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INTRODUCTION

In the simplest terms, the biological nitrogen cycle is the reduction of

atmospheric dinitrogen (Nz) to ammonia with the subsequent reoxidation 

ammonia to dinitrogen (1). At the reduction level of ammonia, nitrogen 

incorporated into precursors for biological macromolecules such as proteins
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236 HOWARD & REES

and nucleic acids. Reoxidation of ammonia to dinitrogen ("denitrification")

by a variety of microbes (by way of nitrite and other oxidation levels of

nitrogen) leads to the depletion of the "fixed," biologically usable, nitrogen

pool. Besides the relatively small contribution from commercial ammonical

fertilizer production, replenishing of the nitrogen pool falls mainly to a

limited number of physiologically diverse microbes (e.g. eubacteria and

archaebacteria; free-living and symbiotic; aerobic and anaerobic) that contain

the nitrogenase enzyme system.

During the past 25 years, steady progress has been made in elucidating

the essential elements of the nitrogenase reaction (reviewed in 2-8a), which

are summarized in Figure 1. Ammonia synthesis requires eight electrons:

six for the reduction of dinitrogen and two for the coupled, obligatory

synthesis of H2 (9). These reactions are catalyzed by the terminal component

in the complex, the MoFe-protein, t so-designated because it contains iron

and molybdenum atoms. Electrons are transferred to the MoFe-protein from

the Fe-protein in a process coupled to the hydrolysis of two ATP per

electron. Because a minimum of 16 ATP are hydrolyzed for the reduction

of one molecule of dinitrogen, the organisms carrying out nitrogen fixation

have a vigorous energy metabolism. The Fe-protein is an integral component

of the nitrogenase reaction in that other, low-redox-potential electron donors

do not support dinitrogen reduction, undoubtedly due to the.requirement for

coupled ATP hydrolysis. In contrast, a variety of electron donors (ferredoxins

and flavodoxins) provide a connection between cellular metabolism and the

reduction of the Fe-protein.

In the past, nitrogenase and nitrogen fixation have been of interest

primarily to bioinorganic chemists and spectroscopists, and to those working

in microbial physiology related to agriculture. However, the similarity of

the ATP-dependent electron transfer in nitrogenase to many other nucleo-

tide-dependent energy-transducing systems in higher organisms should make

this enzyme of general interest to biochemists. The recent solution of

three-dimensional structures for both the nitrogenase proteins (13-20) em-

1The nomenclature fur the nitrogen fixation enzyme is rich and varied. The molybdenum-iron
protein is frequently referred to as MoFe-protein, component 1, or dinitrogenase, while the iron
protein is referred to as Fe-protein, component 2, or dinitrogenase reductase. A useful shorthand
nomenclature for a component from a specific organism is to abbreviate the species followed by
the number of the component, e.g. the MoFe-protein from Azotobacter vinelandii is Avl and the
Fe-protein from CIostridiurn pasteurianurn is Cp2. We use the shorthand when discussing specific
results, and the MoFe-protein and Fe-protein designations when discussing gcnefic conclusions.
Amino acid residue numbering for Fe-protein is based upon the protein sequence of Av2 (10),
which is one residue shorter than the gene sequence (11). The numberings for MoFe-protein
subunits are based upon the gene sequences for Avl subunits (11), which are one residue longer
than for the isolated protein subunits (12). In both cases, the protein apparently is processed 
removal of the initiation Met.
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NITROGENASE 237

Metabolic
Redox ~

Fe.Protein_ATP2

FId, Fd -" ~ 8x / 2NH 3 + H2

l Fe-protein-ADP2°X~ I MoFe-Protein R~t

Figure 1 The nitrogcnase reaction. The electron transfcr proteins ferredoxin (Fd) and flavodoxin
(Fld) serve to couple the nitrogenase reaction to metabolically generated reducing equivalents.

phasizes not only the functional relatedness, but also the structural relatedness

of nitrogenase to such diverse systems as ras p21 (21, 22), membrane-bound

transporters (23, 24), muscle contraction (25), the recA protein involved 

DNA recombination (26), and elongation factors in protein biosynthesis (27,

28). This review aims to summarize for the general biochemist the status

of nitrogenase structure-function studies and to discuss the relevance of
nitrogenase chemistry to other systems. For those wanting more detailed

analysis of specific questions relating to nitrogenase, there are reports from

several recent symposia (29, 30).

PROPERTIES OF THE NITROGENASE PROTEINS

The nitrogenase Fe-protein and MoFe-protein have been sequenced and/or

characterized from a variety of nitrogen-fixing organisms. Generally speak-
ing, the structural and functional properties of these proteins are highly

conserved among different organisms. For many combinations of Fe-protein
and MoFe-protein from different species, substantial activity is obtained

from these heterocomplexes; yet for others, little or no activity is observed

(31, 32). Consequently, while we emphasize "consensus" features of these

proteins, important species-specific variations exist, and are discussed when

relevant.
Undoubtedly, no feature more dominates the experimental study of these

proteins than their extreme oxygen lability. All manipulations of the proteins

must be performed with an atmosphere of < 1 ppm oxygen. Because of the

destructive effects of even traces of oxygen, it is often difficult to separate
legitimate results from artifacts generated by the experimental conditions.

For nitrogenase, probably more so than for any other enzyme, the consistency
of results between laboratories must be demonstrated before an "observation"

should be considered a "fact."
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238 HOWARD & REES

Figure 2 Ribbons diagram of the polypeptide fold of ~he Fe-protein dimer, wi~h space-filling
models for the 4Fe:4S cluster and ADP. Prepared with the program MOLSCRIPT (36a) and
reproduced with permission from (8a).

Fe-Protein

The Fe-protein is a -60,000-dalton dimer of identical subunits bridged by

a single 4Fe:4S cluster. The three-dimensional crystal structure of Fe-protein

(13) confirmed the hypothesis (33, 34) that the cluster is symmetrically
coordinated by Cys97 and Cys132 from each subunit. Significantly, the

subunits have the a-helical/l~-sheet type of architecture commonly associated
with a major class of nucleotide-binding proteins (35) that includes adenylate

kinase (36) and the ras p21 oncogene protein (21, 22). The large, single

domain encompassing the entire Fe-protein subunit consists of an eight-
stranded 13-sheet flanked by nine c~-helixes (Figure 2). The two subunits

are related by a molecular two-fold rotation axis that passes through the

4Fe:4S cluster, which is located at one end of the dimer, and the subunit-

subunit interface. Besides the cluster serving to crosslink subunits, there are
numerous hydrophobic and salt interactions in the interface beneath the

cluster that help to stabilize the dimer structure. Indeed, these interactions

are sufficiently strong that the cluster can be removed and the dimer structure

is still maintained (34).

One of the two principal functional features of the Fe-protein is the
binding of the nucleotides, MgATP and MgADP. Two nucleotide-binding
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NITROGENASE 239

Figure 3 Two potential nucleotide-binding modes in Fe-protein based upon the observed
ADP-binding mode in the Av2 crystal stmclure (13; solid lines) and lhe GTP-binding mode 
ras p21 (21; dashed lines). The numbers of the 1~ strands in Av2 are indicated. Reproduced with
permission from (13).

sites per dimer have been reported with dissociation constants of ~ 100 ixM,

although there is considerable variation in the measured values (37), due

in part to the difficulty of determining equilibrium values with oxygen-sen-

sitive proteins. Residues 9-16 near the amino terminus of Fe-protein exhibit

the amino acid sequence motif, GXXXXGKS [the Walker motif A (38)],

that is characteristic of a major class of nucleotide-binding sites (35). This

sequence adopts a 13-strand loop~x-helix conformation that interacts with

the [3,’,/-phosphate groups and the Mg of bound nucleotides. Mutations in

Fe-protein leading to substitutions at Lysl5 and to the three hydroxy amino

acids at residues 16-18 are consistent with this sequence being part of the

phosphate-binding site in Av2 (39, 40). In addition, the second Walker

motif, DxxG, that in combination with motif A completes the Mg-phosphate

protein interactions, is also found in Av2 at residues 125-128. Substitution
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240 HOWARD & REES

of glutamic acid for Asp125 confirmed the role of this residue as a ligand

to Mg (41).

Although a ras-type nucleotide phosphate-binding site is clearly present

in Fe-protein, it is less evident how the nucleotide would be oriented with

respect to this site. The Walker motif A is located near the molecular

two-fold axis of Fe-protein, and the nucleotide-binding sites project into the

subunit-subunit interface. In the Av2 crystal structure, one molecule of ADP

was observed to be positioned across the subunit-subunit interface, perpen-
dicular to the two-fold axis (Figure 3). With this orientation, the purine

ring is bound to one subunit and the phosphates to the other. An alternative

and more speculative binding mode can be modeled by analogy to the ras
protein. In this mode, the nucleotide would lie along the two-fold axis with

the purine ring and phosphate groups bound by the same subunit (see Figure

3). There is mutagenesis evidence that may support this orientation of

nucleotide binding. If invariant residue Arg213 (comparable to Lys117 in

the ras structure, which is part of the purine ring-binding domain) is
substituted by cysteine, the Fe-protein is inactive (42). Because Arg213 

located on the surface of the protein, at the extreme edge of the intersubunit

cleft, substitution here would seem to be innocuous, unless it were part of

a specific interaction, such as the extended nucleotide site. As described in
more detail below, it is conceivable that both modes of nucleotide binding

may be functionally relevant.

The second functional site in Fe-protein is the 4Fe:4S cluster, which
undergoes a one-electron redox cycle between the 2Fe2+2Fe3+ state and the

3Fe2+Fe3+ state. Both cluster ligands are located near the amino-terminal

end of a-helices that are directed towards the cluster. Peptide bonds within

these helices form NH-S hydrogen bonds to the cluster that may provide
stabilizing electrostatic interactions to this anionic center (43). In contrast

to the 4Fe:4S clusters observed in ferredoxin-type proteins, a striking feature

of the Fe-protein is the exposure of the 4Fe:4S cluster to solvent, a property
anticipated by spectroscopic studies (44). Other than the cysteinyl ligands,

there is little contact between the 4Fe:4S cluster and other amino acid side

chains. Consequently, the emerging picture of the Fe-protein cluster is that

of an exposed, loosely packed redox center that may function as a pivot
or hinge to accommodate conformational rearrangements between subunits

during the course of the nitrogenase reaction mechanism.

Although Fe-protein has a number of spectroscopic signatures typical of
4Fe:4S clusters, more important to understanding the functional properties

of the protein is the response of the cluster to nucleotide binding. Some of

these responses indicate that the Fe-protein is intimately involved in the
coupling of ATP hydrolysis to electron transfer. For example, the electron

paramagnetic resonance (EPR) spectrum becomes more axial (45), and there
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NITROGENASE 241

is a 60-100-mV decrease in the redox potential when AXP2 is bound to

Fe-protein (46). A dramatic effect of nucleotide binding is evidenced 

the change in accessibility of the cluster to chelators (47-49). Specifically,

the cluster irons can be removed by chelators only in the presence of
MgATP; MgADP inhibits chelation, whereas no chelation occurs in the

absence of nucleotide. Given that the cluster is already exposed to solvent,

it is surprising that chelation is dependent on the presence of MgATP.

Furthermore, the chelation process is dependent upon the oxidation state of

the cluster (50). The crystal structure clearly shows that the binding site

for the terminal nucleotide phosphates (where hydrolysis occurs) is located

--20 /~ from the cluster, so that the nucleotide does not interact directly
with the cluster. Rather, the location of the cluster and nucleotide-binding

sites at the interface between the subunits suggests there is an allosteric
coupling mechanism that connects these two functional sites. Different

conformafional states of the Fe-protein might exist that differ in details of

the intersubunit interactions, e.g. changes in number or location of salt
bonds. The equilibrium between these conformations must be sensitive to

nucleofide binding, oxidation state of the cluster, and complex formation

with the MoFe-protein. Hence, ligand-binding and/or redox reactions would

shift the equilibrium position between states, thereby coupling spatially
distinct processes. As described below, the details of the coupling process

are one of the major, unanswered problems in the nitrogenase mechanism.

MoFe-Protein

The MoFe-protein is an a2132 tetramer with a total molecular weight of

--240,000. For some time, it has been recognized from the spectroscopic

properties of the protein that there are two groups of metal centers: the
diamagnetic, EPR-silent P-cluster pairs (or P-cluster or P-center), and the

unusual S=3/2 paramagnetic FeMo-cofactor (or M-center or "cofactor").

Although there has been much speculation as to the arrangement and structure

of the 2 Mo, 30 Fe, and --34 inorganic S that form these clusters, the
recent three-dimensional structures of the protein (14-20) revealed how truly

unique they are. Each of the two FeMo-cofactor units contains 1 Mo:7 Fe:9

S and one homocitrate molecule, and almost certainly provides the site of

substrate binding and reduction. The FeMo-cofactor may be considered to

be formed from 4Fe:3S and Mo:3Fe:3S partial cubanes that are bridged by
three nonprotein ligands, most probably sulfides (Figure 4). The cofactor

is buried --10 ,~ beneath the protein surface, in an environment primarily
provided by the ot subunit. Only two protein ligands, Cys o~275 and His

ot442, coordinate the cofactor to the protein, resulting in the unusual situation

2TIle notation AXP designates either ADP or ATP.
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242 HOWARD & REES

Arg fz359

~
His ot195

Arg ~x96

~Gln ~z191

His ~x442

Glu o~440 ~

Glu

®

Figure 4 Structure of the FeMo-cofactor with surrounding protein and water molecules indicated.

Prepared with the program MOLSCRIPT (36a), and reproduced with permission from (Sa).

in which the six Fe atoms bridged by nonprotein ligands are three-coordinate.

It is tempting to consider these unsaturated sites as suitable for binding of

ligands, including substrates. The octahedral coordination sphere of the Mo

is completed by bidentate binding of homocitrate. Hydrogen bonds to sulfurs
in the cluster are provided by the side chains of residues Arg o~96, His

o095, Arg cz359, and the NH groups of residues o~356 and cx358. These

hydrogen bonds may provide a mechanism for funneling protons to substrate
bound to the FeMo-cofactor. The homocitrate is hydrogen bonded to the

side chain of Gin oO91, and is also surrounded by a pool of buried waters,

which could conceivably function as a proton source for substrate reduction.

The remaining Fe and S are organized into P-cluster pairs, which are
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NITROGENASE 243

Gly ¢

Cys ~t62

Cys tx154

Cys 1595

Cys o~88

Cys D153

ser 15188

Cys 1370

Figure 5 Structure of the P-cluster pair and surrounding protein. Prepared with the program
MOLSCRIPT (36a), and reproduced with permission from (8a).

present in two copies per MoFe-protein tetramer. Each P-cluster pair contains

two bridged 4Fe:4S clusters, i.e. the P-cluster pair can be considered as a

8Fe:8S cluster. What makes the P-cluster pair an unusual inorganic structure
is that the two 4Fe:4S clusters are bridged by the thiol side chains of Cys

ot88 and 1395, and a disulfide bond between two cluster inorganic sulfurs

(Figure 5). Although this disulfide bridge is clear in the Avl structure (17),

Bolin’s current analysis of the Cpl structure suggests that perhaps only one

sulfur is present in his structure (20). This disulfide bond is located on the
side of the P-cluster pair closest to the surface of the protein. Singly

coordinating cysteinyl thiols (from residues ot62, t~154, 1370, and 13153)
ligate the remaining four irons, such that nonbridging cysteines coordinated

to a specific 4Fe:4S cluster are from the same subunit. In addition to the
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Although there is minimal amino acid sequence homology between
subunits, the et and 13 subunits of Avl exhibit similar polypeptide folds,

which consist of three domains of the ot-helical/13-sheet type with some

extra helices (Figure 6). At the interface between the three domains is 

wide, shallow cleft; in the a subunit, the FeMo-cofactor occupies the bottom

of this cleft. The P-cluster pair is buried at the interface between a pair of

a- and 13-subunits with a pseudo two-fold rotation axis passing between the

two 4Fe:4S halves of the P-cluster pair and relating the two subunits.

Coordination of metal centers by ligands at the interface between homologous

or identical subunitS has been previously described for Fe-protein and
bacterial photosynthetic reaction centers (52, 53), and may be a common

feature of multisubunit metalloproteins. It should be noted that in some

places, the symmetry away from the cluster interface is more apparent than

real. For example, some of the symmetry-related secondary elements on

the protein surface are, in fact, from different segments of the primary
sequence in the individual subunits.

The extensive interaction between ct and 13 subunits in an a13 dimer
suggests they form a fundamental functional unit. Intriguingly, there is an
open channel of -8 ,~ diameter between the two pairs of or13 dimers with

the tetramer two-fold axis extending through the center. The tetramer

interface is dominated by interactions between helices from the two 13

subunits, along with a cation-binding site, presumably calcium, that is
coordinated by residues from both 13 subunits.

Species-Specific Variations in Nitrogenase Proteins

A notable exception to heterocomplexes (mixes of Fe-protein and MoFe-
protein from different species) having enzymatic activity are both the

nitrogenase components from C. pasteurianurn (Cpl and Cp2) (31, 32).

Structural differences between the nitrogenase proteins from A. vinelandii

and C. pasteurianum have been identified that could be the source of the

inability of C. pasteurianum proteins to complement other nitrogenase

proteins. Cp2 differs from Av2 in the length of the carboxy-terminal residues
(Cp2 is 13 residues shorter than Av2) and in the region around residue 65,

which exhibits significant sequence variability in different Fe-proteins,

including a two-residue deletion in Cp2 relative to Av2. The carboxy-ter-
minal residues of Av2 form intersubunit contacts that would not be possible

in Cp2, due to the shorter length of this protein. Incorporation of the Cp2

carboxy-terminal residues into the Av2 sequence results in -50% reduction
in Av2 activity (54), indicating that while these residues are not essential

for Fe-protein function in the nitrogenase mechanism, they do contribute to
the overall kinetics, perhaps by influencing the relative stabilities of different

Fe-protein conformations. The region around residue 65 of Av2 projects
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from the "top" surface of the protein that has been implicated in the binding

of Fe-protein to MoFe-protein. Hence, sequence alterations in this region

may perturb the structure or stability of the Fe-protein--MoFe-protein
complex.

Cpl differs from Avl by a -50-residue insertion in the o~ subunit and

a -50-residue deletion in the 13 subunit. In Avl, the amino-terminal --50
residues (that are deleted in Cpl) extend from the [3 subunit, and interact
with both an ct subunit and the other [3 subunit. Hence, it is possible that

these amino-terminal residues of the [3 subunit function in stabilization of

the quaternary structure of Avl. Interestingly, these amino-terminal residues

are also missing from the alternative vanadium-iron protein (55, 56; also,

see below). The insertion in the a subunit of Cpl forms a polypeptide loop

that covers the protein surface over the FeMo-cofactor; as this region has

been suggested to participate in the interaction between Fe-protein and

MoFe-protein, the presence of this additional protein segment could interfere

with, or alter, complex formation between these proteins isolated from

different sources.

GENETICS AND ASSEMBLY OF THE NITROGENASE

PROTEINS

The complexity of the nitrogenase protein structures is reflected in the rather
large number of genes in the n/f regulon. Besides the three genes for the

subunits of Fe?protein (nifH) and MoFe-protein (n/fD and n/fK for the 
and 13 subunits, respectively), at least 17 other genes have been identified
and sequenced (reviewed in 57); depending on the species, the number 

genes may be considerably greater than 20. Several of the n/f genes (nifA

and n/fL) are part of the regulatory mechanism that allows the expression

of nitrogenase only when ammonia is depleted and, in some species, when
the organism is growing anaerobically. Also encoded are flavodoxin (n/fF)

and, depending on the species, a pyruvate dehydrogenase (n/fJ), the so-called
"phosphorylclastic" enzyme, that catalyzes pyruvate conversion to acetyl

phosphate concomitant with ferredoxin reduction. The phosphorylclastic

reaction coupled to ferredoxin reduction provides both the electrons and the

ATP required by nitrogenase.

The most important genes from the point of view of the functioning
nitrogenase are those encoding processing enzymes. One of the earliest

biochemical genetics contributions to nitrogenase chemistry was the recog-

nition that mutations at loci other than the structural genes resulted in
inactive enzymes. On~ of these mutants, UW45, had a MoFe-protein that

could be activated by the acid extract of active, wild-type MoFe-protein

(58). The purified activating material had the S=3/2 EPR signature of the
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wild-type protein and had a composition equivalent to all the molybdenum

and approximately half the iron and inorganic sulfur (59, 60). This material,
designated FeMo-cofactor, was subsequently determined to contain homocit-

rate by Ludden, Shah, and coworkers using elegant, classical biochemical

methods (61). To date, five proteins, all encoded by the n/f regulon, have

been identified as essential for the assembly of cofactor (62). Two genes

(nifE, nifN) encode subunits for a protein with substantial sequence homology

to the MoFe-protein, including the ligand Cys-ot275 and some of the residues

that interact with the cofactor in the MoFe-protein (63). However, there are

several critical residues that are not conserved, including three of the

P-cluster pair cysteinyl ligands and the cofactor ligand His ~t442. The

working hypothesis is that NIFE,N forms a scaffolding protein on which
the cofactor is at least partially assembled before transfer to the des-FeMo-

cofactor protein (64). Another required protein is the gene product of n/./V,

which appears to be homocitrate synthetase (61). In the absence of this

enzyme, citrate is incorporated in place of homocitrate, with the resulting

cofactor able to support reduction of most substrates, except dinitrogen (65).

The function of n/fB, the locus defined in UW45, has yet to be determined.
Finally, the gene product of n/fH is required. Because n/fH encodes the

Fe-protein, one would assume that Fe-protein functions similarly to that in

nitrogenase turnover, namely as an ATP-dependent redox donor. This is

unlikely to be the case, however. Several mutant strains have been generated

with Fe-proteins that are unable to hydrolyze ATP or to support ammonia
production, yet which have normal MoFe-protein. Perhaps one clue to the

role of Fe-protein in MoFe-protein assembly is the observation that des-

FeMo-cofactor protein from n/fH- strains is poorly activated by isolated

FeMo-cofactor, while des-FeMo-cofactor protein from the other n/f- strains

can be (66-69). This implies that the des-FeMo-cofactor protein must 
acted on by Fe-protein. One possibility for this requirement is the need to

phosphorylate the des-FeMo-cofactor protein. This behavior could explain

the difference in electrophoretic mobility of the protein, depending upon
from what genetic background the des-FeMo-cofactor protein was isolated

(68-70).

The insertion of the metal centers into apo-MoFe-protein also provides
several perplexing problems. The des-FeMo-cofactor protein contains the

P-cluster pairs, yet the analogous des-P-cluster pair protein has not been

observed (69). No genetic loci have been specifically ascribed to assembly

and/or insertion of the P-cluster pair. The most likely explanation is that
the ot and 13 subunits can only assemble around the P-cluster pairs, and that

the subunits serve as the scaffolding and final processing center for intro-
ducing the unique structural changes to the more conventional 4Fe:4S

clusters. From chemical modification studies, it has been suggested that
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most of the holoenzyme three-dimensional structure is intact in the des-

FeMo-cofactor protein (J Magnuson and JB Howard, in preparation), in-

cluding the Fe-protein docking site (see below for discussion of the docking

mechanism). Although the cofactor pocket is deeply buried, the pocket is

located at the interface of the three large ct subunit domains, and could be
exposed by as little as a 15-20° rotation of the carboxy-terminal domain

(JB Howard, unpublished). One role of Fe-protein in MoFe-protein assembly

might be to stabilize these altered conformations apparently necessary for
cofactor insertion.

The Fe-protein also. requires processing for full activity. Although apo-Av2

can be reconstituted using inorganic Fe and S2- salts, the resulting activity

is highly variable (71). Recently, Dean and coworkers have reported (72)

that n/fS encodes a sulfuryl transferase which, in combination with apo-Av2,

regenerates full activity of Fe-protein (D Dean, personal communication).

n/fS is one of several genes that are not absolutely required for biosynthesis

of active nitrogenases, presumably because similar enzymes are expressed

in cells as part of a more general need to synthesize proteins containing
iron-sulfur clusters. In contrast, n/fM is essential for active Fe-protein (73,

74). The function of NIFM is unknown, except that it is not directly involved

in cluster synthesis or insertion. It should be noted that Fe-protein from

n/fM- strains is still fully active in FeMo-cofactor synthesis (34).

Finally, some prokaryotic species contain other, so-called alternate, forms

of nitrogenase in addition to the conventional, molybdenum-containing

proteins, which are expressed under various conditions of molybdenum
depletion (reviewed in (75, 76)). The amino acid sequences of the alternate

nitrogenases are nearly identical to the conventional proteins. The most

interesting feature of the alternate enzymes is the lack of molybdenum,

which is apparently replaced by either vanadium or iron. Indeed, cofactors

extracted from these proteins have only iron or vanadium and iron, yet will
substitute for FeMo-cofactor in the UW45 reconstitution assay. Although

several genes are common to the alternate and conventional nitrogenase

systems, the structural genes are different, and there are additional control

elements for regulating expression.

MECHANISM OF NITROGENASE

Often the nitrogenase mechanism is intellectually divided into two parts,
the redox cycle between the Fe-protein and the MoFe-protein, and the

substrate reduction cycle. Although this framework has been useful for

obtaining some of the individual reaction rates, we attempt to integrate the

two cycles with the new molecular structures. The salient, experimental
observations that must be accounted for by a mechanism may be summarized:
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1. Electron transfer proceeds from the Fe-protein to the MoFe-protein. 2.

Two ATP are hydrolyzed per electron transferred at maximum efficiency.

3. Although ATP and ADP are bound by the Fe-protein, only the Fe-pro-

tein/MoFe-protein complex turns over ATP; Fe-protein-MgATP does not.

4. The rate of substrate reduction is dependent on both the ratio of the two
protein components and the absolute protein concentration. 5. Various salts

are inhibitors of the substrate reduction activity. 6. There is a burst of ATP

hydrolysis before substrate reduction. 7. At a fixed concentration and ratio

of protein components, electron flux is independent of which substrate is

reduced. 8. Carbon monoxide is an inhibitor of all substrate reduction except

for protons. Two additional observations are less convincingly documented

yet are generally accepted conditions. 9. The direction of electron transfer

in the MoFe-protein is from the P-cluster pair to the FeMo-cofactor. 10.

All substrates are reduced at the cofactor [with the possible exception of
some reduction of H+ to H2 at the P-cluster pair (17)].

Redox Cycle

Hageman & Burris (77-79) first proposed that only one electron-transfer
event occurs before dissociation of the Fe-protein/MoFe-protein complex.

Because all nitrogenase substrates require multiple electrons, several cycles

of complex formation and dissociation must occur before product formation.

This concept was expanded by Thomeley & Lowe (80) who, from pre-

steady-state and turnover reaction kinetics, determined that at saturating

Fe-protein ratios, the overall rate-determining step was the dissociation of
Complex II (controlled by the rate constant k_3). An expanded version 

the Thorneley-Lowe model is shown in Figure 7. Implicit in this conclusion
is that oxidized and reduced Fe-protein[AXP]2 complexes have different

affinities for MoFe-protein; the corollary is that the two Fe-protein forms

must have different conformations. The cyclic process also accounts for the
dependence of the substrate reduction rate on both the total protein concen-

tration and the ratio of the two proteins, since both factors contribute to

the concentration of Complex I. The pronounced salt inhibition of substrate

reduction has been explained as a simple competitive inhibition of complex

formation as indicated Figure 7 (81). Although the inhibition is kinetically

equivalent when applied to either protein component, Diets & Howard (81)

chose to emphasize salt binding to the Fe-protein, because the strong salt
inhibition of ATP-dependent iron chelation from Fe-protein implies a direct

effect on this component. A final important facet of the cycle is that ATP

hydrolysis appears to precede electron transfer (82). For purposes of this
discussion, the single, fast, ATP hydrolysis--coupled electron-transfer step

of the Thorneley-Lowe model has been separated into two distinct events:
hydrolysis of ATP and electron transfer.
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Av2[ATP]~ + Av1

K
i

Av2[AXP] ~ k
4

Av2[ADP]=

+ Avl TM

k
1

~"...- Av2[ATP]~"Avl--

k-1 t
R

Av2[Ad-P-P 
~ 

P] 2
~ 

Avl

Ox lo
Av2[Ad-P-P ~ P] 2~Avl

k3
~ 2Pi

--~
Av2[ADP] ~~Avl

k.
3

Complex I

Interm 1

k
2

Interm 2

Complex II

Figure 7 Single redox cycle for nitrogenase turnover using the A. vinelandii proteins as an
example (77-81). Avl is depicted as undergoing a one-electron reduction. Intermediates 1 and 
are hypothetical stages on the path for electron transfer coupled to ATP hydrolysis. It is assumed
that hydrolysis of at least one ATP precedes electron transfer. Both intermediates are considered
as metastable states in which ATP is hydrolyzed without the release of inorganic phosphate (Pi).
Whether both ATP are hydrolyzed at the same time or sequentially is unknown. Salt (I) inhibition
is shown as a complex with either oxidation state of Av2, and with either nucleotide or no
nucleotide bound (81).

The Hagerman-Burris-Thorneley-Lowe model has made a significant con-

tribution to our concept of the nitrogenase mechanism and predicts many

of the observed properties (77, 80). With the availability of altered proteins

with site-specific amino acid substitutions, many of the original assumptions

about the mechanism can be reconsidered. For example, the Thorneley-Lowe

(80) assumption that 50% of the Fe-protein is inactive, yet can compete

kinetieally with the active form, should be reconciled with the observation

that inactive and low-activity mutant proteins fail to compete kinetically,

even though they Can be chemically crosslinked to the MoFe-protein (34,

39-41, 83-85). Likewise, the assumption that all Fe-protein to MoFe-protein

electron transfer rates are the same can be tested, as well as the hypothesis

that the rate of proton reduction does change with the redox state of the

MoFe-protein. Finally, the effects of salts on the individual first- and

second-order rates are largely unknown. The observed overall inhibition of

substrate reduction by salts (81) needs to be reconciled with the fact that

the rate-determining step is increased by salts (80). The Diets & Howard

(81) treatment of salt inhibition may be an oversimplification, and a detailed

analysis of the effect of salts on each step in the Thorneley-Lowe model

is needed.

Role of ATP Hydrolysis

One of the primary, unanswered questions for understanding the nitrogenase

reaction is how MgATP hydrolysis is coupled to electron transfer. It is

important to keep in mind that there is no inherent thermodynamic require-

ment for ATP hydrolysis in substrate reduction, e.g. the redox potential of
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the Fe-protein at -380 mV is below that for hydrogen evolution at pH <
--7. Likewise, only the first step of nitrogen reduction (breaking the first

bond in dinitrogen triple bond to form diimide) has a lower redox potential

than does Fe-protein, so that most electron transfer steps along the reaction

pathway should be thermodynamically favorable (4). Consequently, it ap-

pears that ATP must be required for kinetic reasons, such as controlling a

conformational gate, that ensures quasi-unidirectional electron transfer.

Related to the question of how ATP is utilized is the perplexing problem

of how the putative electron acceptor in the reaction, the P-cluster pair, can
be reduced. First, it appears that all the iron sites in the P-cluster pairs are

already in the reduced ferrous state, leaving only the disulfide bridge as an

acceptor. Long-distance, outer-sphere electron transfer would seem unlikely

for the disulfide reduction because (a) the bridging cysteinyl ligands constrain
the linked 4Fe:4S segments too closely (by -1 /~) to accommodate non-

bonded contact between reduced cluster sulfurs, and (b) disulfide reduction

usually proceeds by inner-sphere chemical coupling such as disulfide ex-
change and in activated carbon adducts. Consistent with this view, it has

not been possible, for example, to reduce the P-cluster pair in the isolated

MoFe-protein by either low-molecular-weight reductants or by electrochem-
ical methods. In contrast, the P-cluster pairs can be oxidized by dyes,

demonstrating that these cofactors are electrochemically accessible. The

second problem is that the one electron per FeMo-cofactor reduced state of

the MoFe-protein has the electron on the cofactor, and not on the P-cluster

pair, i.e. the cofactor becomes EPR silent (87). At least in the generation
of this form of MoFe-protein, any proposed reduced P-cluster pair must

exist transiently at best.

Thus, the role of ATP in electron transfer may be even more complex

than has been generally appreciated. One plausible explanation is that

conformational changes associated with ATP binding and hydrolysis might
be utilized in two alternate ways: 1. to induce conformational changes in

the MoFe-protein required for electron transfer from the P-cluster pair to

the cofactor and 2. to induce conformational changes in Fe-protein required

for electron transfer to the P-cluster pair. This hypothesis requires that
conformational changes occur in the MoFe-protein as well as in the Fe-pro-

tein during the complex formation. The critical event in the process is the

reorganization at the P-cluster pair such that it can become a better redox

acceptor/donoro This is accomplished only by formation of the active
complex between MoFe-protein and Fe-protein. The unique and probably

essential property of the P-cluster pair is to act as the gate for electron
transfer from the Fe-protein to the FeMo-cofactor. As stated above, in the

resting state (whose structure presumably has been determined by X-ray
diffraction), the cluster disulfide is unlikely to be a good electron acceptor.
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A [SFe~.:6S~-:I(S_S) 2-:6RS.~.] 4-

B [1Fe~+:7Fe~*:6S ~:1 (S-S) ~::6RS~"] 4-

C [2Fe~+:6F~+:8S ~-:6RS~- ] ’~

Figure 8 Three-state hypothesis for internal redox states of the P-cluster pair.

However, as a consequence of a Fe-protein-induced conformational change,

an electron could be transferred from the P-cluster pair to the cofactor, prior

to reduction of the former by the Fe-protein. The resulting one-electron

oxidized P-cluster pair would now be a good acceptor. In addition, once

the physical restraints on the cluster were relaxed, the P-cluster pair could
undergo internal redox chemistry as outlined in Figure g. In this scheme,

the disulfide (state A) could be reduced to either a disulfide radical (state
B) or to inorganic sulfide (state C) by internal inner-sphere chemistry 
the ferrous ligands, without net reduction of the cluster. In either state B

or C, electrons could be donated to the FeMo-cofactor or accepted from

the Fe-protein by outer-sphere, long-distance transfer mechanisms usually

envisioned for two redox-coupled clusters. This model satisfies the observed

electronic states of the clusters and the unique requirement for Fe-protein

as the reductant, i,e. only the Fe-protein can serve as the key required to
unlock the necessary conformational changes in MoFe-protein that allow

electron transfer from the P-cluster pair to the FeMo-cofactor. The net result

of the scheme is to have the P-cluster pair in the same oxidation state at
the beginning and the end of the redox cycle, while the FcMo-cofactor and

Fe-protein are reduced and oxidized, respectively, by one electron.

Complex Formation and ATP Hydrolysis

The minimum requirements for formation and turnover of a kinetically

competent complex must include the following conditions. 1. Intimate and
precise orientation of the two nitrogenase components must precede electron

transfer and, as suggested above, at least some differences in Complexes I

and II must exist. 2. In Complex I, the MoFe-protein must induce the

changes in Fe-protein necessary for ATP hydrolysis. That is, there must be
some signal sent from the MoFe-protein to the Fe-protein nucleotide site.

¯ 3. During the transition between the ATP and ADP states, the protein
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components must undergo conformational changes that lead to the correct
alignment of the respective donor and acceptor pairs. As discussed above,

both proteins may undergo such changes. 4. After electron transfer to the

MoFe-protein, the complex must relax sufficiently so that electron transfer

back to the oxidized Fe-protein is rare.

The inhibitory effects of salt on enzyme activity (81, 83, 88) and 

chemical crosslinking (89, 90) support the idea that ionic interactions
contribute to these complexes, The results with several altered Fe-proteins,

primarily involving substitutions for Argl00, suggest there are several

different classes of ionic interactions, some contributing more than others

(83). Chemical crosslinking with the water-soluble carbodiimide is highly

specific between Glu112 of Av2 and Lys 13400 of Avl. Interestingly, Glu112

is part of an acidic patch of seven carboxylic acid residues at the end of

the long helix extending from the cluster in both subunits. At the other end

of this helix, next to the cluster, is Argl00. Thus, the two well-characterized

ionic regions implicated in complex formation are on the same surface as
the cluster (Figure 9).

Potential docking modes for the Av2 and Avl structures have been

presented that superimpose the molecular two-fold axis of Av2 and the

pseudo-two-fold axis of Avl (15). A groove in the "crown" above the
P-cluster pair can begin to accommodate the extended a-helices that frame

the Av2 4Fe:4S cluster (Figure 10). In this orientation, the side chains 

Glu112 and Lys 13400 are juxtaposed, but are ~8 /~ apart, too far for the

rapid and specific crosslinking reaction to proceed. Likewise, Lys et50 and
Lys or51 are positioned near Glu112 on the symmetrically related Av2 helix.

Formation of a crosslink at this site would appear to be as probable as for

Lys 13400 on the other side, but experimentally this does not occur. Although

crosslinking is strictly dependent on having a native structure in the proteins,

it does not require nucleotide. These results suggest a specific, preliminary
association in which crosslinking precedes the more symmetrically super-

imposed two-fold axis state (see Figures 9 and 10; Ref. 86).

In the symmetrical "helix in the groove" orientation, the Fe-protein cluster
and the P-cluster pair are separated by a distance > 16/~ at van der Waals

contact between the two proteins. A large number of ionic interactions

between the two proteins are possible, with one notable exception. Namely,

the critical residue Argl00 of Fe-protein cannot reach any acidic residue

on the MoFe-protein-docking face. The consequence of this is considered

further below. In addition to the ionic interactions, there are several
potentially important hydrophobic interactions. Phe-c~ and 13125 of the
MoFe-protein can interact with the hydrophobic residues 102-109 that are

part of the two surface helices on the Fe-protein. At contact, these Phe side

chains could fit into pockets created by Ile103 and Thrl04 and connected
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Av2 2-Fold

Axis

C-132

D-39

C-38

D-125

C-38(N)

H-bond

to D-125(C=O)

VdW Contact

vdW Contact

Figure 11 Proposed pathway linking the interaction of Phe c~125 of Av 1 to the nucleotide-binding
site in Av2. A symmetrically related interaction between Phe [3125 and the second Av2 subunit
is not shown for clarity of presentation. The a-helix from cluster ligand Cys97 to Glu112 on the

surface of Av2 is positioned over a second helix (not shown) that includes Cys38 and Asp39,
and interacts with that helix through van der Waals contact between Cys38 and Vail02. A I]-strand

containing Asp125 and a bend leading to the cluster ligand, Cys132, are connected to Cys38 by
an amide hydrogen bond.

link between the MoFe-protein contact site and the nucleotide- and Mg-

binding sites. The potential importance of Phe 13125 of the MoFe-protein

has been verified by substim, tion by several hydrophobic residues (91), some

of which have considerably lower turnover rates and increased nucleotide
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affinity in turnover. Hence, the ATP hydrolysis signal from the MoFe-protein

may follow this path.
For more intimate contact allowing the 4Fe:4S cluster and P-cluster pair

to approach to <15 /~, the groove in the crown must be opened. An

approximately 30° rotation of the Fe-protein would force the groove open,

allowing new ionic interactions (Figure 9). Importantly, the two Argl00s

(from the two symmetrically related Fe-protein subunits) can form salt

bridges with Asp o~160 and Asp 13161. These two invariant acidic residues

are located on helices connected to cysteinyl ligands of the P-cluster pair.

Thus, in addition to bringing the two clusters closer together, the model

building shows that the rotation would affect the environment of the P-cluster

pair directly. The rotation in the cleft would be a true "work" step, which

could be driven by reorientation of the Fe-protein subunits in response to

ATP hydrolysis. A metastable complex similar to Intermediate 1 in Figure
7 can be envisioned, where the ATP is hydrolyzed, but the inorganic

phosphate has not been released. After the electron transfer, the phosphate

dissociates and the system relaxes when the Fe-protein achieves the MgADP

conformation leading to Complex II.

A mechanism for utilizing the hydrolysis of ATP to drive conformational
transitions has been proposed, based upon the two potential binding modes

for nucleotides in Av2 (41, 86; see Figure 12). In this hypothesis, MgATP

is bound in the ras-like mode parallel to the two-fold axis separating the

subunits. The residue analogous to Asp125 in ras p21 (Asp57) is hydrogen

bonded to a water in the coordination sphere of the Mg (21, 22). After

hydrolysis, the water is displaced and the aspartyl residue is liganded
directly. The shift causes a movement along the attached helix-turn which,

in the case of Av2, leads directly to Cys132, the bottom ligand of the Fe:S
cluster. It is tempting to complete the picture of the conformational changes

by suggesting that the purine ring moves to the ADP-binding mode perpen-

dicular to the two-fold axis and the subunits contract. Two observations

indicate that this hypothesis is more than just fantasy. First, in the presence
of ADP and ATP, the ligands on the 4Fe:4S cluster are clearly in different

environments as detected by proton NMR spectroscopy (JB Howard, un-

published), suggesting some reorientation of the subunits occurs. Second,

only in the ras-like ATP-binding mode is the ~/-phosphate correctly posi-
tioned for water attack, assisted by Asp39 and/or Asp129, the likely

candidates for the general base in hydrolysis (Figure 12). Notice that Asp39

is also likely to sense the MoFe-protein binding by the path involving its

neighbor, Cys38 (Figures 11 and 12), while Asp129 could be effected 
the polypeptide connection to Asp125. It should be noted that Asp129 in

Fe-protein is analogous to Gin61 in ras, a candidate general base for GTP

hydrolysis.
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H-bond

D-1 -5 .....  at. /-..

S-
-15

~ site

Figure 12 Hypothetical arrangement of ATP, Mg, and two water (Wa0 molecules in the Av2
structure based upon comparison to ras p21 (21). ADP is shown as observed in the Av2 structure,
with superposition of Lys 15 of Av2 and Lys 16 of ras p21. With this superposition, the 7-phosphate
of ATP in the "ras"-binding mode is only -0.2/~ displaced from the 13-phosphate of ADP. A
water molecule hydrogen bonded to Asp125 is included as ligand of Mg, as observed in ras p21.
A second water molecule is placed, again by comparison to ras p21, for attack on the terminal
phosphate of ATP, assisted by Asp39 and/or Asp129.

Electron Transfer and Substrate Reduction

The distance of closest approach between metal sites in the P-cluster pair

and the FeMo-cofactor is --14 /~, which suggests that the electron transfer

rate between these centers could be faster than the rate of nitrogenase

turnover (92, 93). The rate of this electron transfer would determine the

lifetime of a reduced or oxidized P-cluster pair: i.e. whether or not such a

species would exist transiently or long enough to probe spectroscopically

(if this species exists at all). Potential electron-transfer pathways between
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these centers have been described (15, 19); in particular, the helices 0t63-ot74
and ~x88-a92 adjacent to the P-cluster pair ligands Cys a62 and Cys ot88

are directed towards the FeMo-cofactor. The locations of homocitrate and

the Mo on the side of the FeMo-cofactor closest to the P-cluster pair suggest

that these groups might also participate in electron transfer between these

two redox centers.

The structural details of substrate binding to the FeMo-cofactor and the

sequence of electrons and protons transferred to the bound substrate are
critical questions. In addition to dinitrogen and protons, nitrogenase stereo-

specifically reduces a variety of substrates, including acetylene, azide,

cyclopropene and 1-butyne, all of which, except for protons, are inhibited

by CO. Significantly, the rate of electron flow through the nitrogenase

system, under a given set of conditions, is independent of the substrate

reduced (94, 95). In the absence of N2 or in the presence of CO, for
example, the entire electron flux can be funneled into reduction of protons

to HE, which occurs at the same rate (per electron) as if 2 were p resent

or CO absent. Under conditions where the rate of electron flux through

nitrogenase is decreased (by lowering the concentration of external reductant

or Fe-protein, for example), the proportion of hydrogen and other products

requiring fewer electrons increases at the expense of products requiring more

electrons. These observations suggest that electron transfer from Fe-protein
to MoFe-protein is independent of substrate binding to the FeMo-cofactor.

Since all known substrates of nitrogenase are reduced by an even number

of electrons (and, almost always, require an equivalent number of protons),

most mechanistic schemes have focused on addition of one (or more) pairs

of electrons to dinitrogen, leading to the formal reduction sequence: dini-

trogen, diimide, hydrazine, and ammonia. The major barrier in this case
should be the two-electron reduction of dinitrogen to diimide. One interesting

possibility is that this barrier could be sidestepped by a four-electron

reduction process, reducing dinitrogen directly to the hydrazine oxidation
level. This could be achieved, for example, by a combination of a two-

electron donation from the P-cluster pair (possibly involving sulfide-disulfide

conversion), coupled with two electrons stored in the FeMo-cofactor. Fun-
neling of the requisite number of protons into the buried active center is

also a critical process during substrate reduction; various ionizable groups

in the vicinity of the FeMo-cofactor and the presence of an extensive water

network near the homocitrate may participate in this process.
In the absence of any experimental evidence indicating how substrates

might bind to the FeMo-cofactor, a range of hypothetical models have been

proposed (17, 96, 97). Binding interactions between substrates and one 
more of the Fe, Mo, and/or S sites are all conceivable, and at this stage,

it would seem prudent not to dismiss any potential candidates. Definitive
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experimental information concerning the structure(s) of substrate(s) bound

to FeMo-cofactor will be essential for formulating more detailed mechanisms

concerning the reduction and protonation reactions.

Two basic types of experiments have been conducted to probe the

functional significance of groups surrounding the FeMo-cofactor: site-di-

rected mutagenesis, and replacement of homoeitrate with various carboxylic
acids. Other than replacement of the cofactor ligands (which results in loss

of cofactor and activity), His ot195 and Gin a191 have been the most
mutagenized targets (98, 99). Substitution of His a195, which is hydrogen

bonded to one of the bridging sulfurs of the FeMo-cofactor, by Ash, Gln,

Thr, Gly, Leu, or Tyr, results in a Nif- phenotype, i.e. the organism is
no longer capable of diazotrophic growth. More varied Nif phenotypes are

found with substitution of Gin oO91. The side chain of this residue is

hydrogen bonded to both a carboxyl group of homocitrate and the NH of

residue ~x61 (adjacent to the P-cluster pair ligand c~62), and hence 

positioned between the cofactor and the P-cluster pair. While some substi-

tutions, such as Gin to Lys, result in Nif- phenotype, others, such as Gin

to Ala or Pro, support diazotrophic growth rates comparable to wild type.

These latter observations are particularly surprising, since these side chains
cannot participate in the hydrogen-bonding interactions exhibited by the Gin

side chain. Preliminary reports of mutagenesis experiments of residues Arg

a96, Arg a359, Phe a381, and Gin ot440 in the vicinity of the cofactor

have also appeared (99).

The function of homocitrate in nitrogenase is intriguing, given that it is
coordinated to the Mo, is surrounded by a number of buried water molecules,

and is on the side of the cofactor nearest to the P-cluster pair. To probe

the role of homocitrate, Ludden & Shah have pioneered the development

of in vitro methods for substituting other organic acids for homocitrate in

the FeMo-cofactor (100). In general, the minimal requirements for functional

activity by homocitrate substituents include two carboxyls and a hydroxyl

group. The specific stereochemistry of the organic acid can also profoundly

influence the ability of this group to support reduction of various substrates
by nitrogenase. An example of this behavior is provided by the replacement

of homocitrate with either erythro-fluorohomocitrate or threo-fluorohomocit-
rate (101). These compounds are substituted with a single fluoro group 

the single methylene-containing arm of homocitrate, which links the Mo-

liganding groups to the carboxyl that hydrogen bonds to Gln ~x191. While

the erythro-fluorohomocitrate-substituted FeMo-cofactor has high activities
in most nitrogenase activities (including Nz reduction), the threo-isomer has

very low N2 reduction activity, although it has more normal levels of

acetylene and proton-reduction activities. Examination of the crystal structure

shows that, without any rearrangement, a threo-substituent would be directed
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towards the cofactor and would be in close contact with one of the cluster

sulfurs, while an erythro-substituent would point away from the cofactor.

Apparently, the proximity of the threo-fluoro to the cofactor could drive a
rearrangement of this region that results in altered activity, while the

erythro-fluoro group can be accommodated without any mechanistically

significant changes. Alternatively, in view of the acidity of these methylene

protons in homocitrate, substitution of a hydrogen by fluorine may block

stereospecific transfer of one of the hydrogens to the cluster, during a

putative step in protonation of bound substrate.
It should be noted that characterization of nitrogenase variants, which is

central to understanding the functional roles played by a residue, is far from

a trivial matter. The complexity of this problem is illustrated by observations

that while certain variants cannot reduce dinitrogen to ammonia, some of

them can still reduce protons and/or acetylene (including the production of

ethane from acetylene, a reaction that is not catalyzed by the wild-type

enzyme), or exhibit altered responses to inhibition by CO and/or other

ligands. Mutations in the Fe-protein have exhibited altered coupling between

ATP hydrolysis and electron transfer, pronounced changes in nucleotide and

metal requirements, substantial increases in salt sensitivity, as well as altered
biophysical/spectral properties. It is essential that each variant be charac-

terized as thoroughly and carefully as possible, to obtain the most complete

understanding of the functional consequences associated with an amino acid

substitution.

RELATIONSHIP OF NITROGENASE TO OTHER
SYSTEMS

From a protein structural perspective, nitrogenase provides a tantalizing

combination of protein-protein interactions and conformational changes cou-

pled to ATP hydrolysis. The coupling between nucleotide-binding and redox
behavior of Fe-protein not only is an important problem for the nitrogenase

mechanism, but also is representative of a much broader biochemical
phenomenon in which nucleotide hydrolysis is coupled to a second process,

such as membrane transport, cellular regulation, or molecular motors (21-

26). A common theme that is emerging is that switching between alternate

conformational states of a protein, driven by nucleotide binding and hydrol-

ysis at the interface between different subunits or domains, provides a

general transducing and timing mechanism for coupling the energy of
nucleotide hydrolysis to a variety of biochemical processes. Sequence

analyses by Koonin (102) suggest that the Fe-protein may represent 
ancestral form of a now widespread assortment of nucleotide-binding pro-

teins, so that the basic structural machinery utilized for transducing the
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energy of ATP hydrolysis in nitrogenase may have been recruited for a

diverse range of other biological functions.
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