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The antitumor functions of NK cells are regulated by the integration of positive and

negative signals triggered by numerous membrane receptors present on the NK cells

themselves. Among the main activating receptors, NKG2D binds several stress-induced

molecules on tumor targets. Engagement of NKG2D by its ligands (NKG2D-Ls) induces

NK cell activation leading to production of cytokines and target cell lysis. These

effects have therapeutic potential as NKG2D-Ls are widely expressed by solid tumors,

whereas their expression in healthy cells is limited. Here, we describe the genetic and

environmental factors regulating the NKG2D/NKG2D-L pathway in tumors. NKG2D-L

expression is linked to cellular stress and cell proliferation, and has been associated with

oncogenic mutations. Tumors have been found to alter their to NKG2D-L expression as

they progress, which interferes with the antitumor function of the pathway. Nevertheless,

this pathway could be advantageously exploited for cancer therapy. Various cancer

treatments, including chemotherapy and targeted therapies, indirectly interfere with the

cellular and soluble forms of NKG2D-Ls. In addition, NKG2D introduced into chimeric

antigen receptors in T- and NK cells is a promising tumor immunotherapy approach.
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NKG2D/NKG2D-LS IN TUMOR IMMUNOSURVEILLANCE

The immunosurveillance theory described by Robert Schreiber in 2002 (1) suggested that NK cells
are involved in the early control of tumor development, before the successive equilibrium and
escape phases when tumor-induced immunosuppression results in the emergence of immune-
resistant tumor variants. During the elimination phase, NK cells detect and kill emerging
transformed cells. NK cells naturally express receptors detecting stress-induced molecules and
altered expression of Major Histocompatibility Complex (MHC) class-I molecules on transformed
targets (2). NK cells also potentiate the adaptive immune response through cytokine secretion and
by stimulating dendritic cells (DC), notably within lymph nodes (3–8).

Several groups have used samples obtained after curative resection to investigate the role played
by NK cells in primary solid tumors. Their results indicated that NK cell infiltrates may correlate
with clinical outcome (9–14). Inmost reports, NK cells were present at low numbers within tumors,
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as reviewed in (15). In contrast, in colorectal carcinoma (16),
lung cancers (14), and gastrointestinal stromal tumors (GIST)
(17) numerous NK cells were present in peritumoral areas. NK
cells are generally underrepresented among tumor-infiltrating
lymphocytes compared to their circulating proportions, and
their effector functions are also altered within the tumor
microenvironment, as shown in breast and lung malignancies
(18, 19). NK cell dysfunction, based on reduced cytotoxicity
and cytokine release, correlates with downregulation of NK-
activating receptors (18–21). However, this is a tumor-specific
phenomenon, described in renal cell carcinoma (RCC) (22),
GIST (17), neuroblastoma (23), melanoma (24, 25), and acute
myeloid leukemia (26, 27). Altogether, these data revealed that,
more than NK cell numbers, expression of NK cell receptors
(including activating NK receptors or inhibitory KIRs) strongly
influence prognosis and disease outcome. The only notable
exception to this conclusion is chronic myeloid leukemia (CML)
patients for whom treatment with imatinib was interrupted; in
these patients, NK cell numbers were a significant predictive
parameter for relapse (28, 29).

In addition, NK cells are thought to play a role in the
emergence of metastases, as high numbers of circulating or
tumor-infiltrating NK cells inversely correlated with metastatic
disease (30, 31). The mechanisms deployed to limit cancer
dissemination could involve activating NK receptors, including
NKG2D or NKp46. In murine models of melanoma and prostate
cancer, IFN-γ production by NK cells triggered by NKp46
activation was found to induce expression of the extracellular
matrix protein fibronectin 1 in tumor cells, altering tumor
architecture and controlling metastatic invasion (32).

NK cell activation is regulated by signals from activating
receptors and inhibitory NK receptors, which bind to HLA-class-
I molecules. In addition to natural cytotoxicity receptors, or Ig-
type family receptors—the ligands for which have not yet been
clearly identified—NKG2D (Natural Killer Group 2, member
D)—a C-type lectin receptor—is a major activating receptor
for NK cells. In humans, the gene encoding NKG2D (KLRK1)
lies amid a cluster of genes referred to as the “NK-complex”
(NKC) that includes several genes expressed by NK cells [KLRD1
(CD94), KLRC4 (NKG2F), KLRC3 (NKG2E), KLRC2 (NKG2C),
and KLRC1 (NKG2A)]. NKG2D was first identified on the
surface of NK cells as an immunosurveillance receptor. It is
also expressed by most CD8+ and a small subset of CD4+

cytotoxic αβ T cells, as well as innate-like immune cells, such
as some iNKT cells and γδ T cells (33, 34). NKG2D is a type II
transmembrane protein and, in humans, it associates with the
transmembrane domain of the adaptor protein DAP-10 (DNAX-
Activating Protein 10). Ligand binding causes dimerization of
two NKG2D monomers to form an active receptor which
phosphorylates DAP10 and triggers NK cell activation signaling
pathways which promote Ca2+ influx, actin-based cytoskeleton
reorganization, and microtubule polarization (35). This signaling
cascade leads to the release of the contents of cytolytic granules,
and in some cases elicits the production of cytokines by NK
cells (36). NKG2D provides co-stimulatory signals in activated
T cells (37). NKG2D expression in NK cells and CD8+ T cells
can be upregulated, in particular in response to cytokines, such

as interleukin (IL)-2, and IL-15, while transforming growth factor
(TGF)-β can decrease NKG2D expression.

Our current understanding of the role played by NKG2D in
controlling tumor development through NK cell and cytotoxic T-
lymphocyte (CTL) activity was aided by the early characterization
of its ligands (38). NKG2D binds to eight molecules, members
of the following two families: MHC class-I-related chains
A or B (MICA/B), and UL16-binding proteins (ULBP1-6).
Seven MIC genes (MICA to MICGI) have been identified,
located on chromosome 6p21.33. Only MICA and MICB
genes are translated into proteins. As to ULBP, six protein-
coding genes (ULBP1 to ULBP6I) have been described on
chromosome 6q24.2–25.3. Among all these proteins, MICA,
MICB, ULBP4, and ULBP5 are transmembrane-anchored
glycoproteins, whereas ULBP1, ULBP2, ULBP3, and ULBP6
are bound to the cell surface by a glycophosphatidylinositol
(GPI) motif (39). All NKG2D-Ls are composed of one alpha 1
and one alpha 2 extracellular immunoglobulin (Ig)-like domain,
which share a strong homology to the corresponding domains in
classical HLA-class-I molecules (40). MICA and MICB contain a
third, additional extracellular Ig-like domain (alpha 3). NKG2D-
Ls are not associated with β2-microglobulin and bind no
antigenic peptide.

ROLE OF NKG2D AND NKG2D-L
POLYMORPHISMS IN TUMOR
IMMUNOSURVEILLANCE

The pioneering work by Imai et al. attributed a major role to
NKG2D polymorphisms in cancer immunosurveillance (41), and
in the prevention of cancer formation (42). An 11-years follow-
up survey of a cohort including >3,500 members indicated that
medium and high natural cytotoxic activity of peripheral-blood
lymphocytes was associated with a reduced cancer risk, whereas
low natural cytotoxicity correlated with a higher incidence of
cancer. These findings suggest a role for NK cell-mediated
immunity in controlling cancer. Analysis of 25 SNPs reported
with an allele frequency of >10% in the NKC gene cluster
identified eight SNPs in the NKG2D locus (KLRK1) that form
two haplotype blocks (NKG2Dhb1 and hb2). Each of these
blocks can generate two major alleles linked to low (LNK) or
high (HNK) cytotoxic activity. Patients with the HNK1/HNK1
NK2GDhb1 haplotype had a lower incidence of cancer compared
to those with the LNK1/LNK1 haplotype (41). In a Japanese
population the HNK1/HNK1 genotype was associated with
decreased colorectal (43) and aerodigestive tract cancer (44).
A recent report indicated that NKG2D gene polymorphisms
also correlated with control of CML by dasatinib (45). Thus,
patients with the NKG2DHNK1/HNK1 haplotype achieved deep
molecular response (MR4.5) more quickly than those with other
haplotypes. Interestingly, phosphorylation of VAV1 on Tyr174,
which was proposed as a major mechanism by which dasatinib
intensifies NK cell activity (46), could also be enhanced by
expression of the NKG2D HNK1 allele (45). These data suggest
that the NKG2D HNK1/HNK1 haplotype may influence cancer
development and modulate treatment response (Figure 1).
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FIGURE 1 | How the NKG2D/NKG2D-L axis is involved NK-cell mediated cancer immunosurveillance. The axis interferes with tumor development and progression,

and regulates the antitumor function of NK cells. Various cancer treatments including chemotherapy and targeted therapies indirectly interfere with the cellular and

soluble forms of NKG2D-Ls, emphasizing the interest to which this pathway is involved in cancer therapy. Novel CAR-T- and CAR-NK-cell-based therapies hold

considerable promise.

Importantly, MICA and MICB as well as ULBP molecules
are highly polymorphic and allelic variation can alter their
expression levels or their affinity for NKG2D. As a result,
NKG2D-L polymorphisms may strongly influence NKG2D-
mediated NK cell triggering by tumor cells or other stressed
targets (47). To date, 107 MICA and 47 MICB alleles have been
described (updated allele numbers can be found at http://hla.
alleles.org/nomenclature/index.html). SNPs are located within
regions encoding the α1 and α2 extracellular domains. These
alleles are transcribed to produce a total of 82 MICA and 30
MICB proteins. The impact of MICA polymorphisms on protein
expression and function remains only partly characterized, and
MICA-129 is the only SNP described so far that affects NKG2D
receptor affinity (48). MICA-129 (rs1051792) dimorphism—the
substitution of a methionine (Met) for a valine (Val) at position
129—alters MICA affinity for the NKG2D receptor: MICA-
129Met has an affinity 10- to 50-fold higher than MICA-129Val.
Significantly, expression levels for MICA-129Met isoforms are
reduced compared to the MICA-129Val molecule (49), but

they nevertheless have a higher capacity to trigger the NKG2D
pathway, leading to enhanced NK cell activity (50).

Several studies implicated MICA polymorphisms in viral
infections and autoimmunity [reviewed in (51)], but few
have investigated the impact of MICA polymorphism in
cancers. Initial studies focused on cervical cancer and found
no association between MICA polymorphism and disease
susceptibility (52). In contrast, MICA polymorphism was
found to be a significant risk factor for other tumors. For
example, MICA-129Val is associated with poor prognosis
in nasopharyngeal carcinoma (53) or breast cancer (54)
in a Tunisian population. In melanoma, Isernhagen et al.
(49) showed that MICA-129Val-homozygous melanoma cell
lines expressed higher surface levels of MICA than cells
with the Met/Met genotype, which released more soluble
MICA. A group of frequent MICA alleles, named MICA-
A5.1 (prototype MICA∗008), produce a truncated protein
that acquires a GPI anchor allowing it to be recruited to
exosomes, from where it can downmodulate NKG2D expression
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(55). A GWAS study in cervical cancer patients linked one
MICA-adjacent region to the disease and identified a SNP
(rs2516448) linked to the MICA-A5.1 frame-shift mutation,
suggesting that this allele may cause impaired immune
activation resulting in cancer development (56). In colorectal
liver metastases, in contrast, the MICA-A5.1 polymorphism
was associated with better tumor control and response to
treatment (57).

Few studies have investigated ULBP polymorphisms, probably
because of the limited number of SNP identified within these
genes. However, one ULBP6 dimorphism (two SNP at positions
106 and 147) plays a significant role in determining affinity of
the protein for the NKG2D receptor. The ULBP0602 molecule
(which contains Leu106 and Thr147 in contrast to ULPB0601’s
Arg106 and Ile147) binds to NKG2D with a 10- to 1,000-fold
higher affinity than other ULBPs. This difference in binding
could result in decreased interaction of NKG2D with other
ligands; it could thus have a negative effect on NK cell
function (58).

REGULATION OF NKG2D AND
NKG2D-L EXPRESSION

NKG2D-Ls are rarely expressed by healthy cells, but are
induced at the cell surface when the cell is stressed as a
result of viral infection or malignant transformation; they are
therefore called “induced-self ” ligands. NKG2D-L-positive cells
are detected and eliminated, mostly by NK cells. Expression of
NKG2D-Ls is regulated by several mechanisms, which may be
transcriptional, translational or post-translational. Expression of
NKG2D-Ls is induced by DNA damage, a characteristic of tumor
transformation, which leads to the activation of the ATM-ATR
DNA repair pathways (59). In mouse models, hyper-proliferation
can also induce NKG2D-L expression through activation of the
E2F transcription factor (60). Indeed, following HER2/HER3 or
BCR-ABL activation, proliferative signals can induce MICA/B
and ULBP expression (61). Cellular stress, such as heat shock,
has also been reported to induce heat shock factor 1-mediated
MICA/B expression (62, 63).

The NKG2D/NKG2D-L pathway is triggered early in
cancer development and participates in the elimination of
tumor cells. However, during tumor progression, profound
changes occur and the NKG2D and/or NKG2D-Ls are
targeted by a range of tumor escape mechanisms. Cancer
can sculpt the immune environment by selecting immune-
ligand-negative variants (1, 64). Tumor cells expressing
high levels of NKG2D-Ls can thus be eliminated as part
of the tumor immunoediting process, which involves
NK cells and NKG2D, and progressively results in the
emergence of NKG2D-resistant variants (65). Persistent
NKG2D-L expression by tumor cells may cause systemic
immunosuppression as a result of NK exhaustion and
perturbation of the immune synapse (26). Epigenetic and
transcriptional regulation mechanisms are often perturbed
in tumor cells, and NKG2D-L expression may be altered. In
melanoma, endoplasmic reticulum stress can reduce MICA

transcription by modulating activation of the transcription
factor E2F1 (66). Indeed, immature isoforms of MICA are
retained in the endoplasmic reticulum, resulting in limited
membrane-display of MICA (67). Tumors can also inhibit
NKG2D-L expression by altering cell surface glycosylation (68),
notably in a hypoxic environment (69). In CML, BCR/ABL
controls MICA expression through post-transcriptional
mechanisms (70), including MICA glycosylation (71). Finally,
histone deacetylases (HDAC) may also regulate NKG2D-L
expression (72, 73).

Soluble factors secreted by tumor cells and cells from their
microenvironment can also alter NKG2D-L expression levels.
Thus, TGF-β and IL-10 secreted by regulatory T cells (Tregs) and
myeloid-derived suppressor cells downmodulate the expression
of NKG2D-Ls (74, 75). Some tumors were demonstrated to
secrete TGF-β, resulting in reduced NK cell-mediated lysis (10).
ADAM metallopeptidases can catalyze shedding of NKG2D-
Ls from the cell’s surface, and the released soluble forms can
hamper NKG2D signaling (76). Upregulation of ADAM10 or
ADAM17 expression in tumors has been linked to the release
of solMICA/B, decreased membrane MICA/B expression, and
reduced NKG2D expression on NK cells or CD8T cells (77,
78). Importantly, high serum levels of soluble MIC associated
with poor clinical prognosis and the emergence of metastases
in RCC (79) and prostate cancer (80). Most leukemia patients
present high levels of at least one solNKG2D-L, associated with
reduced NKG2D expression by NK cells and impaired anti-
leukemic function. In patients who entered complete remission
following treatment, solNKG2D-Ls were no longer detected,
and NK function was restored (81). Following publication of
these data, a meta-analysis of 19 studies, comprising 2,588
patients with 10 different types of tumor, showed that serum
concentrations of solMICA/B represent a potential prognostic
marker in human cancer (82). In metastatic melanoma, levels
of solULBPs are associated with reduced survival in patients
treated with immune checkpoint blockers (83); solNKG2D-Ls
could thus be a relevant biomarker to select melanoma patients
for immunotherapy.

CONVENTIONAL CANCER TREATMENT
AND THE NKG2D/NKG2D-L PATHWAY

The frequent and high expression of NKG2D-Ls by tumor
cells in various human cancers, and the potent antitumor
function of the NKG2D/NKG2D-L pathway are now established
(Figure 1). Cancer therapies aiming to improve or restore NK-
and T-cell responses through NKG2D activation have attracted
considerable interest. Among the options proposed, conventional
cancer treatments can be used to increase NKGD2 expression
and signaling. Indeed, a number of cancer treatments increase
NKG2D-L expression on tumor cells. Thus, HDAC inhibitors
(Valporic acid) acting on epigenetic regulation of NKG2D-Ls
can upregulate their membrane expression (84, 85). Cisplatin,
Gemcitabine, Oxiplatin, or 5-fluorouracil chemotherapies have
all been shown to increase MICA/B expression on tumor
cells through modulation of the ATM-ATR pathway. Other
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chemotherapies directly kill tumor cells while also inducing
NKG2D-L expression, which stimulates tumor elimination by
activating immune processes (86–89). Proteasome inhibitors
inducing ULBP2 expression and decreasing HLA-I molecules
may promote NK cell immunosurveillance of hematologic
malignancies (90). ADAM10 or MMP inhibitors could be
used to inhibit NKG2D-L-shedding and promote NK cell
activity, this approach has been shown to restore NKG2D-
Ls in some cancers (91–93). Similarly, antibodies targeting
the proteolytic site can prevent shedding of MICA/B proteins,
and was shown to limit tumor growth and reduce the
formation of metastases in a humanized murine melanoma
model (94).

Inhibitors of oncogene-driven mutations are actively being
developed to treat various tumor types. Such inhibitors decrease
the constitutive activation of kinases involved in tumor cell
proliferation and also affect NKG2D-L expression (61, 95).
Treatment with imatinib controls the expression of NKG2D-Ls
and membrane ganglioside (GM1), and was shown to interfere
with NK cell recognition and cytolysis of BCR/ABL cells (70, 71).
Treatment of melanoma cells with BRAF and MEK inhibitors
modulates the expression of MICA/B and ULBP2, attenuating
their recognition by NK cells (96). These effects can be overcome
by the simultaneous application of HDAC inhibitors, restoring
NKG2D-L expression and stimulating NK cell recognition and
function (97). Erk activation was shown to increase NKG2D-
L expression (98, 99), but, by acting on MMP, Erk/MEK
activation can disrupt the equilibrium between membrane and
soluble isoforms of NKG2D-Ls and alter NKG2D function (100,
101). It would therefore be relevant to control membrane and
solNKG2D-Ls when performing immunotherapy trials.

EXPLOITING THE NKG2D/NKG2D-L
PATHWAY FOR CELL THERAPY-BASED
CANCER TREATMENT

One of themost promising approaches to cancer immunotherapy
relies on revisited immune-cell-based therapies, T cells
engineered to express chimeric antigen receptors (CARs)
can be highly tumor-specific and have a high killing potential
(102). CAR-T cells present a major clinical benefit for patients
with malignant hemopathies. For instance, CAR-T cells were
shown to be potent against CD19-expressing hematologic
tumors in several trials (103, 104). However, the safety of CAR-T
cells remains a major obstacle, and CARs must be optimized to
increase efficacy and limit treatment-related morbidities due to
cytokine-release syndrome (105). Up to now, the use of CAR-T
cells for treating solid tumors has been limited by the lack
of appropriate tumor antigens (106). Production of modified
NK cells expressing CARs could represent an alternative for
treatment of solid tumors as they recognize numerous tumor cell
types. In addition, infusion of large numbers of NK cells is known
not to induce autoreactivity. CAR-NK cells could thus be used in

complement or as an alternative to CAR-T cells (Figure 1). NK
cells have recently been engineered with CARs to enhance their
killing activity, and trials of these cells for treatment of refractory
solid tumors have been initiated (107). NK-92 cells were
engineered with tumor antigen-specific CARs (EGFR, EpCAM)
and successfully used in xenograft models (108, 109). NK cells
have a limited lifespan and do not produce memory cells, as a
result the excessive activation observed with CAR-T cells should
be avoided. In addition, engineered CAR-NK cell lines could be
mass-produced, circumventing the need to generate autologous
products for each patient, a process that remains challenging and
expensive (110). Another promising option would be to express
CARs in human iPSC-derived NK cells. This approach might
present several advantages, as it could provide a universal cell
therapy product (111).

When considering CAR constructs the NKG2D receptor is
worthy of attention. Indeed, as we have seen, NKG2D-Ls are
widely expressed by a number of solid human tumors, and their
relatively selective expression by transformed cells compared
to healthy cells makes them an attractive receptor for CARs
constructs in T cells. The extracellular domain of NKG2D is
used in different CARs constructs with a view to promoting
tumor-reactive T reactions (112–114). However, investigations
must be performed with care as NKG2D-ligands can also be
expressed by healthy cells (115), potentially leading to significant
toxicity (116).

The expression of NKG2D-Ls by myeloid cells, Tregs and
endothelial cells in the tumor microenvironment suggests that
CAR NKG2D cells could also be used to control in situ
immunosuppression (117). Thus, CAR-NK cells transduced
with NKG2D fused to the TCR CD3z chain could be used
to target suppressive myeloid cells and improve infiltration
and function of subsequent infusions of tumor-specific CAR-T
cells (118).

NKG2D-based CARs with full-length NKG2D or
NKG2D-ligand binding domains represent a novel strategy
to target several types of solid tumors, and would have
the capacity to induce potent antitumor immunity in
patients. NKG2D CARs could not only target tumors
but also myeloid immunosuppressive cells and Tregs, as
well as others cells in the microenvironment that promote
tumor progression.
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