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1 Introduction

With the coming into operation of the Large Hadron Collider (LHC), a new era has begun

in the search for the Higgs boson(s). At the LHC the main production mechanism for the

Standard Model (SM) Higgs boson, HSM, is the loop-induced gluon fusion mechanism [1],

gg → HSM, where the coupling of the gluons to the Higgs is mediated by loops of colored

fermions, primarily the top quark. The knowledge of this process in the SM includes the

full next-to-leading order (NLO) QCD corrections [2–5], the next-to-next-to-leading order

(NNLO) QCD corrections [6–11] including finite top mass effects [12–18], soft-gluon re-

summation effects [19], an estimate of the next-to-next-to-next-to-leading order (NNNLO)

QCD effects [20, 21] and also the first-order electroweak corrections [22–28].

The Higgs sector of the Minimal Supersymmetric extension of the Standard Model

(MSSM) consists of two SU(2) doublets, H1 and H2, whose relative contribution to elec-

troweak symmetry breaking is determined by the ratio of vacuum expectation values of

their neutral components, tan β ≡ v1/v2. The spectrum of physical Higgs bosons is richer

than in the SM, consisting of two neutral CP-even bosons, h and H, one neutral CP-odd

boson, A, and two charged scalars, H±. The couplings of the MSSM Higgs bosons to

matter fermions differ from those of the SM Higgs, and they can be considerably enhanced

(or suppressed) depending on tan β. As in the SM case, the gluon-fusion process is one of

the most important production mechanisms for the neutral Higgs bosons, whose couplings

to the gluons are mediated by top and bottom quarks and their supersymmetric partners,

the stop and sbottom squarks.

– 1 –



J
H
E
P
0
8
(
2
0
1
1
)
1
2
8

In the case of the CP-even bosons h and H the gluon-fusion cross section in the

MSSM is known at the NLO in QCD.1 The contributions arising from diagrams with

quarks and gluons can be obtained from the corresponding SM results with an appropriate

rescaling of the Higgs-quark couplings. The contributions arising from diagrams with

squarks and gluons were first computed under the approximation of vanishing Higgs mass

in ref. [30]. The complete top/stop contributions, including the effects of stop mixing and

of the two-loop diagrams involving gluinos, were computed under the same approximation

in ref. [31, 32], and the result was cast in a compact analytic form in ref. [33]. Later

calculations aimed at the inclusion of the full Higgs-mass dependence in the squark-gluon

contributions, which are now known in a closed analytic form [34–37].

The approximation of vanishing Higgs mass in the contributions of two-loop diagrams

allows for compact analytic results that can be implemented in computer codes for a fast

and efficient evaluation of the Higgs production cross section. For what concerns the top-

gluon contributions, the effect of such approximation on the result for the cross section has

been shown [37, 38] to be limited to a few percent, as long as the Higgs mass is below the

threshold for creation of the massive particles running in the diagrams (in this case, the

top quarks). While this condition may also apply to the two-loop diagrams involving top,

stop and gluino, it obviously does not apply to the corresponding diagrams involving the

bottom quark, whose contribution can be relevant for large values of tan β. For the latter

diagrams the dependence on the Higgs mass should in principle be retained, which has

proved a rather daunting task. A calculation of the full quark-squark-gluino contributions

via a combination of analytic and numerical methods was presented in ref. [39] (see also

ref. [40]), but neither explicit analytic results nor a public computer code have been made

available so far. However, ref. [41] presented an evaluation of the bottom-sbottom-gluino

diagrams based on an asymptotic expansion in the large supersymmetric masses that is

valid up to and including terms of O(m2
b/m

2
φ), O(mb/M) and O(m2

Z/M2), where mφ

denotes a Higgs boson mass and M denotes a generic superparticle mass. This expansion

should provide a good approximation to the full result, at least comparable to the one

obtained for the top-stop-gluino diagrams, as long as the Higgs boson mass is below all

the heavy-particle thresholds. An independent calculation of the bottom-sbottom-gluino

contributions, restricted to the limit of a degenerate superparticle mass spectrum, was also

presented in ref. [42], confirming the results of ref. [41].

In the case of the CP-odd boson A the calculation of the production cross section is

somewhat less advanced. Due to the structure of the A-boson coupling to squarks, only

loops of top and bottom quarks contribute to the cross section at LO, with the bottom

loops being dominant for even moderately large values of tanβ. In the limit of vanishing A-

boson mass, mA, the contributions from diagrams with quarks and gluons were computed

at NLO in ref. [43, 44] and at NNLO in ref. [45] (see also ref. [46]). For arbitrary values

of mA the NLO contributions arising from two-loop diagrams with quarks and gluons, as

well as from one-loop diagrams with emission of a real parton, were computed in ref. [4].

1First results for the NNLO contributions in the limit of degenerate superparticle masses were presented

in ref. [29].
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Supersymmetric particles contribute to the cross section at NLO through two-loop diagrams

involving quarks, squarks and gluinos. The top-stop-gluino contributions were computed

in ref. [47] in the limit of vanishing mA. The analytic result for generic values of the stop

and gluino masses was deemed too voluminous to be explicitly displayed in ref. [47], and

was instead made available in the fortran code evalcsusy.f [31, 32]. On the other hand,

the two-loop bottom-sbottom-gluino contributions, which can be relevant for large values

of tan β, have never been directly computed so far.

In this paper we aim to reduce the gap in accuracy between the available NLO cal-

culations of the production cross sections for CP-odd and CP-even Higgs bosons of the

MSSM, exploiting the techniques we developed for computing the top-stop-gluino [33] and

bottom-sbottom-gluino [41] contributions in the CP-even case. In particular, we present

an evaluation of the two-loop top-stop-gluino contributions to the pseudoscalar production

cross section valid up to and including terms of O(m2
A/m2

t ) and O(m2
A/M2). We show how

the terms of order zero in m2
A can be cast in an extremely compact analytic form, fully

equivalent to the result of ref. [47], and we investigate the effect of the first-order terms. We

also evaluate the same contributions via an asymptotic expansion in the large superparticle

masses, valid up to and including terms of O(m2
A/M2) and O(m2

t /M
2). While the latter

result is valid for mt,mA ≪ M but does not assume a hierarchy between mt and mA, the

former is expected to provide a better approximation in the region with mA < mt and

relatively light superparticles, M ≃ mt. As a byproduct, we also obtain a result for the

bottom-sbottom-gluino contributions valid up to and including terms of O(m2
b/m

2
A) and

O(mb/M). Finally, we compare our results for the bottom-sbottom-gluino contributions

to both CP-even and CP-odd Higgs production cross sections with those obtained in the

effective-Lagrangian approximation of refs. [48, 49].

A non-trivial technical issue that arises in the calculation of the pseudoscalar produc-

tion cross section is the treatment of the Dirac matrix γ5 — an intrinsically four-dimensional

object — within regularization methods defined in a number of dimensions nd = 4 − 2ǫ.

The original calculation of the two-loop quark-gluon contributions of ref. [4] was performed

in Dimensional Regularization (DREG), employing the ’t Hooft-Veltman (HV) prescrip-

tion [50] for the γ5 matrix and introducing a finite multiplicative renormalization factor [51]

to restore the Ward identities. In ref. [47] the calculation of the top-gluon and top-stop-

gluino contributions to the Wilson coefficient in the relevant effective Lagrangian was per-

formed both in DREG and in Dimensional Reduction (DRED), which, differently from

DREG, preserves supersymmetry (SUSY). The latter method does not require the intro-

duction of finite renormalization factors, but it involves additional subtleties concerning

the treatment of the Levi-Civita symbol εµνρσ .

In our calculation of the quark-squark-gluino contributions we avoided all problems

related to the treatment of γ5 by employing the Pauli-Villars regularization (PVREG)

method. Being defined in four dimensions, the PVREG method respects both SUSY and

the chiral symmetry, therefore no symmetry-restoring renormalization factors need to be

introduced. We tested our implementation of PVREG by computing the top-gluon con-

tributions via an asymptotic expansion in the top quark mass, and recovering the result

obtained in DREG in refs. [4, 35]. As a further cross check, we also computed the quark-

squark-gluino contributions using the DREG procedure outlined in ref. [51], and found

agreement with the result that we obtained in PVREG.
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The paper is organized as follows: in section 2 we summarize general results on the cross

section for pseudoscalar Higgs boson production via gluon fusion. In section 3 we outline

our implementation of the PVREG method. Section 4 contains our explicit results for the

NLO contributions arising from both top-stop-gluino and bottom-sbottom-gluino diagrams,

as well as a discussion of suitable renormalization schemes for the bottom contributions

and a comparison with the results obtained in the effective-Lagrangian approximation. In

section 5 we assess the validity of the expansion in powers of m2
A in the top contributions,

and discuss the numerical relevance of the different NLO contributions. In the last section

we present our conclusions. We also include, for completeness, an appendix in which we

present the NLO contributions from one-loop diagrams with emission of a real parton.

2 Pseudoscalar Higgs boson production via gluon fusion at NLO

In this section we recall for completeness some general results on pseudoscalar Higgs boson

production via gluon fusion. The hadronic cross section at center-of-mass energy
√

s can

be written as

σ(h1+h2→A+X) =
∑

a,b

∫ 1

0
dx1dx2 fa,h1

(x1, µF )fb,h2
(x2, µF )×

∫ 1

0
dz δ

(
z− τA

x1x2

)
σ̂ab(z),

(2.1)

where τA = m2
A/s, µF is the factorization scale, fa,hi

(x, µF ) the parton density of the

colliding hadron hi for the parton of type a (for a = g, q, q̄), and σ̂ab the cross section for

the partonic subprocess ab→ A+X at the center-of-mass energy ŝ = x1 x2 s = m2
A/z. The

partonic cross section can be written in terms of the LO contribution σ(0) and a coefficient

function Gab(z) as

σ̂ab(z) = σ(0) z Gab(z) . (2.2)

The LO term can be written as

σ(0) =
Gµ α2

s(µR)

128
√

2π

∣∣∣H1ℓ
A

∣∣∣
2

, (2.3)

where Gµ is the muon decay constant and αs(µR) is the strong gauge coupling expressed

in the MS renormalization scheme at the scale µR. HA is the form factor for the coupling

of the pseudoscalar A with two gluons, which we decompose in one- and two-loop parts as

HA = H1ℓ
A +

αs

π
H2ℓ

A + O(α2
s) . (2.4)

Due to the structure of the pseudoscalar coupling to squarks (see section 4), only

diagrams involving top or bottom quarks contribute to the one-loop form factor H1ℓ
A . The

latter can be decomposed into top and bottom contributions as

H1ℓ
A = TF

[
cot βK1ℓ(τt) + tan βK1ℓ(τb)

]
, (2.5)

where TF = 1/2 is a color factor, τq = 4m2
q/m

2
A , and

K1ℓ(τ) =
τ

2
ln2

(√
1− τ − 1√
1− τ + 1

)
. (2.6)
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We recall the behavior of K1ℓ in the limit in which the pseudoscalar mass is much smaller

or much larger than twice the mass of the particle running in the loop. In the first case,

i.e. τ ≫ 1, which may apply to the top contribution if mA is relatively small,

K1ℓ(τ) −→ − 2− 2

3τ
+ O(τ−2) , (2.7)

while in the opposite case, i.e. τ ≪ 1, which is relevant for the bottom contribution,

K1ℓ(τ) −→ τ

2
ln2

(−4

τ

)
+ O(τ2) . (2.8)

The analytic continuation of K1ℓ(τ) corresponds to the replacement m2
A → m2

A+iǫ , thus the

imaginary part of eq. (2.8) can be recovered via the replacement ln(−4/τ)→ ln(4/τ)− iπ.

The coefficient function Gab(z) in eq. (2.2) can be decomposed, up to NLO terms, as

Gab(z) = G
(0)
ab (z) +

αs

π
G

(1)
ab (z) + O(α2

s) , (2.9)

with the LO contribution given only by the gluon-fusion channel:

G
(0)
ab (z) = δ(1 − z) δag δbg . (2.10)

The NLO terms include, besides the gg channel, also the one-loop induced gq and qq̄

channels:

G(1)
gg (z) = δ(1 − z)

[
CA

π2

3
+ β0 ln

(
µ2

R

µ2
F

)
+ 2Re

(H2ℓ
A

H1ℓ
A

)]

+Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1− z + z2)2D1(z) + CARgg , (2.11)

G
(1)
qq̄ (z) = Rqq̄ , G(1)

qg (z) = Pgq(z)

[
ln(1− z) +

1

2
ln

(
ŝ

µ2
F

)]
+Rqg , (2.12)

where the LO Altarelli-Parisi splitting functions are

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1− z)

]
, Pgq(z) = CF

1 + (1− z)2

z
. (2.13)

In the equations above CA = Nc and CF = (N2
c − 1)/( 2Nc) (Nc being the number of

colors), β0 = (11CA − 2Nf )/6 (Nf being the number of active flavors) is the one-loop

β-function of the strong coupling in the SM, and

Di(z) =

[
lni(1− z)

1− z

]

+

. (2.14)

The two-loop virtual contributions to gg → A, regularized by the infrared-singular part of

the contributions from real gluon emission in the one-loop gluon fusion channel, gg → Ag,

are displayed in the first line of eq. (2.11). The second line of that equation contains the non-

singular contributions from real gluon emission. Eq. (2.12) contains the contributions due

– 5 –
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to the one-loop quark-antiquark annihilation channel, qq̄ → Ag, and to the one-loop quark-

gluon scattering channel, gq → qA. General expressions for the functions Rgg, Rqq̄, Rqg in

the case of pseudoscalar production are collected in the appendix.

The two-loop form factor H2ℓ
A receives contributions from diagrams involving quarks

and gluons, as well as from diagrams involving quarks, squarks and gluinos. The contribu-

tions from two-loop diagrams with quarks and gluons were first computed in ref. [4], and

later confirmed in ref. [35]. The contribution to H2ℓ
A arising from top-stop-gluino diagrams

was computed in ref. [47] in the limit of vanishing pseudoscalar mass. For what concerns

the contribution arising from bottom-sbottom-gluino diagrams, no genuine two-loop cal-

culation has been available so far. In the following sections we present our calculation of

both kinds of quark-squark-gluino contributions.

3 Technical aspects of the calculation

In our computation of H2ℓ
A we regularized the loop integrals using the PVREG method.

For the purposes of this computation, the main advantage of PVREG is the fact that all

the Lorentz indices remain strictly 4-dimensional, thus the γ5 matrices anticommute with

the other gamma matrices and the trace on a string of gamma matrices can be taken using

the standard 4-dimensional relations. We recall that in PVREG, given an ultraviolet (UV)

divergent integral I(q,m2) where q and m2 denote collectively the external momenta and

masses, its regularized version is constructed as

IR(q,m2, ci,m
2
i ) = I(q,m2) +

n∑

i=1

ci I(q,m2
i ) . (3.1)

In the equation above the original integral I(q,m2) is combined with a number n of replicas,

weighted by coefficients ci, in which some of the masses of the original integral are replaced

by the PV mass regulators (mi), in such a way that the regularized integral is finite if mi

are kept finite, but tends to infinity as mi →∞. The number of added terms, as well as the

relation that the coefficients ci should satisfy in order to make IR convergent, depend on

the divergent nature of the original integral. If the latter is only logarithmically divergent, a

single subtraction is sufficient to construct IR, i.e., n = 1, c1 = −1, m1 = MPV . For what

concerns the infrared (IR) divergences associated to massless particles, in PVREG they

are regularized by giving a fictitious mass λ to the massless particle, and later considering

the limit λ→ 0.

All the diagrams contributing to the virtual NLO contributions to pseudoscalar pro-

duction are at most logarithmically UV-divergent, therefore a single subtraction is sufficient

to make them convergent. In this case, PVREG reduces to subtracting from the original

diagrams the same diagrams with some of the masses replaced by MPV , and then taking

the limit MPV → ∞. In the case of the top-gluon contributions also the limit λ → 0

must be taken on the fictitious gluon mass. In the present calculation, taking the relevant

limits for the mass regulators does not introduce additional complications with respect to

the same calculation performed in DRED or DREG. This is due to the fact that we are

computing the two-loop diagrams via an asymptotic expansion, so that the final result

– 6 –
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is expressed in terms of two-loop vacuum integrals with different masses and of one-loop

integrals. Both kinds of terms are fully known analytically, including all the relevant limits

when one or more masses are sent to infinity or to zero. The asymptotic expansion of the

relevant diagrams is generated following the procedure described in ref. [41], which amounts

to adding to and subtracting from each diagram its IR-divergent part. As discussed in that

paper, a diagram minus its IR-divergent part can be evaluated via a Taylor expansion in

the external momenta (being this combination IR finite by construction) while its remain-

ing IR-divergent part, which is expressed as a product of two one-loop integrals, must be

evaluated exactly.

In order to test our implementation of PVREG we first considered the two-loop top-

gluon contributions. These contributions can be split in two parts, one proportional to CF

and the other proportional to CA. The latter, which stems from the non-abelian nature of

SU(3), is not IR finite but contains a soft and collinear divergence that factorizes on the

lowest-order cross-section. In DREG, this IR divergence appears as a 1/ǫ2 pole multiplying

the top contribution to σ(0). We computed the top-gluon contributions via an asymptotic

expansion in the top mass up to and including terms O(m8
A/m8

t ). The IR divergences

are regularized by giving a mass λ to the gluon, while the UV divergences are regularized

by subtracting to any term a replica in which λ is replaced by MPV . The final result is

then obtained taking the limits MPV → ∞ and λ → 0. We were able to reproduce in

PVREG the known result for the top-gluon contributions obtained in DREG [4, 35] once

the PVREG IR-divergent term 1/2 log2(−m2
A/λ2) is identified in DREG with 1/ǫ2. This

is quite non-trivial, because it is known that, in general, regularizing the IR divergences

via a fictitious gluon mass does not respect the non-abelian symmetry of SU(3). Thus,

one expects to get the correct result only for the part proportional to CF . However,

we quantize the Lagrangian employing the Background Field Method (BFM) [52–55], so

that the external background gluons satisfy QED-like Ward identities. Then it is not

surprising that PVREG gives the correct results also for the CA part. We also remark that

within the BFM the renormalization of the strong gauge coupling is due only to the wave

function renormalization of the external background gluons. Thus, the renormalization of

αs decouples completely from the rest of the calculation, and can be treated separately

in the standard way. As a consequence, even if PVREG is used to regularize the loop

integrals, the LO partonic cross section σ(0) can be directly expressed in terms of the

running coupling αs(µR) as in eq. (2.3).

In the evaluation of the top-stop-gluino contributions to H2ℓ
A , the two-loop integrals

are regularized by subtracting from each of them the same expression with m2
t̃1

and m2
t̃2

replaced by M2
PV . The top-stop-gluino contributions are then computed in two alternative

ways: either by means of a Taylor expansion in the external momentum, retaining terms of

O(m2
A/m2

t ) and O(m2
A/M2), or by means of an asymptotic expansion in the superparticle

masses, retaining terms up to O(m2
A/M2) and O(m2

t /M
2). The bottom-sbottom-gluino

contributions to H2ℓ
A can then be recovered from the top-stop-gluino contributions com-

puted with the asymptotic expansion, by performing appropriate replacements and taking

the limit mb ≪ mA. Considering the hierarchy between mb and the other masses, we retain

only terms up to O(m2
b/m

2
A) and O(mb/M).

– 7 –
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q

(a)

A q̃i g̃

q

q

(b)

A q g̃

q̃1

q̃2

(c)

A

Figure 1. Examples of two-loop quark-gluon diagrams (a), and of two-loop quark-squark-gluino

diagrams involving (b) the pseudoscalar-quark coupling or (c) the pseudoscalar-squark coupling.

Here, q = t, b and i = 1, 2.

We conclude this section with a couple of observations concerning the use of PVREG

in the computation of the virtual NLO contributions. First, we recall that in PVREG one

obtains directly the correct result without the need of introducing a finite renormalization

factor to restore the Ward identities. Second, we note that in PVREG the evaluation of

the leading term in the Taylor expansion (i.e., the term corresponding to mA = 0) does not

require the computation of counterterm diagrams. This seems natural, because the leading

term in the one-loop expression, eq. (2.7), does not depend on the top mass. However,

the same evaluation in DREG or DRED does require the computation of counterterm

diagrams. Indeed, in nd dimensions the one-loop leading term in the Taylor expansion

contains an O(ǫ) part that depends on the top mass, so that the counterterm diagrams

give rise to a non-vanishing contribution.

4 Two-loop contributions to the form factor HA

To fix our notation, we write down the Lagrangian for the interactions of the MSSM

pseudoscalar A with quarks and squarks:2

L ⊃ i√
2
htcβAt̄γ5t +

i√
2
hbsβAb̄γ5b +

i√
2

(
htcβYtAt̃∗1t̃2 + hbsβYbAb̃∗1b̃2 − h.c.

)
, (4.1)

where: ht and hb are the top and bottom Yukawa couplings; Yt = At − µ tan β and Yb =

Ab − µ cot β; At and Ab are the soft SUSY-breaking Higgs-squark-squark couplings; µ is

the Higgs mass term in the MSSM superpotential. Our convention for the sign of µ is such

that, e.g., the stop and sbottom left-right mixing angles θt and θb obey the relations

s2θt =
2mt (At + µ cot β)

m2
t̃1
−m2

t̃2

, s2θb
=

2mb (Ab + µ tan β)

m2
b̃1
−m2

b̃2

. (4.2)

The fact that the pseudoscalar only couples to two different squark mass eigenstates,

while gluons only couple to two equal eigenstates, implies that the form factor HA receives

neither one-loop contributions from diagrams with squarks nor two-loop contributions from

diagrams with squarks and gluons. However, contributions to H2ℓ
A do arise from two-loop

diagrams with quarks and gluons, as well as from two-loop diagrams with quarks, squarks

2Here and thereafter we use the notation sϕ ≡ sin ϕ, cϕ ≡ cos ϕ for a generic angle ϕ.
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and gluinos. Examples of such diagrams, involving either the pseudoscalar-quark coupling

or the pseudoscalar-squark coupling, are given in figure 1.

The two-loop form factor for pseudoscalar production can be decomposed as

H2ℓ
A = TF

[
cot β

(
K2ℓ

tg + K2ℓ
tt̃g̃

)
+ tan β

(
K2ℓ

bg + K2ℓ
bb̃g̃

)]
, (4.3)

where K2ℓ
qg denotes the quark-gluon contributions (q = t, b), and K2ℓ

qq̃g̃ denotes the quark-

squark-gluino contributions. In the following we discuss separately the two-loop contribu-

tions arising from quark-gluon, top-stop-gluino and bottom-sbottom-gluino diagrams.

4.1 Quark-gluon contributions

We recall for completeness the results of refs. [4, 35] for the contributions to H2ℓ
A arising

from diagrams with quarks and gluons (see figure 1a). If the corresponding contribution in

the one-loop form factor H1ℓ
A is expressed in terms of the physical quark mass, the two-loop

contribution for a given quark q reads

K2ℓ
qg = CF

[
F1(τq) +

4

3
F2(τq)

]
+ CAF3(τq) , (4.4)

If the one-loop form factor is instead expressed in terms of the running quark mass, renor-

malized in the DR scheme at the scale Q, the two-loop contribution becomes

K2ℓ
qg = CF

[
F1(τq) + F2(τq)

(
ln

m2
q

Q2
− 1

3

)]
+ CAF3(τq) . (4.5)

Expressions for the functions denoted here as F1(τ), F2(τ) and F3(τ), valid for arbitrary

values of τ , can be found in ref. [35]. They correspond to the functions E (2ℓ,a)
t (4/τ) in

eq. (4.6), E (2ℓ,b)
t (4/τ) in eq. (4.7), and K (2ℓ,CA)

t (4/τ) in eq. (4.12) of that paper, respectively.

Their limiting behaviors for heavy and light quark are

(τ ≫ 1) : F1(τ) −→ − 4

3τ
+ O(τ−2) , (4.6)

F2(τ) −→ − 1

τ
+ O(τ−2) , (4.7)

F3(τ) −→ − 2− 1

6τ
+ O(τ−2) , (4.8)

(τ ≪ 1) : F1(τ) −→ − τ

[
9

5
ζ2
2 − ζ3 + (2− ζ2 − 4 ζ3) ln

(−4

τ

)
− (1−ζ2) ln2

(−4

τ

)

+
1

4
ln3

(−4

τ

)
+

1

48
ln4

(−4

τ

)]
+O(τ2), (4.9)

F2(τ) −→ 3 τ

4

[
2 ln

(−4

τ

)
− ln2

(−4

τ

)]
+ O(τ2) , (4.10)

F3(τ) −→ τ

[
8

5
ζ2
2 + 3 ζ3 − 3 ζ3 ln

(−4

τ

)
+

1

4
(1 + 2 ζ2) ln2

(−4

τ

)

+
1

48
ln4

(−4

τ

)]
+ O(τ2) . (4.11)
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4.2 Top-stop-gluino contributions

While a fully analytic computation of the top-stop-gluino contributions to H2ℓ
A valid for ar-

bitrary values of all the relevant particle masses is currently beyond our reach, it is possible

to derive approximate analytic results valid in different phenomenologically relevant limits.

To start with, we computed the term K2ℓ
tt̃g̃

in eq. (4.3) via a Taylor expansion in the

external Higgs momentum up to terms of O(m2
A/m2

t ) and O(m2
A/M2), where M denotes

generically the stop and gluino masses. Such expansion should give a reasonable approxi-

mation to the full result when mA is small compared to the other masses, and is anyway

restricted to values of mA below the lowest threshold encountered in the diagrams (this

usually means mA < 2mt). In the limit of vanishing mA we find that our result for K2ℓ
tt̃g̃

can be cast in an extremely compact form:

K2ℓ
tt̃g̃

=

(
s2θt

2
− mt Yt

m2
t̃1
−m2

t̃2

) [
f(m2

g̃,m
2
t ,m

2
t̃1

)− f(m2
g̃,m

2
t ,m

2
t̃2

)
]

, (4.12)

where

f(m2
g̃,m

2
t ,m

2
t̃i
) = CF

mg̃

mt ∆

[
m2

t (m2
g̃ −m2

t + m2
t̃i
) ln

m2
t

m2
g̃

+ m2
t̃i

(m2
g̃ + m2

t −m2
t̃i
) ln

m2
t̃i

m2
g̃

+ 2m2
g̃ m2

t Φ(m2
g̃,m

2
t ,m

2
t̃i
)

]

+CA
mt

mg̃ ∆

[
m2

t̃i
(m2

t̃i
−m2

t −m2
g̃) ln

m2
t

m2
g̃

+ m2
t̃i

(m2
t −m2

t̃i
−m2

g̃) ln
m2

t̃i

m2
g̃

+ m2
g̃ (m2

t + m2
t̃i
−m2

g̃)Φ(m2
g̃,m

2
t ,m

2
t̃i
)

]
, (4.13)

the function Φ(m2
g̃,m

2
t ,m

2
t̃i
) is given, e.g., in appendix A of ref. [56], and we introduced the

shortcut ∆ = m4
t + m4

g̃ + m4
t̃i
− 2 (m2

t m2
g̃ + m2

t m2
t̃i

+ m2
g̃ m2

t̃i
) . As appears from eqs. (2.5)

and (2.7), in the limit of vanishing mA the one-loop top contribution to HA reduces to

− cot β, i.e., it does not actually depend on any parameter subject to O(αs) corrections.

Therefore, the results in eqs. (4.12) and (4.13) do not depend on the renormalization scheme

in which the calculation is performed. The contributions to K2ℓ
tt̃g̃

of the first order in the

Taylor expansion in m2
A are too lengthy to be printed here, but in section 5 we will discuss

their relevance in a representative region of the MSSM parameter space.

The two terms between parentheses in eq. (4.12) come from the diagrams with pseudo-

scalar-top and pseudoscalar-stop couplings in figures 1b and 1c, respectively. Inserting the

explicit expressions for s2θt and Yt we find

K2ℓ
tt̃g̃ =

mt µ

m2
t̃1
−m2

t̃2

(cot β + tan β)
[
f(m2

g̃,m
2
t ,m

2
t̃1

)− f(m2
g̃,m

2
t ,m

2
t̃2

)
]

, (4.14)

i.e., the explicit dependence of K2ℓ
tt̃g̃

on At drops out, leaving only a dependence on µ.

Ref. [47] points out that this happens because the µ term breaks the axial U(1) Peccei-

Quinn symmetry of the MSSM potential, thus violating the Adler-Bardeen theorem [57]

which would otherwise guarantee the cancellation of all contributions from irreducible

diagrams beyond one loop.
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We compared our result for K2ℓ
tt̃g̃

in the limit of vanishing mA, eqs. (4.12)–(4.13),

with the result for the coefficient c̃
(1)
1 defined in ref. [47]. That result was deemed too

voluminous to be printed explicitly in ref. [47], and was made available in the fortran code

evalcsusy.f [31, 32]. We find full numerical agreement with evalcsusy.f, after taking

into account that c̃
(1)
1 = −TF cot βK2ℓ

tt̃g̃
and that ref. [47] employs the opposite convention

for the sign of µ with respect to our eq. (4.2).

Even when the superparticles are much heavier than the pseudoscalar, the validity of

the result for K2ℓ
tt̃g̃

obtained via a Taylor expansion in m2
A becomes questionable if mA is

close to or even larger than mt. To cover this region of the parameter space we performed

an asymptotic expansion of K2ℓ
tt̃g̃

in the large superparticle masses. More specifically, we

consider the case (mA,mt)≪M without assuming any hierarchy between mA and mt, and

retain terms up to O(m2
A/M2) and O(m2

t /M
2) in the expansion. Assuming that the top

contribution toH1ℓ
A in eqs. (2.5) and (2.6) is expressed in terms of the pole top mass, we find

K2ℓ
tt̃g̃

= −CF

2
K1ℓ(τt)

mg̃

mt

(
s2θt

2
− mt Yt

m2
t̃1
−m2

t̃2

)(
x1

1− x1
ln x1 −

x2

1− x2
lnx2

)

−mt

mg̃
s2θtR1 +

2m2
t Yt

mg̃(m2
t̃1
−m2

t̃2
)
R2 +

m2
t

m2
g̃

R3 −
1

2
K1ℓ(τt)

m2
A

m2
t̃1
−m2

t̃2

R4 , (4.15)

where xi = m2
t̃i
/m2

g̃ , the one-loop function K1ℓ(τ) was defined in eq. (2.6), and the terms

Ri collect contributions suppressed by mt/M or m2
t /M

2:

R1 =
CF

4 (1 − x1)3

[
(1− x2

1 + 2x1 lnx1)

(
2 ln

m2
g̃

m2
t

− 3− 3

2
K1ℓ(τt) + 2B

)

− 8x1 Li2(1− x1)− 2x1 (3 + x1) ln x1

]

+
CA

2 (1− x1)2

[
(1− x1 + x1 ln x1)

(
ln

m2
t

m2
g̃

+ 1 +
1

2
K1ℓ(τt)− B

)

+ 2x1 Li2(1− x1) + x1 (1 + x1) ln x1

]

+
CF

(x1−x2)2
Yt

mg̃

(
1+

1

2
K1ℓ(τt)

)[
x2

1(1−2x2)

2(1−x1)(1−x2)
+

x1

2(1−x1)2
(x2

1−2x2+x1x2) ln x1

]

−
(

x1 ←→ x2

)
, (4.16)

R2 =
CF

4 (1 − x1)3

[
2 (1− x2

1 + 2x1 ln x1) ln
m2

g̃

m2
t

− 8x1 Li2(1− x1)

+ (1− x2
1)

(
1 +

1

2
K1ℓ(τt)

)
− 2x1

(
2 + x1 −

1

2
K1ℓ(τt)

)
ln x1

]

+
CA

2 (1− x1)2

[
(1− x1 + x1 ln x1) ln

m2
t

m2
g̃

+ 2x1 Li2(1− x1) + x1 (1 + x1) ln x1

]

−
(

x1 ←→ x2

)
, (4.17)
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R3 =
CF

6 (1 − x1)4
(−2− 3x1 + 6x2

1 − x3
1 − 6x1 lnx1)

(
2 +K1ℓ(τt)− B

)

+
CA

8 (1− x1)3
(1− x2

1 + 2x1 ln x1)

(
2 +K1ℓ(τt)− 2B

)
+

(
x1 ←→ x2

)
, (4.18)

R4 =
CF

(x1−x2)2
Yt

mg̃

[
x2

1(1−2x2)

2(1−x1)(1−x2)
+

x1

2(1−x1)2
(x2

1−2x2+x1x2) ln x1

]
−
(

x1 ←→ x2

)
.

(4.19)

In the equations above, B denotes the finite part of the Passarino-Veltman function

B0(m
2
A,m2

t ,m
2
t ) computed at the renormalization scale Q2 = m2

t . The comparison between

the result for K2ℓ
tt̃g̃

obtained via a Taylor expansion in m2
A and the corresponding result

obtained via an asymptotic expansion in M will be discussed in section 5.

4.3 Bottom-sbottom-gluino contributions

A result for the bottom-sbottom-gluino contribution K2ℓ
bb̃g̃

can be obtained by performing

the obvious replacement t→ b in the result for K2ℓ
tt̃g̃

obtained via the asymptotic expansion

in M , eqs. (4.15)–(4.19). Considering that mb ≪ mA, and that we are assuming mA ≪M ,

we retain only the terms up to O(mb/M) and O(m2
b/m

2
A). In particular, the terms R2,

R3 and R4 in eq. (4.15) give contributions of higher order in mb and can be neglected,

while in the expression for R1, eq. (4.16), we drop the occurrences of K1ℓ(τb) and use

B = 2 − ln(−m2
A/m2

b). As a result, assuming that the bottom contribution to H1ℓ
A in

eqs. (2.5) and (2.8) is fully expressed in terms of the pole bottom mass, we again find a

rather compact expression for the term K2ℓ
bb̃g̃

in eq. (4.3):

K2ℓ
bb̃g̃

= −CF

2
K1ℓ(τb)

mg̃

mb

(
s2θb

2
− mbYb

m2
b̃1
−m2

b̃2

)(
x1

1− x1
lnx1 −

x2

1− x2
ln x2

)
− mb

mg̃
s2θb
R1.

(4.20)

Here xi = m2
b̃i
/m2

g̃ , and R1 collects the contributions suppressed by mb/M :

R1 =
CF

4(1−x1)3

[
(1−x2

1+2x1 ln x1)

(
1−2 ln(

−m2
A

m2
g̃

)

)
−8x1Li2(1−x1)−2x1(3+x1) ln x1

]

+
CA

2(1−x1)2

[
(1−x1+x1 ln x1)

(
ln(
−m2

A

m2
g̃

)−1

)
+2x1Li2(1−x1)+x1(1+x1) ln x1

]

+
CF

(x1 − x2)2
Yb

mg̃

[
x2

1 (1− 2x2)

2(1 − x1)(1− x2)
+

x1

2(1− x1)2
(x2

1 − 2x2 + x1 x2) ln x1

]

−
(

x1 ←→ x2

)
. (4.21)

As in the case of the top-stop-gluino contribution, the terms proportional to Yb originate

from the diagrams that involve the pseudoscalar-sbottom coupling, while the other terms

originate from the diagrams that involve the pseudoscalar-bottom coupling. Inserting the

expressions for s2θb
and Yb in the first term in the right-hand side of eq. (4.20) we obtain

K2ℓ
bb̃g̃

= −CF

2
K1ℓ(τb)

mg̃µ

m2
b̃1
−m2

b̃2

(tan β+cot β)

(
x1

1−x1
ln x1 −

x2

1−x2
ln x2

)
− mb

mg̃
s2θb
R1 .

(4.22)
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Similarly to what found in ref. [41] for the production of CP-even Higgs bosons, if the

one-loop contribution to HA is expressed in terms of the pole bottom mass the bottom-

sbottom-gluino diagrams induce potentially large two-loop contributions. According to

whether or not we insert the explicit expression for s2θb
in our formulae, such contribu-

tions manifest themselves either as terms enhanced by the ratio mg̃/mb, as in eq. (4.20),

or as terms enhanced by tan β, as in eq. (4.22). However, such terms cancel out if the

pseudoscalar-bottom coupling entering the one-loop contribution to HA is identified with

the DR-renormalized mass m̂b, while the mass of the bottom quark running in the loop

is identified with the pole mass Mb (this amounts to rescaling by m̂b/Mb the one-loop

result fully computed in terms of Mb). As a result, the two-loop form factor in eq. (4.3)

is shifted as

H2ℓ
A −→ H2ℓ

A − tan βK1ℓ(τb)TF CF

[
3

4
ln

m2
b

Q2
− 5

4
+

(δmb)

mb

SUSY
]

(4.23)

with respect to the result obtained when the one-loop bottom contribution is fully expressed

in terms of Mb. Here Q is the scale at which the running mass m̂b is renormalized, and

(δmb)
SUSY denotes the SUSY contribution to the bottom self-energy, in units of CF αs/π

and in the limit of vanishing mb :

(δmb)

mb

SUSY

= − 1

4

[
ln

m2
g̃

Q2
+ f(x1) + f(x2) +

mg̃

mb
s2θb

(
x1

1− x1
ln x1 −

x2

1− x2
ln x2

)]
,

(4.24)

where

f(x) =
x− 3

4 (1 − x)
+

x (x− 2)

2 (1 − x)2
ln x . (4.25)

While the shift in eq. (4.23) removes the contributions enhanced by mg̃/mb (or tan β),

it does introduce potentially large logarithms of the ratio between the renormalization

scale Q and the masses of the particles running in the loop. Such logarithms cannot

be eliminated by a specific scale choice for m̂b, unless Q is set to a value much smaller

than the bottom mass itself. Therefore, as already found in ref. [41] for the CP-even

Higgs bosons, the bottom contributions to H2ℓ
A may turn out to be sizable even in the

“mixed” renormalization scheme in which the tan β-enhanced contributions are absorbed

in a redefinition of the pseudoscalar-bottom coupling entering H1ℓ
A .

Finally, if the bottom contribution to H1ℓ
A is fully expressed in terms of the running

bottom mass m̂b the bottom-sbottom-gluino contribution to the form factor in eq. (4.20)

is shifted as

K2ℓ
bb̃g̃
−→ K2ℓ

bb̃g̃
+

4

3
CF F2(τb)

(δmb)

mb

SUSY

. (4.26)

In this case H2ℓ
A contains both terms enhanced by mg̃/mb and potentially large logarithms,

the latter arising from (δmb)
SUSY in eq. (4.26) as well as from the two-loop bottom-gluon

contribution in eq. (4.5).

4.4 Comparison with the effective-Lagrangian approximation

It is well known that, in the MSSM, loop diagrams involving superparticles induce in-

teractions between the quarks and the “wrong” Higgs doublets, i.e., interactions that are
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absent from the tree-level Lagrangian due to the requirement that the superpotential be a

holomorphic function of the superfields [58]. Such non-holomorphic, loop-induced Higgs-

quark interactions result in tan β-enhanced (or tan β-suppressed) corrections to the MSSM

predictions for various physical observables. If all superparticles are considerably heavier

than the Higgs bosons they can be integrated out of the Lagrangian, in which case the

loop-induced corrections are resummed in effective Higgs-quark couplings. In particular,

if gφ
b denote the tree-level couplings of a neutral Higgs φ = (h,H,A) to bottom quarks

(normalized to the SM value), the corresponding effective couplings g̃φ
b read [48, 49]

g̃h
b =

gh
b

1 + ∆b

(
1−∆b

cot α

tan β

)
,

g̃H
b =

gH
b

1 + ∆b

(
1 + ∆b

tan α

tan β

)
, (4.27)

g̃A
b =

gA
b

1 + ∆b

(
1−∆b cot2 β

)
,

where α is the mixing angle in the CP-even Higgs sector and, to O(αs),

∆b =
αs CF

2π

mg̃ µ tan β

m2
b̃1
−m2

b̃2

(
x1

1− x1
ln x1 −

x2

1− x2
ln x2

)
. (4.28)

In the calculation of processes involving the Higgs-bottom couplings, it is often found

that the tan β-enhanced corrections can be included to all orders in an expansion in powers

of αs tan β by inserting the effective couplings of eq. (4.27) in the lowest-order result. A

comparison with our explicit results for the two-loop form factors allows us to test the

validity of that procedure in the case of the production of both CP-even [41] and CP-odd

Higgs bosons in gluon fusion.3

We recall that the bottom-quark contributions H1ℓ ,b
φ to the one-loop form factors for

the production of the Higgs boson φ = (h,H,A) read

H1ℓ ,b
h = −TF

sin α

cos β
G1ℓ

1/2(τb) , H1ℓ ,b
H = TF

cos α

cos β
G1ℓ

1/2(τb) , H1ℓ ,b
A = TF tan β K1ℓ(τb) ,

(4.29)

where the function G1ℓ
1/2(τ) is given, e.g., in eq. (12) of ref. [41]. Assuming that H1ℓ ,b

φ

are expressed in terms of the pole bottom mass, and that the Higgs-sbottom couplings are

renormalized in a way that avoids the introduction of additional tan β-enhanced corrections

(see ref. [41]), we find that the two-loop form factors read

H2ℓ
h = H1ℓ ,b

h

[
− π

αs
∆b

(
1+

cot α

tan β

)
+

CF

4

Ab−µ cot α

mg̃
s2
2θb

g(x1, x2)

]
+ . . . , (4.30)

H2ℓ
H = H1ℓ ,b

H

[
− π

αs
∆b

(
1− tan α

tan β

)
+

CF

4

Ab+µ tan α

mg̃
s2
2θb

g(x1, x2)

]
+ . . . , (4.31)

H2ℓ
A = −H1ℓ ,b

A

π

αs
∆b (1 + cot2 β) + . . . , (4.32)

3A comparison for the light scalar h in the limit of vanishing sbottom mixing was discussed in ref. [42],

and a numerical comparison for the heavy scalar H was shown, without a detailed discussion, in ref. [40].
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where the ellipses denote contributions suppressed by mb/M or m2
Z/M2, as well as all of

the contributions from diagrams involving top and stop, and

g(x1, x2)=
1

1−x1

(
1+

ln x1

1−x1

)
+

1

1−x2

(
1+

lnx2

1−x2

)
− 2

x1−x2

(
x1

1−x1
lnx1−

x2

1−x2
ln x2

)
.

(4.33)

In practice, the effective-Lagrangian approximation consists in rescaling the one-loop

bottom contributions H1ℓ ,b
φ by the same factors that rescale the Higgs-bottom couplings

gφ
b in eq. (4.27). Expanding the rescaling factors to the first order in ∆b it is easy to

see that the effective-Lagrangian approximation does indeed reproduce the two-loop terms

proportional to ∆b in eqs. (4.30)–(4.32).

It is also interesting to consider the so-called decoupling limit of the MSSM, mA ≫
mZ , in which cot α → − tan β and the light scalar h has SM-like couplings to fermions

and gauge bosons.4 Eq. (4.27) shows that in this limit the effective coupling of h to

bottom quarks is equal to the tree-level coupling, therefore in the effective-Lagrangian

approximation there are no tan β-enhanced contributions to H2ℓ
h . Indeed, for cot α →

− tan β the terms proportional to ∆b drop out of the two-loop form factor in eq. (4.30).

However, eq. (4.30) also shows that in the decoupling limit H2ℓ
h contains additional tan β-

enhanced contributions, controlled by the left-right sbottom mixing Xb = (Ab + µ tan β),

which are not reproduced by the effective-Lagrangian approximation. However, when the

implicit dependence of the sbottom masses and mixing on the bottom mass is taken into

account, such contributions turn out to be partially suppressed by powers of mb. Indeed,

taking for illustrative purposes the limit in which the diagonal entries of the sbottom mass

matrix as well as the squared gluino mass are all equal to M2, and expanding the form

factor in powers of mb, we find

H2ℓ
h ⊃ −H1ℓ ,b

h

CF

12

m2
b X3

b

M5
+ TF

2CA + 25CF

18

m2
b X2

b

M4
+ . . . , (4.34)

where the ellipses denote terms further suppressed by powers of mb or mZ , as well as all

of the contributions from diagrams involving top and stop. The first term in eq. (4.34)

comes from the expansion of the terms proportional to s2
2θb

in eq. (4.30), while the second

comes from the expansion of terms not shown in eq. (4.30). The contributions neglected

by the effective-Lagrangian approximation can be relevant for values of Xb large enough

to compensate for the suppression due to mb. It should however be recalled that in the

decoupling limit H1ℓ ,b
h is not further enhanced by tan β, therefore — differently from what

happens in the case of the heavy Higgs bosons — the total form factor for h production

can still be dominated by the top/stop contributions even for large values of tan β.

5 Numerical examples

We will now illustrate the effect of the two-loop quark-squark-gluino contributions to the

form factor for pseudoscalar Higgs production in a representative region of the MSSM

parameter space.

4The validity of the effective-Lagrangian approximation for the light scalar h in the decoupling limit was

already discussed in ref. [49] in the context of Higgs boson decays to bottom quark pairs.
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Figure 2. Top-stop-gluino contribution K2ℓ
tt̃g̃

as a function of a common SUSY mass M , for mA =

150GeV and tanβ = 2. The dashed line is the result in the limit of vanishing mA, while the solid

line includes the first-order term of a Taylor expansion in m2

A
.

The SM parameters entering our calculation include the Z boson mass mZ =

91.1876 GeV, the W boson mass mW = 80.399 GeV and the strong coupling constant

αs(mZ) = 0.118 [59]. For the pole masses of the top and bottom quarks we take Mt =

173.3 GeV [60] and Mb = 4.49 GeV, the latter corresponding to the SM running mass (in

the MS scheme) mb(mb) = 4.16 GeV [61–63].

Since the squarks do not contribute to the one-loop amplitude for pseudoscalar pro-

duction, the only parameters entering H1ℓ
A in addition to the quark masses are tan β and

mA. Neither of those parameters is subject to one-loop O(αs) corrections, therefore we

need not specify a renormalization scheme for them (although it is natural to consider mA

as the pole pseudoscalar mass). The remaining input parameters are mg̃, µ, At, Ab and

the soft SUSY-breaking mass terms for stop and sbottom squarks, mQ, mU and mD. Since

these parameters only enter the two-loop part of the form factor we need not specify a

renormalization scheme for them either. For simplicity, in our numerical examples we will

set all the SUSY-breaking parameters, as well as the supersymmetric mass parameter µ,

to a common value M . Note however that the squark mass eigenstates will differ from

M , because of the supersymmetric (F-term and D-term) contributions to the squark mass

matrices as well as of the left-right mixing terms.

In figure 2 we show the top-stop-gluino contribution to the two-loop form factor for

pseudoscalar production, i.e., the term K2ℓ
tt̃g̃

entering eq. (4.3), as a function of the common

SUSY mass M , for mA = 150 GeV and tan β = 2. Even for the lowest value of M

considered in the plot, M = 100 GeV, the stop and sbottom masses are above the threshold
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Figure 3. Real part of K2ℓ
tt̃g̃

as a function of mA, for a common SUSY mass M = 1TeV and

tan β = 2. The solid and dashed lines are as in figure 2 above, while the dot-dashed line is the result

of an asymptotic expansion in M which does not assume a specific hierarchy between mt and mA.

for real-particle production. The dashed line represents the result obtained in the limit of

vanishing mA, shown explicitly in eqs. (4.12) and (4.13), while the solid line represents the

result computed at the the first order of the Taylor expansion in the pseudoscalar mass,

i.e. it includes the effect of terms of O(m2
A/m2

t ) and O(m2
A/M2) which are too long to be

presented in analytic form. In the computation of these additional terms we assumed that

the O(m2
A/m2

t ) part of the one-loop top contribution, see eq. (2.7), is expressed in terms

of the pole top mass.

It can be seen in figure 2 that the two-loop top-stop-gluino contribution K2ℓ
tt̃g̃

is of

non-decoupling nature, i.e., it does not tend to zero when all the superparticle masses

become large (note that the superpotential parameter µ increases together with the SUSY-

breaking parameters). In addition, the comparison between the solid and dashed lines

shows that when the common SUSY mass M is close to mA the combined effect of the

terms of O(m2
A/m2

t ) and O(m2
A/M2) can be as large as 20%–25% with respect to the

result obtained for vanishing mA. However, when M increases the effect of the terms of

O(m2
A/M2) becomes quickly negligible. The remaining discrepancy between the solid and

dashed lines for moderate to large values of M is due to the terms of O(m2
A/m2

t ), and it

amounts to a modest 6% for the value of mA considered in this example.

To assess the importance of the terms of O(m2
A/m2

t ) for larger values of mA, we plot

in figure 3 the real part of K2ℓ
tt̃g̃

as a function of the pseudoscalar mass, up to a value mA =

500 GeV well above the threshold for real top-quark production. The common SUSY mass

is set to the relatively large value M = 1TeV, and tan β = 2. As in figure 3, the dashed

and solid lines represent the results obtained at the zeroth and first order of the Taylor
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expansion in m2
A, respectively. The comparison between those lines shows that when mA

approaches 2mt the effect of the terms of O(m2
A/m2

t ) gets as large as 30% with respect to

the result obtained for vanishing mA. However, it is natural to wonder whether a Taylor

expansion in m2
A can give an accurate approximation to K2ℓ

tt̃g̃
for values of mA close to or

larger than mt. To address this question, we show in figure 3 as a dot-dashed line the

result of the asymptotic expansion in M , given explicitly in eqs. (4.15)–(4.19). This result

was derived under the assumption that both mA and mt are much smaller than M , which

is indeed the case for M = 1 TeV, but it does not require any specific hierarchy between

mA and mt. The comparison between the dot-dashed and solid lines shows that the Taylor

expansion at the first order in m2
A provides a good description of the dependence of K2ℓ

tt̃g̃

on the ratio mA/mt up to values of mA of the order of 250 GeV. On the other hand, when

mA reaches the threshold for real top production (i.e., at the cusp of the dot-dashed line)

the result of the asymptotic expansion in M is roughly 80% larger in absolute value than

the result at the first order of the Taylor expansion in m2
A, and a full 140% larger than the

result obtained for vanishing mA.

In summary, it appears that the compact result for K2ℓ
tt̃g̃

given in eqs. (4.12) and (4.13),

which was derived for mA = 0, can be safely applied only to scenarios in which mA is

smaller than mt. While the inclusion of the terms proportional to m2
A pushes the validity

of the Taylor expansion up to larger values of mA, the expansion fails when mA gets close to

the threshold for real top production. In that case one can use the result of the asymptotic

expansion in M , provided that the latter is still considerably larger than mA.

We are now ready to discuss the relative importance of the various two-loop contri-

butions to the form factor for pseudoscalar production. We will see that, at least in the

region of the parameter space that we consider in this example, the results are qualitatively

similar to what we found in ref. [41] for the case of the heavy scalar H.

A precise NLO determination of the cross section for pseudoscalar production would

require us to take into account the contribution of one-loop diagrams with real parton

emission, and to perform an integration over the phase space (see section 2). However, for

the purpose of illustrating the relative importance of the various two-loop contributions,

we can just define a factor KA that contains the ratio of two-loop to one-loop form factors

appearing in eq. (2.11):

KA = 1 + 2
αs

π
Re

(H2ℓ
A

H1ℓ
A

)
. (5.1)

In the left panel of figure 4 we plot KA as a function of tan β, for mA = 150 GeV and all

SUSY mass parameters equal to M = 500 GeV. The one-loop form factor H1ℓ
A in eq. (5.1)

contains both the top and bottom contributions, computed under the approximations of

eqs. (2.7) and (2.8), respectively. We identify the quark masses in the one-loop form factor

with the pole masses, and refer to this choice as “on-shell” (OS) scheme. The lines in the

plot correspond to different computations of the two-loop form factor H2ℓ
A : the dotted line

includes only the contributions of the top/stop sector (both those involving top quarks and

gluons and those involving top, stop and gluinos) computed at the first order of the Taylor

expansion in m2
A; the dashed line includes also the contributions of two-loop diagrams

with bottom quarks and gluons; finally, the solid line includes the full contributions of the

bottom/sbottom sector.
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Figure 4. K factor for the production of a pseudoscalar Higgs A as a function of tanβ, for

mA = 150GeV and all SUSY mass parameters equal to M = 500GeV. The three lines show the

effect of the different two-loop contributions, in the OS scheme (left panel) and in the “mixed”

scheme (right panel).

Comparing the three lines in the left panel of figure 4 it can be seen that the top/stop

contributions dominate the two-loop form factor up to values of tan β around 5. For larger

values of tan β the contribution of the bottom-sbottom-gluino diagrams (included in the

solid line) becomes the dominant one, and KA grows linearly with tan β. This behavior

can be understood by recalling that, as can be seen in eq. (4.1), the Yukawa coupling of

the pseudoscalar to bottom quarks is enhanced by tan β with respect to the coupling of

the SM Higgs, while the coupling to top quarks is suppressed by tan β. Consequently, for

moderate to large values of tan β both the one-loop and the two-loop form factors in KA

are dominated by the contribution of the diagrams controlled by the pseudoscalar-bottom

coupling, with the result that the coupling itself cancels out in the ratio. However, the

dominant contribution from the bottom-sbottom-gluino diagrams in the OS scheme, see

eq. (4.22), contains an additional tan β-enhancement, which explains the linear rise of KA.

On the other hand, the proximity between the dotted and dashed lines shows that, in the

OS scheme, the contribution to H2ℓ
A of the two-loop diagrams with bottom quarks and

gluons is very small. This is due to a partial cancellation among the three terms entering

K2ℓ
bg in eq. (4.4), and to the fact that, in this scheme, the term F2(τb) is not enhanced by the

potentially large logarithm of the ratio between the bottom mass and the renormalization

scale, as can be seen by comparing eqs. (4.4) and (4.5).

As discussed in section 4.3, all tan β-enhanced terms cancel out in a “mixed” renor-

malization scheme in which the pseudoscalar-bottom Yukawa coupling in the one-loop part

of the result is identified with the DR-renormalized MSSM bottom mass m̂b(Q), where Q

is a reference scale that we take equal to mA, while the mass of the bottom quark running
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in the loop is identified with the pole mass Mb. To determine m̂b(mA), we first evolve the

MS-renormalized SM mass mb(mb) up to the scale mA via the NLO-QCD renormalization

group equations, then we convert it to the DR-renormalized SM mass m̂SM

b (mA) via the

appropriate shift, and finally we convert it to the MSSM running mass according to

m̂b(mA) = m̂b
SM(mA)

1 + δb

1 + ∆b
, (5.2)

where ∆b is given in eq. (4.28), and δb is proportional to the part of (δmb)
SUSY in eq. (4.24)

that is not enhanced by tan β:

δb = − αs CF

4π

[
ln

m2
g̃

m2
A

+ f(x1) + f(x2) +
2mg̃ Ab

m2
b̃1
−m2

b̃2

(
x1

1− x1
ln x1 −

x2

1− x2
ln x2

)]
.

(5.3)

The “mixed” renormalization prescription is realized by computing the one-loop bot-

tom contribution K1ℓ(τb) in eq. (2.5) in terms of the pole mass Mb, then rescaling it by a

factor m̂b(mA)/Mb. The two-loop form factor H2ℓ
A must then be shifted as in eq. (4.23). In

the right panel of figure 4 we present the result of this manipulation. The input parameters

and the meaning of the different lines are the same as for the plot in the left panel. The

proximity between the dashed and solid lines, and the flatness of the lines for moderate to

large values of tan β, show that the contribution of the two-loop bottom-sbottom-gluino di-

agrams is rather small in this renormalization scheme, and it does not induce an additional

tan β-enhancement. However, the comparison between the dotted and dashed lines shows

that there is a sizable contribution to KA from the two-loop diagrams involving bottom

quarks and gluons. This is due to the fact that the shift in eq. (4.23) brings back a large

logarithm, ln(m2
b/m

2
A), which compensates the scale dependence of the running mass m̂b.

6 Conclusions

The calculation of the production cross section for the MSSM Higgs bosons is not quite as

advanced as in the SM. Indeed, despite valiant efforts [39, 40], a full computation of the

two-loop quark-squark-gluino contributions, valid for arbitrary values of all the relevant

particle masses, has not been made publicly available so far. Approximate analytic results,

however, can be derived if the Higgs bosons are somewhat lighter than the squarks and

the gluinos. In the MSSM this condition almost certainly applies to the lightest scalar h.

Moreover, recent results from SUSY searches at the LHC [64] set preliminary lower bounds

on the squark and gluino masses just below the TeV (albeit for specific models of SUSY

breaking), suggesting that there might be wide regions of the MSSM parameter space in

which the condition also applies to the heavy scalar H and to the pseudoscalar A.

In this paper we presented a calculation of the two-loop quark-squark-gluino contribu-

tions to the cross section for pseudoscalar production. We exploited techniques developed

in our earlier computations of the production cross section for the CP-even Higgs bosons

of the MSSM [33, 41] to obtain explicit and compact analytic results based on expan-

sions in the heavy particle masses. We avoided problems related to the definition of the
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Dirac matrix γ5 in nd 6= 4 dimensions, which are specific to the case of pseudoscalar

production, by regularizing the loop integrals with the Pauli-Villars method. For what

concerns the top-stop-gluino contributions, we provided both the result of a Taylor expan-

sion in the pseudoscalar mass, up to and including terms of O(m2
A/m2

t ) and O(m2
A/M2),

and the result of an asymptotic expansion in the superparticle masses, up to and includ-

ing terms of O(m2
A/M2) and O(m2

t /M
2). The latter can be easily adapted to the case

of the bottom-sbottom-gluino contributions, providing a result valid up to and including

terms of O(m2
b/m

2
A) and O(mb/M). We discussed how the tan β-enhanced terms in the

bottom-sbottom-gluino contributions can be eliminated via an appropriate choice of renor-

malization scheme for the parameters entering the one-loop part of the calculation, and

compared our results with those obtained in the effective-Lagrangian approximation. All

of our results can be easily implemented in computer codes for an efficient and accurate

determination of the cross section for pseudoscalar production.

Finally, the results derived in this paper for the production cross section can be

straightforwardly adapted to the NLO computation of the gluonic and photonic decay

widths of the pseudoscalar Higgs boson in the MSSM, in analogy to what described in

section 5 of ref. [33] for the case of the CP-even bosons.
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A NLO contributions from real parton emission

In this appendix we present for completeness our results for the NLO contributions to

pseudoscalar production from one-loop diagrams with emission of a real parton, i.e., the

functions Rgg, Rqq̄ and Rqg entering eqs. (2.11) and (2.12). Such contributions were first

computed in ref. [4] (see also ref. [66]).

The contribution of the gluon-fusion channel, gg → Ag, can be written as

Rgg =
1

z(1− z)

∫ 1

0

dv

v(1− v)

{
8 z4

∣∣Agg(ŝ, t̂, û)
∣∣2

|H1ℓ
A |

2 − (1− z + z2)2

}
, (A.1)

where t̂ = −ŝ (1− z)(1− v), û = −ŝ (1− z) v, and

|Agg(s, t, u)|2 = T 2
F

[
cot2 β

∣∣Att
gg(s, t, u)

∣∣2 + tan2 β
∣∣∣Abb

gg(s, t, u)
∣∣∣
2
+ 2

∣∣∣Atb
gg(s, t, u)

∣∣∣
2
]

,

(A.2)

with ∣∣Aij
gg(s, t, u)

∣∣2 = |Aij(s, t, u)|2 + |Aij(u, s, t)|2 + |Aij(t, u, s)|2 . (A.3)

Defining, for i = t, b ,

yi ≡
m2

i

m2
A

, si ≡
s

m2
i

, ti ≡
t

m2
i

, ui ≡
u

m2
i

, (A.4)
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we find:

|Aij(s, t, u)|2 =
yiyj

4m4
A

{[
b1(s, t, u)H2(si, yi)H

†
2(sj, yj)+b2(s, t, u)H2(si, yi)H

†
2(tj, yj)

+b3(s, t, u)H3(si, ti, ui)H
†
3(sj , tj, uj)+b4(s, t, u)H3(si, ti, ui)H

†
3(uj , sj, tj)

+b5(s, t, u)H2(si, yi)H
†
3(sj , tj, uj)+b6(s, t, u)H2(si, yi)H

†
3(tj , uj , sj)

+b7(s, t, u)H2(si, yi)H
†
3(uj , sj , tj)

]
+ (i↔ j)

}
+ h.c. , (A.5)

where the function H3(s, t, u) is defined in eq. (2.28) of ref. [37], and

H2(s, y) =
1

2

[
log2

(√
1− 4/s − 1√
1− 4/s + 1

)
− log2

(√
1− 4y − 1√
1− 4y + 1

)]
. (A.6)

The coefficient functions bi(s, t, u) entering eq. (A.5) are

b1(s, t, u) =
1

2

[
4t2u2

(t + u)2
+ s2 − 3tu + s(t + u) + (t + u)2

]
, (A.7)

b2(s, t, u) = s2 + t2 + u2 + st +
2s2tu

(s− t)(s + u)
− 2st2u

(s− t)(t + u)
, (A.8)

b3(s, t, u) =
1

8

[
s2 + t2 + u2 + tu + s(t + u)

]
, (A.9)

b4(s, t, u) =
1

4
(s + t)(t + u) , (A.10)

b5(s, t, u) = −1

2

[
t2 + u2 + s(t + u)

]
, (A.11)

b6(s, t, u) = −1

2

[
s2 + (t + u)(s + u) +

(t− u)ut

(t + u)

]
, (A.12)

b7(s, t, u) = −1

2

[
s2 + (t + u)(s + t) +

(u− t)ut

(t + u)

]
. (A.13)

The contribution of the quark-antiquark annihilation channel, qq̄ → Ag, can be written

as

Rqq̄ =
512

27

z (1− z) |Aqq̄(ŝ)|2

|H1ℓ
A |

2 , (A.14)

with

Aqq̄(s) = TF

[
cot β yt H2(st, yt) + tan β yb H2(sb, yb)

]
. (A.15)

Finally, the contribution of the quark-gluon scattering channel, qg → Aq, can be

written as

Rqg =
CF

2
z + CF

∫ 1

0

dv

(1− v)

{
1 + (1− z)2v2

[1− (1− z)v]2
8 z
∣∣Aqq̄(t̂ )

∣∣2

|H1ℓ
A |

2 − 1 + (1−z)2

2z

}
. (A.16)

We compared our results for the functions Rgg, Rqq̄ and Rqg with the corresponding

results in ref. [4], and found full agreement.5

5Some misprints in ref. [4] must be taken into account in the comparison. In eq. (C.4) of that paper

the term within square modulus in the definition of dgq should be divided by 2. Also, the formulae in the

appendices B and C omit all occurrences of the MSSM Higgs-quark couplings, denoted in that paper as gΦ

Q.
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