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Abstract 42 

This paper discusses the microbial basis and the latest research on nitrous oxide (N2O) emissions 43 

from biofilms processes for wastewater treatment. Conditions that generally promote N2O 44 

formation in biofilms include (1) low DO values, or spatial DO transitions from high to low within 45 

the biofilm; (2) DO fluctuations within biofilm due to varying bulk DO concentrations or varying 46 

substrate concentrations; (3) conditions with high reaction rates, which lead to greater formation 47 

of intermediates, e.g., hydroxylamine (NH2OH) and nitrite (NO2
-), that promote N2O formation; 48 

and (4) electron donor limitation for denitrification. Formation of N2O directly results from the 49 

activities of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and 50 

heterotrophic denitrifying bacteria. More research is needed on the roles of AOA, comammox, and 51 

specialized denitrifying microorganisms.  In nitrifying biofilms, higher bulk ammonia (NH3) 52 

concentrations, higher nitrite (NO2
-) concentrations, lower dissolved oxygen (DO), and greater 53 

biofilm thicknesses result in higher N2O emissions.  In denitrifying biofilms, N2O accumulates at 54 

low levels as an intermediate, and at higher levels at the oxic/anoxic transition regions of the 55 

biofilms and where COD becomes limiting.  N2O formed in the outer regions can be consumed in 56 

the inner regions if COD penetrates sufficiently.  In membrane-aerated biofilms, where 57 

nitrification takes place in the inner, aerobic biofilm region, the exterior anoxic biofilm can serve 58 

as a N2O sink.  Reactors that include variable aeration or air scouring, such as denitrifying filters, 59 

trickling filters, or rotating biological contactors (RBCs), can form peaks of N2O emissions during 60 

or following a scouring or aeration event.  N2O emissions from biofilm processes depend on the 61 

microbial composition, biofilm thickness, substrate concentrations and variability, and reactor type 62 

and operation.  Given the complexity and difficulty in quantifying many of these factors, it may 63 

be difficult to accurately predict emissions for full-scale treatment plants. However, a better 64 

understanding of the mechanisms, and the impacts of process configurations, can help minimize 65 

N2O emission from biofilm processes for wastewater treatment. 66 

 67 

Keywords: N2O, biofilms, hydroxylamine, MBBR, MABR, MBfR, granules 68 

 69 

 70 

 71 

 72 
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INTRODUCTION 73 

 74 

Wastewater treatment processes can be a significant source of nitrous oxide (N2O), a powerful 75 

greenhouse gas (GHG) with a global warming potential around 300 times that of carbon dioxide 76 

(CO2) (Montzka et al. 2011).  N2O is very stable, and may persist in the atmosphere for over 120 77 

years (Kampschreur et al. 2009; Schreiber et al. 2012).  The U.S. Environmental Protection 78 

Agency (EPA) estimates that U.S. wastewater treatment plants emit around 5.2 Tg N2O yr-1 as 79 

CO2 equivalents (Ritter 2014), and these amounts are expected to increase with time (Law et al. 80 

2012; Okabe et al. 2011). 81 

Much past research has addressed N2O emissions from suspended growth processes (Ahn 82 

et al. 2010; Kampschreur et al. 2009; Law et al. 2012).  However, much less is known about 83 

emissions from biofilm processes, such as the moving bed biofilm reactor (MBBR), integrated 84 

fixed-film activated sludge (IFAS), biological aerated filter (BAF), granular sludge, and 85 

membrane-aerated biofilm reactors (MABRs) (Henze et al. 2008; Martin and Nerenberg 2012; 86 

Syron and Casey 2008).  Biofilm processes are becoming increasingly popular due to their higher 87 

volumetric treatment rates, reduced operational costs, minimal need for settling, and operational 88 

simplicity (Henze et al. 2008; Khan et al. 2013; Nicolella et al. 2000; WEF 2010).  89 

While the microbial basis of N2O formation, i.e., the microorganisms and metabolic 90 

pathways leading to its formation, are the same for suspended-growth and biofilm systems, the 91 

observed behavior may be very different.  This results from the microbial stratification, microbial 92 

interactions, substrate gradients, and substrate interactions unique to biofilms, as well as the 93 

biofilm reactor configuration (Henze et al. 2008; Law et al. 2012; Vlaeminck et al. 2010a).  Thus, 94 

the “mechanisms” leading to N2O emissions in biofilms may significantly differ from those of 95 

suspended growth systems. 96 

Todt and Dorsch (2016) provided a comprehensive review of N2O emissions from biofilm 97 

systems.  They explored the biochemistry of N2O production/consumption in relevant organisms, 98 

discussed current biofilm models, evaluated possible environmental factors affecting N2O 99 

emissions, and tabulated emission factors for different processes. Massara et. al (2017) briefly 100 

addressed biofilms as part of a comprehensive review of N2O emissions from wastewater 101 

processes. This review provides an update, considering new information on the N2O emissions 102 



4 
 

from microbial systems.  It also discusses new types of microbial metabolism and different biofilm 103 

reactor configurations, and their impacts on N2O emissions.  104 

 105 

BIOFILMS VS. SUSPENDED-GROWTH SYSTEMS   106 

 107 

Biofilms are aggregates of microbial cells embedded in a network of self-produced extracellular 108 

polymeric substances (EPS) (Flemming et al. 2016; Stoodley et al. 2002).  Biofilms are widespread 109 

in natural systems (Donlan 2002), and increasingly used in engineered treatment processes, 110 

especially for those with low substrate concentrations and high flows (Henze et al. 2008; 111 

Nicolella et al. 2000; WEF 2010).  Unlike with suspended bacteria, diffusion and reaction in 112 

biofilms lead to substrate gradients.  As a result, concentrations in the biofilm may differ 113 

significantly from those in the bulk liquid (Fig. 1).  In addition, bacteria stratify into layers, 114 

where different types of metabolism may predominate at different depths within the biofilm.  115 

 116 

FIGURE 1 117 

 118 

The dynamics of growth, decay, and detachment influence the microbial community 119 

structure of biofilms (Elenter et al. 2007).  Slow growing organisms may be “pushed out” of the 120 

biofilm by faster growing organisms (Lackner et al. 2008; Xavier et al. 2005).  Metabolic products 121 

may diffuse out of the biofilm or may be consumed by other populations.  pH gradients may form 122 

due to proton-producing or consuming processes within the biofilm (Vroom et al. 1999).  The 123 

greater complexity of biofilms, compared to suspended growth processes, makes their behavior 124 

more difficult to predict.   125 

 126 

N2O AND NITROGEN CYCLE 127 

 128 

This section discusses basic microbial transformations that affect N2O formation in wastewater 129 

treatment processes. These processes are relevant to both suspended growth and biofilm processes.  130 

The relationship between these transformations and N2O formation in biofilms is discussed in 131 

subsequent sections.  132 
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The nitrogen cycle includes a number of N species and both microbial and abiotic 133 

transformations, where N varies in redox state between -3 and +5.  While most of the nitrogen 134 

cycle is well established, new biotic and abiotic transformation processes continue to be discovered 135 

(Daims et al. 2016; Kuypers et al. 2018; Schreiber et al. 2012; Stein and Klotz 2016).  Figure 2 136 

schematically shows key N species and biological transformations.  For wastewater treatment 137 

processes, the key transformations include nitrification and denitrification, where nitrate (NO3
-) is 138 

sequentially reduced to nitrogen gas (N2).  Both processes can lead to N2O formation.  139 

 140 

FIGURE 2 141 

 142 

N2O from Microorganisms Related to Nitrification  143 

 144 

Nitrification is carried out by the sequential activity of ammonia-oxidizing bacteria (AOB) 145 

and archaea (AOA), and nitrite-oxidizing bacteria (NOB).  AOB and AOA oxidize ammonia (NH3) 146 

to nitrite (NO2
-), with hydroxylamine (NH2OH) as an intermediate (Fig. 3) (Daims et al. 2016; 147 

Guo et al. 2017), while NOB oxidize NO2
- to NO3

-. AOB directly produce N2O through two main 148 

pathways: nitrifier denitrification and NH2OH oxidation (Fig. 3). NOB, AOA, anammox, and 149 

comammox microorganisms may play an indirect role in N2O formation by affecting the 150 

availability of NH3 and NO2
-.  151 

 152 

FIGURE 3 153 

 154 

In the nitrifier denitrification pathway, AOB reduce NO2
- to nitric oxide (NO) and N2O 155 

(Chandran et al. 2011; Kampschreur et al. 2007; Kim et al. 2010; Tallec et al. 2006) (Fig. 3).  The 156 

NH2OH oxidation pathway involves the oxidation of NH2OH to NO by hydroxylamine 157 

oxidoreductase (HAO) and subsequent reduction to N2O catalyzed by the enzyme NO reductase 158 

(Chandran et al. 2011; Law et al. 2012; Stein 2011) (Fig. 3).   159 

Recent findings show that, in the canonical nitrifying bacteria N. europaea, two other 160 

routes for N2O production exist under anaerobic conditions. One is the direct oxidation of NH2OH 161 

to N2O by cytochrome P460 (Caranto et al. 2016) and the nitrification intermediate NO (Caranto 162 

and Lancaster 2017).  Although not all AOB share the same route for N2O production, these recent 163 
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findings expand on previous knowledge where chemical reactions were thought to be mainly 164 

important at higher oxygen (O2) levels (Liu et al. 2017a).  165 

N2O can also be produced biologically or abiotically by coupling NH2OH oxidation with 166 

the reduction of NO2
− (Harper et al. 2015; Terada et al. 2017), free nitrous acid (HNO2) (Soler-167 

Jofra et al. 2016), or NO (Spott et al. 2011).  These are termed N-nitrosation hybrid reactions, or 168 

simply “hybrid” reactions (Spott and Stange 2011).  In addition, metals such as copper (Harper et 169 

al. 2015) and manganese (Heil et al. 2015) can catalyze abiotic N2O production from NH2OH via 170 

the hybrid reaction.  Under some conditions, the hybrid reaction can become a predominant 171 

pathway for N2O production in a partial nitrifying reactor (Soler-Jofra et al. 2018; Terada et al. 172 

2017).  N2O production via the hybrid reaction is enhanced in the presence of AOB (Liu et al. 173 

2017a; Terada et al. 2017).  174 

Under aerobic conditions, N2O is mainly formed via the NH2OH pathway, and rates are 175 

relatively low.  When DO concentrations decrease, the nitrifier denitrification pathway becomes 176 

more important, leading to higher rates of N2O formation (Chung and Chung 2000; Kampschreur 177 

et al. 2009; Ma et al. 2017a; Park et al. 2000; Tallec et al. 2008).  However, under complete anoxic 178 

conditions N2O emissions are again low due to the lack of DO for NH3 oxidation (Fig. 3).  Spikes 179 

of N2O production can occur at transitions from anoxic to aerobic, or aerobic to anoxic, conditions, 180 

due to an electron imbalance (Domingo-Felez et al. 2014; Kampschreur et al. 2008; Sabba et al. 181 

2015; Yu et al. 2010).  Thus, N2O emissions can be significant in processes with anoxic/aerobic 182 

stages or intermittent aeration (Chandran et al. 2011).   183 

Unlike AOB, which have well elucidated N2O production pathways, the pathways for AOA 184 

are yet to be fully understood (Blum et al. 2018b).  They perform NH3 oxidation in a similar way 185 

to AOB (Kozlowski et al. 2016); however, they lack the ability to produce N2O enzymatically 186 

through side reactions of NH3 oxidation or nitrifier denitrification, as mediated by AOB (Spang et 187 

al. 2012; Tourna et al. 2011; Walker et al. 2010).  Stieglmeier et al. (2014) showed that 188 

Nitrososphaera viennensis, a pure culture of AOA from soil, produces N2O via a hybrid reaction. 189 

While AOA are found in WWTPs (Park et al. 2006; Sauder et al. 2012; Zhang et al. 2009), AOA 190 

are more common in marine environments (Santoro et al. 2011) and soils  (Gubry-Rangin et al. 191 

2010; Li et al. 2018; Nicol et al. 2008; Zhang et al. 2012). 192 

Anammox bacteria convert NH3 and NO2
- to N2 under anoxic conditions (Kuypers et al. 193 

2003).  NO is a key intermediate in anammox metabolism (Kartal et al. 2011), and genomic 194 
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evidence suggests that anammox species have the potential to produce N2O via NO reduction 195 

(Kartal et al. 2007; Strous et al. 2006).  However, research suggests that N2O production under 196 

process-relevant conditions is negligible (Blum et al. 2018a).  Anammox may indirectly affect 197 

N2O formation by heterotrophs and AOB by reducing the concentrations of NH3 and NO2
-. 198 

Comammox bacteria are a subset of the genus Nitrospira capable of complete ammonia 199 

oxidation (comammox) via oxidation of NH3 to NO3
- (Daims et al. 2015; van Kessel et al. 2015).  200 

Comammox are thought to have a competitive advantage over conventional ammonia oxidizers 201 

(e.g. AOA and AOB) under ammonia-limiting conditions (Costa et al. 2006; Daims et al. 2015; 202 

Kits et al. 2017; van Kessel et al. 2015). While little is known about comammox in wastewater 203 

biofilms, van Kessel et al. (2015) and Daims et al. (2015) obtained comammox enrichments in the 204 

lab by operating their systems with low NH3 concentrations. Thus, it is likely they play a role in 205 

wastewater biofilms under similar conditions.  206 

Evidence suggests that comammox Nitrospira, as opposed to canonical Nitrospira, harbor 207 

genomic NH3 and NO2
- oxidation machinery homologous to classical AOB and NOB, respectively 208 

(e.g., gene clusters encoding amo, hao, and nxr) (Daims et al. 2015; van Kessel et al. 2015).  209 

However, very little is known about their capacity for N2O production.  NH2OH appears to be an 210 

obligate intermediate of comammox metabolism, analogous to AOB catabolism, and it is likely 211 

that N2O can be formed by comammox via the NH2OH pathway (Fig. 3).  Comammox genomes 212 

recovered to date also harbor capacity for NO2
- reduction to NO (NirK), similar to non-comammox 213 

Nitrospira (Camejo et al. 2017; Lawson and Lucker 2018).  Comammox clades A and B genomes 214 

reported to date lack a known NOR or proteins related to NOx metabolism (Palomo et al. 2018), 215 

similarly to common Nitrospira taxa (Lawson and Lucker 2018) and therefore may be incapable 216 

of nitrifier denitrification.  Thus, the presence of reactive nitrogen species produced by comammox 217 

biomass, e.g. NO or NH2OH, could to lead to abiotic reactions with the production of N2O as a 218 

final product.  219 

Comammox may be detrimental to PN/A systems, where NO2
- production is needed. 220 

However, they may also reduce N2O emissions by minimizing NO2
- accumulation. The presence 221 

of comammox in wastewater treatment processes, both in suspended growth and biofilm processes, 222 

and the metabolic versatility of Nitrospira species including the two comammox Nitrospira clades 223 

is currently an active area of research.  Future research should also address the selecting factors 224 
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for partitioning between comammox and canonical Nitrospira, and clarify the potential role for 225 

comammox in N2O emissions. 226 

 227 

N2O from Microorganisms Related to Denitrification 228 

 229 

Denitrification is the sequential reduction of NO3
- and NO2

- to NO, N2O, and finally N2 230 

(Ni and Yuan 2015).  It involves four enzymes: the nitrate reductase (NAR), nitrite reductase 231 

(NIR), nitric oxide reductase (NOR), and nitrous oxide reductase (NOS).  A schematic of the 232 

denitrification metabolism is shown in Figure 3.   233 

The formation of N2O in wastewater denitrification processes is often due to selective 234 

inhibition of the NOS enzyme (Guo et al. 2017).  This can be caused by its greater sensitivity to 235 

DO (Firestone et al. 1979; Tallec et al. 2008), pH (Firestone et al. 1979; Hanaki et al. 1992), NO2
- 236 

(Alinsafi et al. 2008), carbon source type and concentration (Tallec et al. 2006), carbon limitation 237 

(Alinsafi et al. 2008; Tallec et al. 2006), and hydrogen sulfide (H2S) (Schonharting et al. 1998). 238 

While denitrifying bacteria produce N2O during denitrification, they also can reduce N2O 239 

to N2 (Read-Daily et al. 2016).  Externally supplied N2O can be reduced concurrently with NO3
- 240 

and NO2
- (Conthe et al. 2018; Pan et al. 2015; Pan et al. 2013a; Read-Daily et al. 2016).   241 

While many denitrifying bacteria have a complete reduction pathway and can reduce NO3
- 242 

and NO2
- all the way to N2, less is known about bacteria that can grow with N2O but not with NO3

- 243 

or NO2
-.  Newly classified clade II-type nosZ N2O reducing bacteria were recently discovered 244 

(Jones et al. 2013; Sanford et al. 2012).  These have since been detected in a granular sludge reactor 245 

(Lawson et al. 2017), a membrane-aerated biofilm reactor (MABR) (Kinh et al. 2017b) and a 246 

biofiltration system (Yoon et al. 2017).  Some isolates harboring clade II type nosZ have higher 247 

affinity for N2O reduction than those harboring clade I type nosZ (Suenaga et al. 2018; Yoon et al. 248 

2016) whereas a contradictory finding was reported (Conthe et al. 2018), requiring more in-depth 249 

analysis concerning bacteria as an N2O sink at a low N2O concentration.  Some clade II type nosZ 250 

bacteria appear to lack genes encoding for NIR and/or NOR, suggesting their potential as an N2O 251 

sink but not an N2O source (Graf et al. 2014).  As reviewed elsewhere, these non-denitrifying N2O-252 

reducing bacteria in wastewater engineering are yet to be explored in detail (Hallin et al. 2018).  253 

The ecophysiology of non-denitrifying N2O reducers in a biofilm system warrants further research. 254 

There are a wide range of denitrifying microorganisms, and some with special behavior 255 
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with respect to N2O formation and reduction. Some can fully reduce NO3
- and NO2

- to NH3 in an 256 

ecologically important process called dissimilatory nitrate or nitrite reduction to ammonium 257 

(DNRA) (Stein and Klotz 2016) (Fig. 2).  In this process, NO3
- or NO2

- is reduced to NH3, with 258 

N2O produced at the NO2
- reduction stage as a by-product (Fig. 2) (Kelso et al. 1997; Rutting et 259 

al. 2011; Streminska et al. 2012).  Unlike denitrification, this process conserves N in the ecosystem 260 

(Rutting et al. 2011; Tiedje et al. 1982).  Many DNRA microorganisms can produce N2O as a by-261 

product (Stevens and Laughlin 1998; Stevens et al. 1998).  Some of these microorganisms employ 262 

DNRA as a detoxification mechanism in order to avoid high concentration of NO2
- (Kaspar 1982).  263 

However, the actual contribution of DNRA to N2O formation in these species remains uncertain 264 

(Butterbach-Bahl et al. 2013).  265 

Behavior regarding N2O emissions may also vary based on the type of electron donor.  For 266 

example, elemental-sulfur (So) oxidizing denitrifiers (Di Capua et al. 2015; Liu et al. 2017b), 267 

methane (CH4) oxidizing denitrifiers (He et al. 2018), phosphate-accumulating (PAO) denitrifiers 268 

(Gao et al. 2017; Wang et al. 2011; Wang et al. 2014; Zhou et al. 2012), H2 oxidizing denitrifiers 269 

(Li et al. 2017), and bacteria growing with an electrode as an electron donor (Jiang et al. 2018) 270 

display different behavior with respect to N2O emissions. Methane-oxidizing denitrifiers appear 271 

to reduce NO2
- to N2 without forming N2O as an intermediate, and therefore are thought to 272 

minimize N2O emissions (He et al. 2018). While the details on each of these donors are beyond 273 

the scope of this review, the kinetics for each donor can have important impacts on N2O formation 274 

and consumption.     275 

 276 

TYPES OF BIOFILM REACTORS AND IMPACTS ON N2O EMISSIONS 277 

 278 

This section describes different type of biofilm reactors, and their special characteristics as relate 279 

to N2O emissions. Based on the analysis in the previous section, and also following Todt et al. 280 

(2016) and Massara et al. (2017), conditions that promote N2O emission include (1) low DO 281 

values, or DO spatially transitioning from high to low within the biofilm, as this leads to nitrifier 282 

denitrification or incomplete heterotrophic denitrification; (2) conditions where the DO fluctuates 283 

temporally from high to low values, (3) conditions with high reaction rates, which lead to greater 284 

formation of intermediates (e.g., NH2OH, NO2
-) that promote N2O formation; and (4) limiting 285 

electron donor for denitrification.  286 
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The above factors may have different impacts for different types of biofilm reactors.  There 287 

is a wide range of biofilm reactors, and they can be classified based on the arrangement of their 288 

solid, liquid, and gas phases, whether the carriers are fixed or moving, their carrier specific surface 289 

area (area of carrier per unit volume of reactor), their mixing regime (completely mixed or plug 290 

flow), and the mechanisms of transfer of gases and electron donor or acceptor substrates. Typical 291 

biofilm reactor configurations are shown schematically in Figure 4.  292 

 293 

FIGURE 4 294 

 295 

 Trickling filters (Fig. 4A) are commonly used for COD removal and nitrification. The 296 

media is non-submerged, and is kept aerobic by convective air currents within the bed. While 297 

considered aerobic, anoxic niches can form in the deeper biofilm (Dalsgaard and Revsbech 1992). 298 

The variations in DO and donor concentration in the biofilm between passes of the wastewater 299 

distributor arm can lead to N2O emissions. When used for nitrification, N2O is likely to form within 300 

the bed, with some stripped by the air currents and present in the effluent (Melse and Mosquera 301 

2014). There is little experimental data on N2O emissions from trickling filters, possibly due to the 302 

difficulty in capturing the off-gases, and further research is needed in this area.  303 

 Biofilters (Fig. 4A) are similar to trickling filters, but used to treat gaseous contaminants 304 

such as odorous compounds in air or volatile organic compounds (VOCs). Air is passed through a 305 

non-submerged packed bed with biofilms growing on the media, and the contaminants partition 306 

into the liquid phase coating the biofilm.  Yoon et al. (2017) proposed using a biofilter supplied to 307 

remove N2O in off gases from an activated sludge aeration basin. Raw wastewater was used as the 308 

electron donor. In lab tests, 99.9% of N2O was removed when supplied at 100 ppmV in N2, i.e., 309 

without any O2.  However, removals decreased significantly when supplied in air.  Biofilters are 310 

likely an expensive approach to mitigating N2O emissions, as they require covering aeration basin 311 

to collect off gases, treating large volumes of gas, and adding an additional process and complexity 312 

to the treatment train.   313 

 Packed bed reactors (Fig. 4B and 4C) are fully submerged fixed bed biofilm reactors. They 314 

can be operated in upflow or downflow mode, and either aerated (e.g., for nitrification) or 315 

unaerated with electron donor addition (denitrifying filters).  Upflow packed bed reactors, such as 316 

nitrifying or denitrifying filters, typically operate in plug flow fashion. Thus, the filters experience 317 
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high substrate concentrations at the influent end and low concentrations at the effluent end. The 318 

concentration gradients (e.g., high NH3 at influent, low DO at effluent) can impact N2O formation 319 

processes. When used for denitrification, air pulses are periodically performed at the bottom of the 320 

filter to release N2 bubbles accumulating in the reactor.  These pulses can strip N2O formed at the 321 

beginning of the bed, when normally it would be reduced to N2 further within the bed (Bollon et 322 

al. 2016).  Whenever air is added to a denitrifying filter, there is potential for N2O formation at 323 

some location within the biofilm due to the greater sensitivity of N2OR to O2 inhibition. N2O may 324 

also accumulate due to insufficient electron donor supply. For nitrifying and denitrifying packed 325 

bed reactors, backwashing is carried out regularly to remove excess biomass.  Thinner biofilms 326 

may not allow full treatment, leading N2O breakthrough from the reactor. For denitrifying biofilms, 327 

breakthrough can also be caused by donor limitation. Bollon et al. (2016) found that a full-scale 328 

denitrifying filter with a C/N of 3 or higher had up to 93% N2O reduction. However, during a 329 

carbon supply failure removals lowered 26%. Similar results were found by Capodici et al. (2018) 330 

and Zhang et al. (2016). In the latter study, the authors found that a decrease of the C/N from 3 to 331 

0.65 led to an increase of the genes encoding for NOR that would enhance the transformation of 332 

NO to N2O and lead to increased N2O emissions. Zhang et al. (2017) studied the behavior of lab-333 

scale denitrification filters and found a complex interaction of the denitrification with anammox 334 

and DNRA. Gene abundance, together with accumulation of NO2
- at temperatures between 5 and 335 

15 °C, were found important factors for N2O accumulation. Further research is required to 336 

investigate the impact of influent NO2
- and possible adaptation of bacteria to variable influent 337 

loadings of both NO2
- and NO3

- in denitrifying filters.  338 

RBCs (Fig. 4D) use rotating wheels of media partially submerged in wastewater. When the 339 

wheels are outside the water, the biofilm can experience O2 concentrations in the biofilm exterior, 340 

while the DO concentrations can drop significantly when immersed in the wastewater (Pynaert et 341 

al. 2002). This cycling of high and low DO concentrations, as well variations in donor 342 

concentration when the biofilm is submerged vs. when it is out of the wastewater, can potentially 343 

lead to higher N2O emissions.  There does not appear to be any published findings of N2O 344 

emissions from RBCs.  Note that RBCs are often covered to prevent from UV toxicity and to 345 

protect from low temperatures in winter. In these cases, it may be possible to pump air from the 346 

enclosures through an anoxic zone or into a biofilter, such as that described above, to reduce N2O 347 

to N2.  348 
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 Airlift, MBBRs, and IFAS (Fig. 4E and 4G) use carriers that “float” in the water, and 349 

therefore have little relative velocity between the carrier and the water. They can be operated under 350 

aerobic or anoxic conditions. In continuous systems, the biofilm carriers are kept in a single zone, 351 

experiencing consistent bulk environments.  This can avoid the high N2O emissions in suspended 352 

growth systems transitioning from anoxic to aerobic zones (Chandran et al. 2011). Recent research 353 

on N2O emissions from MBBRs are consistent with the factors described at the beginning of this 354 

section, depending on the application (Mannina et al. 2018a; Mannina et al. 2017; Mannina et al. 355 

2018b; Wei et al. 2017).  356 

Fluidized bed reactors (Fig. 4F) behave similarly to a BAF, but use much finer media.  This 357 

provides a high specific surface area, and allows the particles to become suspended in the upward 358 

wastewater flow.  These reactors also experience a somewhat higher degree of mixing, compared 359 

to packed bed reactors, but still have some plug flow behavior. Excess biofilm is continuously 360 

removed by abrasion, and biofilms typically are thinner than in BAFs.  The behavior with respect 361 

to N2O emissions should be similar to the BAFs. Note that aerobic granular sludge can behave 362 

similarly to a fluidized bed reactor. However, granular sludge is typically operated in sequencing 363 

batch mode (Castro-Barros et al. 2015).  Recent research on N2O emission from granular sludge 364 

also confirm the above mechanisms (Jia et al. 2018; Lu et al. 2018; Peng et al. 2017; Reino et al. 365 

2017). 366 

Counter-diffusional biofilms are those where one substrate diffuses from the bulk liquid, 367 

while the other penetrates the biofilm from the attachment surface.  The counter-diffusion of 368 

substrates leads to a range of different behaviors with respect to conventional, co-diffusional 369 

biofilms (Nerenberg, 2016).  Examples of counter-diffusional biofilms include MABRs, where the 370 

membranes are used to supply air or O2; membrane-biofilm reactors (MBfRs) where membranes 371 

supply H2 or CH4 (Liu at al., 2017b); sulfur-based biofilms, where solid So particles support a 372 

biofilm (Wang et al. 2016a); and even bioelectrochemical biofilms (Jiang et al., 2018). MABR 373 

behavior is discuss in more detail in the next section. 374 

 375 

 376 

 377 

 378 



13 
 

MECHANISMS OF N2O FORMATION IN BIOFILM PROCESSES FOR 379 

WASTEWASTER TREATMENT 380 

 381 

Because of their special layered structure and organization, biofilms allow unique niche formation 382 

with specific metabolic functions.  In addition, intermediates formed in one biofilm location can 383 

diffuse to another with different environments, leading to transformations that would not normally 384 

occur in a suspended growth system (Dalsgaard et al. 1995; de Beer 1997; Nielsen et al. 1990; 385 

Sabba et al. 2017b; Schreiber et al. 2009).  This section discusses basic behavior of biofilms for 386 

some key processes, including nitrification, denitrification, combined nitrification and 387 

denitrification, and partial nitrification/anammox.  The behavior is common for most biofilm 388 

reactors except for MABRs, which are described separately. The figures in this section are intended 389 

to illustrate typical behavior. They are only schematics, not meant to reflect an actual operating 390 

condition. 391 

 392 

Nitrifying biofilms 393 

 394 

Nitrifying biofilms form when NH3 is the dominant or sole electron donor.  While AOB and NOB 395 

are primary population members in nitrifying biofilms, heterotrophic bacteria typically co-exist 396 

(Kindaichi et al. 2004), growing on the decay products from nitrifying microorganisms (Gieseke 397 

et al. 2005; Okabe et al. 2005).  However, N2O production in nitrifying biofilms is likely dominated 398 

by AOB, with a minor contribution from heterotrophic bacteria.  In this section, we focus on the 399 

mechanisms of N2O from the nitrifying population.  In the subsequent section, we discuss the 400 

impact of heterotrophs on nitrifying biofilms, especially when organic carbon is present in the 401 

bulk.   402 

Typical substrate profiles in nitrifying biofilms, and zones of N2O formation and emission, 403 

are shown schematically in Figure 5.  In conventional, co-diffusional biofilms, the outer biofilm is 404 

aerobic and has the highest NH3 concentrations.  As a result, the NH3 oxidation rates are high, 405 

leading to high NH2OH concentrations.  In addition, the nitrifier denitrification pathway is 406 

inhibited by the high DO in this zone.  Thus, the NH2OH oxidation pathway is likely to dominate, 407 

and N2O formation rates are likely to be relatively low.  Nitrifier denitrification may become 408 

significant in the aerobic/anoxic transition zone (Mao et al. 2008; Schreiber et al. 2009; Schreiber 409 
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et al. 2008).  In the anoxic zone, N2O formation rates are low.  This is because NH3 oxidation, 410 

which is the source of electrons for nitrifier denitrification, requires O2.  However, Sabba et al. 411 

(2015) proposed that NH2OH formed in the aerobic biofilm exterior would diffuse to the interior 412 

anoxic zones.  AOB in this zone could utilize NH2OH as a rich electron source, enabling the 413 

nitrifier denitrification pathway and resulting in a spike of N2O.  Further research is needed to 414 

confirm this mechanism experimentally. In Figure 5, the N2O concentration profile slopes towards 415 

the outer biofilm, indicating diffusive mass transfer towards the bulk.  If diffused aeration is used, 416 

the N2O is readily stripped from the liquid phase (Law et al. 2012; Rassamee et al. 2011; Wu et al. 417 

2014). 418 

 Membrane-aerated biofilms (MABs) are a novel biofilm process for wastewater treatment, 419 

where O2 is supplied from the membrane and NH3 from the bulk (Martin and Nerenberg 2012; 420 

Syron and Casey 2008) (Fig. 5b).  Because of the unique penetration of NH3 and O2 from opposite 421 

sides of the biofilm, they are called, as mentioned above counter-diffusional biofilms (Nerenberg 422 

2016).  N2O can also occur in MABRs systems.  In MABs, the highest nitrification rates usually 423 

occur in the biofilm interior, not at the outer edge. Thus, N2O formation via the NH2OH pathway 424 

is likely to occur in the deep biofilm.  In addition, the aerobic/anoxic transition occurs in the 425 

biofilm interior, and the bulk is anoxic.  Thus, while N2O can be stripped from suspended growth 426 

systems by bulk aeration (Law et al. 2012; Rassamee et al. 2011; Wu et al. 2014), N2O in MABRs 427 

can be consumed by denitrifying bacteria in the outer biofilm or bulk liquid.  Conversely, some 428 

N2O may be stripped from MABR biofilms by air flowing through the membrane lumen, if 429 

operated with open end membranes (Kinh et al. 2017a).  Stripping from the lumen is indicated in 430 

Figure 5b by the slope of the N2O concentration profile towards the membrane in its proximity.  431 

 432 

FIGURE 5 433 

 434 

 NOB can contribute indirectly to N2O emissions by scavenging DO and favoring the 435 

formation of a steeper gradient for transitioning from oxic to anoxic conditions (Sabba et al. 2017a; 436 

Sabba et al. 2015).  They also can play a key role in reducing the NO2
- concentration, which reduces 437 

the rates of nitrifier denitrification (Schreiber et al., 2009).  Anammox bacteria can play a similar 438 

role in decreasing N2O emissions (Pellicer-Nacher et al. 2010).  As mentioned previously, NOB 439 
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do not play a direct role for NO and N2O emissions, but may affect emission by modifying the 440 

NO2
- concentrations (Wang et al. 2016b).  441 

 442 

Denitrifying biofilms 443 

 444 

Denitrifying biofilms are those where NO3
- is the primary electron acceptor.  We also consider 445 

biofilms with an aerobic exterior and denitrifying interior, but neglect any nitrification in the 446 

aerobic zone.  In denitrifying biofilms, N2O is an obligate intermediate.  It is typically present at 447 

higher concentrations in the outer biofilm region, where NO3
- and NO2

- reduction activity is higher, 448 

but can diffuse and be consumed in deeper regions where NO3
- and NO2

- concentrations are lower 449 

(Fig. 6a).  Thus, biofilms can have regions that can serve as an N2O sink, mitigating N2O emissions 450 

(Dalsgaard and Revsbech 1992; Nielsen et al. 1990). 451 

 452 

FIGURE 6 453 

 454 

 In the presence of high DO, denitrification is usually inhibited and therefore little N2O is 455 

formed (Fig. 6b).  However, biofilms typically have DO gradients, and denitrification and N2O 456 

formation may occur deeper in the biofilm (Dalsgaard and Revsbech 1992; Nielsen et al. 1990).  457 

In the transition zone from oxic to anoxic, higher amounts of N2O will be formed due to the higher 458 

sensitivity of NOS to O2 inhibition (Bonin et al. 1992; Lu and Chandran 2010; Morley et al. 2008; 459 

Otte et al. 1996).  When this transition zone is near the outer biofilms, more N2O may be exported 460 

to the bulk liquid.  When the transition occurs deeper in the biofilm, i.e., at higher bulk DO 461 

concentrations, and when electron donor is sufficient, N2O is more likely to be reduced in the 462 

deeper biofilm and less emissions will occur (Dalsgaard and Revsbech 1992). 463 

If N2O is formed in the outer biofilm, and if sufficient electron donor is available in the 464 

deeper zones of the biofilm, denitrifying biofilms can serve as an N2O sink (Eldyasti et al. 2014; 465 

Sabba et al. 2017b).  However, if sulfate reduction occurs in the deeper biofilm where NO3
- has 466 

been depleted, H2S may accumulate and inhibit N2O reduction (Pan et al. 2013b).  Electron donor 467 

limitation in the denitrifying zone also may result in greater N2O formation (Dalsgaard and 468 

Revsbech 1992; Nielsen et al. 1990; Todt and Dorsch 2015) (Fig. 6c).  469 

 470 
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Combined nitrifying/denitrifying biofilms 471 

 472 

Biofilms exposed to both organic carbon and NH3 usually have an outer layer dominated 473 

by fast-growing heterotrophic bacteria (Henze et al. 2008).  In the presence of non-limiting organic 474 

substrates, O2 is usually consumed by heterotrophic activity with little formation nitrifying 475 

biomass.  However, in presence of low or transient organic carbon concentrations, nitrifying 476 

organisms can develop in the biofilm.  These biofilms are here referred as “combined 477 

nitrifying/denitrifying biofilms”.   478 

In combined nitrifying/denitrifying biofilms, the mechanisms of N2O formation can be 479 

quite complex.  Both co- and counter- diffusional combined nitrifying/denitrifying biofilms are 480 

characterized by the presence of complex communities where N2O is formed by both nitrifiers and 481 

denitrifiers, but also reduced by denitrifiers (Matsumoto et al. 2007; Nerenberg 2016).  Various 482 

intermediates play roles in both pathways, as indicated in Figure 2.  For example, NO2
- and NO, 483 

two crucial components of both nitrifier denitrification and  NH2OH oxidation pathways, also play 484 

a role as intermediates in the denitrification pathway (Todt and Dorsch 2015).  Thickness is also a 485 

crucial component for both co- and counter- diffusional biofilm, if adequate thickness and COD 486 

concentrations are present, then N2O reduction can occur (Eldyasti et al. 2014; He et al. 2017).  487 

Co-diffusional combined nitrifying/denitrifying biofilms receive both electron donor and 488 

acceptor from the bulk (Fig. 7a).  In this type of biofilm, heterotroph are typically more abundant 489 

in the outer biofilm, due to their faster growth rates and the greater availability of COD.  This zone 490 

is typically aerobic, so little or no denitrification or N2O reduction occurs.  Nitrifiers are typically 491 

located in the aerobic zone below the heterotrophs.  If enough COD is present, then N2O reduction 492 

can occur in the deeper biofilm (Fig. 7a) (Chae et al. 2012; Eldyasti et al. 2014; He et al. 2017).  493 

When the bulk is aerated in co-diffusional combined nitrifying/denitrifying biofilms, there is 494 

greater N2O mass transfer towards the bulk rather than towards the anoxic zone where it can be 495 

reduced.  This translates in higher N2O emissions.  496 

 497 

FIGURE 7 498 

 499 

In counter-diffusional combined nitrifying/denitrifying biofilms, DO penetrates the biofilm 500 

from the attachment surface.  In this case, and assuming the bulk liquid is anoxic, the nitrifiers 501 
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would only be active near the membrane surface (Kinh et al. 2017a).  In addition, N2O formed by 502 

the nitrifiers could potentially be reduced by the heterotrophs in outer, anoxic region of the biofilm, 503 

where the COD concentrations are highest (Cole et al. 2004; Kinh et al. 2017b; LaPara et al. 2006).  504 

As seen for nitrifying biofilms (Fig. 5b), there could also be N2O stripping by the membrane, as 505 

indicated from a negative slope of the N2O profile towards the membrane (Fig. 7b).  The lack of 506 

bulk aeration reduces N2O mass transfer to the bulk. Note that MABR membranes can also strip 507 

CO2 from the biofilm, leading to pH shifts that can impact the microbial community and potentially 508 

impact N2O emissions (Ma et al. 2017b).  509 

 Based on the above, the type of biofilm (co- vs. counter- diffusional) also can affect the 510 

microbial community structure and therefore the N2O emissions.  For each bulk substrate condition 511 

and detachment regime, there may be a different microbial community structure, which in turn can 512 

affect the formation/reduction and emissions of N2O.  Therefore, the behavior of these biofilms is 513 

complex and hard to predict (Martin and Nerenberg 2012; Nerenberg 2016).  514 

 515 

Partial nitritation/anammox biofilms  516 

 517 

In combined partial nitritation/anammox (PN/A) reactors, NH3 is partially oxidized to NO2
- 518 

by AOB.  The remainder of the NH3 is then oxidized to N2 gas via NO2
- reduction by anammox 519 

bacteria.  NOB are undesirable in PN/A reactors, and diverse strategies are employed to outselect 520 

these organisms.  PN/A reactors typically also harbor a diverse flanking community, many of 521 

which are capable of heterotrophic denitrification (Lawson et al. 2017).  522 

A distinguishing feature of PN/A systems is the presence of multiple biological sinks for 523 

NO2
-.  Biofilm-based PN/A systems are further distinguished by strong spatial segregation of AOB 524 

(in oxic layers) and anammox and denitrifiers (in anoxic, usually deep, layers) (Hubaux et al. 2015; 525 

Laureni et al. 2016; Okabe et al. 2011).  Crossfeeding within the biofilm and capacity of certain 526 

denitrifiers to act as internal N2O sinks, likely differentiates N2O emissions in biofilms from 527 

suspended growth PN/A processes. 528 

The potential of PN/A systems to act as significant N2O sources, particularly from biofilm 529 

or hybrid PN/A reactors, is poorly understood.  Results suggest that emissions depend strongly on 530 

bulk O2 concentration (Harris et al. 2015), NO2
- concentration (Van Hulle et al. 2012), NH3 531 

oxidation activity (Blum et al. 2018a; Domingo-Felez et al. 2014), nitrogen loading (Yang et al. 532 
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2016), aeration regime (intermittent vs. continuous aeration) (Blum et al. 2018a; Domingo-Felez 533 

et al. 2014; Kampschreur et al. 2008; Ma 2018), presence of organic matter (Jia et al. 2018), and 534 

biofilm thickness (Vlaeminck et al. 2010b).   535 

Intermittent aeration mirrors conditions recently shown to promote N2O generation 536 

(Chandran et al. 2011; Kampschreur et al. 2008; Kampschreur et al. 2009; Yu et al. 2010), but has 537 

also been suggested that appropriate intermittent aeration can facilitate control or minimization of 538 

N2O emissions from PN/A processes (Castro-Barros et al. 2015; Domingo-Felez et al. 2014; Su et 539 

al. 2017). 540 

While sources of N2O in PN/A systems are still not well understood, multiple studies have 541 

indicated it may derive predominantly from AOB.  Ali et al. (2016) provided evidence based that 542 

nitrifier denitrification and NH2OH pathways were equally important to N2O formation in the oxic 543 

surface region of granules from a PN/A reactor.  However, ~30% of N2O emissions in this system 544 

could be attributed to the anammox dominated anoxic interior of granules due to either 545 

heterotrophic denitrification or a yet unidentified pathway.  Harris et al. (2015) showed that N2O 546 

site preference data from a suspended growth PN/A reactor was inconsistent with current 547 

understanding of N2O production pathways, and further suggested that N2O emissions in this 548 

system could be due in part to an unknown inorganic or anammox-associated N2O production 549 

pathway.  In general, biofilm-based PN/A processes appear to emit less N2O than suspended 550 

nitrifying processes (Gilmore et al. 2013). Further research is needed to better identify sources of 551 

N2O in biofilm-based and hybrid biofilm suspended growth PN/A systems, and to quantitatively 552 

evaluate how spatial structuring, biofilm thickness, and aggregate architecture influence N2O 553 

emissions in these emerging low energy N removal systems.  554 

 555 

CONCLUSIONS 556 

 557 

N2O formation is promoted when there are (1) low DO values, or DO spatially transitioning from 558 

high to low within the biofilm; (2) conditions where the DO fluctuates temporally from high to 559 

low values; (3) conditions with high reaction rates, which lead to greater formation of 560 

intermediates (e.g., NH2OH and NO2
-) that promote N2O formation; and (4) limiting electron 561 

donor for denitrification. The microbial basis of N2O formation in biofilms and suspended growth 562 

systems are similar, yet N2O emissions in biofilm systems depend greatly on microbial 563 
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stratification, the formation of substrate gradients, the exchange of intermediates within the 564 

biofilm, and the type of biofilm reactor.  This can lead to different patterns and quantities of N2O 565 

emission for the same bulk environment, and make it more difficult to predict N2O emissions.  Co-566 

diffusional and membrane-aerated biofilms may have substantially different behavior, due to the 567 

unique microbial and stratifications and substrate profiles.  In order to predict N2O emissions from 568 

biofilm processes, and develop strategies to minimize them, it is important to understand the 569 

microbiological and biochemical basis for N2O formation, the factors affecting N2O formation in 570 

biofilms, as well as the impacts of reactor configurations and operating modes.  Future research 571 

should address the pathways and kinetics of N2O emissions from AOA, comammox bacteria, 572 

methane-oxidizing denitrifying bacteria, and others.  It also is important to explore their abundance 573 

in biofilms. Given the complexity of biofilms and biofilm processes, empirical assessments of N2O 574 

emissions from the broad range of biofilm reactors type and operating conditions is needed, and 575 

application-specific recommendations to minimize emissions should be developed. 576 
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Figure Captions 1067 
 1068 
Fig. 1  Idealized schematics of (a) a floc, and (b) a biofilm.  The biofilm schematic shows the 1069 
liquid diffusion layer (LDL), as well as profiles of a substrate and metabolic product.  Note that 1070 
real flocs are highly complex and heterogeneous in morphology, and biofilms may have rough or 1071 
dendritic surfaces with internal pores.   1072 
 1073 
Fig. 2  Key processes in the N-cycle.  N2O is highlighted in gray (adapted from Daims et al. 2016 1074 
and Schreiber et al. 2012).  The dashed line for comammox shows the formation of NO2

- as 1075 
intermediate but also its oxidation to NO3

- by the same organism.  Abbreviations in figure: DNRA 1076 
is dissimilatory nitrite reduction to ammonia; assimil. is assimilatory; dissimil. is dissimilatory. 1077 
Note that denitrification can produce N2O, but it is also the only known process that can reduce it. 1078 
 1079 
Fig. 3  Nitrogen transformations in AOB, NOB and DNB.  Abbreviations: AOB, ammonia-1080 
oxidizing bacteria; NOB, nitrite-oxidizing bacteria; DNB, denitrifying bacteria, AMO, ammonia 1081 
monooxygenase; HAO, hydroxylamine oxidoreductase (hydroxylamine dehydrogenase in 1082 
Nitrospira); NXR, nitrite oxidoreductase; NirK, copper-containing nitrite reductase; NirS, 1083 
cytochrome cd1 type nitrite reductase; NOR, nitric oxide reductase; and NOS, nitrous oxide 1084 
reductase.  Purple arrows show intermediates potentially shared between nitrification and 1085 
denitrification pathways.  Abiotic reactions (gray) are further discussed in the text. 1086 
 1087 
Fig. 4  Types of biofilm reactors. (A) Unsubmerged filter (e.g., trickling filter or biofilter), (B) 1088 
upflow fixed-bed reactor (e.g., biologically active filter (BAF), (C) downflow fixed-bed reactor 1089 
(e.g., BAF), (D) rotating biological contactor (RBC), (E) suspended or airlift biofilm reactor, (F) 1090 
fluidized-bed biofilm reactor (FBBR or granular sludge), (G) moving-bed biofilm reactor 1091 
(MBBR), integrated fixed film activated sludge (IFAS), and (H) membrane-supported biofilm 1092 
reactor (e.g., MBfR or MABR).  Note: i = influent; e = effluent; r = recycle; w = wasting flow; g 1093 
= gas flow (typically air) in or out.  Black dots in figures E, F, and G are biofilm carriers.  Adapted 1094 
from (Morgenroth 2008) and (WEF 2010)   1095 
 1096 
Fig. 5  N2O formation in nitrifying biofilms.  (a) Co-diffusional and (b) counter-diffusional.  Solid  1097 
black arrow indicates N2O loss towards either bulk or membrane lumen.  NO2

- and NO are not 1098 
shown for clarity. 1099 
 1100 
Fig. 6  N2O formation in denitrifying biofilms.  (a) Excess e- donor, (b) excess e- donor with O2, 1101 
and (c) limiting e- donor.  Solid black arrow indicates N2O loss towards bulk and dashed black 1102 
arrow indicates reduction within the biofilm depth.  NO2

- and NO are not shown for clarity. 1103 
 1104 
Fig. 7  N2O formation in combined nitrifying/denitrifying biofilms.  (a) Co-diffusional and (b) 1105 
counter-diffusional.  Solid black arrow indicates N2O loss towards either bulk or membrane lumen; 1106 
dashed black arrow indicates reduction within the biofilm depth.  NO2

- and NO are not shown for 1107 
clarity  1108 
  1109 
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