (Fibiger and Hastings, 2016).

Figure 3. Original δ15N values (δ15Nini) for pNO−

3 , calculated

values for the N isotope fractionation (εN) associated with the

conversion of gaseous NOx to pNO−

3 and corrected δ15N values

(δ15Ncorr;
15Nini minus εN) of pNO−

3 for each sample collected

during the Sanjiang sampling campaign. The colored bands repre-

sent the variation range of δ15N values for different NOx sources

based on reports from the literature (Table S2). See Table S3 for the

information regarding sample ID.

The much higher δ15N–pNO−

3 values in our study compared

to reported δ15N–NOx values for biomass burning can easily

be reconciled when including N isotope fractionation dur-

ing the conversion of NOx to NO−

3 . Put another way, given

that Sanjiang is an environment where we can essentially ex-

clude NOx sources other than biomass burning at the time

of sampling, the data nicely validate our CQC-module-based

approach to estimating εN.
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4.2 Source apportionment of NOx in an urban setting

using a Bayesian isotopic mixing model

Due to its high population density and intensive industrial

production, the Nanjing atmosphere was expected to have

high NOx concentrations derived from road traffic and coal

combustion (Zhao et al., 2015). However, the raw δ15N–

pNO−

3 values (10.93 ± 3.32 ‰) fell well within the varia-

tion range of coal-emitted δ15N–NOx (Fig. 3). It is tempt-

ing to conclude that coal combustion is the main, or even

sole, pNO−

3 source (given the equivalent δ15N values), yet

this is very unlikely. The data rather confirm that significant

isotope fractionation occurred during the conversion of NOx

to NO−

3 and that, without consideration of the N isotope ef-

fect, traffic-related NOx emissions will be markedly under-

estimated.

In the atmosphere, the oxygen atoms of NOx rapidly ex-

changed with O3 in the “NO–NO2” cycle (see Reactions R1–

R3) (Hastings et al., 2003), and the δ18O–pNO−

3 values are

determined by its production pathways (Reactions R4–R7),

rather than the sources of NOx (Hastings et al., 2003). Thus,

δ18O–pNO−

3 can be used to gain information on the pathway

of conversion of NOx to nitrate in the atmosphere (Fang et

al., 2011). In the computational quantum chemistry module

used here to calculate isotope fractionation, we assumed that

two-thirds of the oxygen atoms in NO−

3 derive from O3 and

one-third from qOH in the qOH generation pathway (Reac-

tion R4) (Hastings et al., 2003); correspondingly, five-sixths

of the oxygen atoms then derived from O3 and one-sixth from
qOH in the “O3–H2O” pathway (Reactions R5–R7). The as-

sumed range for δ18O–O3 and δ18O–H2O values were 90 ‰–

122 ‰ and −25 ‰–0 ‰, respectively (Zong et al., 2017).

The partitioning between the two possible pathways was then

assessed through Monte Carlo simulation (Zong et al., 2017).

The estimated range was rather broad, given the wide range

of δ18O–O3 and δ18O–H2O values used. Nevertheless, the

theoretical calculation of the average contribution ratio (γ )

for nitrate formation in Nanjing via the reaction of NO2

and qOH is consistent with the results from simulations us-

ing the Weather Research and Forecasting model coupled

with Chemistry (WRF-Chem) (Fig. 4; see Sect. S3 for de-

tails). A clear diurnal cycle of the mass concentration of ni-

trate formed through qOH oxidation of NO2 can be observed

(Fig. S3), with much higher concentrations between 12:00

and 18:00. This indicates the importance of photochemically

produced qOH during daytime. Yet, throughout our sam-

pling period in Nanjing, the average pNO−

3 formation by

the heterogeneous hydrolysis of N2O5 (12.6 µg mm−3) ex-

ceeded pNO−

3 formation by the reaction of NO2 and qOH

(4.8 µg mm−3), even during daytime, consistent with recent

observations during peak pollution periods in Beijing (Wang

et al., 2017). Given the production rates of N2O5 in the at-

mosphere are governed by ambient O3 concentrations, re-

ducing atmospheric O3 levels appears to be one of the most

Figure 4. Comparison between the theoretical calculation and

WRF-Chem simulation of the average contribution ratio (γ ) for ni-

trate formation in Nanjing via the reaction of NO2 and photochem-

ically produced qOH.

important measures to take for mitigating pNO−

3 pollution in

China’s urban atmospheres.

In Nanjing, dependent on the time-dependent, dominant

pNO−

3 formation pathway, the average N isotope fraction-

ation value calculated using the computational quantum

chemistry module varied between 10.77 ‰ and 19.34 ‰

(15.33 ‰ on average). Using the Bayesian model MixSIR,

the contribution of each source can be estimated, based on

the mixed-source isotope data under the consideration of

prior information at the site (see Sect. S1 for detailed infor-

mation regarding model frame and computing method). As

described above, theoretically, there are four major sources

potentially contributing to ambient NOx : road traffic, coal

combustion, biomass burning and biogenic soil. As a start,

we tentatively integrated all four sources into MixSIR (data

not shown). The relative contribution of biomass burning

to the ambient NOx (median value) ranged from 28 % to

70 % (average 42 %), representing the most important source.

The primary reason for such apparently high contribution by

biomass burning is that the corrected δ15N–pNO−

3 values of

−4.290.42
−10.32 ± 3.66 ‰ are relatively close to the N isotopic

signature of biomass-burning-emitted NOx (1.04 ± 4.13 ‰)

compared to the other possible sources. Based on δ15N alone,

the isotope approach can be ambiguous if there are more than

two sources. The N isotope signature of NOx from biomass

burning falls right in between the spectrum of plausible val-

ues, with highest δ15N for emissions from coal combustion

on the one end and much lower values for automotive and soil

emissions on the other, and will be similar to a mixed signa-

ture from coal combustion and NOx emissions from traffic.
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Figure 5. (a) Time-series variation of coal combustion and road traffic contribution to the mass concentrations of ambient pNO−

3 in Nan-

jing, as estimated through MixSIR; (b) correlation analysis between the mass concentrations of coal-combustion-related pNO−

3 and SO2;

(c) correlation analysis between the mass concentrations of road-traffic-related pNO−

3 and CO.

We can make several evidence-based presumptions to bet-

ter constrain the emission sources in the mixing model anal-

ysis: (1) when sampling at a typical urban site in a major in-

dustrial city in China, we can assume that the sources of road

traffic and coal combustion are dominant, while the contri-

bution of biogenic soil to ambient NOx should have mini-

mal impact or can be largely neglected (Zhao et al., 2015);

(2) there is no crop harvest activity in eastern China during

the winter season. Furthermore, deforestation and combus-

tion of fuelwood have been discontinued in China’s major

cities (Chang et al., 2016a). Therefore, the contribution of

biomass-burning-emitted NOx during the sampling period

should also be minor. Indeed, Fig. S4 shows that the mass

concentration of biomass-burning-related pNO−

3 is not cor-

related with the fraction of levoglucosan that contributes to

OC, confirming a weak impact of biomass burning on the

variation of pNO−

3 concentration during our study period.

In a second, alternative and more realistic scenario, we ex-

cluded biomass burning and soil as a potential source of NOx

in MixSIR (see above). As illustrated in Fig. 5a, assuming

that NOx emissions in urban Nanjing during our study period

originated solely from road traffic and coal combustion, their

relative contribution to the mass concentration of pNO−

3 is

12.5 ± 9.1 µg m−3 (or 68 ± 11 %) and 4.9 ± 2.5 µg m−3 (or

32 ± 11 %), respectively. These numbers agree well with a

city-scale NOx emission inventory established for Nanjing

recently (Zhao et al., 2015). Nevertheless, on a nation-wide

level, relatively large uncertainties with regards to the over-

all fossil fuel consumption and fuel types propagate into

large uncertainties of NOx concentration estimates and pre-

dictions of longer-term emission trends (Li et al., 2017). Cur-

rent emission-inventory estimates (Jaegle et al., 2005; Zhang

et al., 2012; Liu et al., 2015; Zhao et al., 2013) suggest that in

2010 NOx emissions from coal-fired power plants in China

were about 30 % higher than those from transportation. How-

ever, our isotope-based source apportionment of NOx clearly

shows that in 2014 the contribution from road traffic to NOx

emissions, at least in Nanjing (a city that can be considered

representative for most densely populated areas in China),

is twice that of coal combustion. In fact, due to changing

economic activities, emission sources of air pollutants in

China are changing rapidly. For example, over the past sev-

eral years, China has implemented an extended portfolio of

plans to phase out its old-fashioned and small power plants,

and to raise the standards for reducing industrial pollutant

emissions (Chang, 2012). On the other hand, China con-

tinuously experienced double-digit annual growth in terms

of auto sales during the 2000s, and in 2009 it became the

world’s largest automobile market (X. Liu et al., 2013; Chang

et al., 2017, 2016b). Recent satellite-based studies have suc-

cessfully analyzed the NOx vertical column concentration

ratios for megacities in eastern China and highlighted the

importance of transportation-related NOx emissions (Reuter

et al., 2014; Gu et al., 2014; Duncan et al., 2016; Jin et
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Figure 6. Estimates of the relative importance of single NOx sources (mean ±1σ ) throughout China based on the original δ15N–NO−

3
values extracted from the literature (εN = 0 ‰) and under consideration of significant N isotope fractionation during NOx transformation

(εN = 5 ‰, 10 ‰, 15 ‰ or 20 ‰).

al., 2017). Moreover, long-term measurements of the ratio

of NO−

3 to non-sea-salt SO2−

4 in precipitation and aerosol

jointly revealed a continuously increasing trend in eastern

China throughout the latest decade, suggesting decreasing

emissions from coal combustion (X. Liu et al., 2013; Itahashi

et al., 2018). Both coal-combustion- and road-traffic-related

pNO−

3 concentrations are highly correlated with their corre-

sponding tracers (i.e., SO2 and CO, respectively), confirming

the validity of our MixSIR modeling results. With justified

confidence in our Bayesian isotopic model results, we con-

clude that previous estimates of NOx emissions from auto-

motive/transportation sources in China based on bottom-up

emission inventories may be too low.

4.3 Previous δ15N–NO−

3 -based estimates on NOx

sources

Stable nitrogen isotope ratios of nitrate have been used to

identify nitrogen sources in various environments in China,

often without large differences in δ15N between rainwater

and aerosol NO−

3 (Kojima et al., 2011). In previous work, no

consideration was given to potential N isotope fractionation

during atmospheric pNO−

3 formation. Here, we reevaluated

700 data points of δ15N–NO−

3 in aerosol (−0.77 ± 4.52 ‰;

n = 308) and rainwater (3.79 ± 6.14 ‰; n = 392) from 13

sites that are located in the area of mainland China and the

Yellow, East China and South China seas (Fig. 1), extracted

from the literature (see Table S4 for details). To verify the po-

tentially biasing effects of neglecting N isotope fractionation

(i.e., testing the sensitivity of ambient NOx source contribu-

tion estimates to the effect of N isotope fractionation), the

Bayesian isotopic mixing model was applied (a) to the origi-

nal NO−

3 isotope data set and (b) to the corrected nitrate iso-

tope data set, accounting for the N isotope fractionation dur-

ing NOx transformation. All 13 sampling sites are located in

non-urban areas; therefore, apart from coal combustion and

on-road traffic, the contributions of biomass burning and bio-

genic soil to nitrate need to be taken into account.

Although most of the sites are located in rural and coastal

environments, when the original data set is used without the

consideration of N isotope fractionation in the Bayesian iso-

topic mixing model, fossil-fuel-related NOx emissions (coal

combustion and on-road traffic) appear to be the largest con-

tributor at all the sites (data are not shown). This is partic-

ularly true for coal combustion: everywhere except for the

sites of Dongshan islands and Mt. Lumin, NOx emissions

seem to be dominated by coal combustion. Very high con-

tribution from coal combustion (on the order of 40 %–60 %)

particularly in northern China may be plausible and can be

attributed to a much larger consumption of coal. Yet, rather

unlikely, the highest estimated contribution of coal combus-

tion (83 %) was calculated for Beihuang Island (a full-year

sampling on a costal island that is 65 km north of Shandong

Peninsula and 185 km east of the Beijing–Tianjin–Hebei re-

gion) and not for mainland China. While Beihuang may be

an extreme example, we argue that, collectively, the contri-

bution of coal combustion to ambient NOx in China as cal-

culated on the basis of isotopic analyses in previous studies

without the consideration of N isotope fractionation repre-

sents overestimates.

As a first step towards a more realistic assessment of the

actual partitioning of NOx sources in China in general (and

coal-combustion-emitted NOx in particular), it is imperative

to determine the location-specific values for εN. Unfortu-

nately, without δ18O–NO−

3 data on hand, or data on mete-

orological parameters that correspond to the 700 δ15N–NO−

3
values used in our meta-analysis, it is not possible to esti-
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mate the εN values through the abovementioned CQC mod-

ule. As a viable alternative, we adopted the approximate

values for εN as estimated in Sanjiang (10.99 ‰) and Nan-

jing (15.33 ± 4.90 ‰). As indicated in Fig. 6, the estimates

of the source partitioning are sensitive to the choice of εN.

Whereas, with increasing εN, estimates on the relative con-

tribution of on-road traffic and biomass burning remained

relatively stable, estimates for coal combustion and biogenic

soil changed significantly, in opposite directions. More pre-

cisely, depending on εN, the average estimate of the frac-

tional contribution of coal combustion decreased drastically

from 43 % (εN = 0 ‰) to 5 % (εN = 20 ‰) (Fig. 6), while the

contribution from biogenic soil to NOx emissions increased

in a complementary way. Given the lack of better constraints

on εN for the 13 sampling sites, it cannot be our goal here

to provide a robust revised estimate on the partitioning of

NOx sources throughout China and its neighboring areas.

But we have very good reasons to assume that disregard of

N isotope fractionation during pNO−

3 formation in previous

isotope-based source apportionment studies has likely led to

overestimates of the relative contribution of coal combustion

to total NOx emissions in China. For what we would con-

sider the most conservative estimate, i.e., lowest calculated

value for the N isotope fractionation during the transforma-

tion of NOx to pNO−

3 (εN = 5 ‰), the approximate contribu-

tion from coal combustion to the NOx pool would be 28 %,

more than 30 % less than N-isotope-mixing-model-based es-

timates would yield without consideration of the N isotope

fractionation (i.e., εN = 0 ‰) (Fig. 6).

5 Conclusion and outlook

Consistent with theoretical predictions, δ15N–pNO−

3 data

from a field experiment where atmospheric pNO−

3 forma-

tion could be attributed reliably to NOx solely from biomass

burning revealed that the conversion of NOx to pNO−

3 is

associated with a significant net N isotope effect (εN). It is

imperative that future studies, making use of isotope mixing

models to gain conclusive constraints on the source partition-

ing of atmospheric NOx , consider this N isotope fractiona-

tion. The latter will change with time and space, depending

on the distribution of ozone and OH radicals in the atmo-

sphere and the predominant NOx chemistry. The O isotope

signatures of pNO−

3 is mostly chemistry (and not source)

driven (modulated by O isotope exchange reactions in the

atmosphere), and thus O isotope measurements do not allow

addressing the ambiguities with regards to the NOx source

that may remain when just looking at δ15N values alone.

However, δ18O in pNO−

3 will help in assessing the relative

importance of the dominant pNO−

3 formation pathway. Si-

multaneous δ15N and δ18O measurements of atmospheric

nitrate thus allow reliable information on εN and in turn

on the relative importance of single NOx sources. For ex-

ample, for Nanjing, which can be considered representative

for other large cities in China, dual-isotopic and chemical-

tracer evidence suggest that on-road traffic and coal-fired

power plants, rather than biomass burning, are the predomi-

nant sources during high-haze pollution periods. Given that

the increasing frequency of nitrate-driven haze episodes in

China, our findings are critically important in terms of guid-

ing the use of stable nitrate isotope measurements to eval-

uate the relative importance of single NOx sources on re-

gional scales and for adapting suitable mitigation measures.

Future assessments of NOx emissions in China (and else-

where) should involve simultaneous δ15N and δ18O measure-

ments of atmospheric nitrate and NOx at high spatiotemporal

resolution, allowing us to more quantitatively reevaluate for-

mer N-isotope-based NOx source partitioning estimates.
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