

Nitrogen Source Effects on Ammonia Volatilization as Measured with Semi-Static Chambers

Claudia Pozzi Jantalia, Ardell D. Halvorson,* Ronald F. Follett, Bruno Jose Rodrigues Alves, Jose Carlos Polidoro, and Segundo Urquiaga

ABSTRACT

Ammonia (NH₃) volatilization is one of the main pathways of N loss from agricultural cropping systems. This study evaluated the NH₃-N loss from four urea-based N sources (urea, urea-ammonium nitrate [UAN], SuperU, and ESN [polymer-coated urea]) surface band applied at a rate of 200 kg N ha⁻¹ to irrigated, strip-till corn production systems for 2 yr using semi-static chambers (semi-open and open) to measure NH₃-N loss. The efficiency of the semi-static chambers in estimating NH₃-N loss under field conditions was determined using ¹⁵N labeled urea applied at rates of 50, 100, and 200 kg N ha⁻¹. Both chamber types had similar NH₃-N recoveries and calibration factors. Immediate irrigation with 16 to 19 mm of water 1 d after N fertilization probably limited NH₃-N volatilization from surface-applied N fertilizers to a range of 0.1 to 4.0% of total N applied. SuperU, which contains a urease inhibitor, had the lowest level of NH₃-N loss when compared to the other N sources. Analyzed across years, estimated NH₃-N losses for the N sources were in the order: ESN = UAN > urea > SuperU. Both years the results showed that measurement time may need to be increased to evaluate NH₃-N volatilization from polymer-coated urea N sources such as ESN. The open-chamber method was a viable, low cost method for estimating NH₃-N loss from small field plot N studies.