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In this contribution the next-to-leading (NLO) QCD corrections to Higgs boson pair production are
discussed. A brief sketch of the calculation is given. The differential cross section as a function of
the invariant Higgs pair mass and the total hadronic cross section are presented. Furthermore, the
uncertainties not only from the renormalisation and factorisation scales but also the uncertainties
due to the scheme-and-scale choice of the top mass are shown. In addition, the effects of varying
the Higgs self-coupling strength on the cross section are investigated.
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1. Introduction

Since the detection of a Higgs boson in 2012 [1, 2] many of its properties have been determined
and are in agreement with the Standard Model (SM) predictions [3–8]. However, the Higgs self-
coupling strength λH3 is still unknown. It is of particular interest since it gives access to the Higgs
potential which is directly related to the electroweak symmetry breaking mechanism. Higgs pair
production needs to be considered to directly probe the Higgs self-coupling strength. The dominant
production channel at the LHC for Higgs pair production is gluon fusion gg → HH, a loop-induced
process where the top quark in the loops provides the dominant contribution [9, 10]. Its cross
section is about three orders of magnitude smaller than the gluon-fusion cross section of single
Higgs production [11]. For gluon fusion the relative uncertainty of the cross section is about the
same as the impact of the same relative variation of the Higgs self-coupling strength around its SM
value. Therefore higher-order corrections to the cross section are required in order to reduce the
uncertainty in the Higgs self-couplings strength measurement.
In a first step, the next-to-leading-order (NLO) QCD corrections have been calculated in the large
top mass limit (HTL) where corrections of around 100 % have been obtained [12]. Later, a large
top mass expansion has been added which leads to additional 10 % NLO mass corrections [13, 14].
These have been confirmed by calculating the real corrections with the full mass dependence [15].
Recently, two independent group have calculated the NLO QCD corrections including the full top
mass dependence using two different approaches [16–20]. Thereby, NLO mass effects of −15% in
addition to the HTL result have been obtained. This result has been supported by various expansion
and extrapolation methods [21–23].

2. Calculation of the NLO QCD corrections

Figure 1: Generic diagrams for Higgs boson pair production at LO where the contribution of the trilinear
Higgs coupling is highlighted in red.

At leading order (LO) gluon fusion consists of diagrams involving the Higgs self-coupling and
of such involving the Yukawa couplings only (Figure 1). Diagrams with no Higgs self-coupling
will be designated as box diagrams and the rest as triangular diagrams. For the virtual corrections
the triangle diagrams have been constructed from the known results of single Higgs production by
adding the Higgs vertex at the level of the matrix elements. For the one-particle reducible diagrams
the results of H → Zγ have been used by adjusting the kinematics and couplings accordingly.
The challenging part was the calculation of the virtual corrections of the box diagrams. Here a
diagrammatic approach has been chosen and no reduction to master integrals has been performed.
The ultraviolet divergences of the matrix elements were extracted using endpoint subtraction. For
the infrared and collinear divergences a similar subtraction but with more involved subtraction terms
has been used. To cope with the numerical instabilities above the virtual thresholds integration
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Figure 2: The upper panel displays the in-
variant Higgs pair mass distribution at 14
TeV and the lower panel the K-factor as a
function of the invariant Higgs pair mass.
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Figure 3: In the upper panel the differen-
tial NLO distributions in mHH for different
scheme and scale choices of mt are depicted
and in the lower panel the ratios of them to
the one with the on-shell top mass.

by parts over one of the Feynman parameters were applied. The integration over the six Feynman
parameters and one of the phase space variable was performed using Vegas [24] leading to the
virtual part of the differential cross section in the invariant Higgs pair mass, mHH = Q. The strong
coupling αs was renormalized in the MS-scheme with five active flavours and the top mass mt in
the on-shell scheme. Further instabilities were prevented by using a Richardson extrapolation. For
the real corrections the matrix elements were generated with FeynArts [25] and FormCalc [26].

3. Results

The numerical results are presented for a centre-of-mass energy of 14 TeV, a Higgs mass
mH = 125 GeV and a top mass mt = 172.5 GeV. For the NLO PDF sets we used MMHT2014 [27]
and PDF4LHC15 [28]. We have chosen a grid from Q = 250 GeV to 1500 GeV resulting in the
invariant double-Higgs mass distribution in Figure 2. In red the NLO QCD corrections with the
full mass dependence are shown. The error band displays the uncertainties due to the factorisation
and renormalisation scale choice. The black curve represents the LO result, the blue curve the HTL
result, the yellow the HTL supplemented by the full real corrections and the green one the HTL with
the full virtual corrections. In the lower plot of Figure 2 it is visible that for low invariant Higgs
pair masses mHH all the curves are of the same magnitude. However, for larger ones the green and
the red curves differ a lot from the blue and the yellow curves. This supports the importance of the
inclusion of the mass effects, especially the ones from the virtual corrections.

The numerical integration over Q leads to the total hadronic cross section. For this purpose
a combination of the trapezoidal method and Richardson extrapolation has been applied. For a
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centre-of-mass energy of 14 TeV a cross section σ = 32.81(7)+13.5%
−12.5% fb has been obtained. The

given errors are the uncertainties due to the factorisation and renormalisation scale choice.
In addition, the uncertainty related to the scheme-and-scale choice of the virtual intrinsic top

mass has been calculated for the first time. For this purpose the differential cross section has been
determined bin by bin for the mt in the on-shell scheme and in the MS-schemes at the scale µt where
we varied this scale in the range between Q/4 and Q. The following results have been obtained,

dσ(gg → HH)
dQ

!!!
Q=300 GeV

= 0.02978(7)+6%
−34% fb/GeV,

dσ(gg → HH)
dQ

!!!
Q=400 GeV

= 0.1609(4)+0%
−13% fb/GeV,

dσ(gg → HH)
dQ

!!!
Q=600 GeV

= 0.03204(9)+0%
−30% fb/GeV,

dσ(gg → HH)
dQ

!!!
Q=1200 GeV

= 0.000435(4)+0%
−35% fb/GeV (1)

In Figure 3 the NLO differential cross sections in mHH for different scale-and-scheme choices
of mt are depicted. The lower panel shows the ratios of the differential cross sections to the one with
the on-shell top mass. The scale-and-scheme dependence of the top mass causes sizeable variations
of the NLO cross section and cannot be neglected. Going to large Q-values the maximum is given by
the on-shell scheme and the minimum by the MS-scheme with mt (Q). The resulting uncertainties
are about a factor two smaller than for the LO result. For the uncertainty of the total hadronic cross
section the envelope for each bin has been taken and then integrated over Q. For a centre of mass
energy of 14 TeV we obtained σ = 32.81(7)+4%

−18% fb.
Furthermore, we investigated how the NLO cross section varies with modified Higgs self-

coupling strength. All the other couplings have been kept at their SM values. It has been observed
that the NLO mass effects shift the minimum of the total cross section from 2.4 to 2.3 times the
SM value of the Higgs self-coupling. This shift is mainly caused by the NLO mass effects of the
real corrections. Except for the regions where destructive interference between triangle and box
diagrams occurs, the NLO mass effects of the total cross section increase with higher centre-of-mass
energies.

4. Conclusions

In this contribution, it is briefly explained how the NLO QCD corrections to Higgs boson
pair production have been calculated. The differential cross section in mHH and the total hadronic
cross section have been presented. The comparison of the invariant Higgs pair mass distribution
in the HTL and of the full mass calculation has shown that the mass effects cannot be neglected
for large mHH . In addition to the uncertainties due to the renormalisation and factorisation scale
dependence, for the first time also the uncertainties due to the scale-and-scheme choice of the top
mass have been presented. They are of the same size as the renormalisation and factorisation scale
dependence and thus cannot be neglected. Furthermore, it has been shown that the variation of λH3

shifts the minimum of the Higgs boson pair production cross section from 2.4 to 2.3 times the SM
value of the Higgs self-coupling.
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