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ABSTRACT A wireless sensor network (WSN) is a collection of various tiny devices known as sensor

nodes, which are also called motes. Due to high-energy consumption, the possibility of hardware, link or

node failure, and some malicious attacks, sensor networks are considered error-prone networks. Hence, fault

tolerance (FT) in WSN is one of the prominent issues. This article presents a novel FT approach named

node-link failure fault tolerance model (NLFFT Model) in WSN, to handle the faults that occur either by

link or node failure during data transmission from the sensor to the sink or base station. The NLFFT model

consists of an improved quadratic minimum spanning tree (Imp-QMST) approach. This approach helps in

finding the alternate link whenever it fails due to various situations and also an improved-handoff (Imp-

Handoff) algorithm to support the node failure to the fault tolerance. Improved QMST presents a novel

mechanism to find an alternate edge in place of the broken or failed edge in the spanning tree, to improve

the fault tolerance in WSN. Imp-Handoff suggests a novel way to find the faulty node owing to less battery

power and replaces a defective node by an appropriate neighbor to shift the tasks performed by a faulty

node in WSN. Simulation results clearly state that as compared to the basic techniques i.e. Q-MST and

Handoff algorithm, the proposed NLFFT model improvises the performance of WSN around by 7%. The

results prove that the Imp-QMST gives about 6% improved throughput, 5% less end-to-end delay, and 6%

less power consumption than the QMST algorithm. Similarly, Imp-Handoff improves about 4% throughput,

6% less end-to-end delay, and utilizes 7% less power consumption.

INDEX TERMS Fault tolerance, handoff mechanism, MST, Q-MST, swarm intelligence, WSN.

I. INTRODUCTION

A WSN comprises of many tiny devices known as sensor

nodes and base stations. Such networks are useful for mon-

itoring and passing environmental and physical constraints

viz. temperature, pressure, and noise to a centrally located

base station. The base station processes the data and con-

cludes the necessary action. A typical WSN can be struc-

tured or unstructured, based on the locality where a sensor

network needs to be established, to control the region with

sensor devices. A structured network can be feasible in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

region like buildings, streets, highways, and parking places,

whereas unstructured networks can be viable in the forest,

desert, flood situation, and disaster areas. In both kinds of

networks, a large area is divided into clusters, and each cluster

consists of tiny sensor devices (motes) and cluster head (CH).

The sensor nodes in the cluster are connected by hop-to-hop

with each other based on the coverage capacity among the

existing sensors nodes and each cluster has a cluster header

to communicate with other clusters. The clusters are inter-

connected through its cluster headers and finally aggregated

data from all the clusters is transferred to the base station

(BS), to process the information further or transfer to another

heterogeneous network.
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FIGURE 1. Typical WSN with various links.

Figure 1 shows an example ofWSNwith sensor nodes, CH,

and BS. In the considered WSN, mainly four kinds of links

exist namely sensor to sensor, sensor to CH, CH to CH, and

CH to BS. The link existence between ni to nj is based on the

available bandwidth B(ni, nj) and active status of both nodes.

Here, a node may be considered as sensor node, CH, BS. The

link existence will exist based on the predefined threshold for

various kinds of links. The proposed work applies to all kind

of links mentioned in Fig. 1.

Based on the environment, sensor networks can be classi-

fied into various categories such as terrestrial WSN, under-

water WSN, underground WSN, and mobile WSN. In some

critical applications, such as critical-medical care [1], the sen-

sor networks need to provide interminable services. Hence,

enabling endless services in critical systems is only possible

by fault tolerance. The efficient fault diagnosis method is

required to find the faults to support fault tolerance. The fault

tolerance is a combination of fault detection, fault diagnosis,

and fault removal [2] processes.

WSNs are vulnerable to faults mainly because of two

reasons- one is the failure of nodes, and the other is a link

failure. Tiny and less battery power sensor nodes are deployed

in a disastrous and harsh environment; hence, there may be

higher chances of hardware failures in WSN. Due to faults in

WSN, there may also be a loss in huge data transfer, long data

transmission delay, and less throughput. So, there is a need

for novel protocol architecture for WSN. Consequently, the

identification of faulty nodes and links is a must to improve

the capacity of WSN in terms of efficient data delivery.

Hence, a novel mechanism is needed to identify the faults

and create a recovery mechanism to improve the reliability

and quality of service during data transmission. The major

contributions of the proposed research are as follows:

1. A novel fault-tolerance model is proposed to handle both

kinds of faults i.e. link failure and node failure.

2. The Imp-QMST algorithm is introduced to find the alter-

nate link in case of link failure.

3. The Imp-Handoff algorithm is presented to identify the

faulty node and selection of appropriate new nodes in case

of node failure.

4. Imp-QMST and Imp-Handoff need MST. Thus, four

swarm intelligence-based algorithms have been used to

generate spanning trees in WSN and the performance

for different characteristics, i.e., throughput, end-to-end

delay, and power dissipation of proposedmethods to exist-

ing methods Q-MST [3-5] and Handoff [10] has been

evaluated.

The rest of the paper is organized thus: Related work is

explained in section II. Section III describes the proposed

helping algorithms to find active links and nodes in the

NLFFT model. Section IV narrates various system models

and the newly proposed NLFFT model in detail. Section V

elaborates on the proposed work along with examples and

describes the various algorithms used in constructing MST

to support the suggested fault tolerance model (given in

section IV). Section VI explains the experimental setup.

In section VII, the result analysis part highlights the experi-

ments and performance comparison with other mechanisms

namely PRIMS, Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), Imperialistic Competitive Algo-

rithm (ICA) and Firefly (FF) algorithm concerning vari-

ous network parameters viz. throughput, end-to-end delay,

and power consumption. Finally, Section VIII concludes the

paper highlighting the future scope.

II. RELATED WORK

This section presents a comprehensive literature survey of

various routing protocols, data aggregation, and Fault Tol-

erance. Fault tolerance in WSN can be achieved broadly in

two ways, one is to find the link failure, and the other one

is to detect node failure. In the literature, there are several

techniques available to find links and node failures individ-

ually. However, very few research techniques are available

to find both node and link failures simultaneously. There

are several techniques available in the literature to improve

the reliability and quality of service (QoS) in WSN. The

multipath [6] finding is the one to improve the reliability,

timeliness, and load balancing inWSN. Faulty node detection

and interference model caused by neighbor nodes are also

equally popular in identifying the faults in WSN.

The work proposed in Lee and Choi [7] is a distributed

algorithm to find the faults in WSN. The faulty nodes are

identified based on the comparison of neighbor nodes and

dissemination decisions made by each node. The proposed

research identifies the transient faults in communication and

sensing inWSN. A sliding window is utilized to eliminate the

time redundancy.

Qu et al. [8] proposed a fault tolerance model with mobile

agents to attain consistent and efficient performance, with

required functions within a given period. The faults are

detected and identified as the kind of failures owing to the

behavior of the mobile agent. The behavior of the mobile

agents can be analyzed statistically by various parameters

viz. migration time from one sensor node to another sensor

node, the lifetime of the mobile agents, and distribution of
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mobile agent population. This mechanism overhead controls

the behavior of mobile agents to adopt the changes in the

environment.

Guo et al. [9] introduced the hybrid on-demand distance

vector multi-path (HODVM) routing protocol for spatial

wireless ad-hoc networks (SWAHN). The proposed protocol

HODVM divides the SWAHN into two parts. The first part is

with the backbone, and the second one is without a backbone.

HODVM finds adaptive multipath to balance the workload

and improve the fault tolerance in SWAHN. In WSN, main-

taining multipath is a very complicated task due to the size

and capacity of the links among various kinds of nodes.

Geeta et al. [10] described an active node based fault toler-

ance and interference (AFBTI) in sensor networks to pick out

faulty nodes using two models, one being the battery power

model, and another being interference model. They presented

the handoff mechanism as a fault tolerancemechanism to face

low battery power. However, the proposed work considers

only battery power as criteria to decide the faulty node. It may

not be appropriate in WSN.

Abba and Lee [11] proposed an autonomous self-aware

and adaptive fault-tolerant routing technique (ASAART)

for WSNs and compared the simulation results with

self-selective routing and self-healing routing protocols in

different simulation scenarios and found better in throughput,

delay (end-to-end), packets error rate and power conservation

in faulty and congested WSN. Yucai Zhou et al. [12] pointed

out in their paper that due to faults or node failures occurring

by abrupt environmental changes, sensor network perfor-

mance gets deteriorated. Hence, to solve the problem men-

tioned above, a protocol supporting high fault tolerance and

power efficiency based on a multi-way routing mechanism

has been proposed. It is an enhancement in hybrid, energy-

efficient distributed clustering mechanism (HEED) protocol,

called HEED-FT. The HEED-FT mechanism consumes less

energy and provides high reliability and increases network

lifetime.

Sutagundar et al. [13] proposed a fault-tolerance approach

based on multiple (both fixed and mobile) agents. This pro-

posed multi-agent-based scheme provides fault tolerance at

the node, cluster, and sinks level. In node-level fault toler-

ance, a node accepts only correct samples i.e., the samples

in the reference range and rejects the false samples. Thus,

the node calculates the average of all samples which were

found correct. At cluster level fault tolerance, after receiv-

ing the data from all the nodes, the difference in data is

computed by comparing the data of each node to all other

nodes. Finally, fault tolerance at the sink level, the sink node

broadcasts alive packets to every node and replicates the sink

node periodically. If nodes and replicated sink nodes get alive

packets from the sink node, then it transmits the data to the

sink otherwise replicated sink node broadcasts its ID to every

node.

Tien et al. [14] proposed dual separate paths (DSP) algo-

rithm to support fault-tolerance by improving network traf-

fic in WSNs. The DSP algorithm constructs two different

paths between the source and target (destination) nodes,

depending on the topology of the network. This algorithm

supports both wired and wireless networks and provides

non-interminable fault tolerance. Elsayed et al. [2] presented

an approach called distributed self-healing approach abbre-

viated as DSHA, wherein fault identification, diagnosis, and

repairs are performed. These are skilled at both the cluster

head and node level. DSHA mechanism was found effective

in identifying hardware failures and diagnoses to make sensor

networks resilient and reliable. The results showed that the

DSHA approach can handle up to 67.3% hardware malfunc-

tioning and hence improve 62.6% network lifetime.

Mitra and Das [15] observed that network reliability and

dependability can bemeasured by its fault identification, fault

diagnosis, and overcome techniques. The proposed archi-

tecture supported distributed fault tolerance and algorithms

for fault recovery by using checkpoints of data and state of

nodes in a distributed environment. Ma et al. [16] developed

a novel algorithm for fault tolerance by generating a multi-

routing tree abbreviated as FTMRT. In it, a multi-routing

tree is constructed to ensure k-disjoints routes from every

sensor node to a collection of super-nodes. Thus, to build a

fault-tolerant topology, each data transmitting node redefines

the transmission power in compliance with the multi-routing

tree.

Begum and Nandury [17], proposed a fault-tolerant

mechanism called component-based self-healing mechanism

which builds an alternate path to reach the root node

in a hierarchical aggregation tree when any node or link

fails. The said mechanism is based on two algorithms,

the first is Self-healing Component-based Reconfiguration

(SCR) for preserving precedence relations and another

one is SCR-Dynamic Transmission Range Adjustment

(SCR-DTRA). These two approaches are compared with

existing approaches i.e. Tree Reconstruction, WKLP, and

FTS. Simulation results prove that the SCR-DTRA approach

is effective in terms of the Affected Ratio (AR) and Recovery

Ratio (RR).

In [18], Kim et al. introduced a Maximum fault tolerance

barrier coverage problem related to hybrid sensor networks

(MFBP-HSN), containing both static and fully-controllable

dynamic (mobile) sensors. It tried tomigrate themobile nodes

in such a manner that fault tolerance of barrier-coverage of

hybrid sensor networks mentioned above, was maximized.

A polynomial-time exact algorithm was proposed for the

above-said problem.

Shagufta Henna [19] presented an algorithm for approx-

imation known as energy-efficient maximum disjoint cov-

erage (EMDC) with a resemblance estimation ratio. In the

proposed work, EMDC performance analyses showed up in

favor of power efficiency and fault tolerance. The EMDC

algorithm increased the lifespan of the network by choosing

two disarticulated set covers minimizing relay power. The

EMDC mechanism was found better in terms of network

lifetime in comparison of DSC-MDC for a different count of

nodes and ranges.
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Moussa and Elalaoui [20] proposed a mechanism related

to fault tolerance of cluster heads. The simulation was per-

formed and found better as compared to low energy adaptive

clustering protocol (LEACH), and informer homed routing

mechanism.

To overcome the challenges of WSN, Jassbi and

Moridi [21] presented an algorithm called the HEED algo-

rithm for clustering. Further, for improving power consump-

tion, they proposed a sleep/wake-up method for the cluster

members. The main focus of work [21] was to identify and

repair faults of cluster heads as well as cluster member sensor

nodes. Hence, to perform this task, a node is chosen as a

backup node of the cluster head. The failed node is separated,

and its place is taken by its neighbor node, which goes to

wake-up mode from the sleep mode.

Hence, by anatomizing the literature it has been found that

a unique mechanism is needed to diagnose the faults and

novel methods must be discovered to ameliorate the reliabil-

ity and quality of service during the transmission of data. Fur-

ther, the existing literature on spanning trees to achieve data

aggregation is devoid of any fault tolerance procedure and

thus, it influences the various important parameters of WSN

viz., throughput, end-to-end delay, and power consumption.

III. PROCEDURES TO FIND ACTIVE NODES AND ACTIVE

LINKS

In WSN, fault tolerance is a crucial issue, and it can be

achieved by finding the active node and active link. The

number of active nodes and links, define the fault toler-

ance factor of WSN. In this proposed model, we derived a

procedure to find the active node and link. The proposed

dynamic nodemodelmakes use of the neighbor node, average

battery power, and distance. The dynamic connection can be

identified based on the available bandwidth over the link. The

following sections illustrate the mechanism to find the active

node and link separately.

A. ACTIVE NODE IN WSN USING BATTERY POWER AND

DISTANCE

The active state of the node is represented by nactive =

[nbp, d], where nbp is the battery power of node, and d is

the distance between the intermediate node and its neighbor

node. In the proposed model, the active node is decided based

on the heuristic method, in which existing neighbor node

battery power and distance are compared with predefined

threshold values. The threshold values are node’s average bat-

tery power denoted by navg−bp and average distance indicated

by davg. These values are evaluated based on the existing

neighbor node’s average battery power and average distance.

The following is the procedure to find the active node in the

improved handoff algorithm (refer algorithm 1).

B. ACTIVE LINK IN WSN USING AVAILABLE BANDWIDTH

In the given WSN, all sensor nodes are connected with

the base station, cluster head (CH), and with other sensor

nodes with specific bandwidth (i.e. frequency range). In the

Algorithm 1 Procedure to Find Active Node

Procedure (Node, BP, Dist)

Begin:

If (BP > navg−bp && Dist > davg)

Then

Return active

Else

Return Inactive

End

TABLE 1. Various thresholds.

proposed model, certain bandwidth thresholds are defined

between sensor to sensor (Bs−s), a sensor to CH (Bs−ch),

CH to CH (Bch−ch), and CH to Base Station (Bch−bs). If any

link (edge) weight is less than the threshold, then it is consid-

ered as a broken link. The thresholds among the various kinds

of links and bandwidth thresholds are given in Table 1.

The following procedure is used to find the active link in

the improved Q-MST algorithm (refer algorithm 2).

IV. PROPOSED SYSTEM MODELS

Various systemmodels used in this article are discussed in the

subsequent section:

A. PATH LOSS MODEL

In wireless communication literature, various path loss mod-

els and their analysis exist. The followings are well-known

path loss models in wireless communication.

• Free-space model

• Two-ray model

• The simplified path loss model

• Empirical models.

Path loss is defined as PL = (Pt
/

Pr ) > 1 where, PL is the

path loss, Pt is power transmission, and Pr is received power.

PL(dB) = 10 log10(Pt/Pr ) > 0 (1)

The radio signals, as propagates away from the transmitters,

the power of the radio signals is reduced according to dis-

tance traveled from the transmitters. In most of the wireless

communication systems, often, the default path loss model is

the free space path loss model, which computes attenuations

according to the inverse square law along a single line-of-

sight propagation path.

In all of the above-saidmodels, the path loss is proportional

to distance with some exponent, and exponent depends on

the path model. Further, in all of the path loss models, the

distance from the receiver and transmitter is the key factor.

Hence, in our proposed model, we have considered the aver-

age distance, which is the threshold to decide the active node.
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Algorithm 2 Procedure for Finding Active Link

Procedure (Type of the Link, Bandwidth)

Begin:

If (Type == 1)

If (Bandwidth > Bs−s)

Then

Return active.

Else

Return Inactive.

Else

If (Type == 2)

If (Bandwidth > Bs−ch)

Then

Return active

Else

Return Inactive

Else

If (Type == 3)

If (Bandwidth > Bch−ch)

Then

Return active

Else

Return Inactive

Else

If (Type == 4)

If (Bandwidth > Bch−bs)

Then

Return Active

Else

Return Inactive

END:

END:

Figure 2 shows the path loss in the first order radio model

and its relation with distance. In WSN currently, there is a

great deal of low radio energy consumption models. In the

proposed model, we have adopted first order radio model for

simplicity and the radio dissipates Eelec = 50 nJ/bit to run the

transmitter or receiver circuitry and Eamp = 0.1 nJ/bit/m2 for

the transmit amplifier. These parameters also are shown in

Table 5.

PL = Pt/Pr α dn (2)

The eq. (2) indicates the path loss model, which depends

on the radio transmission and receiving power, which is

proportional to some of the power of the distance in all the

well-known path loss models [22]. The distance between two

nodes (xi, yi) and (xj, yj) will be evaluated using the formula

sqrt[(xj−xi)
2+(yj−yi)

2]. PL is path loss from each neighbor

at node n from each neighbor node 1, 2, 3, 4, and 5.

In the proposed model, using the average distance (davg)

among n nodes, consider nodes 1, 3, and 5 are active and

thus deemed to intended. Similarly, nodes 2 and 4 are inac-

tive; hence, these are not considered to intend. In nodes

2 and 4, the interference problem arises, and it is handled

FIGURE 2. Path Loss Model.

FIGURE 3. Active Neighbor Node based on Average Distance Due to
Interference.

by the interference model given in [10], but according to

suggestedwork in this article, it is essential not to consider the

interference model as already selecting the node of a higher

average distance. Further, due to interference, there is a kind

of node or link failure that has been previously handled by

the proposed fault tolerance model; hence, the interference

model is not required in the proposed approach.

B. THE FLOW CHART OF THE PROPOSED NLF FAULT

TOLERANCE MODEL

A model for fault tolerance is proposed to support both

node and link failure; its functioning has been presented

here in Fig. 4. For a link or edge failure, the Imp-QMST

algorithm and, for node failure, the Imp-Handoff algorithm

have been proposed, which are improved forms of QMST

and Handoff algorithm, respectively. A WSN comprises of

several sensor nodes. Let an undirected fully connected graph

G = (V, E) represent the topology of the network where

V = {v1, v2, v3, . . . . .vn}, stands for a set of nodes, E =

{(vi, vj)|vi, vj ∈ V ∧ d(vi, vj) < min(Ri,Rj)} are the set of

edges and d(vi, vj) is Euclidean distance of vi, vj and Ri is the

transmission range of vi.

The proposed NLFFT model control flow illustrated in

Fig. 4.

C. ENERGY CONSUMPTION MODEL OF WSN

A variety of power consumption models [23] are available,

but this article uses Heinzelman et al. [24] model for power

dissipation and the meaning of symbols has been illustrated

in Table 5. The proposed work uses, to transmit and receive

an n-bit message to a distance (d) by using radio model:

Energy Consumption at Transmitter (refer Eq. 3)

ETx = ETx−ele × n+ εamp × d2 (3)

Energy Consumption at Receiver (refer Eq. 4)

ERx = ERx−ele × n (4)
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FIGURE 4. Proposed NLFFT Model.

In the simulation, it summarizes that the size of every incom-

ing and outgoing message is one bit. Hence, the Eq. (2) and

Eq. (3) are converted into (4) and (5) respectively.

ETx = ETx−ele + εamp × d2 (5)

ERx = ERx−ele (6)

D. END TO END DELAY MODEL

To calculate the end-to-end delay, the following formulae

have been used:

The Time required to send a packet at k-links

= k∗[(H + (D/P))/C] (7)

Here, H is the header size (in bits), D is bit size of data,

P is some packets and C is the link capacity, also known as

buffer size. It has been assumed that the header size (H) of

each packet is 2 bits and the data size is (D) 1 bit. All the

links are considered as homogeneous and having a capacity

to store 50 packets (identical to the link capacity).

Thus, it can be seen that the number of packets is identical

to the sum of the size of all the data packets. Thus, by putting

D/P = 1, H = 2, and C = 5 the above-given formula (refer

Eq. 7) is converted to Eq. (8).

End_to_End_Delay = (3/5) × k (8)

V. NLFFT MODEL: A NOVEL FAULT TOLERANCE MODEL

TO SUPPORT FAILURE AT BOTH LINK AND NODE LEVEL

Though the flow chart of the NLLFT model has been

presented in the previous section, this section highlights

the implementation of the techniques used in the proposed

NLFFT model.

Firstly, MST is generated by using swarm-based

approaches (ACO, PSO, FF, and ICA algorithm) and tradi-

tional PRIMS algorithm to implement the proposed NLFFT
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model for fault tolerance. Every node as a part of MST acts

as a data aggregator node. The Prims algorithm is known

as Jarnik’s algorithm, which is a greedy algorithm to find

MST by calculating the subset of edges that construct a tree,

including all vertices, at least once.

MarcoDorigo gave the ant colony optimization (ACO) [25]

in 2006. In ACO, artificial ants are deployed to perform

a heuristic search. The ACO [26]–[28] algorithm uses a

probabilistic approach to get MST, which acts as a data

aggregation tree. After obtaining the desired solution, the

pheromone and evaporation parameters get updated.

The PSO algorithm is a meta-heuristic and population-

based algorithm. It was developed by Eberhart and

Kennedy in the year 1995 [29]. It is a nature-inspired and

swarm-intelligence based heuristics method, provided by

recognizing the movement and behavior of birds and fish

flocks. The minimum spanning tree using the PSO algorithm

and various parameters related to it have been explained by

Goldbarg et al. [30] and improved by various researchers for

performance improvement [31].

The Firefly algorithm was developed by Xin-She Yang at

the end of the year 2007 and the beginning of 2008 [32], [33],

similar to PSO, it is also a meta-heuristic algorithm inspired

by the flashing behavior of fireflies and their biolumines-

cent communication [34]. A discrete Firefly algorithm for

improved data collection and data aggregation in WSN was

elaborated in [35], [36]. The ICA [37] algorithm was given

by Atashpaz-Gargari and Lucas in 2007[38]. ICA can be

considered as a human counterpart of the Genetic Algo-

rithm [39]. It performs human social evolution while the

Genetic Algorithm performs biological evolution of species.

Sayadnavard et al. explained sensor network localization

using the ICA algorithm [40].

The ABC algorithmwas presented by Devis Karaboga [41]

in the year 2005. It is a meta-heuristic algorithm based on the

swarm. It was designed to optimize and solve multivariable

and numerical problems [42], and it was influenced by the

honey bees and their genius foraging behavior. The ABC

algorithm contains three components, mainly, i.e., working

bees, unemployed bees, and the food source. The detailed

algorithm related to this article, to solve Q-MST using ABC,

is explained in [4]. In the NLFFTmodel, an improved version

of QMST [3]–[5] and Improved Handoff algorithm were pro-

posed and named as Imp-QMST and Imp-Handoff algorithms

respectively. Tools generally used for WSN are discussed

in [43] and energy-efficient protocols are developed in [44].

A detailed study of the swarm and evolutionary algorithm

available in [45]–[49].

A. IMP-QMST MECHANISM

In theQ-MST approach, at the place of edge cost (weight), the

cost of enjoined pair of edges is also considered, and the target

is to find out the side with the lowest side cost, to be replaced

at the place of broken link or edge. The Q-MST is anNP-Hard

problem, which was suggested by Asad and Xu [42]. Further,

it was extended by Sundar and Singh [4] by implementing an

ABC algorithm to find MST. The concept of applying fault

tolerance in WSN using the Q-MST approach, along with an

example, has been implemented by Menaria et al. [3].

Going a step ahead of the above-mentioned Q-MST

approach, this article proposes an improved-QMST (Imp-

QMST) mechanism. The flowchart of Imp-QMST has been

shown in section 4.A.2 and can be explained thus:

1. When a node or link breaks down, or failure occurs due

to battery power or any other reason, the sensor network

is separated into two components. (one remains to the

left side of the broken link and another to the right side)

2. Find the edges which connect the two parts mentioned

above (sets).

3. Calculate the total cost (Total_Weight) of every

connecting edge mentioned in step 2, by using

the inter-cost matrix as procedure mentioned in

Q-MST [4], i.e., the cost (weight) from each existing

edge to every connecting edge of above components

and vice versa. (Detailed example provided in [3])

4. Now, instead of selecting minimum cost edge

(Q-MST), calculate the average cost davg, of all the

corresponding costs of sides calculated in step 3.

5. Calculate average battery power (baverage) for each

edge separately using Eq. 9:

baverage =

2
∑

i=1

bi

2
(9)

where bi is the battery power of i
th node on the edge ei.

6. Similarly, calculate the cumulative average battery

power (Bcum−avg) for all the edges using Eq. 10, which

are included in the connecting sets, i.e. edges which

connect both components.

Bcum−avg =

n
∑

i=1

baverage(i)

n
(10)

7. Edge Selection (Select the edgewhich has its cost lower

than or equals to average cost davg, and its average bat-

tery power baverage is higher than or equal to cumulative

average battery power i.e. Bcum−avg.

8. If no edge is found in step 6, then follow a simple

Q-MSTmechanism, i.e., select the edge with minimum

cost as calculated by step 3.

9. Replace the selected edge at the broken edge or link in

the network and continue transmissions.

10. End

Let’s consider the steps mentioned above with a sensor

network taken as an example in Fig. 5.

Figure 5(a) shows a complete undirected graph with 5 sen-

sor nodes, and these nodes are connected through 10 numbers

of sides (edges), called links in the WSN ranging from e1 to

e10. The inter-cost matrix (edge-to-edge cost matrix) of the

said network has been shown in Table 2.

Table 3 depicts the battery power at the given moment, for

all the five nodes participating in the network.
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FIGURE 5. A Sensor network with QMST/Imp-QMST Process.

TABLE 2. Inter-cost matrix.

In thementioned inter-cost matrix in Table 2, each diagonal

element presents the edge weights (cost or distance), and

the remaining elements are edge-to-edge costs, which can

be considered as a parameter related to WSN, i.e., channel

TABLE 3. Battery Power of all the nodes during link failure.

strength. Figure 5(b) is a minimum spanning tree with a total

weight of 223. Now suppose, due to any valid reason, the link

e9 becomes weak or broken down (refer Fig. 5(c)), then the

whole graph is separated into two sets, one is {1, 2, 5}, and

another set is {3, 4}.

Now, it is required to select the alternate edge or side

connecting the said two sets. Fig. 5(d) depicts that there

are 3 possible edges connecting the two sets namely {e5,

e6, e8). Now, the total weight (cost) is to be calculated for

all three edges. First, an edge-to-edge cost is calculated by

considering every possible alternate edge using following

steps:

• For the link e5 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e5, e5) + cost(e1, e5)
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+cost(e5, e1)

+cost(e7, e5) + cost (e5, e7)

+cost (e10, e5) + cost (e5, e10);

= 76 + 8 + 7 + 20 + 12 + 14 + 8

= 145

• For the link e6 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e6, e6) + cost(e1, e6)

+cost (e6, e1)

+cost(e7, e6)

+cost (e6, e7) + cost (e10, e6)

+cost (e6, e10)

= 80 + 9 + 7 + 14 + 11 + 12 + 7

= 140

• For the link e8 (connecting the vertexes 2 and 3)

Total Edge Cost = cost (e8, e8) + cost(e1, e8)

+cost (e8, e1) + cost(e7, e8)

+cost (e8, e7) + cost(e10, e8)

+cost (e8, e10)

= 87 + 10 + 5 + 9 + 16 + 8 + 15

= 150

As the total weight (cost) of edge e6 is low i.e., 140 than

other replaceable edges hence, in QMST approach the broken

edge, i.e. e9 will be replaced by e6 depicted in Fig. 5(e)

but, Imp-QMST will apply some modifications and other

parameters viz. battery power as:

1. Calculate the average weight (cost) of all the alternate

edges

davg = (147 + 140 + 150)/3

2. Calculate the average battery power (baverage) of each

edge connecting both the sets (SET-1 and SET-2) as:

a) baverage of edge e5 = (250.50+700.35)/2.0

= 475.42

b) baverage of edge e6 = (250.50+405.62)/2.0

= 328.06

c) baverage of edge e8 = (320.20+700.35)/2.0

= 510.27

3. Calculate the cumulative average battery power

(bcum−avg) of all the nodes participating in connecting the two

sets:

bcum−avg = (475.42 + 328.06 + 510.27)/3;

= 437.91

4. Now, the selection process starts by using the informa-

tion provided in steps 1 to 3 and can be concluded by making

a decision table, i.e. Table 4.

Thus, it can be seen clearly in the decision table that

the edge e5, having the link cost lower than average cost,

TABLE 4. Decision table.

FIGURE 6. Time Frame for Battery Energy Level.

i.e.145<=145.66 and its average battery power is higher than

the cumulative battery power, i.e., 475.42>=437.91). Hence,

the edge e5 will get selected as an alternative edge at the place

of broken edge e9, as shown in Fig. 5(f).

The side e6 and e8 do not fulfill both the conditions,

so these sides will not be considered. Now the question arises

that by following the above Imp-QMST procedure, what to do

when more than one edge found suitable. In this case, among

all suitable edges, the edge with minimum cost gets selected

as a replaceable edge.

B. IMP-HANDOFF MECHANISM

Similar to the QMST mechanism, the Handoff algorithm

is used in fault tolerance to handle node failure in WSN.

The only difference is that Q-MST or proposed Imp-QMST

algorithm works on a link or edge failure while the Hand-

off or Imp-Handoff mechanism works on node failure.

The flowchart of the Imp-Handoff mechanism is shown in

section 4.A.2 in the proposed NLF Fault Tolerance Model.

The algorithm is shown in this section.

The handoff mechanism [10] is used to replace the faulty

node with an alternate sensor node. In the handoff mecha-

nism, whenever a fault occurs at any node due to low battery

power or power failure, the neighboring node with the high-

est battery power replaces the faulty node, and all services

running on the defective node get transferred to the new

neighbor node. Thus, the data transmission process does not

get interrupted.

The Imp-Handoff algorithm is applied as the fault tolerance

technique because of the battery power drain mentioned in

Fig. 6.

Whenever a node, either a malicious or non-faulty, rec-

ognizes that its battery energy level is reduced to a degree

up to bth, i.e., if bk ≤ bth (bk indicate to the k th time

window), a handoff connection to its neighbor node needs to

be initiated. In the Handoff mechanism, the malicious node

gathers the status of the energy level of all its neighbor nodes

and transmits the handoff parameters to the neighbor node,

containing the superior battery power. The battery power

gathering process has two phases: (1) sending a request of
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battery power to all neighbor nodes (2) all the neighbors, send

reply packets having their latest battery power.

In the Imp-handoff mechanism, besides including the pro-

cess mentioned in the above paragraph (related to the battery

power), two more parameters are also considered- namely

the distance (weight) of all neighbor nodes to faulty node and

fault index of every node. The term fault index (FI ) is defined

as:

FI =
nmissed

ntotal
(11)

where nmissed = total number of missed packets and ntotal is

the total number of packets.

Initially, the fault index of every node is considered zero,

but as soon as transmission starts, its value gets updated. After

receiving all the parameters, the average battery power and

average distance for all the neighbor nodes are calculated.

At first, the neighbor node with battery power higher than

or equals to average battery power and with distance higher

than or equal to the average distance will get selected. While

in some cases, if the above condition does not get satisfied,

then the neighbor node with the least fault index will get

selected. The notations used and the Imp-Handoff algorithm

are presented below:

Algorithm 3 Improved Handoff Algorithm (Imp-Handoff

Algorithm)

1. Initially assign a battery power (bi) to every sensor node

arbitrarily.

2. Define Source, Sink, and Threshold value (bth) of the

Battery Power.

3. Start data transmission from defined source to destina-

tion repeatedly.

4. Update the battery power for every transmission

defined in step 3.

5. IF any fault occurs in step 3 (bk < bth) then

6. Send REQUEST packets to all neighbor nodes for both

distance and updated battery power excluding next-

hop.

7. Receive the REPLY packets in the response of request

given in step 6, from each n-1 neighbor node.

8. Arrange all the neighbor nodes of a failed node in

ascending order of distance.

9. Calculate the parameters baverage and davg.

10. For each node from the list of (n-1) nodes

11. Check whether it’s the last updated battery power ≥

baverage and distance ≥ davg.

12. If any suitable node found in step 10 then replace the

faulty node from this node by sending all parameters

related to connection to the identified node i.

13. Else select the node which has the lowest fault index

(FIi).

14. Replace the faulty node with the identified node in

steps 8 to 12.

15. End

Notations: bk is the battery power of the faulty node in a k
th

time frame, bth is the threshold power which is a predefined

constant, n is the count of neighbor nodes, dk is the distance

(weight) of a neighbor node from the faulty node, baverage
is the average battery power, davg is the average distance

(weight) of neighbors from faulty nodes, and FIi is the fault

index of node i.

The above proposed Imp-Handoff algorithm is compared

with the existing handoff algorithm. The results have been

analyzed in section 7, with the experimental setup discussed

in section 6.

VI. EXPERIMENTAL SETUP

A. ASSUMPTIONS

While examining the performance of the proposed NLFFT

model, the following assumptions are considered:

• It is assumed that every node in the sensor network setup

is homogeneous and is deployed statically.

• Every sensor node has an equal capability to sense the

surrounding data.

• The probabilistic approach is taken into consideration

from the Prowler Simulator for networks, in the context

of packet transmission from source to sink node. In this

approach, every packet has a probability between 0 and

1 and those packets that have a probability greater than

0.5, will only be transmitted to the next hop.

• After constructing the MST using various swarm intel-

ligence techniques, this MST is considered as a data

aggregation tree where all the leaf nodes are considered

as data aggregator nodes.

B. SIMULATIONS AND SIMULATION PARAMETERS

The simulation was performed in the MATLAB environ-

ment. The sensor nodes were set out randomly in a 200∗200

square unit area. The source and destination (sink) nodes

were also declared arbitrary. The Euclidean distance of all the

pairs of connected nodes was calculated and if it was found

less than 150 meters, then those nodes could be considered

as disconnected. Finally, the depth-first search (DFS) was

imposed on examining whether the network was connected

or disconnected. If the network was found as disconnected,

then the whole procedure was repeated to get the connected

graph to carry out the further simulation.

After getting a connected graph, MST is originated with

various algorithms, as mentioned in section V, and then per-

forms packet transmission. While carrying out packet trans-

mission, if any node or link fails due to less battery power or

power failure, Handoff and Imp-Handoff algorithms, Q-MST,

and Imp-QMST algorithms are applied to support fault toler-

ance, as elaborated in section V.

As the packet transmission process is completed, various

parameters like the total number of packets transferred, total

packets received, total packets lost, the power consumed, and

the end-to-end delay are calculated. The various comparative

graphs are plotted in the result analysis in section VII.
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TABLE 5. Simulation parameters.

Table 5 enlists various simulations parameters that are con-

sidered as an experimental setup to measure the performance

of the proposed NLFFT model.

VII. RESULT ANALYSIS

Competitive analysis between QMST versus Imp-QMST and

Handoff versus Imp-Handoff has been performed through

various swarm intelligence techniques viz. ACO, PSO, FF,

ICA, and traditional PRIMS algorithms.

Initially, MST is constructed through techniques as men-

tioned above.Whenever there are link or node failure, the said

fault tolerance techniques, i.e. Q-MST, Imp-QMST, Handoff,

and Imp-Handoff are applied. Results are calculated in terms

of throughput, end-to-end delay, and energy consumed during

thewhole data transmission process. After performing several

simulations, for each of the transmission, the average results

are computed, as shown in Table 5. Results for QMST and

Imp-QMST have been discussed in section VIII part A.

A. QMST VS IMP-QMST ALGORITHM

In this section, MST is generated by using the above-

mentioned swarm intelligence algorithms and the PRIMs

algorithm. Further, QMST and Imp-QMST are applied for

the fault-tolerance purpose. TheQMST and Imp-QMST algo-

rithms deploy the ABC algorithm to find an alternate edge or

link at the place of the broken link. The comparison of results

has been depicted in subsequent sections.

1) THROUGHPUT COMPARISON

Table 6 and Fig. 7 shows the throughput comparison between

QMST and the Imp-QMST approach. The graphical presen-

tation of throughput comparison is shown in Fig. 7. It is

clear by analyzing Table 6 and Fig. 7 that the throughput

received through Imp-QMST is almost 2% better than the

Q-MST approach. If it is analyzed algorithm wise, then it

is found that Imp-QMST is 7% better than QMST for the

PRIMS algorithm, 3% for ACO algorithm, 7% better for PSO

algorithm, 6% better for FF algorithm and finally it is (Imp-

QMST).50% better than ICA algorithm.

Further, it can be seen that among all the swarm-based

techniques, the ACO algorithm gives the highest through-

put (203%, 177%, 203%, and 146% more as compared to

PRIMS, PSO, FF and ICA algorithm for Imp-QMST) and

it remains almost the same along with a varying number of

nodes.

2) END-TO-END DELAY COMPARISON

The end-to-end delay between Q-MST and proposed Imp-

QMST has been analyzed in Figure8. The calculation of end-

to-end delay is performed using Eq. 7, which is mentioned in

section III. The explicit values are shown in Table 7.

Figure 8 depicts that the end-to-end delay achieved by Imp-

QMST is lower than the QMST approach. By analyzing the

simulation results, shown in Table 7, it becomes clear that

Imp-QMST is almost 9% better than the QMST approach.

Regarding Imp-QMST, the ACO algorithm is almost 80%

better than other algorithms viz. ACO, PSO, FF, and ICA

algorithms.

Hence, it’s clear by Fig. 8 that the ACO algorithm has a

lower end-to-end delay as compared to other swarm intelli-

gence approaches, depicted in the above-said figure.

3) POWER DISSIPATION COMPARISON

On the lines of the comparison performed in sub-section 1

and 2, a similar comparison related to power dissipation is

shown here in Table 8 and Fig. 9.

It is clear from the tabular analysis that the average

power dissipation while considering all the swarm intelli-

gence algorithms, the Imp-QMST is 10% better than the

QMST approach. Further, it is also apparent in Fig. 9 that

power dissipated in the Imp-QMST is less than QMST. By the

Imp-QMST approach with the ACO algorithm, it is 25%

better than the PRIMS algorithm, 34% better than the PSO

algorithm, 26% better than the FF algorithm, and 37% better

than the ICA algorithm. Hence, it is concluded that among

all the MST construction algorithms, the ACO algorithm has

less power dissipation as compared to others and Imp-QMST

performs better than the QMST approach.

The graphical representation of power dissipation is shown

in Fig. 9.

4) DATA AGGREGATION USING VARIOUS SWARM

INTELLIGENCE APPROACHES WHEN NUMBER OF NODES

WERE KEPT FIXED (I.E. THE NUMBER OF NODES N = 35)

Here, the above-mentioned comparisons have been elabo-

rated again by setting the count of nodes fixed to 35 and

varying the call of data transmissions from 100 to 1000. The

throughput, delay, and power dissipation comparisons are

given in this section and subsections:

a: THROUGHPUT COMPARISON

A tabular comparison of throughput is shown in Table 9.

Figure 10 narrates the throughput comparison between

VOLUME 8, 2020 149241



V. K. Menaria et al.: NLFFT: A Novel FT Model Using Artificial Intelligence to Improve Performance in WSNs

TABLE 6. Throughput Comparison of QMST v/s Imp-QMST.

TABLE 7. End-to-End Delay Comparison of QMST v/s Imp-QMST.

FIGURE 7. Throughput Comparison of QMST v/s Imp-QMST.
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TABLE 8. Comparison of Energy Dissipation (in nJ) between QMST and Imp-QMST.

TABLE 9. Throughput Comparison when numbers of nodes are fixed.

TABLE 10. End-to-End delay Comparison when numbers of nodes are fixed.

QMST and Imp-QMST algorithms by using various artificial

intelligence techniques as anMST generation algorithm (data

aggregation).

The tabular analysis in (Table 9), shows that the cumu-

lative throughput of proposed Imp-QMST applied to all

the said algorithms is almost 11% better than the QMST

approach. The individual analysis of each algorithm between

Imp-QMST v/s QMST shows that the PRIMS algorithm

with Imp-QMST is 48% better than with QMST. Similarly,

ACO algorithms with Imp-QMST are 2% better than QMST,

PSO algorithm with Imp-QMST is 24% better than QMST,

FF algorithm with Imp-QMST is 21% efficient than QMST

and finally, ICA algorithm with Imp-QMST is about 7%

more, efficient than QMST approach. Further, regarding the

Imp-QMST approach it has been found that the ACO algo-

rithm performs 363% better than PRIMS, 295% better than

the PSO algorithm, 264% better than the FF algorithm, and

230% better than ICA algorithm.

Hence, it is comprehensive that the throughput from the

Imp-QMST procedure is higher than QMST while numbers
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FIGURE 8. End-to-End Delay Comparison of QMST v/s Imp-QMST.

FIGURE 9. Comparison of Energy Dissipation between QMST and Imp-QMST.

of nodes are kept fixed and the ACO algorithm performs

better than all the other said algorithms.

b: END-TO-END DELAY COMPARISON

The comparison regarding the delay between QMST and

Imp-QMST by fixing the count of nodes is delineated in

Table 10 and the graphical representation is shown in Fig. 11.

The analysis of Table 10 shows that the cumulative end-

to-end delay of all the algorithms with Imp-QMST performs

better. If we compare it individually on the ACO algorithm

then it is found that the ACO algorithm with Imp-QMST per-

forms almost 2% better than ACO with the QMST approach.

Further, it is clear from Fig. 11 that the Imp-QMST algo-

rithm causes lesser delay than the QMST approach.

c: POWER DISSIPATION COMPARISON

Table 11 and Fig. 12 show that the energy consumed (nJ) by

QMST is greater than Imp-QMST.
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FIGURE 10. Throughput Comparison when numbers of nodes are fixed.

FIGURE 11. End-to-End delay Comparison when numbers of nodes are fixed.

Similar to previous analyses, here also the ACO algorithm

performs better than to other algorithms i.e. in Imp-QMST,

the ACO algorithm is about 32% better than PRIMS and PSO

algorithm, 29% better than FF algorithm and 39% better than

ICA algorithm.

B. HANDOFF VS IMP-HANDOFF ALGORITHM

Along the lines of the previous sub-section i.e. subsection A,

the performance comparison between Handoff and proposed

Imp-Handoff algorithm is measured on various artificial

intelligence (AI) algorithms for three network parameters.
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TABLE 11. Power Dissipation Comparison when numbers of nodes are fixed.

TABLE 12. Throughput Comparison of Handoff vs. Imp-Handoff algorithm.

1) THROUGHPUT COMPARISON

Table 12 and Fig. 13 enlist the throughput comparison

between Handoff v/s IMP-Handoff algorithms on the data

aggregation tree generated by various swarm intelligence

techniques.

The tabular analysis makes it clear that the Imp-Handoff

algorithm is better than handoff algorithm, tested on various

AI algorithms i.e. Imp-Handoff algorithm is about 3% better

than handoff algorithm for PRIMS algorithm, 1.5% better for

ACO algorithm, 3% better for FF algorithm and 2% better for

ICA algorithm.

To find a better-suited algorithm, the performance of all

the said AI algorithms are compared and it is found that

the performance of the ACO algorithm for generating MST

along with Imp-Handoff algorithm for fault tolerance is best

suited. The ACO algorithmwith Imp-Handoff FT gives about

214% better throughput than PRIMS with the Imp-Handoff

algorithm for FT. Similarly, ACO performs 198%, 229%, and

184% better than to PSO, FF, and ICA algorithms.

Hence, it is clear and it can also be seen from Fig. 13 that

the throughput produced through the Imp-Handoff algorithm

is way better than the Handoff algorithm.

2) END-TO-END DELAY COMPARISON

The tabular comparison between the handoff and the Imp-

Handoff algorithm on various algorithms shown in Table 13.

Considering the end-to-end delay in Table 13, it is clear that

on an average Imp-Handoff algorithm is about 9% better than

the Handoff algorithm. If the PRIMS algorithm is considered

then applying handoff and Imp-Handoff algorithms on it

as FT techniques, the Imp-Handoff technique is around 7%

better than the handoff algorithm. Similarly, Imp-handoff on

ACO, FF, and ICA algorithm is found to be 11% better than

handoff and on PSO it is found 7% better than the handoff

algorithm.

Further, concerning Imp-Handoff, while comparing the

performance of various algorithms, the ACO algorithm is

found 80% efficient than PRIMS, PSO, FF, and ICA algo-

rithm. Apart from the tabular comparison, the graphical rep-

resentation of the end-to-end delay comparison of aforesaid

is shown in Fig.14.

By observing Fig. 14, it is clear that the end-to-end delay

using the Imp-Handoff algorithm is less than the Handoff

algorithm. Further, it is also clear that as the number of nodes

increases, the end-to-end delay also increases.
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TABLE 13. End-to-End Delay Comparison using Handoff and Imp-Handoff algorithm.

TABLE 14. Power Dissipation Comparison between Handoff and Imp-Handoff algorithm.

3) POWER DISSIPATION COMPARISON

The comparison of power dissipated in the fault toler-

ance process by using both the Handoff and the proposed

Imp-Handoff algorithms on various AI algorithms is visual-

ized in Table 14. Further, graphical analysis of shown com-

parison is shown in Fig. 15.

Table 14 shows that cumulatively considering all the AI

algorithms shown in this table, the proposed Imp-Handoff

algorithm is 7% more efficient in energy consumption as

compared to the existing Handoff algorithm. If we compare

the Handoff and Imp-Handoff algorithm on an individual

algorithm, then it is found that, for the PRIMS algorithm, the

Imp-Handoff algorithm is 10% better than the Handoff algo-

rithm. Similarly, for ACO, PSO, FF, and ICA algorithm, the

Imp-Handoff is 2%, 5%, 9%, and 4% better than the Handoff

mechanism.

Further, to find out the best-suited algorithm to construct

MST respective to the Imp-Handoff mechanism, it is found

that the ACO algorithm (Table 14) is about 56% efficient than

PRIMS, PSO, FF, and ICA algorithm.

Figure 15 also makes it clear that during transmission,

the power dissipated by the traditional Handoff algorithm is

higher than the Imp-Handoff algorithm. Power consumption

is a crucial parameter in any network as it directly affects

network lifetime.

4) DATA AGGREGATION USING VARIOUS SWARM

INTELLIGENCE APPROACHES WHEN NUMBER OF NODES

WERE KEPT FIXED (I.E. THE NUMBER OF NODES N = 35)

Along the lines of section 4 of subsection A of result

analysis section i.e. section VII-A-4, an analysis between

Handoff and Imp-Handoff is demonstrated here by adjusting
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FIGURE 12. Power Dissipation Comparison when numbers of nodes are fixed.

FIGURE 13. Throughput Comparison of Handoff vs. Imp-Handoff algorithm.

the count of nodes to 35 and varying the number of

transmissions.

a: THROUGHPUT COMPARISON

Table 15 and Fig. 16 in this section enlist the throughput

comparison between the Handoff and Imp-Handoff algorithm

by keeping the fixed number of nodes and increasing the

number of transmissions.

The tabular comparison makes it clear that the cumulative

throughput of the Imp-Handoff mechanism is about 3-4%

more than the Handoff mechanism. The individual compar-

ison of various algorithms by the Imp-Handoff mechanism

shows that the Imp-Handoff applied to the PRIMS algorithm

is about 28% efficient than the Handoff algorithm. Similarly,

the Imp-Handoff applied on ACO, PSO, FF, and PSO algo-

rithms are about 1%, 19%, 14%, and 9% efficient than the

Handoff algorithm.
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FIGURE 14. End-to-End Delay Comparison using Handoff and Imp-Handoff algorithm.

TABLE 15. Throughput Comparison between Handoff and Imp-Handoff Algorithm when numbers of nodes are fixed.

Further, it can also be concluded from Table 15 that for

Imp-Handoff, the ACO algorithm is around 355% efficient

than the PRIMS algorithm, 350% efficient than PSO, 261%

than FF, and 215% efficient than ICA algorithm.

Hence, it can be concluded that by keeping the fixed num-

ber of nodes and changing the transmissions in ascending

order, the throughput by the Imp-Handoff algorithm becomes

better than the Handoff algorithm.

b: END-TO-END DELAY COMPARISON

The end-to-end delay comparison of the Handoff algorithm

and the Imp-Handoff algorithm with said data aggregation

algorithms by setting the count of nodes to 35, has been given

in Table 16. The pictorial analysis of the end-to-end delay

comparison of Handoff and Imp-handoff algorithms is shown

in Fig. 17.

The analysis of Table 16 shows that the Imp-Handoff

algorithm performs better and, on average, it is about 2%

better as compared to the Handoff algorithm. By comparing

individual algorithms with Imp-Handoff and Handoff, it is

found that Imp-Handoff applied on the PRIMS algorithm

gives about 2% better performance, ICA gives 8% better

performance and rest of the algorithmsmentioned in Table 16

give a slightly better or equal performance as compared to
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FIGURE 15. Power Dissipation Comparison between Handoff and Imp-Handoff algorithm.

FIGURE 16. Throughput Comparison between Handoff and Imp-Handoff Algorithm.

Handoff approach. Further, by analyzing Table 16, it becomes

clear that by Imp-Handoff, the ACO algorithm is an average

82% efficient as compared to PRIMS, PSO, FF, and ICA

algorithms.

Hence, Fig. 17 concludes that the end-to-end delay of

the Imp-Handoff algorithm is way lesser than the Handoff

algorithm and stays almost the same for all the number of

transmissions, for all MST generation algorithms.

c: POWER DISSIPATION COMPARISON

The power dissipation comparison is also specified in

Table 17. Table 17 depicts that, on an average, Imp-Handoff

algorithm is 8% efficient in saving energy as compared

to the Handoff algorithm. The Imp-Handoff on PRIMS

algorithm saves 5% energy as compared to the Handoff

algorithm. Similarly, the Imp-Handoff algorithm, as a fault

tolerance algorithm applied on ACO, PSO, FF, and ICA;
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FIGURE 17. End-to-End Delay Comparison of the Handoff v/s Imp-Handoff Algorithm.

FIGURE 18. Power Dissipation Comparison between the Handoff and Imp-Handoff algorithm.

saves about 11%, 2%, 5%, and 12% less energy as com-

pared to the Handoff mechanism. Similar to previous result

analysis sections, Fig. 18 depicts the graphical analysis of

power dissipation between handoff and Imp-Handoff tech-

niques on MST constructed by various artificial intelligence

techniques.

Further, the Imp-Handoff mechanism applied to the ACO

algorithm is around 68% energy efficient as compared to

other algorithms viz. PRIMS, PSO, FF, and ICA algorithm.

Hence, by viewing Fig. 18 and Table 17, it is concluded

that the power dissipation by the Imp-Handoff mechanism is

low as compared to the existing handoff mechanism.
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TABLE 16. End-to-End Delay Comparison between Handoff and Imp-Handoff Algorithm when numbers of nodes are fixed.

TABLE 17. Power Dissipation Comparison between the Handoff and Imp-Handoff algorithm when numbers of nodes are fixed.

VIII. CONCLUSION AND FUTURE SCOPE

The result analysis of section VII makes it clear that the pro-

posed NLFFTmodel for fault tolerance (shown in section IV)

is successful when any node or link failure occurs in the sen-

sor networks. The supportive Imp-QMST and Imp-Handoff

algorithms are found to be way better than QMST and

Hand-off algorithm in terms of throughput, end-to-end delay,

and power dissipation. In the mentioned result analysis

section, four swarm intelligence techniques (ACO, PSO, FF,

and ICA) and one traditional PRIMS algorithm have been

applied to generate MST to support data aggregation, and

then fault tolerance mechanism is imposed according to the

proposed NLF fault-tolerance model.

Simulation results depict that as compared to basic tech-

niques, i.e. Q-MST and Handoff algorithm, the proposed

NLFFT model improvises the performance of WSN around

7%. The comparison of the individual algorithm shows that

the Imp-QMST gives about 6% improved throughput, 5%

lesser end-to-end delay, and 6% less power consumption as

compared to the QMST algorithm. Similarly, Imp-Handoff

improves about 4% throughput, 6% lesser end-to-end delay,

and 7% less power consumption as compared to the Handoff

algorithm. Hence, the proposed NLFFT model proves the

improved performance in terms of throughput, end-to-end

delay, and power consumption.

Though the complexity of the proposed algorithms in

the NLFFT model is increased by involving more than one

parameter, i.e. battery power, cost of edges but the competent

results go on to prove the efficacy of the proposed NLFFT

model and shows that it can be applied to handle node or link

failures.

Further, as the proposed NLFFT fault tolerance model

is applied to the statically deployed sensor nodes only,

it can be extended and applied to the dynamically deployed
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sensor networks also. This work can also be extended in

Internet-based applications by adding some security proto-

cols and regulations.
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