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Introduction
Cancer immunotherapy has gained considerable 
momentum in the past decade, especially in the forms 
of immune checkpoint inhibition [1] and adoptive cell 
therapy (ACT), which consists in the infusion of autolo-
gous or allogeneic lymphocytes upon ex vivo expansion 
and (in some instances) genetic engineering [2]. How-
ever, while autologous chimeric antigen receptor (CAR)-
expressing T cells have rapidly become a mainstay for 
the treatment of various hematological malignancies 
[3], such an ACT variant is not yet licensed for the treat-
ment of solid tumors, and no other forms of ACT has yet 
received regulatory approval for routine clinical use in 
cancer patients. Moreover, while > 80% of patients with 
hematological tumors receiving CAR-expressing T cells 
experience (often profound) objective responses, a size-
able proportion thereof ultimately relapse, often (but not 
always) due to the loss of the antigenic CAR target [4, 5]. 

Molecular Cancer

*Correspondence:
Lorenzo Galluzzi
deadoc80@gmail.com
Andreas Lundqvist
andreas.lundqvist@ki.se
1Department of Oncology-Pathology, Karolinska Institute, Stockholm, 
Sweden
2Department of Radiation Oncology, Weill Cornell Medical College, New 
York, NY, USA
3Department of Medical Biochemistry, Molecular Biology and 
Immunology, Faculty of Medicine, University of Seville, Seville, Spain
4Department of Biological Science, Nanyang Technological University, 
Singapore, Singapore
5Sandra and Edward Meyer Cancer Center, New York, NY, USA
6Caryl and Israel Englander Institute for Precision Medicine, New York, NY, 
USA

Abstract
Natural killer (NK) cells, which are innate lymphocytes endowed with potent cytotoxic activity, have recently 
attracted attention as potential anticancer therapeutics. While NK cells mediate encouraging responses in patients 
with leukemia, the therapeutic effects of NK cell infusion in patients with solid tumors are limited. Preclinical 
and clinical data suggest that the efficacy of NK cell infusion against solid malignancies is hampered by several 
factors including inadequate tumor infiltration and persistence/activation in the tumor microenvironment (TME). 
A number of metabolic features of the TME including hypoxia as well as elevated levels of adenosine, reactive 
oxygen species, and prostaglandins negatively affect NK cell activity. Moreover, cancer-associated fibroblasts, 
tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells actively suppress NK cell-
dependent anticancer immunity. Here, we review the metabolic and cellular barriers that inhibit NK cells in solid 
neoplasms as we discuss potential strategies to circumvent such obstacles towards superior therapeutic activity.
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Thus, there is ample room for improvement in the ACT 
field.

In this context, natural killer (NK) cells have attracted 
considerable attention as a potential form of ACT, largely 
due to their antigen-independent, robust cytolytic activ-
ity against cells that display specific surface features (Box 
1) [6]. Abundant preclinical data indicate that NK cells 
not only participate in cancer immunosurveillance (at 
least in some tumors) [7–9], but also support therapeutic 
responses as elicited by a variety of treatments, including 
chemotherapy [10, 11], radiation therapy (RT) [12, 13], 
targeted anticancer agents [14, 15], and peptide-medi-
ated oncolysis [16]. Moreover, signs of NK cell activation 
have been associated with improved clinical outcome in 
various oncological settings, including acute myeloid leu-
kemia (AML) [17–19], gastrointestinal stromal tumors 
[20, 21] and breast cancer [22, 23].

Early clinical studies demonstrate that alloreactive NK 
cells can efficiently eliminate leukemic blasts in subjects 
with AML during haploidentical hematopoietic stem cell 
transplantation (HSCT), de facto extending patient sur-
vival [24–26]. The adoptive transfer of alloreactive NK 
cells has also shown encouraging clinical responses in 
patients with AML, refractory lymphoma, and advanced 
multiple myeloma outside of the HSCT setting [27–30]. 
More recently, CAR-expressing NK cells have been 
shown to mediate objective responses in eight of eleven 
patients with B cell malignancies, including four com-
plete remissions [31]. However, while no less than 40 
clinical trials are currently open to investigate the safety 
and efficacy of adoptively infused NK cells (often com-
bined with other therapeutic modality) in patients with 
solid tumors (Table  1), signals of efficacy remain spo-
radic, as in the case of two distinct clinical trials report-
ing clinical benefits in neuroblastoma patients receiving 
allogeneic NK cells in combination with ganglioside D2 
(GD2)-targeting antibodies [32, 33].

Clinical findings suggest that two parameters are criti-
cal for adoptively transferred NK cells to mediate thera-
peutically relevant effects in patients with solid tumors: 
(1) intratumoral accumulation [34], and (2) persistence 
in an activated state [28]. Here, we review metabolic and 
immunological features of the tumor microenvironment 
(TME) that prevent adoptively transferred NK cells from 
successfully infiltrating, persisting within and mediating 
effector functions against solid tumors as we critically 
discuss strategies to circumvent such barriers in support 
of superior therapeutic activity.

Environmental obstacles for optimal NK cell 
anticancer activity
A number of environmental obstacles prevent the accu-
mulation of adoptively transferred NK cells into the TME 
of solid neoplasms, limit their persistence therein and/or 

inhibit their cytotoxic functions, including (but not lim-
ited to) impaired NK cell trafficking as well as metabolic 
TME features with potent immunosuppressive effects 
[35, 36] (Fig. 1).

Impaired NK cell trafficking. NK cell trafficking and 
homing are regulated by various factors including inte-
grins, selectins, and chemokine receptors [37]. Spe-
cifically, C-X-C motif chemokine receptor 3 (CXCR3) 
appears to play a major role in NK cell recruitment to 
solid tumors. In line with this notion, > 60% of NK cells 
infiltrating human breast cancer has been reported to 
express CXCR3 [38]. Moreover, the CXCR3 ligands 
C-X-C motif chemokine ligand 9 (CXCL9), CXCL10 and 
CXCL11, which are secreted in response to type I inter-
feron (IFN) and interferon gamma (IFNG) signaling, have 
been mechanistically implicated in NK cell infiltration of 
experimental lung adenocarcinomas [39] lymphomas [40] 
and melanomas [41]. Thus, strategies aimed at enhanc-
ing CXCR3 expression by NK cells and/or secretion of 
CXCR3 ligands in the TME may result in increased NK 
cell recruitment to the TME of solid tumors. On the one 
hand, CXCR3 expression by NK cells has been shown 
to increase during ex vivo expansion in the presence of 
interleukin 2 (IL2) [41], but rather drop in the context 
of short-term IL2 stimulation [42]. Along with the con-
siderable drawbacks of recombinant IL2 administration 
– including a non-negligible toxicity and the expansion 
of immunosuppressive CD3+CD4+CD25+FOXP3+ regu-
latory T (TREG) cells [43] – these observations delineate 
a benefit for ex vivo expansion prior to ACT over in 
vivo NK cell stimulation. On the other hand, a variety of 
strategies other than type I IFN or IFNG administration 
(which are also associated with considerable side effects 
and hence have been mostly abandoned) [44, 45] has 
been shown to promote the secretion of CXCR3 ligands 
in the TME. Specifically, the administration of dipeptidyl 
peptidase inhibitors has been reported to drive CXCL9 
and CXCL10 secretion in experimental models of hepa-
tocellular carcinoma (HCC) and pancreatic ductal ade-
nocarcinoma (PDAC), culminating with CXCR3+ NK 
cell recruitment and (at least in some setting) synergy 
with immune checkpoint inhibitors (ICIs) [46, 47]. Simi-
lar results have been observed in models of colorectal 
carcinomas treated with curaxins (small molecules that 
interfere with DNA-histone interactions) [48], as well as 
in models of HPV-driven tumors responding to RT plus 
ATR serine/threonine kinase (ATR) inhibitors [49].

A number of genotoxic agents including RT are 
indeed able to drive a type I IFN response culminating 
with CXCL10 secretion via the accumulation of nuclear 
and mitochondrial DNA in the cytoplasm and conse-
quent activation of cyclic GMP-AMP synthase (CGAS) 
[50–52]. Moreover, it has recently been reported both 
CXCL10 and C-C motif chemokine ligand 5 (CCL5) 
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Indication(s) Phase Status Nº Source Other regimens Notes Ref.
Breast cancer 1 Recruiting 20 Allogenic HER2 blockers

IL2
In patients with 
HER2+breast cancer

NCT05385705

Breast cancer
Gastric cancer

1 Recruiting 36 Allogenic Single agent Off-the-shelf product 
targeting HER2+ tumors

NCT04319757

BTC 2–3 Recruiting 128 Allogenic PD-1 blocker Multi-arm study NCT05429697

CRC 1 Not yet 
recruiting

12 Allogenic IL2
TGFB1 blocker

Single-arm study NCT05400122

CRC 1 Recruiting 15 Allogenic Cetuximab UCB-derived NCT05040568

CRC 1 Recruiting 18 Autologous Single agent Expanded ex vivo by 
proprietary protocol

NCT05394714

CRC 1 Recruiting 38 N/A Single agent Engineered to express an 
NKG2D-like CAR

NCT05213195

CRC
Sarcoma

1 Active, not 
recruiting

14 Allogenic IL15R agonist Single-arm study NCT02890758

Gastric cancer N/A Recruiting 18 Allogenic Single agent UCB-derived NCT04385641

GBM 1 Not yet 
recruiting

25 Allogenic Single agent UBC-derived, engineered 
to resist TGFB1

NCT04991870

GBM 1 Recruiting 5 Autologous Single agent Intratumoral delivery NCT05108012

GEJ tumors
HNSCC

2 Recruiting 55 Allogenic IL15R agonist
PD-1 blocker

Engineered to express a 
PD-L1-targeting CAR

NCT04847466

GIST 2 Not yet 
recruiting

1 Autologous DCs
PD-1 blocker

Single-arm study NCT05461235

Glioblastoma 1 Recruiting 42 Allogenic PD-1 blocker NK92 cell-based NCT03383978

Glioma 1 Not yet 
recruiting

24 Autologous Single agent Single-arm study NCT04254419

HCC 1–2 Recruiting 200 Allogenic SOC Multi-arm study NCT04162158

HCC 2 Recruiting 20 Autologous 5-fluorouracil
Cisplatin

Single-arm study NCT05040438

HCC 2 Recruiting 35 Allogenic Apatinib
PD-1 blocker

UCB-derived NCT05171309

HNSCC 1 Recruiting 12 Allogenic IL15R agonist
CTLA4 blocker

Multi-arm study NCT04290546

Neuroblastoma 1 Active, not 
recruiting

13 Autologous GD2 blocker
Lenalidomide

Single-arm study NCT02573896

Neuroblastoma 1 Active, not 
recruiting

85 Allogenic GD2 blocker
IL2

Single-arm study NCT02650648

Neuroblastoma 1–2 Not yet 
recruiting

31 Autologous GD2 blocker
Irinotecan
Temozolomide

Single-arm study NCT04211675

Neuroblastoma 2 Active, not 
recruiting

153 Allogenic SOC In the context of HSCT NCT01857934

Neuroblastoma
Sarcoma

2 Active, not 
recruiting

15 Allogenic Single agent In the context of HSCT NCT02100891

NSCLC 1–2 Recruiting 24 Allogenic Single agent Dose-finding study NCT04616209

NSCLC 1–2 Recruiting 24 Autologous Carboplatin
Cetuximab
Gemcitabine

Multi-arm study NCT04872634

NSCLC 1 Enrolling by 
invitation

5 Allogenic Single agent NK92 cell-based NCT03656705

NSCLC 1 Recruiting 20 Autologous SOC Including γδ T cells NCT04990063

NSCLC 1 Recruiting 21 Allogenic PD-L1 blocker UCB-derived, engineered 
to express IL15

NCT05334329

Prostate cancer 1 Recruiting 9 N/A Single agent Engineered to express a 
FOLH1-targeting CAR

NCT03692663

RTC 1–2 Recruiting 40 Autologous Single agent Engineered to express a 
CLDN6-targeting CAR

NCT05410717

Solid tumors N/A Recruiting 60 N/A SOC Multi-arm study NCT04214730

Table 1 Clinical trials currently testing NK cells as therapeutic agents in patients with solid tumors.*
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are abundantly secreted by glioblastoma (GBM) cells 
upon exposure to the lysosomal inhibitor chloroquine, 
resulting in accrued accumulation of adoptively trans-
ferred CAR-expressing NK cells in support of superior 
therapeutic activity [53]. Similar findings have been 
documented in preclinical models of melanoma [54] 
and non-small cell lung carcinoma (NSCLC) [55] receiv-
ing pharmacological inhibitors of autophagy or geneti-
cally engineered to become autophagy-deficient [56], 
culminating with accrued infiltration of endogenous NK 
cells and hence inhibited tumor growth [55]. Of note, 
the ability of autophagy inhibitors to promote NK cell 
chemotaxis downstream of CXCL10 and CCL5 hyper-
secretion has been linked (at least some settings) with 
superior CGAS signaling [57]. In line with this notion, 
pharmacological agonism of the CGAS signal transducer 
stimulator of interferon response cGAMP interactor 1 
(STING1) has recently been shown to drive an abundant 

recruitment of CAR-expressing NK cells to mesothe-
lioma organoids, culminating with potent tumor kill-
ing [58]. A similar improvement in tumor infiltration by 
natural or adoptively transferred NK cells has been docu-
mented in preclinical melanoma models secreting CCL5 
downstream of viral infection [59], as well as in models 
of HCC receiving a CCL5-coding adenoviral vector [60].

Additional chemokine receptors that have been 
shown to promote NK cell chemotaxis and recruitment 
to the TME of solid tumors (at least in mice) include: 
(1) CXCR4, whose overexpression endowed adoptively 
transferred NK cells with superior homing capacities to 
GBM xenografts [61]; (2) C-C motif chemokine receptor 
7 (CCR7), which upon acquisition via trogocytosis pro-
motes lymph node homing [62, 63], and (3) chemokine 
(C-X3-C motif ) receptor 1 (CX3CR1), which has been 
involved in superior NK cell responses driven in experi-
mental melanomas and CRCs by the transgene-driven 

Indication(s) Phase Status Nº Source Other regimens Notes Ref.
Solid tumors 1 Active, not 

recruiting
12 Allogenic IL2

PD-L1 blocker
Dose-escalation plus 
expansion phase

NCT04551885

Solid tumors 1 Active, not 
recruiting

27 Autologous PD-1 blocker
PD-L1 blocker

Expanded ex vivo by 
proprietary protocol

NCT03941262

Solid tumors 1 Not yet 
recruiting

12 Autologous Single agent Dose-finding study NCT04557306

Solid tumors 1 Recruiting 12 N/A Oncolytic virus Trained immunity NK cells NCT05271279

Solid tumors 1 Recruiting 30 Autologous IL15R agonist Memory-cytokine en-
riched NK cells

NCT04898543

Solid tumors 1 Recruiting 37 Allogenic IL2
PD-1 blocker
PD-L1 blocker

iPSC-derived NCT03841110

Solid tumors 1 Recruiting 38 Allogenic Cyclophosphamide
Etoposide

UCB-derived NCT03420963

Solid tumors 1 Recruiting 40 N/A Single agent Engineered to express a 
TPBG-targeting CAR

NCT05194709

Solid tumors 1 Recruiting 40 Autologous Single agent Including NKT cells and 
CTLs

NCT05237206

Solid tumors 1 Recruiting 56 Allogenic Single agent Engineered to express a 
TPBG-targeting CAR

NCT05137275

Solid tumors 1 Recruiting 189 Allogenic Cetuximab
HER2 blocker
IL2
PD-1 blocker
PD-L1 blocker

Combinatorial regimens 
based on tumor type

NCT05069935

Solid tumors 1 Recruiting 322 Allogenic Cetuximab
EGFR blocker
HER2 blocker
IL2
PD-1 blocker
PD-L1 blocker

Combinatorial regimens 
based on tumor type

NCT05395052

Solid tumors 1–2 Recruiting 60 N/A Decitabine Post-remission NCT05143125

Solid tumors 1–2 Recruiting 200 Autologous Single agent Activated ex vivo NCT03634501
Abbreviations. BTC, biliary tract cancer; CAR, chimeric antigen receptor; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; GBM, glioblastoma; 
GEJ, gastroesophageal junction; GIST, gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; HSCT, 
hematopoietic stem cell transplantation; iPSC, inducible pluripotent stem cell; N/A, not available or not applicable; NK, natural killer; NKT, natural killer T; NSCLC, 
non-small cell lung carcinoma; RTC, reproductive tract cancer; SOC, standard-of-care; UCB, umbilical cord blood. *source http://www.clinicaltrials.gov; limited to 
studies with status “Not yet recruiting”, “Recruiting”, “Enrolling by invitation” and “Active, not recruiting”.

Table 1 (continued) 

http://www.clinicaltrials.gov
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expression of its cognate ligand C-X3-C motif chemo-
kine ligand 1 (CX3CL1) [64]. However, clinically viable 
strategies to drive the expression of CXCR4, CCR7 and 
CX3CR1 ligands in the TME remain to be identified. 
Moreover, at least in some oncological indications, high 
intratumoral levels of CX3CL1 have been associated with 
dismal prognosis [65], calling for at least some caution on 
strategies that would increase the intratumoral levels of 
this cytokine.

On the contrary, RT has been successfully employed 
to drive NK cell infiltration in experimental mammary 
tumors [66, 67] and PDACs [68], via a mechanism that 

involved CXCL16 and CXCL8 secretion, respectively. 
However, CXCL8 has been associated with immuno-
evasion, tumor progression and resistance to (immuno)
therapy in a variety of oncological settings [69, 70]. Thus, 
promoting CXCL8 secretion by cancer cells might not 
only favor the recruitment of NK cells but also promote 
tumor infiltration by immunosuppressive cells that may 
offset therapeutic efficacy. Conversely, many tumors 
express high levels of CXCL8 at baseline [71], point-
ing to the transgene-driven overexpression of CXCR1 
and CXCR2 (the main CXCL8 receptors) as a feasible 
approach to action the CXCL8 axis in support of NK cell 

Fig. 1 Environmental obstacles against optimal NK cell activity in solid tumors. For optimal anticancer effects, adoptively transferred natural killer 
(NK) cells must (1) access and abundantly infiltrate the tumor microenvironment, (2) persist and proliferate therein in the context of preserved NK cell-
activating receptor expression and limited NK cell-inhibiting receptor expression, and (3) ultimately mediate potent secretory and cytotoxic functions. 
Moreover, malignant cells must retain expression of NK cell-activating ligands and sensitivity to the cytotoxic activity of NK cells. Defects in NK cell traf-
ficking as well as environmental parameters including (but not limited to) hypoxia, reactive oxygen species (ROS), prostaglandin E2 (PGE2) secretion and 
extracellular adenosine abundance interfere with one or several of these sine qua non, ultimately limiting (and hence representing valid targets to im-
prove) the therapeutic effects of adoptively transferred NK cells against solid tumors. CCL5, C-C motif chemokine ligand 5; CXCL, C-X-C motif chemokine 
ligand; CX3CL1, C-X3-C motif chemokine ligand 1; DC, dendritic cell; MDSC, myeloid-derived suppressor cell; TAM, tumor-associated macrophage; TEFF, 
effector T; TREG, regulatory T
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recruitment to the TME of solid tumors. Preclinical data 
in support of this possibility have already been obtained 
in models of renal cell carcinoma (RCC) [72] and ovarian 
cancer [73].

Taken together, these data suggest that NK cell traf-
ficking to solid malignancies can be ameliorated by vari-
ous strategies that prime the TME to secrete increased 
amounts of NK cell-targeting chemokines or by geneti-
cally engineering NK cells to overexpress relevant che-
mokine receptors.

Hypoxia. The TME of solid tumors is frequently 
hypoxic owing to defects in vasculature coupled to 
increased local oxygen demand [74, 75], which is toxic 
for tumor-infiltrating lymphocytes, particularly NK cells 
[76, 77]. Indeed, hypoxia has a variety of detrimental 
effects on NK cells, including a transcriptional rewiring 
accompanied by the downregulation of multiple NK cell-
activating receptors and effector molecules, but less so 
NK cell-inhibitory receptors, cytokine receptors or the 
receptors that mediate antibody-dependent cellular cyto-
toxicity (ADCC) (Box 1) [78–81]. At least in part, this 
originates from the ability of hypoxia to potently inhibit 
mitogen-activated protein kinase 1 (MAPK1, best known 
as ERK) signaling in NK cells, resulting in reduced tran-
scription of signal transducer and activator of transcrip-
tion 3 (STAT3) target genes [79] coupled with limited 
sensitivity to NK cell-activating stimuli including phorbol 
12-myristate 13-acetate (PMA) plus ionomycin, as well 
as IL-15 and IL-18 [81]. Moreover, hypoxia promotes the 
expression of various surface proteins that impair NK cell 
functions via killer immunoglobulin-like receptors (KIRs) 
and other co-inhibitor receptors (Box 1), such as major 
histocompatibility complex, class I, G (HLA-G) and 
CD274 (best known as PD-L1) [82, 83].

Finally, at least in some setting, hypoxia causes mito-
chondrial fragmentation in NK cells via a pathway 
involving constitutive mechanistic target of rapamycin 
(MTOR) signaling and consequent activation of dynamin 
1 like (DNM1L, best known as DRP1), resulting in a shift 
from oxidative phosphorylation to glycolysis and com-
promised tumor control [84]. On the contrary, glycoly-
sis appears to be critical for NK cells to properly control 
viral infections [85]. Whether this apparent discrepancy 
reflects the particularly disadvantageous conditions of 
the solid TME remains to be elucidated. Interestingly, 
despite being poorly cytotoxic, NK cells lacking hypoxia 
inducible factor 1 subunit alpha (HIF1A), a master tran-
scription factor for hypoxia adaptation [86], have been 
shown to mediate anticancer effects in vivo by antagoniz-
ing vascular endothelial growth factor A (VEGFA)-driven 
vascularization [87]. That said, the molecular alterations 
driven by hypoxia via HIF1A in NK cells remain to be 
elucidated.

Importantly, hypoxia also reduces cancer cell sensi-
tivity to NK cell killing, via numerous mechanisms. For 
example, hypoxic breast cancer cells exhibit an increased 
autophagic flux resulting in superior granzyme B 
(GZMB) (Box 1) degradation [88]. A similar mechanism 
has been shown to originate by pseudohypoxia as driven 
by VHL mutations in RCC cells, resulting in accrued 
autophagic flux via the endothelial PAS domain protein 
1 (EPAS1)-dependent upregulation of inositol 1,4,5-tri-
sphosphate receptor type 1 (ITPR1) [89]. Moreover, 
hypoxia has been shown to downregulate the expression 
of NK cell-activating ligands (Box 1) on the surface on 
NSCLC and prostate cancer cells, at least in some set-
tings via a HIF1A-dependent mechanism, culminating 
in limited NK cell activation [90, 91]. Tumor-derived 
microvesicles (TD-MVs) produced under hypoxic condi-
tions are enriched in transforming growth factor beta 1 
(TGFB1) and miR-23a, and hence suppress NK cell activ-
ity upon uptake by downregulating NK cell-activating 
receptors (Box 1) as well as the effector molecule lyso-
somal-associated membrane protein 1 (LAMP1, best 
known as CD107a) [92].

Finally, hypoxic tumor regions are enriched in a vari-
ety of immunosuppressive cells that interfere with NK 
cell functions (see below), including (but not limited to): 
TREG cells [93–95], M2-like tumor-associated macro-
phages (TAMs) [96, 97] and myeloid-derived suppressor 
cells (MDSCs) [98–100].

Reversing hypoxia stands out as a potential strategy 
to restore NK cell functions in the TME of solid tumors. 
Some studies have suggested that physical exercise may 
improve oxygenation in the TME and hence reverse, at 
least partially, hypoxia [101]. However, the ability of 
exercise training to restore NK cell functions in cancer 
patients remain to be formally demonstrated [102]. Con-
versely, myo-inositol-trispyrophosphate (ITPP), which 
increases oxygen liberation by hemoglobin, has been 
shown to increase NK cell abundance while decreasing 
TREG cell numbers in the TME of experimental mela-
nomas [103]. Similar results have been obtained with 
human breast cancer spheroids treated with manganese 
dioxide nanoparticles encapsulated into polylactic-co-
glycolic acid, which degrade tumor-derived hydrogen 
peroxide into molecular oxygen [104]. Of note, in this lat-
ter setting, HIF1A downregulation was accompanied by 
other favorable alterations of the TME, including reactive 
oxygen species (ROS), lactate and adenosine reductions 
[104].

An alternative approach to circumvent the detrimen-
tal effects of hypoxia on NK cells consists in rendering 
the latter more tolerant to low oxygen levels. At least in 
some setting, IL2 priming has been shown to prevent the 
hypoxia driven downregulation of killer cell lectin like 
receptor K1 (KLRK1, best known as NKG2D) [80]. Along 
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similar lines, NK cells engineered to overexpress CD16 
(Box 1) and IL2 preserve their ability to mediate ADCC 
and antibody-independent cytotoxicity in hypoxic micro-
environments [105]. Finally, pharmacological inhibition 
of the ERK phosphatase protein tyrosine phosphatase 
non-receptor type 6 (PTPN6, best known as SHP-1) has 
been shown to efficiently prevent hypoxia-driven ERK-
STAT3 silencing and consequent NK cell dysfunction 
[79]. The latter approach, however, may result in the 
compensatory expression of PD-L1, which in models of 
prostate cancer has been shown to support (rather than 
prevent) NK cell dysfunction while providing a therapeu-
tic target for ICIs [91]. Finally, autophagy inhibition has 
been shown to restore the sensitivity of hypoxic cancer 
cells to NK cell-dependent cytotoxicity [88]. However, 
clinically viable pharmacological autophagy inhibitors 
remain elusive [106]. Moreover, NK cells are critically 
dependent on autophagy for their development and 
activity [107], in thus far resembling most other immune 
effector cells [108], overall casting doubts on non-tar-
geted autophagy inhibition as a viable strategy to restore 
cancer cell sensitivity to lysis by NK cells.

In summary, increasing oxygen availability in the TME 
or rendering NK cells resistant to hypoxia stand out as 
the most promising strategies to circumvent the det-
rimental effects of poor oxygen availability on NK cell 
functions.

Reactive oxygen species. ROS are abundant in the TME 
of solid tumors and promote disease progression via a 
variety of mechanisms including immunoevasion [109–
111]. Indeed, while malignant cells as well as immuno-
suppressive M2-like TAMs are generally endowed with 
efficient mechanisms for ROS detoxification [112, 113], 
non-transformed cells as well as immune effector cells 
including NK cells are particularly sensitive to the geno-
toxic and cytotoxic effects of ROS [114].

Besides overt cytotoxicity, which only emerges in the 
presence of high ROS levels, one of the mechanisms 
through which ROS impair the anticancer activity of NK 
cells involve alterations in NK cell membrane properties. 
Specifically, ROS promote the accumulation of anionic 
charges on the surface of NK cells, limiting their ability 
to adhere to similarly charged target cancer cells, a defect 
that can be prevented by antioxidant molecules includ-
ing superoxide dismutase (SOD) mimetics and catalase 
(CAT) [115]. Moreover, ROS species produced by cyto-
chrome b-245, beta polypeptide (CYBB, best known as 
NOX2) have been mechanistically implicated in the abil-
ity of experimental melanomas to form metastasis via a 
mechanism that (1) is manifest only in immunocompe-
tent (but not IFGN deficient) hosts, and (2) involves NK 
cell dysfunction [116]. At least in part, this may reflect 
the ability of ROS to downregulate CD16 on the surface 
of (and hence impair ADCC by) NK cells [117]. Finally, 

ROS have also been shown to promote the accumulation 
of M2-like macrophages, which also limit NK cell activa-
tion [118].

Increasing the tolerance of NK cells to ROS stands 
out as a promising approach to improve their anticancer 
effects in the TME of solid tumors beyond ROS scaveng-
ing [115] and inhibition of ROS-producing systems [116]. 
For example, IL15 – which is a potent NK cell activa-
tor [119] – has been reported to upregulate thioredoxin 
(TXN) in NK cells via an MTOR-dependent mechanism 
that increases the availability of reducing thiols on the 
cell surface, culminating with preserved cytotoxic func-
tions despite environmental oxidative stress [120]. Simi-
lar results have been obtained with an activator of NFE2 
like bZIP transcription factor 2 (NFE2L2, a master reg-
ulator of antioxidant responses best known as NRF2) 
[121] in NK cells from healthy donors [122], as well as by 
engineering CAR-expressing T cells specific for erb-b2 
receptor tyrosine kinase 2 (ERBB2, best known as HER2) 
to overexpress CAT, which resulted not only in superior 
cytotoxicity against HER2-expressing mammary tumors, 
but also in preserved bystander cytotoxicity by otherwise 
ROS-sensitive NK cells [123].

These observations exemplify strategies that might 
be employed to limit the detrimental effects of ROS on 
NK cells adoptively transferred for the treatment of solid 
tumors.

Prostaglandin E2. A variety of tumors emerge and 
progress in the context of a chronic, indolent inflamma-
tory response that ultimately promote immunoevasion, 
which is commonly known as tumor-promoting inflam-
mation (TPI) [124]. Prostaglandin-endoperoxide syn-
thase 1 (PTGS1, best known as COX1) and PTGS2 (best 
known as COX2) are key contributors to TPI as they 
secrete the mitogenic and immunosuppressive factor 
eicosanoid prostaglandin (prostaglandin E2) [125–127].

While mouse splenic NK cells express all four main 
PGE2 receptors, it appears that prostaglandin E recep-
tor 2 (PTGER2, best known as EP2) and even more so 
PTGER4 (EP4) are the main transducers of PGE2-elicited 
immunosuppression [128, 129]. Indeed, selective EP4 
agonists have been shown to efficiently inhibit both 
IFNG production and chemotactic responses to serum 
chemokines by mouse NK cells, while EP2 agonists only 
had partial suppressive activity [128]. Moreover, phar-
macological inhibition of EP4 reportedly protects NK 
cells from the immunosuppressive effects of PGE2 in 
preclinical models of mammary carcinomas, resulting in 
preserved effector functions and antimetastatic activity 
[129]. Similar findings have been obtained in models of 
CRC [130].

Mechanistically, PGE2 produced by HCC cells has been 
shown to cooperate with products of the immunosup-
pressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1) 
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at inducing the downregulation of NKG2D and other 
NK cell-activating receptors (Box 1) in tumor-infiltrat-
ing human NK cells, resulting in profound dysfunction 
[131]. Along similar lines, PGE2 secretion by BRAF-
mutant melanoma cells considerably reduces the viabil-
ity of mouse NK cells recruited to the TME, as well as 
their capacity to secrete CCL5 and X-C motif chemokine 
ligand 1 (XCL1) [132], which is critical for the recruit-
ment of cross-presenting dendritic cells (DCs) and hence 
for the initiation of tumor-targeting adaptive immune 
responses that can be therapeutically actioned with ICIs 
[133]. Finally, tumor-derived PGE2 mediates indirect 
immunosuppressive effects by an EP2- and EP4-elicited, 
ERK-dependent mechanism whereby tumor-infiltrat-
ing MDSCs are activated to produce increase levels of 
TGFB1, culminating with NK cell dysfunction in both 
human and mouse experimental systems [134, 135].

EP4 inhibitors stand out as a potential strategy to pre-
vent NK cell dysfunction driven by PGE2 [129]. Along-
side, IL15 has been shown to endow NK cells with 
resistance to PGE2 and preserved anticancer activ-
ity, both in vitro and in vivo, as a function of sustained 
MTOR signaling coupled with phosphodiesterase 4  A 
(PDE4A) expression and CD25/CD54 co-expression 
[136]. Whether any of these proteins can be directly tar-
geted to limit NK cell suppression by PGE2, however, 
remains to be elucidated.

Adenosine. Adenosine is a ubiquitous metabolite gen-
erated as the terminal product of ATP degradation [137]. 
Adenosine accumulates in the extracellular milieu in the 
context of immunogenic cell stress and death as imposed 
by the (natural or treatment-driven) adverse microen-
vironmental conditions of the TME [138, 139], which is 
coupled to abundant ATP release, thanks to the sequen-
tial activity of two nucleotidases: (1) ectonucleoside tri-
phosphate diphosphohydrolase 1 (ENTPD1, best known 
as CD39), which degrades ATP into ADP and AMP, and 
(2) 5’-nucleotidase ecto (NT5E, best known as CD73), 
which degrades AMP into adenosine [140, 141]. CD39 
and CD73 are overexpressed by malignant cells as well 
both myeloid [142, 143] and lymphoid [144, 145] compo-
nents of the TME in a variety of solid tumors, resulting 
in constitutively high extracellular adenosine levels [146, 
147].

Adenosine mediates broad immunosuppressive effects 
upon binding to adenosine A2a receptor (ADORA2A, 
also known as A2AR) or ADORA2B (also known as 
A2BR) on the surface of immune effector cells [148]. 
Specifically, adenosine has been shown to suppress both 
cytokine release [149] and cytotoxic functions [150, 151] 
in activated NK cells via an A2AR-initiated, cyclic AMP 
(cAMP)-dependent signaling cascade resulting in pro-
tein kinase A (PKA) engagement [149–151]. At least in 
some setting, such a dose-dependent inhibitory effect 

[152] manifest with decreased expression of CD56 [153], 
Fas ligand (FASL) and perforin 1 (PRF1) (Box 1) [150], as 
well as with limited IFNG and TNF secretion [149].

Of note, tumor-infiltrating lymphocytes including NK 
cells generally express higher levels of CD39, CD73 and/
or CD38 (yet another adenosine-producing enzyme) 
[154, 155] as compared to their circulating counterparts 
[153, 156, 157], which (at least in some settings) results 
in the acquisition of immunosuppressive properties. Spe-
cifically, CD73+ NK cells infiltrating breast carcinomas 
and sarcomas have been shown to express a number of 
immunosuppressive molecules including (but not lim-
ited to) PD-L1, PD-1, lymphocyte activating 3 (LAG3), 
hepatitis A virus cellular receptor 2 (HAVCR2, best 
known as TIM-3) and T cell immunoreceptor with Ig and 
ITIM domains (best known as TIGIT) [158], correlating 
with abundant secretion of immunosuppressive cyto-
kines such as IL10 and TGFB1 [156]. Along similar lines, 
CD56brightCD16− NK cells (but not their CD56dim coun-
terparts) express not only CD38 but also ectonucleotide 
pyrophosphatase/phosphodiesterase 1 (ENPP1, which is 
required for adenosine synthesis downstream of CD38), 
and hence can exert potent immunosuppressive effects 
on other immune effectors – including CD4+ helper T 
lymphocytes – as a consequence of abundant adenos-
ine production [159]. At least in part, the detrimental 
effects of adenosine on NK cells also involve the activa-
tion of tumor-resident immunosuppressive cells includ-
ing M2-like TAMs, MDSCs and TREG cells [160, 161].

Corroborating the potent immunosuppressive activ-
ity of adenosine on NK cells, both pharmacological and 
genetic strategies aimed at interrupting A2AR and/or 
A2BR activation have been shown to prevent adenosine-
driven NK cell dysfunction in a variety of experimental 
settings [149–152]. Along similar lines, Entpd1 or Nte5 
deletion as well as pharmacological or antibody-medi-
ated inhibition of CD39 and/or CD73 have been con-
sistently associated with restored NK cell activity and 
improved tumor control in numerous preclinical models 
of malignancy, including melanoma [162], sarcoma [163], 
glioblastoma [53], as well as prostate [163], breast [164], 
and colorectal cancer [165, 166]. In the context of ACT, 
CD73 blockage has been shown to promote the recruit-
ment of CAR-expressing NK cells engineered to display 
increased levels of NKG2D to NSCLC xenografts [167]. 
Moreover, IL15 appears to be superior to IL2 to render 
NK cells expanded ex vivo resistant to adenosine [168]. 
That said, while cytokine administration in the context of 
ACT promotes NK cell expansion and persistence, this 
approach is associated with various problems includ-
ing (but not limited to) non-negligible toxicity and the 
expansion of (adenosine-producing) TREG cells [43, 169].

Taken together, these observations suggest that inhib-
iting adenosine receptors and/or adenosine-producing 
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enzymes stands out as a promising strategy to improve 
NK cell activation in the TME of solid tumors.

Immunological and stromal barriers against NK cell 
activity
A number of immune and stromal cellular compartments 
of the TME potently inhibit the effector functions of 
NK cells. Thus, targeting these cell populations – which 
include TREG cells, TAMs, MDSCs and cancer-associated 
fibroblasts (CAFs) – represents a promising approach to 
endow tumor-infiltrating NK cells with superior effector 
functions (Fig. 2).

Regulatory T cells. Tumor-infiltrating TREG cells medi-
ate potent immunosuppressive effects via direct, con-
tact-dependent pathways, as well as through direct and 
indirect humoral mechanisms [170]. For instance, TREG 
cells have been shown to kill effector T (TEFF) cells upon 
GZMA and GZMB secretion, compete with TEFF cells for 
IL2 availability (because TREG cells express high levels of 
the high affinity IL2 receptor CD25) and secrete immuno-
suppressive cytokines including IL10 and TGFB1 [170]. 
In line with this notion, high intratumoral levels of TREG 
cells have been associated with poor disease outcome in 

numerous cohorts of patients with cancer [171]. More-
over, a number of pharmacological and genetic strategies 
for TREG cell depletion, including CD25-targeting anti-
bodies [172, 173] as well as the expression of the diph-
theria toxin (DT) receptor under the control of the Foxp3 
promote coupled to DT administration [174, 175], have 
been shown to improve the efficacy of various anticancer 
regimens in mice, generally in the absence of overt auto-
immune reactions.

Both human and mouse canonical NK cells are highly 
sensitive to TREG cell-mediated immunosuppression, gen-
erally resulting in decreased expression of NK cell-acti-
vating receptors such as NKG2D (Box 1), upregulation 
of co-inhibitory receptors such as PD-1 and interleu-
kin 1 receptor accessory protein like 1 (IL1RAPL1, best 
known as IL1R8), coupled to limited proliferative and 
cytotoxic responses upon activation [176–178]. This has 
been shown to translate into limited control of primary 
tumor growth and metastatic dissemination in models of 
NSCLC and PDAC, through a mechanism that relies on 
STAT3 signaling in TREG cells and TGFB1 secretion [176, 
179]. At least in some settings, NK cells can also be made 
resistant to the immunosuppressive effects of TREG cells 

Fig. 2 Immunological and stromal barriers against optimal NK cell activity in solid tumors. Tumor-infiltrating natural killer (NK) cells engage in 
contact-dependent and independent interactions with a variety of cells that ultimately inhibit their anticancer activity. Such cells include not only regula-
tory T (TREG) cells, M2-like tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), but also cancer-associated fibroblasts 
(CAFs). ARG1, arginase 1; IDO1, indoleamine 2,3-dioxygenase 1; IL, interleukin; MMP, metalloprotease; NO, nitric oxide; PGE2, prostaglandin E2; ROS, reactive 
oxygen species; TGFB1, transforming growth factor beta 1
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upon exposure to IL2, IL7 or IL12 as well as neutraliza-
tion of the IL1R8 ligand IL37 [176, 178, 180]. Moreover, 
adaptive NK cells that develop in the context of cytomeg-
alovirus infection appear to be naturally insensitivity to 
TREG cell-mediated immunosuppression [178]. At least 
in part, this phenomenon results from stable epigenetic 
modifications resulting in the expression of multiple NK 
cell-activating receptors and (paradoxically) TIM-3 cou-
pled to the loss of NK cell-inhibiting receptors (Box 1), 
ultimately endowing adaptive NK cells with potent effec-
tor functions despite their terminally differentiated state 
[181–183]. Finally, a NK cell line engineered to express a 
chimeric receptor encompassing the extracellular domain 
of transforming growth factor beta receptor 2 (TGFBR2) 
fused to the intracellular domain of NKG2D has recently 
been shown to mediate superior therapeutic efficacy in 
preclinical HCC models, reflecting not only improved 
cytotoxic responses (which could further be amelio-
rated by TGFB1, at least in vitro), but also (1) enhanced 
recruitment to the solid TME, and (2) suppressed TREG 
cell differentiation [184].

In summary, although therapeutically inhibiting or 
depleting TREG cells in patients remain challenging [185], 
these immunosuppressive components of the TME stand 
out as promising targets to improve the efficacy of adop-
tively transferred NK cells against solid tumors.

Tumor-associated macrophages. Human solid tumors 
are abundantly infiltrated by TAMs, often (but not 
always) driven by the CCL2-dependent recruitment of 
circulating monocytes [97, 186]. TAMs are a very plas-
tic component of the TME that can adapt a spectrum of 
phenotypic and functional features ranging from a pre-
dominantly pro-inflammatory (M1-like) state (which 
is promoted by IFNG and TNF) to a prominently anti-
inflammatory (M2-like) state (which is promoted by IL4, 
TGFB1 and PGE2) [97]. M2-like macrophages not only 
mediate robust immunosuppressive effects via contact-
dependent (e.g., PD-L1 expression) and independent 
(e.g., TGFB1 and IL10 secretion; arginine depletion) 
mechanisms, but also promote neo-angiogenesis and 
metastatic tumor dissemination, de facto supporting 
disease progression and resistance to treatment in vari-
ety of oncological settings [187]. Accordingly, abundant 
tumor infiltration by TAMs as well as elevated circulat-
ing levels of TAM-relevant cytokines including CCL2, 
CCL8 and colony stimulating factor 1 (CSF1) have been 
linked with poor disease outcome in multiple cohorts of 
cancer patients [171, 187, 188]. Moreover, an abundant 
preclinical literature demonstrates that depleting M2-like 
TAMs or inhibiting their immunosuppressive functions 
mediates robust anticancer effects in mice, either as a 
standalone therapeutic strategy or combined with other 
antineoplastic regimens [187, 189].

M2-like TAMs isolated from spontaneous mouse 
mammary carcinomas as well as differentiated ex vivo 
from the peritoneum or bone marrow of healthy mice 
have been shown to potently inhibit NK cell cyto-
toxicity coupled to the acquisition of an exhausted 
CD27lowCD11bhigh phenotype via a TGFB1-dependent 
mechanism [190]. At least in preclinical CRC models, 
such an immunosuppressive pathway is initiated by the 
CAF-driven, CXCL8-dependent polarization of TAMs 
towards an M2-like phenotype [191]. M2-like TAMs col-
lected from the ascites of patients with ovarian cancer 
and exposed to Toll-like receptor (TLR) ligands appear 
to undergo repolarization towards an M1-like state, 
resulting in IL12 secretion and acquisition of cytolytic 
functions by co-cultured NK cells [192, 193]. Finally, 
monoclonal antibodies targeting scavenger receptors on 
M2-like TAMs have been shown to limit their immuno-
suppressive effects and efficiently derepress the cytolytic 
functions of NK cells in human and mouse models of 
melanoma [194].

Despite the scarcity of studies directly investigating the 
interactions between TAMs and NK cells, these observa-
tions suggest that M2-like TAMs may also offer targets 
to improve the activity of adoptively transferred NK 
cells against solid tumors. That said, no agent conceived 
to deplete M2-like TAMs or repolarize them into their 
M1-like counterparts is available for clinical use yet.

Myeloid-derived suppressor cells. MDSCs are a heter-
ogenous population of immature bone marrow-derived 
myeloid cells with prominent immunosuppressive effects 
[195]. Human MDSCs are generally subdivided into 
CD11b+CD14+CD33+HLA-DRlow/neg monocytic (M)-
MDSCs or CD11b+CD15+HLA-DRlowCD66b+ granulo-
cytic (G)- or polymorphonuclear (PMN)-MDSCs [196]. 
MDSCs expand peripherally in both cancer patients and 
tumor-bearing mice, at least in part driven by the sys-
temic effects of cancer cell-derived cytokines that influ-
ence hematopoiesis in the bone marrow, including IL6 
and CSF2 [197]. Moreover, MDSCs can accumulate in 
the TME of solid tumors upon recruitment via chemo-
kines including (but not limited to) CCL2 [99, 195].

In tumor-bearing mice, the frequency of CD11b+Gr1+ 
MDSCs inversely correlates with the expression of NK 
cell-activating receptors including NKG2D and natural 
cytotoxicity triggering receptor 3 (NCR3, best known 
as NKp30) on the NK cell surface, as well as with IFNG 
and PRF1 production [198, 199]. At least in preclini-
cal models, the ability of MDSCs to suppress NK cell 
functions requires physical contact, which is facilitated 
by membrane-bound TGFB1 [200]. In line with this 
notion, depleting MDSCs (but not TREG cells) has been 
shown to restore NK cell-dependent tumor control in an 
orthotopic model of HCC [199]. Additional mechanisms 
through which MDSCs inhibit NK cells (as well as TEFF 
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cells) include the production of ROS and reactive nitro-
gen species (see above), as well as the depletion of essen-
tial amino acids such as arginine, reflecting the elevated 
expression of arginase 1 (ARG1) [195].

Several strategies to inhibit MDSCs in support of 
superior NK cell activity have been explored. For exam-
ple, inhibiting MDSC trafficking by targeting CXCR1 
and CXCR2 has been shown to efficiently limit MDSC 
recruitment in preclinical models of head and neck can-
cer (HNC), resulting in superior efficacy from adoptively 
transferred NK cells [198]. Along similar lines, inhibition 
of nitric oxide (NO) production by MDSCs with a nitric 
oxide synthase 2 (NOS2) inhibitor reportedly restores 
NK-cell mediated ADCC in preclinical models of breast 
cancer, resulting in superior tumor control in vivo [117]. 
Similar benefits have been documented with pharmaco-
logical inhibitors of ARG1 in preclinical models of CRC 
treated with adoptively transferred NK cells [201]. Addi-
tional strategies that efficiently inhibit MDSCs resulting 
in derepressed NK cell activity include specific chemo-
therapeutic agents (especially, doxorubicin, gemcitabine 
and low-dose cyclophosphamide) [202–206], approaches 
to prevent PGE2 secretion by MDSCs [134], as well as all-
trans retinoic acid (ATRA), which is known to promote 
MDSC differentiation and hence limit their immuno-
suppressive activity [207]. Interestingly, ATRA can also 
promote the expression of NK cell-activating ligands 
including MHC class I polypeptide-related sequence A 
(MICA) and MICB on malignant cell, de facto rendering 
them more susceptible to NK cells [208].

Taken together, these observations delineate mul-
tiple, clinically viable strategies for targeting MDSCs to 
improve the activity of NK cell-based ACT in patients 
with solid tumors.

Cancer-associated fibroblasts. Solid tumors are abun-
dantly infiltrated by a highly plastic and functionally 
heterogeneous population of CAFs, which can originate 
from a variety of tissue-resident cells as well as from cir-
culating precursors [209–211]. Several factors have been 
shown to promote the accumulation of CAFs in the TME 
of solid tumors including not only cytokines such as 
TGFB1 [212], CXCL12 [213] and platelet derived growth 
factor (PDGF) [214], but also oxidative stress coupled to 
mitochondrial dysfunction [215]. In multiple settings, 
CAFs have been shown to express fibroblast activa-
tion protein alpha (FAP), actin alpha 2, smooth muscle 
(ACTA2, best known as αSMA), S100 calcium bind-
ing protein A4 (S100A4, best known as FSP1), vimentin 
(VIM), and both subunits of the heterodimeric PDGF 
receptor [209].

Early studies demonstrated that CAFs promote tumor 
progression and resistance to treatment by a number of 
mechanisms, such as (1) favoring neoangiogenesis, (2) 
generating a dense stromal reactions that hinder tumor 

infiltration by drugs and immune effector cells, as well 
as (3) directly inhibiting the activity of the latter, notably 
NK cells [209, 216]. Specifically, CAFs produce abundant 
TGFB1 [217], which is known to potently suppress NK 
cell functions [218]. Moreover, fibroblasts exposed to 
melanoma, CRC or HCC cells secrete PGE2 and express 
IDO1, hence acquiring the ability to promote NKG2D 
and NKp30 downregulation on NK cells, coupled with 
suppressed cytotoxic activity [131, 219, 220]. Along 
similar lines, CAFs isolated from patients with endome-
trial cancer have been shown to potently suppress NK 
cell activity along with the downregulation of PVR cell 
adhesion molecule (PVR), yet another NK cell-activating 
receptor [221]. Finally, melanoma-associated CAFs have 
been reported to secrete metalloproteases that efficiently 
shed MICA and MICB from the surface of malignant 
cells, thus rendering them less prone to activate NK cells 
upon contact [222, 223].

Targeting FAP-expressing CAFs or TGFB1 signaling 
has been shown to mediate potent anticancer effects in 
a variety of preclinical tumor models [212, 224–226]. At 
least in models of PDAC, the beneficial effects of CAF-
targeting strategies have been shown to originate from 
NK cell (rather than TEFF cell) reactivation [227]. More-
over, NK cells can contribute to CAF inhibition when 
ADCC-competent CAF-targeting monoclonal antibodies 
are employed, as demonstrated in models of CRC where 
CAFs express abundant epidermal growth factor recep-
tor (EGFR) levels [228].

In summary, while CAFs may represent valid targets 
to improve the activity of NK cells in the solid TME, the 
lack of specific and reliable CAF markers poses a non-
negligible obstacle to this approach.

Concluding remarks and future perspectives
While NK cells are attracting considerable interest as 
potential anticancer therapeutics and encouraging data 
have been documented in patients with hematological 
malignancies, the use of NK cells for the treatment of 
solid tumors remains hindered by a number of obsta-
cles, as amply discussed herein [229–231]. Indeed, while 
numerous strategies aimed at improving the recruitment 
of NK cells to the TME as well as their persistence and 
activation have been proven effective in preclinical tumor 
models (see above), some of these approaches are com-
plex to translate into clinically viable procedures (e.g., 
systemic infusion of NK cell-activating cytokines). On the 
contrary, priming the TME with (ideally FDA-approved) 
agents, such as low-dose chemotherapy to deplete TREG 
cells and MDSCs [232] or RT to jumpstart anticancer 
immunity [233], stands out as a powerful and clinically 
valid approach to provide adoptively transferred NK cells 
with a relatively more permissive microenvironment. 
Alongside, incorporating specific agents (e.g., difference 
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cytokines as well as modifications or combinations 
thereor) in ex vivo expansion protocols may offer a safe 
and yet powerful approach to create NK cell populations 
with increased resistance to the adverse metabolic and 
immunological conditions of the TME, such as cytokine-
induced memory-like NK cells, in support of superior 
treatment efficacy. Finally, NK cells resemble TEFF cells 
in expressing a number of co-inhibitory receptors that 
may targeted for therapeutic purposes, including (but 
not limited to) PD-1 and killer cell lectin like receptor 
C1 (KLRC1, best known as NKG2A). While only PD-1/
PD-L1- and cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA4)-targeting agents are approved for use in 
patients with cancer nowadays [234], several other ICIs 
are currently in clinical development including NKG2A-, 
LAG3- and TIM-3 blockers [234]. These agents may also 
offer a safe and convenient approach to boost the activ-
ity of adoptively transferred NK cells against solid tumors 
[235, 236].

In conclusion, while additional work is required, we 
surmise that combinatorial strategies aimed at enabling 
robust tumor infiltration and protecting NK cells from 
the metabolic and immunological conditions of the TME 
are key to unlock the therapeutic potential of adoptively 
transferred NK cells for human solid tumors.

Box 1 - principles of NK cell biology
Human natural killer (NK) cells are CD45+CD3CD56+ 
cells that originate in the bone marrow and mature in 
peripheral lymphoid and non-lymphoid organs [237]. 
The ability of NK cells to proliferate, secrete cytokines 
and mediate cytotoxic effects is not regulated by an 
antigen-specific receptor as in the case of T and B lym-
phocytes, but is rather controlled by a balance between 
activating and inhibitory signals elicited by antigen-inde-
pendent interactions with other cells [238]. Such signals 
are dispatched to NK cells by a variety of surface recep-
tors including: (1) killer immunoglobulin-like receptors 
(KIRs), which generally deliver inhibitory cues via immu-
noreceptor tyrosine-based inhibitory motifs (ITIMs); (2) 
c-type lectin receptors, such as the immunosuppressive 
receptor killer cell lectin like receptor C1 (KLRC1, best 
known as NKG2A) and the immunostimulatory receptor 
KLRK1 (best known as NKG2D); (3) leukocyte immu-
noglobulin-like receptors (LIRs), such as the immuno-
suppressive molecule leukocyte immunoglobulin like 
receptor B1 (LILRB1), and (4) natural cytotoxicity recep-
tors, such as natural cytotoxicity triggering receptor 1 
(NCR1, best known as NKp46) and NCR2 (best known 
as NKp44), which deliver activating stimuli via immuno-
receptor tyrosine-based activation motifs (ITAMs) [239].

NK cells also express (1) various cytokine receptors, 
notably the receptors for interleukin 12 (IL12), IL15 and 
IL21, which deliver mitogenic signals [240]; (2) at least 

some of the co-inhibitory receptors that suppress effec-
tor T cell activation, such as programmed cell death 1 
(PDCD1, best known as PD-1) and T cell immunorecep-
tor with Ig and ITIM domains (best known as TIGIT) 
[239]; as well as (3) high affinity receptors for immuno-
globulins, notably Fc gamma receptor IIIa (FCGR3A) 
and FCGR3B (the heterodimeric CD16 receptor), which 
underlie their ability to mediate antibody-dependent cel-
lular cytotoxicity (ADCC) against opsonized cells [241, 
242]. Besides ADCC, NK cells can harness at least three 
additional mechanisms to mediate cytotoxic effects: (1) 
the exocytic release of granules containing perforin 1 
(PRF1) and various members of the granzyme protease 
family; (2) the secretion of interferon gamma (IFNG) and 
tumor necrosis factor (TNF); and (3) the engagement of 
death receptors including Fas cell surface death recep-
tor (FAS) and TNF receptor superfamily member 10b 
(TNFRSF10B, best known as TRAIL-R2) on the surface 
of target cells [243]. Moreover, at least in some settings, 
NK cells secrete chemotactic factors for dendritic cells 
(DCs), such as X-C motif chemokine ligand 1 (XCL1) 
and C-C motif chemokine ligand 5 (CCL5), ultimately 
promoting the initiation of antigen-specific immune 
responses downstream of T-cell cross-priming [132]. 
Importantly, all these functions exhibit considerable 
degree of heterogeneity across diverse NK cell subsets, 
reflecting not only different maturation stages, but also 
(at least some degree) of tissue specificity [243].
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