
MINI REVIEW
published: 24 September 2019

doi: 10.3389/fimmu.2019.02278

Frontiers in Immunology | www.frontiersin.org 1 September 2019 | Volume 10 | Article 2278

Edited by:

Julian Pardo,

Fundacion Agencia Aragonesa para la

Investigacion y el Desarrollo, Spain

Reviewed by:

Ana Stojanovic,

University of Heidelberg, Germany

Ulrike Koehl,

Hannover Medical School, Germany

*Correspondence:

Francisco Borrego

francisco.borregorabasco@

osakidetza.eus

Specialty section:

This article was submitted to

NK and Innate Lymphoid Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 05 July 2019

Accepted: 09 September 2019

Published: 24 September 2019

Citation:

Terrén I, Orrantia A, Vitallé J,

Zenarruzabeitia O and Borrego F

(2019) NK Cell Metabolism and Tumor

Microenvironment.

Front. Immunol. 10:2278.

doi: 10.3389/fimmu.2019.02278

NK Cell Metabolism and Tumor
Microenvironment
Iñigo Terrén 1, Ane Orrantia 1, Joana Vitallé 1, Olatz Zenarruzabeitia 1 and

Francisco Borrego 1,2*

1 Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain, 2 Ikerbasque, Basque Foundation

for Science, Bilbao, Spain

Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different

means without previous sensitization and have, therefore, become a valuable tool in

cancer immunotherapy. However, their efficacy against solid tumors is still poor and

further studies are required to improve it. One of the major restrictions for NK cell

activity is the immunosuppressive tumor microenvironment (TME). There, tumor and

other immune cells create the appropriate conditions for tumor proliferation while, among

others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the

TME, presumably due to nutrient and oxygen deprivation, and the higher concentration

of tumor-derived metabolic end products, such as lactate. This metabolic restriction of

NK cells limits their effector functions, and it could represent a potential target to focus

on to improve the efficacy of NK cell-based therapies against solid tumors. In this review,

we discuss the potential effect of TME into NK cell metabolism and its influence in NK

cell effector functions.
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INTRODUCTION

Natural Killer (NK) cells are a promising tool in cancer immunotherapy. Their activation is driven
by a balance between activating and inhibitory signals, so they are able to exert antitumor responses
without prior sensitization. NK cells have demonstrated their potential in the treatment of several
malignancies. However, the efficacy of these cells to treat solid tumors is still unsatisfactory (1–
3). One of the main reasons for this limitation is the immunosuppressive effect of the tumor
microenvironment (TME). In the TME, several tumor and tumor-associated cells produce and
secrete factors that directly or indirectly prevent NK cell activation, including interleukin (IL)-
6, IL-10, transforming growth factor-β (TGF-β), prostaglandin E2 (PGE2), and idoleamine 2,3-
dioxygenase (IDO) (4, 5). Through these cytokines and factors, tumors are able to downmodulate
NK cell activating receptors, such as NKp30, NKp44, or NKG2D (3, 4, 6–8), and tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) (9). Furthermore, in the TME, NK cells receive
signals from inhibitory receptors such as CD94/NKG2A, which bind to HLA-E exposed on
the surfaces of several solid tumors including lung, pancreas, stomach, colon, head and neck,
and liver tumor tissues (10). These immunosuppressive mechanisms mainly alter the balance
between activating and inhibitory signals of NK cells, a step that is decisive for NK cell activation.
Nonetheless, it should be also considered the effect of the TME in NK cell metabolism, which is
essential to display full effector functions (11).

It is now accepted that the metabolic profile of NK cells is different under certain pathologies,
such as obesity (12, 13) or viral infection (14). Also, it can be modified by several processes,
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including education (15, 16), maturation (17), or cytokine
stimulation (18–28). The latter is especially relevant because of
the potential use of cytokine-stimulated and/or expanded NK
cells for adoptive cell therapy in cancer treatment (29–32). In
the tumor context, multiple factors converge to modulate NK cell
metabolism. For instance, it is known that TGF-β downregulates
the expression of activating receptors and effector functions (6,
33–37), but it also limits metabolic changes that accompany cell
activation (18, 34). Recently, it has been demonstrated that TGF-
β decreases IL-2-induced mitochondrial metabolism, including
oxidative phosphorylation (OXPHOS) and maximal respiration
in human NK cells (18). Another example of the impact of TME
in NK cell metabolism comes from a recent report from patients
with colorectal liver metastasis. The authors found that tumor-
infiltrating liver-resident NK cells showed signs of mitochondrial
stress, including decreased mitochondrial mass and increased
reactive oxygen species (ROS) production (38). This reduced
mitochondrial metabolism may be an important limitation for
NK cell functionality in the TME. In this review, we will discuss
how TME could shape NK cell metabolism and thus impair their
antitumor activity (Figure 1).

TUMOR-DERIVED METABOLITES

Besides immunosuppressive cytokines, in the TME there is
also an accumulation of tumor-derived metabolites, such
as adenosine and lactate that limit antitumor responses.
Extracellular adenosine concentration is increased in the hypoxic
conditions of tumors, and it plays an important role in immune
modulation (39). Hypoxia promotes the release of ATP and
AMP, and the ectonucleotidases CD39 and CD73 catalyze the
conversion of extracellular ATP to AMP, and AMP to adenosine
(40). The stimulation of NK cells through the adenosine A2A

receptor (A2AR), the predominant subtype of adenosine receptor
expressed in these cells, has been found to suppress their
effector functions (40–43). Following this, it has been reported
that adenosine inhibits cytotoxic activity of mouse lymphokine-
activated killer (LAK) cells (44). A more recent article has
shown that adenosine impairs metabolic activity of IL-12/15-
stimulated human NK cells by inhibiting their OXPHOS and
glycolytic capacity (45). Interestingly, it was reported that there
is an elevated interferon γ (IFNγ) production in the presence
of adenosine, along with a decrease in NK cell cytotoxicity,
suggesting that the metabolic requirements for these two NK
cell effector functions are not the same. Indeed, IL-15-stimulated
NK cells showed reduced killing of A549 cancer cells in the
presence of adenosine (45). A possible explanation for the
elevated IFNγ production may be the downregulation of the
GAPDH gene observed in IL-12/15-stimulated NK cells exposed
to adenosine (45). It has been shown that GAPDH can bind
to IFNγ mRNA and prevent its translation (46). However, this
transcript-arresting mechanism has not been defined in NK cells
yet, and it has to be considered that other mechanisms involved
in the regulation of IFNγ production may explain these results.

On the other hand, lactate and low pH have been found to
decrease cytotoxic activity of NK cells (47). Exposure of NK

cells to lactic acid blocked their IFNγ production following
PMA/Ionomycin stimulation (48). A more comprehensive
analysis revealed that lactic acid inhibits the upregulation of
nuclear factor of activated T cells (NFAT), which is involved
in IFNγ transcription (48). Additionally, Brand et al. have also
shown that lactic acid uptake by murine NK cells leads to
intracellular acidification and to an impaired energy metabolism
(measured as intracellular ATP levels) (48). Similar results
were obtained in liver-resident NK cells treated with lactic
acid, in which intracellular pH and ATP decreased, promoting
apoptosis (38). The accumulation of lactate in the TME is mainly
due to the metabolic reprogramming of tumors, characterized
by primarily using glucose for glycolytic metabolism rather
than metabolizing it via OXPHOS. This accelerated glycolysis
of cancer cells, induced by multiple factors such as hypoxia
and oncogenes (49), may represent a considerable obstacle
for NK cell activity, since it is not only causing lactate
accumulation but also reducing glucose availability in the TME.
Considering that NK cells strongly rely on glucose metabolism
to exert their effector functions, as we will discuss in the next
section, limiting their key fuel may seriously dampen their
antitumor activity. However, not only tumor cells but also
many immune cells undergo metabolic reprogramming upon
activation, a process that may be especially relevant in the
context of the TME and have a significant impact in the tumor
progression (50).

GLUCOSE RESTRICTION

Lymphocytes require glucose to survive and its consumption
is increased following activation, to support energetic and
biosynthetic demands (51). Glucose can be utilized by NK cells
for ATP and NADPH generation through different metabolic
pathways, or as a carbon source for other biomolecules such as
amino acids and fatty acids (19). It has been reported that NK
cells express GLUT1, GLUT3, and GLUT4 (15, 21, 22, 52, 53),
three glucose transporters from the GLUT family. Additionally,
RNA expression of GLUT8 and H+/myo-inositol co-transporter
(HMIT or GLUT13) has been also measured in human NK cells
(16). However, most studies have been focused on GLUT1, so the
expression and regulation of the rest of glucose transporters of the
GLUT family are unknown. Upon cytokine-stimulation, NK cells
increase GLUT1 expression (21, 22), which is consistent with the
augmented glucose uptake and glycolysis that accompanies cell
activation (17, 21, 23). Several groups have studied the correlation
between the glycolytic pathway and the functionality of activated
NK cells, and have shown its relevance in the production of IFNγ

and granzyme B, cytotoxicity and proliferative capacity (21, 23–
25, 54). These findings are in accordance with those obtained
in other lymphocytes. It has been demonstrated that glucose
deprivation dampens T cell antitumor activity (46, 55, 56), and
that metabolic competition in the TME can regulate cancer
progression by impairing antigen-specific responses of tumor-
infiltrating T cells (57). Therefore, it is reasonable to hypothesize
that in the TME, tumor-driven glucose restriction may reduce
glycolysis of NK cells and thus impair their antitumor functions.
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FIGURE 1 | Tumor microenvironment shapes NK cell metabolism and effector functions. (A) Schematic representation of multiple factors that modulate NK cell

metabolism (black), and factors that modulate metabolism and/or negatively affect effector functions (red). NK cells compete for nutrients against tumor and

myeloid-derived suppressor cells (MDSCs). Tumor cells consume large amounts of glucose and produce lactate, which is transported into NK cells through the

SLC16A1 and SLC16A3 transporters, impairing ATP production. Tumor cells also generate extracellular adenosine through the ectonucleotidases CD39 and CD73.

(Continued)
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FIGURE 1 | Extracellular adenosine inhibits NK cell oxidative phosphorylation (OXPHOS) and glycolytic capacity. Additionally, tumor cells increase amino acid

consumption and MDSCs upregulate arginase, IDO, and iNOS enzymes, thus generating an amino acid depleted environment and releasing the immunosuppressive

metabolites NO and L-kynurenine. Some amino acids and their transport are necessary to sustain mTOR and cMyc signaling, which promote glycolysis. Moreover,

mTOR signaling can be also impaired by TGF-β secreted by tumor cells and MDSCs. The glycolytic pathway can be also modulated by the FBP1 enzyme, which is

found to be upregulated in the tumor-infiltrating NK cells of some cancers. Finally, high oxygen consumption by tumor cells and disorganized vascularization can

generate hypoxic regions. Hypoxia impairs NK cell effector functions, but also sustains HIF1α, which promotes glycolytic metabolism. Solid lines: release or uptake of

different nutrients, metabolites, and other factors. Dashed lines: metabolic processing of substrates. Dotted lines: factors that promote or sustain (green lines), or

inhibit (red lines), specific pathways. (B) A schematic representation of several metabolites and other factors present in the TME that limit NK cell effector functions.

Cong et al. have addressed this issue by investigating NK cells in
a murine model of lung cancer. They have found lower glycolytic
rates in NK cells from the lung cancer microenvironment, which
also presented attenuated cytotoxicity and cytokine production.
Furthermore, Cong et al. have described the increased expression
of fructose-1,6-bisphosphatase (FBP1), an enzyme that inhibits
glycolysis, in NK cells of the lung cancer microenvironment.
More importantly, they have demonstrated that NK cell
effector functions can be restored during tumor promotion by
inhibiting FBP1 (58). These findings represent a good example
of how metabolism can be modulated to improve NK cell
antitumor responses.

On another front, Assmann et al. thoroughly analyzed
the metabolic reprogramming of cytokine-stimulated NK cells,
and described the relevance of citrate-malate shuttle and
its regulation by sterol regulatory element-binding proteins
(SREBP). They found that SREBP activity is crucial to maintain
elevated glycolytic rates and effector functions, including
cytotoxicity and IFNγ and granzyme B production (19).
Remarkably, some SREBP inhibitors may be increased in the
TME, such as 27-hydroxycholesterol, which is found to be
elevated in patients with breast, gastric and colorectal cancers
(11, 59–62). Considering this fact and that citrate-malate
shuttle relies on glucose metabolism, it would be interesting
to study the modulation of SREBP in tumor-infiltrating NK
cells and to test whether this metabolic pathway configuration
is conserved in the TME, where glucose concentration is
diminished. Also, it would be of utmost interest to understand
the effect of TME in the modulation of other mediators linked
to both NK cell metabolism and function, such as AMP-
activated protein kinase (AMPK), glycogen synthase kinase 3
β (GSK-3β), diacylglycerol kinases (DGK), regulatory factor X
7 (Rfx7), or inositol-requiring enzyme 1 α (IRE1α) and its
substrate X-box-binding protein 1 (XBP1) (63–69). Following
this line, it would be also worthwhile to further investigate the
role of the mechanistic (or mammalian) target of rapamycin
(mTOR), a central metabolic regulator that promotes, among
others, the glycolytic pathway. Several authors have pointed
the relevance of mTOR for NK cell activation and metabolic
reprogramming, and the negative effect of mTOR inhibition
in terms of NK cell functionality (12, 17, 21, 23, 26, 70–
72). mTOR is sensitive to nutrient availability (73) and can be
repressed by TGF-β, which inhibits NK cell metabolism and
functionality (18, 33, 34). It is therefore presumable that in the
nutrient-deprived TME, where there is also a higher production
of TGF-β, mTOR may be inhibited, thereby limiting NK cell
effector functions.

AMINO ACID DEPLETION

In addition to glucose, amino acids are also an important fuel
for many cellular processes. Tumors show increased amino
acid consumption (74) and synergize with tumor-associated
cells to create a nutrient-depleted microenvironment. It has
been reported that low arginine concentration impairs the
proliferation and IFNγ production of the NK-92 cell line and
primary human NK cells (75, 76). In addition, mTOR signaling
has been found to be inhibited in leucine-depleted media (27,
28). As previously mentioned, mTOR plays a key role in the
modulation of the glycolytic pathway, so the impairment of its
signaling cascade may lead to diminished effector functions.
Similarly, arginine and glutamine levels also affect mTOR
signaling (77). Additionally, mTOR has been found to sustain
the initial expression of cMyc, a transcription factor that supports
the metabolic reprogramming (including the elevated glycolytic
rates) required for the functional responses of IL-2/12-stimulated
mouse NK cells (27). Moreover, glutamine and amino acid
transport through the SLC7A5 transporter are also required for
a sustained expression of cMyc (27).

Our current knowledge indicates that amino acid availability
may be necessary for NK cell functionality, although the main
role of some amino acids could be to maintain the signaling
of other metabolic regulators, such as mTOR or cMyc, rather
than to be used as a fuel. Indeed, Loftus et al. have reported
that glutaminolysis can be inhibited without reducing NK cell
functional responses (27). In this line, a previous report indicated
that receptor-induced IFNγ production of murine NK cells
was not impaired by limiting concentrations of glutamine (24).
These findings suggest that targeting amino acid metabolism
may enhance NK cell-based therapies, by impairing tumor
fuel supply without reducing NK cells’ functionality. However,
it is necessary to thoroughly explore metabolic requirements
of NK cells to validate this hypothesis and to design better
therapeutic strategies.

Nonetheless, it should be also considered that amino acid
consumption by tumor and tumor-associated cells leads to the
accumulation of immunosuppressive catabolites in the TME.
Myeloid-derived suppressor cells (MDSCs) upregulate arginase
and inducible nitric oxide synthase (iNOS). Both enzymes use
arginine as substrate, and the latter catabolizes its conversion to
nitric oxide (NO) (6, 78). It has been found that NO impairs
NK cell antibody-dependent cellular cytotoxicity, and that the
inhibition of iNOS in a mouse model of breast cancer can rescue
this function (79). Furthermore, tumor and tumor-associated
dendritic cells and fibroblasts show increased expression of
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IDO, which catabolizes the conversion of tryptophan to L-
kynurenine (80, 81). L-kynurenine can be transported through
the SLC7A5 transporter (82), and has been found to inhibit
NK cell proliferation (81, 83). Also, L-kynurenine inhibits IL-
2-induced upregulation of NKp46 and NKG2D receptors and
cytokine production of human NK cells in vitro (84).

HYPOXIA

Most solid tumors show high oxygen consumption and
disorganized vascularization, which leads to the generation of
regions permanently or transiently subjected to hypoxia (85).
Cells adapt to this hypoxic conditions through the hypoxia-
inducible family of transcription factors (HIFs) that modulate
a wide range of genes (86). In particular, most dysregulated
genes of NK cells under hypoxia are related to metabolic
and biosynthetic processes (87), which is consistent with the
results obtained in other cells in which HIF-1α promotes or
sustains glycolytic metabolism (88–91). In human NK cells, IL-
15-priming synergistically acts with short term hypoxia to induce
the upregulation of genes involved in the glycolytic pathway
(20). Given the relevance of glycolysis for NK cell effector
functions, these findings could suggest that these cells may
partially conserve their functionality in hypoxic environments.
Indeed, available data argue that hypoxia limits, but does not
completely block, NK cell responses (92, 93). However, it is
still unclear whether HIF-1α and its effect on glycolytic activity
play a significant role on NK cells effector functions. It has
been reported that Hif1a−/− NK cells have normal metabolic
and effector functions in response to IL-2/12 stimulation (27).
It would be interesting to study the relationship between
HIF-1α, metabolism and effector responses of NK cells under
hypoxia. Noteworthy, under hypoxic conditions, there is also a
modulation of genes related to immunomodulatory functions
and a downregulation of activating receptors, such as NKp30,
NKp46, or NKG2D, that contributes to the diminished effector
functions (87, 94). Also, hypoxia promotes tumor immune
evasion through other mechanisms, such as degrading NK cell-
derived granzyme B by autophagy (95). Interestingly, it has
been reported that IL-2-priming can increase the expression of
the above mentioned activating receptors and improve NK cell
cytotoxicity, thereby overcoming the inhibitory effects of hypoxia
(93, 96). Considering that there are several antitumor therapeutic
strategies based on NK cell stimulation with different cytokines,
including IL-2, IL-12, IL-15, IL-18, and IL-21 (29, 31, 32, 97),
it would be of great interest to further analyze the effector
functions of these cytokine-primed and expanded NK cells under
hypoxic conditions.

OTHER FACTORS INFLUENCING NK CELL
METABOLISM

As before mentioned, NK cell metabolism can be modulated
by multiple factors, and some of them may have a relevant
impact on the anti-cancer therapeutic efficacy. A recent report
revealed that obesity impaired mTORC1 activation and limits

NK cell antitumor responses (12). The same article has shown
that NK cells from obese individuals have a reduced metabolic
response following cytokine stimulation (12). Thus, therapies
based in the administration of interleukins may show reduced
efficacy in these patients. In contrast, a previous report indicated
that NK cells from obese children displayed higher levels of
glycolysis and mTORC1 activation both at basal levels and
upon cytokine stimulation (13). These data suggest that NK cell
metabolismmay be differentially regulated in adults and children.
It would be also interesting to explore NK cell metabolism
in other pathologies, such as viral infection, and test whether
the metabolic reprogramming is maintained after a prolonged
period. Chronic infections have been related to the exhaustion
of effector lymphocytes, and exhausted T cells show a different
metabolic pattern (98, 99). It has been described that NK cells
can also become exhausted during tumor progression or chronic
infections (100, 101). Therefore, it would be of great interest
to study metabolic requirements of exhausted NK cells, and
furthermore, test whether metabolic reprogramming induced by
viral infections and tumors could drive NK cell exhaustion.

CONCLUDING REMARKS

NK cell effector functions are supported by their metabolism.
For instance, IFNγ production could be metabolically regulated
at different levels, during transcription, translation, or post-
translational processing (54). In the restrictive TME, NK cell
metabolism and antitumor responses are impaired (38, 58).
Similarly, it has been found that tumor cells compete with
T cells for glucose, and this metabolic competition in the
TME has been described as a driver of cancer progression
(57). In accordance, others have demonstrated that highly
glycolytic tumors impair T cell antitumor responses through
multiple mechanisms (102). Hence, considering that glucose is
a key fuel for NK cells, it is presumable that the metabolic
competition of the TME will dampen their effector functions.
In addition to glucose, reduced amino acid availability and
the accumulation of tumor-derived metabolites may also have
a substantial impact on NK cell functionality. Thus, targeting
tumor metabolism could be a good option to improve the
efficacy of NK cell-based therapies. Alternatively, or additionally,
NK cell metabolism may be modified to compete more
efficiently for nutrients in the TME, or to be less susceptible
to the hypoxia-driven inhibition. For instance, stimulation with
different cytokine combinations can upregulate the expression
of several nutrient transporters, glycolysis and OXPHOS (11,
33, 103), which can be a good option to enhance NK
cell metabolic competitiveness, fitness and plasticity, and
thus improve their effector functions in the TME. NK cell
stimulation with IL-2, IL-15, or IL-18 has been found to
increase the expression of amino acid transporters (28, 72).
IL-15-priming sustains murine NK cells production of IFNγ

in glutamine-free media, and during the inhibition of fatty
acid oxidation with etomoxir (24). Similarly, pretreatment
with ALT-803, an IL-15 superagonist, confers some metabolic
resistance to the inhibition of glycolysis or mTORC1 with
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2-deoxy-D-glucose or rapamycin, respectively (25). However, a
continuous exposure to IL-15 can lead to NK cell exhaustion,
which is accompanied by a reduction in mitochondrial activity
(104). It is therefore necessary to continue exploring NK cell
metabolism to understand how it could be modified to resist
the metabolically restrictive TME and preserve the effector
functions. Undoubtedly, immunometabolism is a fascinating
field of research that has been demonstrated to be relevant
for NK cell effector functions. Further studies will reveal
more precisely how TME shapes NK cell metabolism, which
represents an attractive target to focus on to improve NK cell-
based immunotherapies.
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