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NL-SAR: a unified Non-Local framework for

resolution-preserving (Pol)(In)SAR denoising
Charles-Alban Deledalle, Loı̈c Denis, Member, IEEE, Florence Tupin, Senior Member, IEEE,

Andreas Reigber, Senior Member, IEEE and Marc Jäger

Abstract—Speckle noise is an inherent problem in coherent
imaging systems like synthetic aperture radar. It creates strong
intensity fluctuations and hampers the analysis of images and the
estimation of local radiometric, polarimetric or interferometric
properties. SAR processing chains thus often include a multi-
looking (i.e., averaging) filter for speckle reduction, at the expense
of a strong resolution loss. Preservation of point-like and fine
structures and textures requires to locally adapt the estimation.
Non-local means successfully adapt smoothing by deriving data-
driven weights from the similarity between small image patches.
The generalization of non-local approaches offers a flexible
framework for resolution-preserving speckle reduction.

We describe a general method, NL-SAR, that builds extended
non-local neighborhoods for denoising amplitude, polarimetric
and/or interferometric SAR images. These neighborhoods are
defined on the basis of pixel similarity as evaluated by multi-
channel comparison of patches. Several non-local estimations are
performed and the best one is locally selected to form a single
restored image with good preservation of radar structures and
discontinuities.

The proposed method is fully automatic and can handle
single and multi-look images, with or without interferometric
or polarimetric channels. Efficient speckle reduction with very
good resolution preservation is demonstrated both on numerical
experiments using simulated data and airborne radar images.
The source code of a parallel implementation of NL-SAR is
released with the paper.

Index Terms—Estimation, Non-local means, Synthetic Aper-
ture Radar (SAR), Interferometry, Polarimetry

I. INTRODUCTION

POLARIMETRIC and interferometric SAR images are

increasingly used in remote sensing, for a broad variety of

applications ranging from crisis management to biomass study.

Several new high-resolution airborne and satellite sensors

with full polarimetric and/or interferometric capabilities are

now operating (e.g., F-SAR, TerraSAR-X and TanDEM-X,

COSMO-SkyMed. . . ).

Like other coherent imaging techniques, radar images are

affected by speckle noise. Speckle in images results in strong

signal-dependent variance. Local smoothing is thus often
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A. Reigber and M. Jäger are with the Microwaves and Radar Institute,
German Aerospace Center (DLR), Wessling D-82234, Germany, e-mail:
{andreas.reigber,marc.jaeger}@dlr.de.

performed to mitigate these fluctuations in homogeneous re-

gions. Furthermore, the computation of the interferometric and

polarimetric signatures of a radar scene requires estimating

local covariance matrices from several pixels. Prior to their

analysis, SAR images then often undergo processing steps that

degrade their resolution. Though a speckle reduction step and

covariance estimation are unavoidable in many applications,

special care must be taken to limit blurring of significant

structures in SAR images.

The simplest approach to speckle reduction and covariance

estimation, spatial multi-looking, computes a simple mov-

ing average with a (typically rectangular) window. Sufficient

smoothing of homogeneous regions comes at the cost of a

strong resolution loss.

Several improvements to multi-looking have been proposed

in the literature. The common underlying idea is to adapt the

selection of samples used for covariance estimation in order

to avoid mixing pixels belonging to different structures (e.g.,

blurring edges and strong scatterers by averaging them with

their surrounding background). We suggest a classification of

these methods into 3 main categories.

A first category of approaches attempts to limit the loss

of structural information due to multi-looking, with a post-

processing that adaptively reintroduces part of the input image

based on the validity of the local stationarity assumption [1]–

[3]. Non-stationnarity models have been introduced to take

into account some prior knowledge concerning the distribution

of pixel intensity values, see for instance [4], [5]. Touzi

[6] proposed a structural-multiresolution framework to handle

both stationary and non-stationary signals and improved the

previous approaches by context adaptation.

A second category of approaches selects the image that

achieves the best trade-off between data fidelity and regularity,

as defined in terms of wavelets coefficients distribution [7]–

[12] or total variation of the image [13]–[16]. Such methods

are referred to as variational approaches, or, in a Bayesian

perspective, as maximum a posteriori estimation. The smooth-

ness of the solution is locally adapted depending on its

fit to the prior. Noise variance is reduced at the cost of

introducing a bias towards the prior. In the context of image

denoising, this bias may result in undesirable artifacts such as

spurious structures (with wavelets) or loss of contrast (with

total variation minimization) [17]. While these methods are

quite expressive, their adaptation to multi-dimensional SAR

data is non trivial and usually leads to complex optimization

problems [18].

The last category of approaches, relying on adaptive selec-
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tion of pixels, has seen growing attention over the past years.

The generic denoising method proposed in this paper builds on

some of the most recent ideas introduced by these approaches.

We then give a short review of the various methods that have

been proposed to perform adaptive selection:

Oriented windows: Lee et al. [19]–[21] suggested to

locally select the best window among a few pre-defined

windows (a rectangular window and 8 edge-aligned oriented

windows). Window selection is based on the gradient of the

amplitude image. This leads to good preservation of straight

edges. However, abrupt change in the decision (from one

window to another) at neighboring pixels creates artifacts.

The limited number of pre-defined windows considered limits

the adaptation to complex structures or textures, and thus the

ability to correctly restore them.

Region growing: Vasile et al. [22] proposed to use region-

growing to build an adapted neighborhood restricted to similar

pixels only. Adjacent pixels are aggregated incrementally

based on their intensity (hence the name “IDAN”: intensity-

driven adaptive-neighborhood). This approach is therefore

more flexible than the use of pre-defined windows, and leads

to better resolution preservation than the previous methods.

By construction, adaptive neighborhoods are necessarily con-

nected, and all pixels are given the same weight in the

estimation. The method is known to suffer from a selection

bias [22]: due to speckle noise, intensities follow a heavy-

tailed distribution and selecting pixels with similar intensities

discards large values which biases the subsequent maximum

likelihood estimation.

Point-wise: The approach for pixel selection can be further

generalized by considering extended non-connected neighbor-

hoods by selecting potentially far appart pixels based on their

intensities. This idea can be traced-back to the early 80s with

the introduction of Lee’s sigma filter [23] and Yaroslavsky’s

filter [24], latter popularized under the name “bilateral filter”

[25], [26]. Similarly to IDAN, the extension of this approach

to SAR data suffers from a selection bias that can be corrected

using the so-called improved sigma filter [27].

Patch-wise: Rather than selecting pixels with similar inten-

sities, the relative importance of pixels can be weighted by

comparing their surrounding neighborhoods (a.k.a., patches).

This idea has been popularized in the image processing

community by the works of Buades, Coll and Morel [28] under

the name NL-means (i.e., non-local means). Most state-of-the-

art denoising techniques in image processing now derive from

this idea [29], including BM3D considered as one of the most

powerful approaches [30]. The method described in this paper

is a descendant of NL-means, extended to perform resolution-

preserving SAR image restoration. Three different paths have

been followed in the literature to adapt non-local methods to

SAR data:

• The homomorphic approach, used to extend the NL-means

[31], [32] and BM3D [33], first applies a logarithmic

transform to the data so that noise becomes additive, then

performs a standard non-local filter, and finally applies an

exponential transform to map the filtered data back to their

original dynamic range. A bias-correction step is necessary

to correct for non-Gaussianity in log-space [34].

• The Bayesian approach introduced in [35] interprets the non-

local means as posterior means where the posterior densities

are measured by comparing patches. This model assumes

that a speckle-free image is available and therefore generally

requires a pre-filtering step. In [36], the authors highlight

that this strong assumption is prone to selection bias which

can be corrected with a sigma-range pre-selection following

the idea of the improved sigma filter [27].

• The statistical approach introduced with the PPB filter [37],

and then extended to interferometric SAR [38] and polari-

metric SAR [39], considers the pixel selection as a detection

problem and builds a statistical test to perform selection.

Once similar pixels are detected, the denoising is performed

by (weighted) maximum likelihood estimation. This idea

has independently been described in [40] for polarimetric

SAR images. It has recently been extended following the

principles of the successful BM3D approach with SAR-

BM3D [41]. Different statistical tests have been proposed

for the pixel selection, including: joint-likelihood criteria

[37], [38], [42], generalized likelihood ratio tests [40], [43],

stochastic and geodesic distances [26], [44]. Some of them

are free of selection bias (see Section 3.8 in [45] for more

details). Thus, unlike the Bayesian approach, neither pre-

estimation of a speckle-free image nor a sigma-range pre-

selection is mandatory to drive the denoising procedure.

Under strong speckle noise, prefiltering can still help to

discriminate low-contrast features, as shown with iterative

methods [37], [38], [41].

In this paper, we describe a generic framework, called NL-

SAR, for non-local denoising of radar images. The method can

handle amplitude (SAR), interferometric (InSAR), polarimet-

ric (PolSAR) or polarimetric and interferometric (PolInSAR)

images in a unified way. The proposed resolution-preserving

denoising method brings several novel contributions:

1) adaptivity to local structures: our method automatically

selects the best local estimate among several computed

with different parameters, thus adapting to the scale and

the contrast of local structures.

2) unsupervised method: by careful weighting of covariance

matrices, parameters of the model do not require any tuning

related to the noise statistic. Moreover, by considering

a wide variety of parameters and automatically selecting

locally the best ones, the method is fully automatic.

3) genericity: in contrast to approaches requiring either single-

look images [38] or multi-looking [40], our method can

process single-look and multi-look images without de-

grading the resolution prior to performing denoising. The

identification of similar pixels is performed using the full

interferometric and/or polarimetric information, introduc-

ing less blur than intensity-only criteria [22], [39].

4) robustness to noise correlation: side-lobes of strong echos

are often reduced using spectral apodization in radar im-

agery. This operation correlates noise as a side-effect. Cur-

rent non-local approaches can not be applied on correlated

noise and require sub-sampling to decorrelate noise. This
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paper introduces a new way to weight similarities using

kernels learnt from a homogeneous area selected in the

data. Thanks to these adapted kernels, the proposed method

is shown to be robust to speckle correlation.

5) efficient implementation: the re-use of some computations

to derive estimates with different parameters and our par-

allel implementation lead to an efficient algorithm that can

be applied to large images.

6) reproducible research: to facilitate further comparisons and

a broad usage of our denoising method, we release under

public license the source code of NL-SAR.

The paper is organized as follows: Section II recalls the

statistical properties of speckle noise in various SAR image

modalities (SAR, InSAR, PolSAR and PolInSAR). Section

III then presents the proposed denoising framework. Local

adaptivity to the local structures of SAR images is discussed

in Section IV. The method is then validated in Section V on

airborne images provided by the ONERA and the DLR.

II. SAR IMAGE STATISTICS

Due to interferences among elementary scatterers inside

each resolution cell, single look complex (SLC) SAR images

suffer from speckle noise. Assuming homogeneity of the

scatterers and fully developed speckle leads to Goodman’s

zero-mean complex circular Gaussian model [46]. When D
co-registered SLC SAR images are available, a D-dimensional

scattering vector k can be formed at each pixel x, with entries

corresponding to the complex amplitudes of the different

acquisitions at location x. Under Goodman’s model, the so

formed scattering vector k follows a D-dimensional circular

complex Gaussian distribution:

p(k|Σ) =
1

πD|Σ|
exp

(

−k
†
Σ

−1
k

)

(1)

where Σ = E{kk†} is a D ×D complex covariance matrix,
† indicates the hermitian transpose, and |Σ| stands for the

determinant of matrix Σ. Diagonal elements of Σ relate to the

radar cross-section of scatterers in each channel. Off-diagonal

elements define the complex correlation between channels.

Amplitude SAR: When D = 1, the scattering vector

simplifies to a complex-valued scalar k = z with z following

a zero-mean complex circular Gaussian distribution. The

phase of z is thus uniformly distributed, and only its modulus

|z|, the amplitude, is informative. From eq. (1), it follows that

the intensity |z|2 is distributed according to an exponential law.

Interferometric SAR (InSAR): When two images are

acquired in nearly identical imaging geometries, the phase

of their complex cross-correlation (off-diagonal elements

of the covariance matrix) — the interferometric phase —

is related to the path difference between the two waves.

The modulus of their complex cross-correlation defines the

so-called coherence. The interferometric phase contains an

orbital component (flat earth and orbital inaccuracies) that

will be considered to be removed by a pre-processing step,

so that an horizontal area is associated with a constant

interferometric phase, up to the large fluctuations due to

interferometric decorrelations.

Polarimetric SAR (PolSAR): Polarimetric images are

obtained by sensing the horizontal and vertical polarization

components of the back-scattered wave, when a wave with

vertical or horizontal polarization is emitted. The cross

correlations between the channels (i.e., covariance matrix Σ

in (1)) depend on the polarimetric nature of the scene, e.g.: the

number of bounces, the heterogeneity of the back scatterers

or the wave incidence angle. Since cross-polarization

observations are generally very close (due to reciprocity that

holds for monostatic sensor configurations), the scattering

vector is often represented with only 3 components: two

co-polarization channels, and one cross-polarization channel.

Polarimetric Interferometric SAR (PolInSAR): When

two polarimetric images are acquired in an interferometric

configuration, the application of the reciprocity property

results in a 6-dimensional scattering vector k referred to as

the polarimetric interferometric SAR (PolInSAR) vector. The

underlying covariance matrix informs both on topography

related path delays and polarimetric characteristics. PolInSAR

is getting much attention, for two related reasons: the

increasing availability of PolInSAR data and the appealing

richness of information it captures, in particular for biomass

applications.

Multi-look SAR images: Due to the high variability caused

by speckle, SLC images have long been spatially averaged at

the price of a loss of resolution. Multi-look complex (MLC)

images result from the computation of the sample covariance

matrix of L scattering vectors k
(1), . . . ,k(L) from a spatial

neighborhood centered at pixel x:

C(x) =
1

L

L∑

t=1

k
(t)
k
(t)†, (2)

where L is referred to as the equivalent number of looks. Note

that when L = 1, eq. (2) provides a (rank-deficient) covariance

matrix representation of SLC data without resolution loss.

When L ≥ D, the distribution of MLC data is described by a

complex Wishart distribution given by:

p(C|Σ) =
LLD|C|L−D

ΓD(L)|Σ|L
exp

(
−L tr(Σ−1

C)
)

(3)

where tr(·) is the matrix trace. With D = 1, eq. (3) simplifies

to gamma distribution. When L < D, the complex covariance

matrix C is singular (|C| = 0), and therefore cannot be

characterized by a density defined on the open cone of positive

definite hermitian matrices. In this case, C is said to have

a degenerate distribution. Note that the elements of C can

however be described term by term by a pdf.

III. GENERIC NON-LOCAL DENOISING TO SAR IMAGE

Analysis and high-level processing of SAR images require

the estimation of the covariance matrix at each pixel of the

image. As underlined in section II, covariance matrices carry

all the information on the local radiometric, polarimetric and

interferometric properties. Due to the dimensionality of the
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covariance matrices (up to 6 × 6 matrices in PolInSAR)

and the high level of speckle noise in the observed scatter-

ing vectors, estimation of covariance matrices requires many

samples. Special care must be taken during the selection of

those samples, since mixing samples from pixels with distinct

radiometric, polarimetric or interferometric properties leads to

biased estimations.

We describe in this section the general scheme of our

method to perform non-local estimation of covariance ma-

trices. Figure 1 summarizes the main steps of the method.

Starting from a single-look complex SAR image, or a multi-

look complex image, we begin by computing a pre-estimation

of empirical covariances (section III-A). This pre-estimation

is then used to identify similar pixels in a search window.

Similarity is defined based on a detection test of identical

covariance matrices. Weights are derived from the similari-

ties and used to balance samples in a weighted maximum

likelihood estimation procedure (section III-B). In order to

achieve a good bias/variance trade-off, non-local estimation is

followed by a bias reduction step similar to to the local linear

minimum mean square estimation (LLLMSE, section III-C).

A key ingredient to the performance and robustness of the

method comes from the unsupervised selection at each pixel of

the best estimate among several estimates obtained by varying

parameters of the pre-estimation and non-local estimation. We

postpone the presentation and analysis of this last step until

section IV.

A. Pre-estimation of empirical covariance

Our non-local estimation method performs a weighted es-

timation where weights are derived from similarity between

covariance matrices. It is thus necessary in a first step to

compute a pre-estimation of covariance matrices. This pre-

estimation will be used only for weights computation. At the

non-local estimation step described in section III-B, original

(full resolution) input data will be processed. Two issues must

be addressed when defining a pre-estimation of empirical

covariance: estimation with few samples, and the trade-off

between the discrimination power of covariance matrices and

the accuracy of their localization.

Estimation of covariance matrices from few samples:

When the number of looks L of the original image is smaller

than the dimensionality D of scattering vectors, the empirical

covariance matrix C is singular and its probability distribution

is no longer given by the Wishart distribution (see Section

II). In order to derive in Section III-B the similarity between

two covariance matrices starting from Wishart distribution, we

discuss methods to enforce full-rank to empirical covariance

matrices.

Our attempts to regularize C using diagonal loading meth-

ods did not provide satisfying results. In [39], we had sug-

gested canceling off-diagonal elements to ensure C to be

diagonal. Good performances were already obtained, even

though most interferometric and polarimetric information were

lost after this processing. This restricted the discrimination

capability of covariance similarity criteria based on those

matrices.

Instead of canceling off-diagonal elements, the solution

proposed here consists in rescaling the off-diagonal elements

to ensure that C has full rank. The resulting matrix C
′ is

expressed as follows

∀i, C
′
i,i = Ci,i and ∀i 6= j, C

′
i,j = γCi,j (4)

for γ ∈ [0, 1[. When C has almost full-rank, i.e. L ≈ D, C ′

can be chosen with γ close to 1. When C is strongly rank

deficient, i.e. L ≪ D, γ should be close to 0 to ensure the

well-conditioning of C
′. To achieve this behavior, we have

chosen to use the setting γ = min(L/D, 1).

Discrimination vs localization trade-off: Due to strong

speckle noise, weakly contrasted structures are difficult to

discriminate from surrounding regions. Differences in covari-

ance matrices resulting from such geometrical structures are

masked by large fluctuations due to the variance of estimation.

Effective restoration however depends on the capability to

perform such discrimination. It is then necessary to introduce

some pre-filtering to enhance covariance estimation prior to

similarity evaluation. One possibility is to re-iterate the non-

local estimation procedure, i.e., to use the output of the de-

noising method as a pre-estimation of covariances, and apply

again the non-local procedure using these refined covariances,

as done in [37], [38]. A limit of such approach is that the

first pre-estimation must be good enough to make it possible

to discriminate low-contrast features, otherwise they will be

smoothed out after the first non-local step, a “chicken and

the egg” dilemma. It is faster and more robust to perform

such pre-filtering with simple spatial averaging. This averaging

improves the discriminative power of covariance matrices by

reducing the estimation variance, at the cost of a loss of

spatial resolution (i.e., increased bias). Rather than setting a

single constant value for the averaging operation (hereafter

denoted ’scale’ s, corresponding to the bandwidth of the low-

pass filter), we discuss in section IV how to select locally the

best pre-processing among several scales of averaging, thereby

achieving an optimal trade-off between discrimination power

and localization accuracy.

B. Non-local estimation of covariance

The principle mechanism underlying our denoising method

is the non-local processing described in this section. In contrast

to local estimation techniques, non-local approaches do not

select samples that are spatially the closest, but rather sam-

ples that most likely follow the same distribution within an

extended neighborhood. It is assumed in non-local methods

that samples following the same distribution may be identified

by finding a collection of patches in an extended search area

that are ’similar’ to the reference patch centered on the pixel

to denoise.

We derive in the following a criterion that measures the

closeness of two empirical covariance matrices. Values of this

criterion are then transformed into normalized weights thanks

to a specially designed kernel. Based on those weights, non-

local estimation can be performed with the weighted maximum

likelihood estimator.
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Fig. 1. General scheme of the proposed denoising method

Dissimilarity criterion: Following a previous study of

several methods for deriving criteria adapted to a specified

noise distribution [43], we rephrase the problem of evaluating

the (dis)similarity of two empirical covariance matrices C
′
1

and C
′
2 as a hypothesis test (i.e., a parameter test):

H0 : Σ1 = Σ2 ≡ Σ12 (null hypothesis), (5)

H1 : Σ1 6= Σ2 (alternative hypothesis). (6)

Under the null hypothesis, the two empirical covariance

matrices C
′
1 and C

′
2 are samples arising from the same

distribution parametrized by covariance Σ12. They can be

considered as similar since similarity is used as an indicator of

identical distributions. Under the alternative hypothesis, em-

pirical covariance matrices C
′
1 and C

′
2 are from two different

distributions and thus they can be considered dissimilar.

According to Neyman-Pearson theorem, the optimal crite-

rion for a hypotheses test is given by the likelihood ratio [47]:

L(C ′
1,C

′
2) =

p(C ′
1,C

′
2;Σ12,H0)

p(C ′
1,C

′
2;Σ1,Σ2,H1)

. (7)

Direct application of the likelihood ratio test requires the

matrices Σ1, Σ2 and Σ12 (the noise-free matrices) which

are, in practice, unknown. Our problem is thus a composite

hypothesis problem. The generalized likelihood ratio (GLR)

replaces these unknown matrices by their maximum likelihood

estimation:

LG(C
′
1,C

′
2) =

sup
Σ12

p(C ′
1,C

′
2|H0,Σ12)

sup
Σ1,Σ2

p(C ′
1,C

′
2|H1,Σ1,Σ2)

. (8)

Since the pre-estimation step described in section III-A ensures

that matrices C
′
1 and C

′
2 are full rank, their distribution can

be modelled by the Wishart distribution defined in equation

(3), with a number of looks L′ higher than the number of

looks L of the original data. Since the number of looks

of empirical covariance matrices C
′
1 and C

′
2 are the same,

maximum likelihood estimates are simply given by C
′
1, C ′

2

and their average:

Σ̂
(ML)

1 = C
′
1 ,

Σ̂
(ML)

2 = C
′
2 ,

Σ̂
(ML)

12 = 1
2 (C

′
1 +C

′
2) . (9)

The expression of the GLR then follows from equation (3)

by replacing covariance matrix Σ with maximum likelihood

estimates and by considering matrices C ′
1 and C

′
2 as indepen-

dent:

LG(C
′
1,C

′
1) =

|C ′
1|

L′

· |C ′
2|

L′

| 12 (C
′
1 +C

′
2)|

2L′
. (10)

Equation (10) provides a measure of the similarity between

two empirical covariance matrices C
′
1 and C

′
2: large values

of the GLR test LG indicate that the covariance matrices likely

arise from a common distribution. Note that unlike IDAN

[22] or the sigma filter [23], this similartiy criterion does

not suffer from selection bias: it leads to a selection rule of

pixel intensities such that the subsequent maximum likelihood

estimation is unbiased (see Section 3.8 in [45]). In line with

other non-local approaches, similarities are computed over

whole patches instead of single pixels in order to decrease the

variance of the test. We then define the dissimilarity between

two patches centered at the two pixels x and x′ as:

∆(x, x′) =
∑

τ

− log LG

[
C

′(x+ τ),C ′(x′ + τ)
]
, (11)

where τ ∈ [−P, P ]2 is a 2-D shift indicating the location

within each patch of size P × P . The dissimilarity ∆ cor-

responds to the negative logarithm of the GLR expressed

on patches, under a pixel-wise independence assumption.

Although this independence assumption is not strictly fulfilled

in practice due correlations introduced by the pre-estimation

step, dissimilarities can be relatively compared. The translation

of dissimilarities into weights through an adapted kernel

alleviates the effect of intra-patch correlations, as discussed

next.

From dissimilarities to weights: The relative importance

of each sample used in the non-local estimation is balanced

by weights w derived from the dissimilarities. The mapping

of dissimilarities ∆ into weights w is done with kernel ϕ :
R+ → [0, 1]:

w(x, x′) = ϕ[∆(x, x′)] . (12)

The usual way to define the weights from the dissimilarity

measure ∆ is to use an exponential kernel:

w(x, x′) = exp

[

−
∆(x, x′)

h

]

, (13)
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where h > 0 is a filtering parameter. This definition however

does not guarantee that a given value of the parameter h
produces the same amount of smoothing in homogeneous areas

when the pre-estimation is changed (e.g., the scale s of the

spatial averaging), or after modification of either the size of the

patches (P ×P ), the number of looks L, or the dimensionality

D of scattering vectors. Moreover, the kernel function must

account for correlations between empirical covariance matrices

to reduce the weight of dissimilar samples.

In [48], the authors have suggested adapting the kernel by

setting the parameter h as:

h = F
−1(ζ) , (14)

where F−1 is the inverse cumulative distribution function of ∆
under H0, and ζ is typically set to 0.99. This method ensures

that P[w(x, x′) < e−1 |H0] = 1 − ζ whatever the values

of P , s, L and D. In this paper, we suggest going one step

further by controlling probabilities P[w(x, x′) < κ |H0] for all

κ > 0, i.e., we define the kernel ϕ so that the distribution of

weights w(x, x′) under H0 be independent of the patch size P ,

the reference scale s, the number of looks L and the number

of channels D. Our motivation is that in an homogeneous

area, the distribution of the weights should depend neither on

the noise properties (as L and D) nor on parameters used to

retrieve structural features (as P and s). To this end, we define

ϕ = ψ ◦ F, i.e.,

w(x, x′) = ψ {F[∆(x, x′)]} (15)

where F is the cumulative distribution function of ∆ under

H0 and ψ : [0, 1] → [0, 1] is another mapping. The values

of F[∆(x, x′)] within a homogeneous image region follow a

uniform distribution on [0, 1], independently of parameters P ,

s, L and D. Due to the established performance of the expo-

nential kernel in the Gaussian noise context [49], the mapping

ψ can be chosen so that ψ ◦ F corresponds to the exponential

kernel in the case of Gaussian noise. Under Gaussian noise,

the dissimilarity is naturally defined as the sum of the square

differences and dissimilarities are distributed according to a χ2

random variable with P 2 degrees of freedom. Let G denote the

cumulative distribution function of the χ2 law with P 2 degrees

of freedom. Dissimilarities ∆ can be mapped into weights with

the same distribution as in the classical Gaussian case with:

ψ : F[∆(x, x′)] 7→ w(x, x′) = exp

[

−
G−1{F[∆(x, x′)]}

h

]

,

(16)

where G−1 is the reciprocal of the χ2 distribution G. Once

G and h are set, weights computed on images with different

number of looks L or dimensionality D can be compared. A

homogeneous area is then smoothed similarly whatever the

choice of patch size, number of looks, dimensionality or pre-

estimation.

As noted by several authors, the weight for the central pixel

(i.e., self-similarity w(x, x)) should be considered separately

[50]. Motivated by the studies in [35], [50]–[52], we use the
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Fig. 2. Mapping ψ : F[∆(x, x′)] 7→ w(x, x′) used to impose a target
distribution to the weights.

following modified kernel:

w(x, x′) =







exp

(

−
|G−1{F[∆(x,x′)]}−c|

h

)

if x 6= x′

1 if x = x′,
(17)

with c the expected transformed dissimilarity of two patches

following the same distribution:

c = E
[
G

−1{F[∆(x, x′)]}
∣
∣H0

]
. (18)

Since F[∆(x, x′)] has a uniform distribution, the expression of

c boils down to the degrees of freedom of G. Unlike eq. (16),

this kernel ensures that, when h tends to 0, there is almost

surely only one non-zero weight: the central one w(x, x), and

the output tends to the noisy input image (no denoising). This

definition also prevents any pixel from having a larger weight

than the central pixel.

The mapping ψ defined by eq. (17) has been set in NL-

SAR with h=1/3 and G the χ2 distribution with 49 degrees

of freedom (up to a change of variables, this corresponds to

the set of parameters for Gaussian NL-means used in [53]

with 7 × 7 patches) resulting in the curve given in figure 2.

Unlike h in the traditional NL-means, the choice of ψ can be

maintained fixed even if P , s, L and D vary. The adaptation to

these latter parameters is implicitely done through F[∆(x, x′)].
The distribution of dissimilarities ∆ is modified when noise

is correlated. By sampling the probability distribution of ∆
directly on the data (on a homogeneous area selected by the

user), a kernel adapted to noise distribution and robust to noise

correlation can be learnt (see sections IV-C and V-C). Unlike

the traditional exponential kernel, the proposed kernel ϕ = ψ◦
F can thus be considered as noise-aware. Note that the kernel

ϕ can be learnt once and re-used on several images coming

from the same sensor with similar observation conditions.

Non-local estimation with weighted maximum likeli-

hood: The original non-local means method [28] has been

introduced to denoise images corrupted by additive white

Gaussian noise. After computation of weights w(x, x′) based

on squared differences between patches and an exponential

kernel, the non-local means algorithm performs a weighted

averaging. This method has been extended to more general

estimation problems in [37], [54] by introducing a weighted

maximum likelihood:

Σ̂
NL

(x) = argmax
Σ

∑

x′

w(x, x′) p
(
C(x′)

∣
∣ Σ

)
, (19)
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where weights are defined based on similarities as described in

previous paragraph, and the sum is carried out over all pixels

x′ in an extended neighborhood of size W ×W centered at

pixel x and called the search window. Note that equation (19)

involves only covariance matrices C from the full resolution

input image, not the pre-estimated covariances C
′ defined in

section III-A. The resolution of the original image is thus

preserved.

Since empirical covariance matrices C(x′) all have the

same number of looks L, the weighted maximum likelihood

estimator is given by the weighted means:

Σ̂
NL

(x) =

∑

x′ w(x, x′)C(x′)
∑

x′ w(x, x′)
. (20)

C. Bias reduction step

A peculiarity of SAR images is their very high dynamic

range. Bright targets have intensities several orders of magni-

tude larger than their surrounding background. Even though a

patch containing such a bright target at pixel x′ and a patch

with background-only are very dissimilar and the correspond-

ing weights w(x, x′) are very low, the weighted mean given in

equation (20) creates some blurring of the bright target. When

estimating the covariance at a pixel x in the background, the

contribution w(x, x′)C(x′) is indeed not negligible due to the

large magnitude of the bright target at pixel x′.
In order to reduce the spreading of bright structures, we add

a bias-reduction step after the non-local estimation. Bias can

be reduced by performing a convex combination between the

(possibly over-smoothed) non-local estimation and the noisy

empirical covariance:

Σ̂
NLRB

(x) = Σ̂
NL

(x) + α
[

C(x)− Σ̂
NL

(x)
]

. (21)

where Σ̂
NLRB

(x) is referred to as the Non-Local Reduced

Bias (NLRB) estimate. Values of the weight α close to zero

keep the non-local estimate while values close to one replace

the non-local estimate with the original (noisy) empirical

covariances. The value of α must then be set according to

the confidence in the non-local estimate.

The quality of non-local estimates depends on whether

candidates C(x′) have been selected correctly, i.e., if the

candidates C(x′) and the empirical matrix C(x) are samples

arising from the same distribution. Over-smoothed images and

spread bright targets appear when the non-local averaging has

mixed heterogeneous samples. According to speckle statistics,

the variance of the intensity in a homogeneous region is equal

to Ī2/L, with Ī the average intensity and L the number of

looks in the original data. If the variance of the intensity in

a collection of samples is much larger than Ī2/L, then this

is an indication that all the variance can not be attributed

to speckle and that part of the variance comes from hetero-

geneity of the samples. A natural test is then to compare the

(weighted) variance with the squared (non-local) intensity. Let

j ∈ {1, . . . , D} be a given channel. We define the weighted

variance at pixel x for channel j by:

V̂ar [Ij ]
NL

(x) =

∑

x′ w(x, x′)Ij(x
′)2

∑

x′ w(x, x′)
− ÎNL

j (x)2, (22)

where Ij(x) = Cj,j(x) denotes the j-th diagonal element

of C(x), and correspondingly ÎNL
j (x) = Σ̂

NL

j,j (x). The non-

local variance should be close to ÎNL
j (x)2/L if most significant

weights w(x, x′) correspond to pixels x′ following the same

law as pixel x (i.e., if Σ(x′) ≈ Σ(x)).
The value α in (21) can then be chosen according to

this homogeneity test. This is indeed the strategy of the

Local Linear Minimum Mean Square Estimator (LLMMSE)

introduced in [19] that defines a value αLLMMSE following this

principle and that achieves an optimal bias-variance trade-off

(i.e., minimum mean square error). Here, we suggest using a

slightly different definition of α given by

αNLRB = max
j



max



0,
V̂ar [Ij ]

NL
(x)− ÎNL

j (x)2/L

V̂ar [Ij ]
NL
(x)







 (23)

related to the LLMMSE parameter through αNLRB = (1 +
1/L)αLLMMSE. Our definition of α works then at a differ-

ent bias-variance trade-off than the LLMMSE procedure. It

provides a lower bias and a higher variance. In the mono-

dimensional case (D = 1), while αLLMMSE lies in the

range [0, 1/(1 + 1/L)[, αNLRB lies in [0, 1[. Hence, unlike

the definition of LLMMSE, ours ensures that the non-local

estimate can be preserved (α ≈ 0) when candidates I(x′)
have been selected correctly, while it can be fully rejected

(α ≈ 1) when V̂ar [Ij ]
NL

(x) ≫ ÎNL
j (x)2/L. In the multi-

dimensional case (D > 1), our strategy differs from the

LLMMSE procedure described in [20] which is performed on

the span of the covariance matrices. A drawback of the span

image is that its expected variance is unknown since it depends

on the inter-channel correlations. Our approach expects a

variance of ÎNL
k (x)2/L independently on each channel. It has

proved more effective in our experiments as it involves no

prior knowledge of inter-channel correlations.

Figure 3 illustrates some results of the non-local estimation

and bias-reduction steps on a synthetic image. This test image

represents 2 different geometrical structures: two bright points

of different sizes with very strong magnitude (the actual

contrast is not seen on the images due to the display range);

and a periodic curved linear structure. The first 4 images in the

first row of figure 3 show the result of non-local estimations

with different settings of the patch sizes (P × P ), and the

scale s used for the averaging operation of the pre-estimation

step. It can be observed that if the scale s is too small, the

non-local estimation leads to a blurry image. The reason is

that dissimilarities have poor discriminative power when pre-

estimations are performed with too few samples, as discussed

in section III-A. The non-local estimation step then mixes

pixels from different distributions (i.e., from dark and light

areas), resulting in either a blurry estimation (e.g., the curve in

the image on the first column), or aberrant values (e.g., around

the left bright target in the image on the second column). The

4 images in the third row of figure 3 show the result of the

bias-reduction procedure just described. It can be observed in

the cases of a too small scale s that much of the original

resolution is restored by the bias-reduction step. Non-local

estimations for other settings are also improved, especially
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near the edges of structures that were slightly blurred. Next

section further analyzes the effect of each parameter and

describes a method for unsupervised local selection of the best

parameters, providing the result shown on the last column of

the figure.

IV. UNSUPERVISED ADAPTATION TO LOCAL STRUCTURE

The non-local denoising procedure described in section III

requires to set several parameters: the scale s of the pre-

estimation, the size of patches (P × P ) and the size of the

search window (W × W ). We show in section IV-A that,

depending on the geometrical structure considered, different

parameters should be preferred. Section IV-B describes how

to automatically select locally the best parameters.

A. No global tuning can preserve all structures

A major limitation of evolved denoising techniques such as

non-local techniques is the number of parameters that must be

jointly tuned, and even more critical, the need to adapt those

parameters to the nature of the image (modality, scale) and

its content (smooth natural regions or man-made areas). We

illustrate in this section that, even if the user is prepared to

tune all parameters by hand, a unique set of parameters can not

preserve correctly the diversity of structures met in an entire

radar image.

Figure 3, first described in section III-C to illustrate the

gain of the bias-reduction step, gives the result of non-local

estimation for different tunings of parameters and various

geometrical structures. Among others, the figure illustrates the

case of two strong scatterers. Very bright point-like structures

are numerous in SAR images. They are problematic for

patch-based non-local methods since no patch similar to a

patch containing an isolated bright point can be found in its

neighborhood, a problem referred to as the rare patch effect

in the literature [55], [56]. As a consequence, not only the

covariance at the point itself but all surrounding covariances

in an area of size P ×P are left unchanged (since no similar

covariance have been found to perform the average). It results

in very noisy regions surrounding the two bright dots in the

non-local estimations, especially for larger values of the scale

s (see, the column 2, 3, 4 figure 3). Since in those areas, the

variance is too large, the bias-reduction step is of no help to

reduce this phenomenon (still visible in the third row of figure

3). Using a small patch size significantly reduces the size of the

affected region. When curved linear structures are considered,

the use of the same small patch size leads to artifacts because

the patches are then too small to capture the local geometry

(curvature). The shape of the patches thus can not be kept

constant on images containing different kinds of structures, as

already shown in the case of Gaussian noise in [56].

Thanks to the procedure described in section III-B to

enforce an invariant distribution of weights, no smoothing pa-

rameter needs to be adapted each time a parameter is changed

and the same amount of smoothing is kept in homogeneous

areas. This can be observed in the background areas that show

similar variances with very different settings.

Here, the same large search area has been maintained to

produce the first four column in figure 3. Larger search

windows seem always preferable to smaller ones in our simple

test cases. In more complex cases, it is beneficial to adapt

locally the search window size to the size of homogeneous

areas since larger search windows would necessarily bring in

dissimilar patches that would degrade the estimation [48].

B. Local selection of the best estimate

Building a new estimate out of several is a well studied

problem in statistics referred to as “aggregation” [57]. The new

estimator may be formed as a convex or linear combination

of existing estimators, or by selecting the best one according

to a given criterion (an approach called “model selection”).

In non-local filtering, several selection/aggregation procedures

have been used. For selecting locally the best search window

size, the authors of [48] employs the so-called ICI rule

selection (a.k.a., Lepski method). This method requires that

the estimators can be sorted in terms of bias-variance trade-

off. This order is easily induced when only the search window

size varies, but does not exist in our context. Other approaches

have used statistical estimators of the reconstruction error (the

so-called SURE for Stein unbiased risk estimator). The authors

of [58], [59] suggest selecting the best global parameters

w.r.t. SURE while in [56], [60] the selection is locally adaptive.

Such estimators are difficult to use in our context since, first,

local estimations of risk generally suffer from a large variance,

and, next, they are not trivial to extend to non scalar-data

and non Gaussian noise distributions. Here, we follow an

approach based on variance reduction similar to [61] in order

to select locally the estimate considered as the most reliable.

We first derive our criterion for selecting the best estimate,

then illustrate its performance on a synthetic image.

Performing the average of L independent and identically

distributed (i.i.d.) samples reduces the variance by a factor L:

Var

[

1

L

L∑

t=1

I(t)

]

=
Var [I]

L
. (24)

If a weighted average is done instead, the variance is reduced

by a factor L̂NL depending on the weights (see Appendix A):

L̂NL(x) =
(
∑

x′ w(x, x′))
2

∑

x′ w(x, x′)2
≈

Var [I(x)]

Var
[

ÎNL(x)
] . (25)

L̂NL(x) represents an equivalent number of looks at pixel x af-

ter the non-local estimation step but before the bias-reduction

procedure. Equation (25) corresponds to the variance reduction

of the intensity I(x) taken on the diagonal of the covariance

matrix C under the assumption that all samples have the same

variance and by considering weights as deterministic.

As discussed in section III-C, the non-local estimation

step tends to over-smooth in some regions due to the lack

of discriminative power of the weights. Samples are then

no longer identically distributed, but distributed according to

distributions with different parameter values, and the resulting

estimation is biased. The confidence on a given estimate can

not rely on L̂NL(x) only but must account for the bias. After
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Speckle-free image σ2 = Σ

→

Observation I = |z|2 = C
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Fig. 3. Illustration of the local section of the best estimate among several non-local estimations: the noisy observation I is processed by a non-local denoising

method using various settings (first row of results: ÎNL). The maps L̂NL of equivalent number of looks (ENL) are displayed below each result. No global
tuning of the parameter gives a satisfying restoration, neither does the local selection of the denoised value with largest equivalent number of looks, encircled

in red. The bias reduction step prevents from over-smoothing. The resulting images ÎNLRB and ENL L̂NLRB are shown on the last two rows. Local selection

based on L̂NLRB, encircled in green, both prevents from over-smoothing and improves the restoration of point-like targets.

(a) (b) (c)

Fig. 4. Illustration of the local adaptivity of the proposed approach. (a) Noisy image (with L = 1 look). (b) Result of our proposed approach. (c) From left

to right, top to bottom: averages on 20 noise realizations of the resulting equivalent number of looks L̂NLRB (range: [0, π(25/2)2]), the search window size
W (range: [0, π(25/2)2]), the patch size P (range: [32, 112]), the reference scale s (range: [1, 3]).

the bias-reduction step, bias is strongly reduced and a bias-

variance trade-off is achieved. The equivalent number of looks

after bias-reduction depends on the weight α of the noisy
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covariance in equation (23) (see Appendix A):

L̂NLRB(x) =
L̂NL(x)

(1−α)2 +

(

α2+
2α(1−α)
∑

x′ w(x, x′)

)

L̂NL(x)

(26)

where we have considered w(x, x) = 1. This equivalent

number of looks can give an indication of the quality of an

estimate. Values of L̂NLRB(x) are computed at each pixel x
for all sets of parameters and the estimate leading to the largest

value is selected. This defines a local selection method of

the best parameters. Our selection follows the spirit of [61],

the main difference here is that we prevent from large bias

(i.e., over-smoothing) by applying a bias-reduction step before

selection.

The map of equivalent numbers of looks for each non-

local estimate is displayed in figure 3. After bias reduction,

the equivalent number of looks is reduced in all areas that

were over-smoothed. Locally selecting the estimation with the

largest equivalent number of looks gives the result displayed

in the last column “Local selection” on the right of the figure.

Applying this selection rule directly to non-local estimates

(i.e., before bias reduction) favors the strongest smoothing and

then gives a blurry result with artefacts around the isolated

point source (image framed in red in figure 3). By contrast, the

bias-reduction step produces a constant bias-variance tradeoff

and selection based on the equivalent number of looks gives

an obviously preferable result (image framed in green in figure

3). This result obtained with local selection is of better quality

than any result using a fixed set of parameters.

To further analyze the local adaptivity of the parameters,

we consider another synthetic example shown in figure 4.

The original image is composed of 4 different regions: (i)

two homogeneous regions separated by a straight boundary;

(ii) a periodic structure; (iii) a textured area; (iv) a thick

curved line. The noisy image is shown in sub-figure (a)

and the restored one in sub-figure (b). Sub-figure (c) gives

maps of the equivalent number of looks, search window size

W , patch size P , and smoothing scale s, averaged over 20

noise realizations. It is noticeable that none of the selected

parameters is constant over the whole image, which confirms

a posteriori the necessity of local adaptivity. Unsurprisingly,

noise is most efficiently reduced in homogeneous areas where

large search windows are preferred. At a discontinuity, such

as the vertical line between the two homogeneous regions

in the first quadrant or the edges of the curved line, noise

is less reduced because fewer similar patches can be found.

When increasing the size of the search window, only two more

similar patches can be found while many dissimilar patches

are added to the search area (a number proportional to the size

of the search window). Intermediate search window sizes are

thus preferred. To decrease the variance of the estimation close

to discontinuities it would be necessary to consider anisotropic

search windows (straightforward using our selection method

but computationally costly). To reduce as much as possible the

influence of the many dissimilar patches of the search window,

it is necessary to strongly smooth in the pre-estimation step

in order to improve the discriminative power of the similarity

measure (large s are selected). Finally, in textured areas, the

patch size must be set so that enough similar patches can

be found. Smaller patches are thus preferred in the second

quadrant so as to capture the edges and prevent their blurring.

C. Implementation details

Thanks to the use of a carefully designed mapping of

dissimilarities into weights and our unsupervised procedure

to locally select the best set of parameters, our denoising

method can be considered as fully automatic. No adaptation of

parameters is required when going from SAR intensity denois-

ing to PolSAR or InSAR images. When changing the scene

and image type (from vegetated areas to man-made structures,

or with different sensor resolutions), the method selects the

optimal parameters provided that the sets W of search window

sizes, P of patch sizes, and S of scales are large enough.

A key condition for the practical usability of our denoising

framework is the possibility to perform all the estimations

involved within a reasonable timeframe. We describe in this

section an implementation that can process a 2048 × 2048
pixels polarimetric image (requiring the estimation of over

150 million values) in less than a quarter of an hour on a

cluster of 64 cores. Compared to methods that require human

interaction and several runs of the denoising algorithm to tune

the parameters, this computation time seems reasonable. The

source code of our parallel implementation is released under

public license together with the paper1. The code can be used

in command line, called from Matlab, from IDL or used as

a C library.

In our denoising framework, many non-local estimations

must be performed. Our efficient implementation is based on

3 ingredients:

• computational savings when evaluating the dissimilarities

thanks to integral tables [62];

• re-use of estimates computed with smaller search windows;

• natural parallelization of non-local methods, in contrast to

regularization methods that require joint estimation of all

pixels.

The proposed algorithm works as follows: non-local estima-

tions are computed for increasing sizes of the search window.

In order to have isotropic search windows, the central reference

patch is compared with patches extracted following a spiral

path. Each time a new patch is extracted, non-local estimates

for all patch sizes in P and all pre-processing scales in S are

updated using integral tables. After each rotation of the spiral,

a new set of non-local estimates for the corresponding search

window size is obtained (see figure 5). The equivalent number

of looks is computed and if it improves on the best-so-far

number of looks, the corresponding best non-local estimate is

updated.

The computation of the weights is performed as follows.

A (noisy) homogeneous area is either provided by the user

or simulated based on speckle statistics. Patches are extracted

from that homogeneous area in order to sample the probability

distribution of ∆. Dissimilarity values ∆(x, x′) are estimated

1http://www.math.u-bordeaux1.fr/∼cdeledal/nlsar.php
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TABLE I
PROCESSING TIME ON A CLUSTER OF INTEL® XEON® X5550 2,66 GHZ

M × N D 1 core 8 cores 8 × 8 cores

2562 1 55s 14s 7s

2 1min 6s 17s 9s

3 1min 29s 24s 13s

10242 1 15min 2min 27s 38s

2 18min 3min 16s 48s

3 26min 4min 51s 1min 13s

40962 1 4h 21min 40min 6min 4s

2 5h 18min 54min 9min

3 7h 24min 1h 20min 14min

off-line for all pairs of patches (x, x′). These dissimilarities are

stored in a separate table sorted in increasing order for each

possible choice of the patch size P and pre-estimation scale

s. On-line, when the weight w(x, x′) must be evaluated from

the dissimilarity ∆(x, x′) evaluated with given parameters

P and s, the closest value to ∆(x, x′) is found in the

corresponding sorted table by binary search. The rank of that

value in the table (i.e., its index) gives the corresponding

quantile F[∆(x, x′)]. The final value of the weight w(x, x′) =
ψ{F[∆(x, x′)]} is then obtained from a look-up table built

off-line by uniform sampling of ψ function on the range [0, 1].
Overall, the evaluation of the weight w(x, x′) from ∆(x, x′)
requires log2(K) iterations where K = 210 is the size of the

sorted table encoding F. Our experiments have shown that

the computation time to evaluate our kernel function is of the

same order as the computation time required to evaluate the

exponential kernel based on the floating exponential function

expf of the C library.

For an image of size M ×N , the original NL-means algo-

rithm has an algorithmic complexity of order O(MNW 2P 2)
and a memory complexity of order O(MN). Our non-local

method is based on the local selection of the best estimate

among |W| · |S| · |P| non-local estimates. Thanks to the re-

use of previous computations, the algorithmic complexity of

our algorithm is O(MNW 2
max · |P| · |S|), where Wmax is the

maximum search window size. Since the number of pairs of

parameters (s, P ) that are considered is of the same order of

magnitude as the number of pixels in a patch (from a few tens

to a few hundreds), the complexity of our algorithm is on a

par with the complexity of the original NL-means algorithm.

In terms of memory usage, our algorithm requires the storage

of O(MN |P||S|) values. In the case of scattering vectors of

dimension D, covariance matrices of size D × D must be

estimated and all complexities are multiplied by a factor D2.

Our C implementation has been parallelized with OpenMP

and distributed with Portable Batch System leading to

computation times reported in Table I.

V. EXPERIMENTS AND RESULTS

We illustrate in this section the capability of the proposed

non-local denoising framework to handle different kinds of

images (intensity only, InSAR, PolSAR or PolInSAR). We

first evaluate the quantitative performance of the proposed

estimator on numerical simulations and compare it to other

state-of-the-art approaches. We next give qualitative results
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Fig. 5. Spiral path inside the circular search window. The search starts at
the center and the results are “popped” after each rotation.

on airborne InSAR and PolSAR data. For a more accurate

assessment of the qualitative performance of NL-SAR, we

invite the reader to visit the dedicated web page http://www.

math.u-bordeaux1.fr/∼cdeledal/nlsar.php.

All results are obtained with the unsupervised local selection

method of the best non-local estimate. Except in the specific

case of correlated noise discussed in section V-C, we used the

same set of parameters to get all the results:

• W = {32, 52, 72, . . . , 252},

• P = {32, 52, 72, 92, 112},

• S = {1, 2, 3}.

The pre-estimation step at scale s is performed by convolution

with a truncated Gaussian defined by:
{

K exp
(

−π(x2+y2)
(s−0.5)2

)

if − s+ 1 ≤ x, y ≤ s− 1

0 otherwise ,
(27)

where K is a normalization constant.

A. Bias-variance characterization of the estimator

Restoration methods in SAR imaging can be compared

based on their ability to reduce noise variance while preserving

the resolution. In order to evaluate this bias-variance trade-

off, we performed a Monte Carlo study of several speckle

reduction methods. Figure 6 illustrates the capability of 4 dif-

ferent methods to restore bright sources or repeating squares.

The input intensity-images provided to each speckle reduction

method were generated using Goodman’s speckle model (i.e.,

intensities follow an exponential law, see section II). Figure 6

illustrates both the typical output of each denoising method,

as grayscale images, and the bias-variance characteristics on a

line profile. The 4 denoising methods considered are: (b) the

pretest non-local method described in [40], (c) the iterative

version of probabilistic patch-based denoising (PPB-it) [37],

(d) the SAR-BM3D method proposed in [41] as an extension

to radar imaging of the original BM3D Gaussian denoising

method [30], and (e) the NL-SAR method that we propose in
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this paper. Line profiles show the expectation of each estimator

as well as 0.98% confidence intervals. The line profiles drawn

in the top row correspond to two bright targets. Given the

very high dynamic range, a logarithmic scale is used for

the intensity axis of the line profiles and the corresponding

intensity images are saturated. The images with repeating

squares have a much weaker contrast and a linear scale is

used.

It can be observed from the expectation of the estimators

in the case of the two bright targets (first row of figure 6)

that pretest method (b) and BM3D-based method (d) introduce

some bias around the point-like bright source. PPB-it and the

proposed method introduce almost no bias. For all patches

containing the point-like target, no other similar patch can

be found (“rare patch” phenomenon). This results in large

residual variances around the bright targets for pretest and

PPB-it methods. Thanks to the adaptive selection of the best

parameters, our method effectively reduces speckle noise in the

background without spreading bright targets. The Monte Carlo

simulations performed on images of repeating squares with

weak contrast illustrate also that the proposed method leads

to the strongest reduction of noise variance with introduction

of very limited bias. Compared to PPB-it, our method slightly

blurs the edges but offers a much more efficient reduction of

noise.

B. Denoising performance on numerical simulations

We further compare our method to state-of-the-art speckle

reduction techniques using images of a resolution target cor-

rupted by speckle. We considered different types of data: inten-

sity images, interferometric images and polarimetric images.

The first part of Figure 7 illustrates the denoising perfor-

mance in the case of intensity-only SAR images. The original

resolution target is shown in figure 7(a) and a single-look

noisy realization in figure 7(b). The output of 4 iterations of

the probabilistic patch-based PPB-it non-local method [37] is

shown in figure 7(c). This method strongly reduces noise vari-

ance in homogeneous areas but blurs the smallest details and

tends to introduce some artefacts along discontinuities. The

second state-of-the-art method considered is the recent SAR-

BM3D technique [41]. This method produces a strong variance

reduction with excellent preservation of smallest details, see

figure 7(d). It can be considered as the best speckle reduction

method for intensity images to date [63]. Some artefacts can

be noticed on some discontinuities with artificial edges created

parallel to the actual edges. The extension of this method to

multi-channel images (InSAR, PolSAR or PolInSAR) is not

straightforward and has not been proposed yet. Finally, the

proposed method produces a result with quality close to that

of SAR-BM3D, see figure 7(e). Tiniest details are lost and

edges tend to be slightly jagged compared to the output of

SAR-BM3D. No other systematic artefact can be noted.

The performance in an interferometric configuration is illus-

trated on the second part of figure 7 where the same underlying

grayscale image is used to generate a two-channel dataset with

two-level coherence and phase. Pointwise estimation of the

radiometry, interferometric phase and coherence is very noisy,

as shown in figure 7(g). We applied Lee’s refined filter [21],

figure 7(h), and the intensity-driven region growing method

IDAN [22], figure 7(i). The output of the proposed method

is shown on the last column (j). Both Lee’s refined filter and

IDAN leave noticeable fluctuations in homogeneous regions.

Lee’s filter does not restore small details. IDAN better restores

small details and leaves less residual variance. Tiniest details

however disappear due to selection bias. The proposed method

offers very strong noise reduction with good preservation

of even the tiniest details. In this numerical experiment,

the co-location of edges in radiometry, interferometric phase

and coherence favors our method since the definition of the

similarity criterion jointly on the interferometric covariance

matrix leads to stronger discrimination power than a criterion

based solely on intensities.

The performance of the method on polarimetric images is

illustrated on the third part of figure 7 where polarimetric

covariance matrices have been set to represent 3 different

configurations found in PolSAR images: vegetation-type areas

that fully de-polarize the incident wave (appear in green

when using Pauli basis coloring and have a high polarimetric

entropy), surfaces or corner reflectors that produce single

or triple bounces (appear in red in Pauli basis coloring),

and ground-wall creating double-bounces (appear in blue).

Pointwise estimation of polarimetric properties shown in figure

7(l) are too noisy to be used directly. The output of IDAN filter

is shown in figure 7(m). Noise variance is reduced at the cost

of a loss of smallest details. The pretest non-local method

introduced in [40] offers both a stronger variance reduction

and a better preservation of details. The proposed method

reaches the strongest variance reduction with notably improved

estimation of entropy in the area with smallest details.

C. Robustness to noise correlation

The applicability of a SAR restoration method depends on

its robustness to changes in the image source (sensor and

processing chain used for SAR synthesis). One major issue

for existing restoration methods is speckle correlation. Noise

correlation has several impacts on non-local methods: first,

similarities are over-estimated and less robust for a given

patch-size (the effective number of independent measurements

being smaller than the number of pixels in each patch), second

averaging N neighboring pixels decrease the variance by a

factor less than N so that more samples are needed to provide

the same amount of smoothing.

Over-estimation of similarities is addressed in our method

by learning the kernels used to map similarities into weights

on a homogeneous area provided by the user. When noise

is correlated, the probability distribution of dissimilarities ∆
is modified. This is accounted for by using the cumulative

distribution function F in the definition of the kernels. Noise

correlation can be easily detected by analyzing a homogeneous

area. If correlation is detected, our algorithm adapts the range

of parameters:

• W = {32, 72, 112, . . . , 492} ÷ 4
• P = {32, 72, 112, 152, 192}

where ÷4 means that we keep one pixel over 4 in the

search window during the spiral path in order to save time.
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(a) (b) (c) (d) (e)

Fig. 6. Bias-variance characterization of the several speckle reduction methods for single look SAR intensity denoising: (a) underlying signal, (b) Pretest
non-local filter [40], (c) PPB-it [37], (d) SAR-BM3D [41], (e) NL-SAR described in this paper. Two types of structures are analyzed: bright targets (first two
rows) and repeating squares (last two rows). The output of each denoising method for a single noisy realization is shown as grayscale images. Above each
grayscale image, line profiles corresponding to the expectation (blue crosses) and 0.98% confidence intervals (gray area) of each estimator are drawn. Line
profile intensities on the top row are drawn in log-scale due to adapt to the high dynamic range. The proposed method represented in (d) leads both to smaller
variance and little bias.

Larger patches provide more robust patch comparisons while

extended search areas are used to obtain satisfying noise

reduction. Note that thanks to sub-sampling along the spiral

path of the search window, the computation time is unchanged.

Figure 8 illustrates the impact of noise correlation present

on airborne radar images obtained by RAMSES sensor from

ONERA. Raw images are shown on column (a). Decorrelated

images were computed by decimation by a factor 2 in each

direction. Results obtained by PPB-it and the proposed method

on these decimated images are shown on columns (b) and (c).

Both results are satisfying, although PPB-it has a tendency

to over-smooth the image. When the algorithms are applied

to the original correlated data, PPB-it produces an output

with strong artefacts (column (d)), while the proposed method

gives a satisfying image. Compared to the decimated image,

homogeneous regions are equally smoothed.

D. Restoration of a F-SAR polarimetric image

We illustrate the performance of the proposed method on

a very high resolution airborne image captured in S-band by

the German F-SAR system designed by the DLR. Many more

examples are available on the dedicated web page http://www.

math.u-bordeaux1.fr/∼cdeledal/nlsar.php where comparisons

with other methods are also performed. Figure 9(a) shows an

excerpt of a 0.5m×0.64m resolution polarimetric image. The

image is color-coded using Pauli basis. Strong fluctuations can

be noticed in all homogeneous areas. The restoration obtained

with the proposed method is shown in figure 9(b). Point-

like features, linear structures and edges are well preserved

without significant spreading while homogeneous areas are

strongly smoothed. In contrast to denoising methods based

on maximum a posteriori estimation with markovian priors or

collaborative filtering of blocks (BM3D), it is straightforward

to produce a map of the equivalent number of looks of the

restored image, see figure 9(c). As expected, while multi-

looking averages samples in a non-adaptive way, the proposed

non-local restoration is signal-adaptive and the equivalent

number of looks is larger in homogeneous areas than close

to geometrical structures. Low equivalent number of looks are

observed as dark graylevels on figure 9(c). Point-like struc-

tures have the smallest equivalent number of looks, which is

desirable since spatial averaging would spread those structures.

Figure 9(d) displays the polarimetric entropy H computed

from the polarimetric covariances estimated with our non-

local restoration method. Areas with tall vegetation typically

have the largest entropy. This is expected due to the high

randomness of the polarimetric backscattering mechanisms

in the forest canopy at S-band. Echoes created by point or

ground-wall interaction appear mostly with very low entropies

as here only one scattering mechanism is dominating. The

low values of entropy achieved on man-made structures give

evidence that their energy is not spread out by the proposed

non-local estimation technique.

VI. CONCLUSION

This paper introduced a novel framework for radar image

denoising. This framework implements several concepts:

1) similarity between patches defined for arbitrary SAR

modalities (SAR, InSAR, PolSAR, PolInSAR) and any

number of looks;

2) learnt kernels to weight the similarities according to their

distribution in a homogeneous area;

3) multiple estimation with various sets of parameters;

4) local selection of the most reliable estimate, defined as the

estimate with least variance after a bias-variance trade-off.

Numerical experiments have shown that each of these elements

is necessary to reach good performance on a variety of

geometrical structures and SAR modalities. Results obtained

in interferometry and polarimetry significantly improve on the

state-of-the-art.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 7. Illustrations on denoising simulated images. (a-c) 1-dimensionnal (amplitude) simulated results. (f-j) 2-dimensional (interferometric) simulated results,
from top to bottom: amplitude, interferometric phase (range [0, 2π]) and coherence (range [0, 1]). (k-o) 3-dimensional (polarimetric) simulated results, from
top to bottom: RGB representation based on the Pauli basis (HH-VV,2HV,HH+VV) and Entropy (range [0, 1]). (a,f,k) True images. (b,g,l) Noisy image (with
respectively L = 1, 2 and 3 looks). (c) 4 it. of PPB, (h-m) IDAN, (d) SAR-BM3D, (i) Refined lee, (n) Pretest. (e,j,o) Our results.

We believe that the strength of our method comes from the

wide applicability and generality of the proposed framework.

The method is designed to be robust to changes of SAR

modality, number of looks or noise correlation. We provide the

source code together with this paper describing our methodol-

ogy. The code is reasonably fast and can be applied on large

images using parallel architectures. A key feature that should

ease the wide usage of the method is the fully automatic tuning

of all parameters.

The very general framework that we proposed leaves room

to further improvements by combining more or different kinds

of estimates, modifying the pre-estimation step, or using a bet-
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(a) (b) (c) (d) (e)

Fig. 8. (a) A 512×512 interferometric image obtained from a pair of SAR images of an urban area in Toulouse (France) sensed by RAMSES ©ONERA with
a mono-pass. From top to bottom: amplitude, interferometric phase (range [0, 2π]) and coherence (range [0, 1]). Speckle in this image is spatially correlated.
(b,c) 256× 256 image obtained respectively by NL-InSAR and our approach after decimation. (d,e) 512× 512 image obtained respectively by NL-InSAR
and our approach without decimation. Unlike NL-InSAR, our new approach allows to process images contaminated with spatially correlated noise without
decimation.

ter rule for estimators aggregation. Recent studies in additive

Gaussian noise reduction have shown that similarities between

overlapping patches should be weighted using a dedicated

kernel [52]. This idea could be extended to our SAR denoising

method by adapting the kernel ψ. Our method leaves isolated

structures almost unchanged since no similar patch can be

found in the search area. Noise variance could be reduced in

this case by using a dictionary of SAR structures learnt off-

line or from the noisy data, in the spirit of dictionary-based

denoising [64]. Noise in very high resolution images is known

to depart from Goodman’s model, due to the predominance

of some scatterers inside each resolution cell. The Gaussian

component of the noise also is no longer negligible. The

similarity criterion and the weighted maximum likelihood

estimator could be adapted to more accurate noise models.

The techniques introduced to weight similarities and to

combine different estimates could provide useful building

blocks to design methods for fusion of several radar images

(acquired at different dates and/or by different sensors), or to

detect motion and change in radar images.

Given the efforts devoted to producing very high resolution

images, we believe that resolution-preserving estimation of

radar properties (radiometry, interferometric phases, polarimet-

ric covariance matrices) deserves special attention and will

gain increasing interest in the years to come.
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APPENDIX A

DERIVATION OF VARIANCE REDUCTION

Assuming first that the weights w(x, x′) are constant

w.r.t. I(x) and I(x′) for all (x, x′) and next that they select

pixel values I(x′) i.i.d. with I(x) gives

Var
[

ÎNL(x)
]

= Var

[∑

x′ w(x, x′)I(x′)
∑

x′ w(x, x′)

]

=

∑

x′ w(x, x′)2Var [I(x′)]

(
∑

x′ w(x, x′))2
=

∑

x′ w(x, x′)2

(
∑

x′ w(x, x′))
2 Var [I(x)]
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(a) (b)

(c) (d)

Fig. 9. (a) Polarimetric image of Kaufbeuren (Germany) sensed by S-band F-SAR ©DLR displayed using an RGB representation based on the Pauli basis.
(b) Non-local denoising using our approach. (c) Map of the equivalent number of looks (values larger than 122 are displayed in white) (d) Estimation of
polarimetric entropy H (range [0, 1]).

which proves the approximation (25). Next, we use that

ÎNLRB(x) = (1− α)ÎNL(x) + αI(x)

=(1− α)

∑

x′ 6=x w(x, x
′)I(x′)

∑

x′ w(x, x′)
+

(

α+
(1− α)

∑

x′ w(x, x′)

)

I(x) .

Assuming that α is constant w.r.t. I(x) and I(x′) for all (x, x′)
allows us to prove eq. (26) since the inverse noise reduction

ratio Var
[

ÎNLRB(x)
]

/Var [I(x)] is given by

(1− α)2
∑

x′ 6=x w(x, x
′)2

(
∑

x′ w(x, x′))2
+

(

α+
(1− α)

∑

x′ w(x, x′)

)2

=
(1− α)2

L̂NL(x)
+ α2 +

2α(1− α)
∑

x′ w(x, x′)
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where we have used that w(x, x) = 1 and

∑

x′ 6=x w(x, x
′)2

(
∑

x′ w(x, x′))2
=

(

1

L̂NL(x)
−

1

(
∑

x′ w(x, x′))2

)

.
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