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Abstract

Background: Currently, the typically adopted hand prosthesis surface electromyography (sEMG) control strategies do

not provide the users with a natural control feeling and do not exploit all the potential of commercially available multi-

fingered hand prostheses. Pattern recognition and machine learning techniques applied to sEMG can be effective for a

natural control based on the residual muscles contraction of amputated people corresponding to phantom limb

movements. As the researches has reached an advanced grade accuracy, these algorithms have been proved and the

embedding is necessary for the realization of prosthetic devices. The aim of this work is to provide engineering tools

and indications on how to choose the most suitable classifier, and its specific internal settings for an embedded

control of multigrip hand prostheses.

Methods: By means of an innovative statistical analysis, we compare 4 different classifiers: Nonlinear Logistic Regression,

Multi-Layer Perceptron, Support Vector Machine and Linear Discriminant Analysis, which was considered as ground truth.

Experimental tests have been performed on sEMG data collected from 30 people with trans-radial amputation, in which

the algorithms were evaluated for both performance and computational burden, then the statistical analysis has been

based on the Wilcoxon Signed-Rank test and statistical significance was considered at p < 0.05.

Results: The comparative analysis among NLR, MLP and SVM shows that, for either classification performance and for

the number of classification parameters, SVM attains the highest values followed by MLP, and then by NLR. However,

using as unique constraint to evaluate the maximum acceptable complexity of each classifier one of the typically

available memory of a high performance microcontroller, the comparison pointed out that for people with trans-radial

amputation the algorithm that produces the best compromise is NLR closely followed by MLP. This result was also

confirmed by the comparison with LDA with time domain features, which provided not significant differences of

performance and computational burden between NLR and LDA.

Conclusions: The proposed analysis would provide innovative engineering tools and indications on how to choose

the most suitable classifier based on the application and the desired results for prostheses control.
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Background

In clinics the state-of-the-art technology for people

with trans-radial amputation is commonly a dual-site

controlled myoelectric hand prosthesis. The available

single degree of freedom is actuated by applying a

simple threshold or a proportional amplitude method

on surface electromyography (sEMG) signals recorded

from antagonistic muscles (e.g., wrist flexor and wrist

extensor) that can be easily contracted in a separate

way. In the case of multi-fingered hand prosthesis

with several degrees of freedom (DoFs), but still

having two control signals, the switching between

DoFs or predefined grasps is normally made by co-

contraction, as in a finite state machine. This serial

operation is slow and unnatural; in addition, it re-

quires considerable training and cognitive effort [1].

On the other hand, Targeted Muscled Re-innervation

(TMR) [2], via surgical operation, allows replacing

nerves from the stump of persons with amputation to

different anatomical muscles (e.g., chest muscles) in

order to obtain independent signals. The risk associated

to the surgical re-innerving operation is the main draw-

back that limits the applicability of this technique to all

the kinds of amputations [3, 4].

Pattern recognition techniques based on sEMG cur-

rently represent the best compromise between invasive-

ness and prosthesis controllability and thanks to the

notable scientific progress, allows increasing the number

of controllable DoFs by keeping low the number of

utilized electrodes [5]. Recognizing the user’s will, con-

trol strategy resorting to pattern recognition techniques

could improve performance by mapping the actuation of

the prostheses on sEMG signals produced as result of

phantom limb gestures [6]. The system becomes more

user-friendly, and makes easier complex tasks that may

include the sequential actuation of different DoFs.

Myoelectric control systems based on pattern recogni-

tion techniques (Fig. 1) rely on supervised machine

learning classification algorithms.

An initial training phase is needed, during which the

system learns the way of linking the gestures to specific

myoelectric patterns. Subsequently, the trained system is

able to find out, from recorded patterns, the function for

realizing and executing the desired task. Usually the

feature extraction step precedes classification of sEMG

signals where the most important components of the

recorded myoelectric signal on a chosen time window

are identified and selected [7] in order to improve the

stability of the features (reducing variance and increasing

classification performance). Previous studies suggest that

the optimum window length for pattern recognition

controls ranges from 150 to 250 ms depending on the

skill of the subject [8]. For real-time applications it is

conventionally accepted that the actuation delay must be

less than 300 ms, therefore it was proposed to use a

method for adopting “raw” filtered sEMG signals as in-

put features, which enables an extreme reduction of the

classification time and of the response time of the

system without significant loss of system performance

[9–11]. The saved time is used to improve the stability

of the classification by means of post processing tech-

niques as voting and/or threshold policies [12, 13].

Linear classifiers, such as Linear Discriminant Analysis

(LDA), Logistic Regression (LR) or Support Vector Machine

(SVM) with linear kernel, and nonlinear classifiers, such as

Non-linear Logistic Regression (NLR), SVM with nonlinear

kernels and Multi-Layer Perceptron (MLP), represent the

state-of-the-art about pattern recognition classifiers [14, 15].

The main difference between linear and nonlinear classifiers

consists in the shape of the decision boundary: straight line,

or plane in the first case and curved line, or surface, in the

second. Performance, complexity and computational time

usually increase together. Hence, the choice of a classifica-

tion algorithm should not be entirely relied upon perform-

ance, but rather on a trade-off between computational

burden and performance, especially in embedded systems.

This work aims to provide useful insights into the choice of

the suitable classifier (and its specific internal settings) for

the embedded control of multi-fingered hand pros-

theses. To this purpose, a comparative analysis among

NLR, MLP, SVM with Radial Basis Function (RBF)

kernel, and LDA with time domain feature extraction,

considered as benchmark classifier, on sEMG data

from 30 people with trans-radial amputation is car-

ried out, in terms of performance and computational

burden. The use of LDA with time domain feature

extraction in on-line control of prosthetic devices has

been demonstrated by several studies [16, 17]; this
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Fig. 1 Block diagram of a generic pattern recognition system based on sEMG signals
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method is now commercially available in the US by

COAPT https://www.coaptengineering.com.

This paper is structured as follows: Sect. II describes the

protocol for the acquisition of the sEMG datasets, the im-

plemented machine learning algorithms, and the methods

adopted for data analysis; Sect. III reports the results of a

preliminary analysis on the complexity range of the model

of NLR and MLP, then it reports the comparative analysis

among the NLR, MLP and SVM classifiers including a

combined index of performance and computational

burden for the evaluation of the most suitable classifier

for the embedding version on a microcontroller with a

256 KB of memory for the realization of a prosthetic de-

vice. The section concludes with a comparative analysis

between NLR and the ground truth represented by LDA

with time domain feature extraction. Conclusive remarks

are finally reported in Sect. V and VI.

Methods

sEMG data acquisition protocol

The same acquisition protocol as in [18] was used to collect

the sEMG data from the subjects participating in the experi-

ments. Thirty people with trans-radial amputation, aged

between 18 and 65, free of known muscular and/or neuro-

logical diseases, participated in the experiments. Each subject

gave informed consent before performing the experiments,

which were approved by local scientific and ethical commit-

tees, and were already experienced in myoelectric control of

prosthetic hands. Six commercial active sEMG sensors

(Ottobock 13E200 = 50, 27 mm × 18 mm × 9.5 mm) were

equidistantly placed on a silicone adjustable bracelet (Fig. 2a)

and were fastened on subject’s stump (Fig. 2b). These sensors

operate in the range 0–5 V with a bandwidth of 90–450 Hz

and a common rejection ratio higher than 100 dB. The first

sensor was located on the flexor carpi-radialis muscle, while

the sixth sensor on the brachio-radialis muscle. These two

muscles were identified by manual inspection of the stump;

then, sEMG sensors were equally spaced each other on the

silicone bracelet. The bracelet was located about 5 cm below

the subject’s elbow, in line with the positioning of the elec-

trodes, commonly used to control the myoelectric prosthesis.

The data was collected using a purpose built software on

LabView platform by means of a NI DAQ USB 6002 device

in order to sample the six sEMG signals at 1 kHz frequency

and with 12 bits resolution.

Each subject was sitting in a comfortable chair in front

of a PC monitor (Fig. 2b), where one of five hand gestures

was randomly shown. The subjects were instructed to re-

produce steady state the displayed gesture with their

phantom limb. Once the signals became stable the sam-

pling session started and continued for 2 s obtaining for

each sensor 2000 samples. The gestures to reproduce were

selected among the eight canonical hand postures [7, 19]

and were “Rest” (relaxed hand), “Spherical” (hand with all

fingers closed), “Tip” (hand with thumb and finger touch-

ing to pick up a small object), “Platform” (hand completely

open and stretched), and “Point” (hand with all fingers

closed, except for the index finger that is pointing). Each

acquisition started from “Rest” position; after two seconds

of acquisition, the subjects were asked to return to the

Rest posture. Moreover, the subjects were instructed to ac-

complish the task with the minimum muscular contrac-

tion and focus on the main phantom fingers related to the

gesture. The selected gesture was shown as in Fig. 3.

Ten repetitions of each gesture were accomplished in

a single acquisition session with an inter-stimulus

interval of about 5 s. Figure 3 also shows a case of

the raw recording from the six sEMG sensors for all

the imagined movements. The plot is related to a sin-

gle acquisition session from one of the subjects who

took part to the experiment.

NLR, MLP, and SVM classification algorithms

In order to obtain a fast response real-time classification

no feature extraction was performed from the recorded

a

b

Fig. 2 Experimental Setup a) sEMG bracelet and NI DAQ USB 6002;

b) Subject positioning and acquisition Software
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signals, hence the sEMG signal are used directly as

input for the classification algorithms. The unique

operation done on sEMG signals is the scaling. It

consists of subtracting the mean value to each signal

and dividing the result by the range. Hence, for each

time step (i) we obtain a six-element vector x(i) of

scaled sEMG signals, which is used as input for the

classifiers to compare, i.e.: NLR, MLP, LDA, and

SVM with RBF kernel. Supervised machine learning

techniques are commonly adopted in problems

where there is no functional relationship y = f(x) that

binds the inputs x(i) with the corresponding class (y).

There are two different approaches to classification:

the first one returns a distribution P(y| x); the sec-

ond one returns a result without any probability of

class membership [20].

LR [21], or Perceptron, is a linear and binary super-

vised classification algorithm that calculates the class

membership, probability using the following logistic

function

P 1jx; θð Þ ¼
g θT ⋅x
� �

¼
1

1þ e− θT ⋅xþθ0ð Þ

1−P y ¼ 0jx; θð Þ ;

8

>

<

>

:

ð1Þ

where θ and θ0 are the classification parameters

vector and the bias term, respectively, and g(∙) is the

logistic, or sigmoid, function. In order to achieve a

NLR the creation of additional input features (inter-

action terms) is needed. For this study, additional

polynomial features were used, which were obtained

as a combination product of the starting input fea-

tures (e.g., x1 ; x2 ; x1 · x2 ; x1
2 ; x2

2 ;…). The prediction of

class labels (hθ) for LR or NLR algorithm is then

achieved by comparing the distribution P(y| x) with a

decision threshold (TH) as

hθ xð Þ ¼
P 1jx; θð Þ≥TH→1

P 1jx; θð Þ < TH→0:

�

ð2Þ

MLP [20, 21] is a particular case of supervised Artifi-

cial Neural Network (ANN) where each node, or

neuron, of the architecture implements a logistic func-

tion. The network architecture has an input layer, one or

more hidden layers (with the same number of neurons),

and an output layer with one neuron for each class to be

classified. The output vector of the l-th layer (a(l)) of this

particular classifier is obtained through forward propa-

gation as

a lð Þ ¼
x;

g Θ l−1ð Þ
⋅a l−1ð Þ þ Θ0 l−1ð Þ

� �

;

(

l ¼ 1:

l ¼ 2; 3; …; L:

ð3Þ

Where Θ(l), Θ0
(l) are the classification parameters

matrix and the bias vector associated with the l-th layer,

respectively, and L indicates the output layer. Hence, the

output of the network is a vector Pv(y| x) whose ele-

ments represent the class membership probability

expressed as

Fig. 3 Graphic display of the selected gestures and of the raw recording for the six different channels at the same time for all the imagined

movements of a single acquisition session from one of the subjects who took part to the experiment
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Pv yjx;Θ lð Þ
;Θ

lð Þ
0

� �

¼ a Lð Þ
: l ¼ 1; 2;…; L: ð4Þ

Also for MLP it is possible to achieve the prediction of

class labels (hΘ) by comparing each value of the distribu-

tion vector Pv(y| x) with TH and assigning to hΘ the

index of the element of Pv(y| x) that represents the

maximum among all those resulted above the decision

threshold.

SVM [20, 21] is a linear and binary supervised classifi-

cation algorithm that considers only dichotomous

distinction between two classes, and assigns class label 0

or 1 to unknown data item [20] as follows

hθ xð Þ ¼
θT ⋅xþ θ0
� �

≥þ 1→1

θT ⋅xþ θ0
� �

≤−1→0 :

(

ð5Þ

In order to obtain a nonlinear classifier, a kernel function

needs to be included into the model. A kernel function is

a similarity function (f), satisfying the Mercer’s Theorem,

that expresses the similarity between the generic input

vector x and a landmark (s), representing one of the the

two classes. Typically a selection of all the x vectors re-

corded for training the SVM algorithm are set as land-

marks and the j-th element of f for a RBF kernel becomes

f j ¼ exp −

x−s jð Þ
�

�

�

�

2

2γ

" #

; j ¼ 1; 2; …; n: ð6Þ

where n is the number of landmarks chosen as represen-

tative vector of classes 0 and 1, and γ is the internal RBF

parameter. Then the input features vector becomes f and

the class labels for a SVM with RBF kernel1 are

assigned as

hθ fð Þ ¼
θT ⋅f þ θ0
� �

≥þ 1→1

θT ⋅f þ θ0
� �

≤−1→0:

(

ð7Þ

Classification parameters θ, θ0, Θ
(l), and Θ0

(l) are ob-

tained from the minimization of a particular cost func-

tion J(∙) associated with each classifier,

NLR, MLP, SVM classifiers and optimization algorithm

implementation

NLR, MLP and SVM classification algorithms were im-

plemented in MATLAB. For NLR and MLP the code

was ad-hoc developed, while for SVM the open source

library libsm3.20 [22] was used. The developed function

that implements NLR allows the user to choose the

maximum value of the variable D, which encodes a

structure of polynomial features as reported in Table 1.

As polynomial features are intended the starting

features high till the indicated degree and all the

multiplications that arise from the possible permuta-

tions without repetitions of a maximum number of

elements corresponding to the indicated degree. A

cross-entropy error cost function has been associated

to the NLR algorithm and is expressed a

J θ; θ0ð Þ ¼ −
1

m

X

m

i¼1

y ið Þ
⋅ lng θT ⋅x ið Þ þ θ0

� �

" #

−
1

m

X

m

i¼1

1−y ið Þ
� �

⋅ ln 1−g θT ⋅x ið Þ þ θ0

� �� �

" #

;

ð8Þ

where m is the number of samples used to train the

algorithm and y(i) is the known class membership of the

i-th sample. Being NLR a binary classification algorithm,

a one vs. all approach was implemented to address the

multi-class classification problem.

The developed function that implements MLP allows

the user to decide the maximum number of hidden

layers and the maximum number of neurons for each of

them. A mean square error cost function has been asso-

ciated to the MLP algorithm, as

J Θ;Θ0ð Þ ¼
1

m

X

m

i¼1

X

K

k¼1

y
ið Þ
k − a

Lð Þ
k

� � ið Þ
� 	2

; ð9Þ

where K is the number of classes to be recognized,

y
ið Þ
k is the known k-th element of the class member-

ship vector of the i-th sample, and a
ið Þ
k is the k-th

element of the evaluated membership probability vec-

tor of the i-th sample.

As previously mentioned, the SVM classifier with RBF

kernel has been developed exploiting the open source

library libsvm3.20 that is widely used for multiclass ma-

chine learning problems. More detailed information can

Table 1 Encoding the variable D

D Description Example

1 Linear case (LR) x1, x2, x3, x4, x5, x6

2 max 2nd degree x1, …, x6, x1x2, x1x3, …, x5x6, x1
2, x2

2, …, x6
2

3 max 3rd degree x1, …, x6
2, x1x2x3, …, x4x5x6, x1

3, …, x6
3

4 max 4th degree x1, …, x6
3, x1x2x3x4, …, x3x4x5x6, x1

4, …, x6
4

5 max 5th degree x1, …, x6
4, x1x2x3x4x5, …, x2x3x4x5x6, x1

5, …, x6
5

6 max 6th degree x1, …, x6
5, x1x2x3x4x5x6, x1

6, …, x6
6

7 max 7th degree x1, …, x6
6, x1

7, x2
7, x3

7, x4
7, x5

7, x6
7
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be found in [22–24]. Anyway the cost function J(∙) asso-

ciated to the SVM algorithm can be expressed as

J θ; θ0ð Þ ¼ −C
X

m

i¼1

y ið Þ
⋅ lng θT ⋅f þ θ0

� �

" #

−C
X

m

i¼1

y ið Þ
⋅ ln 1−g θT ⋅x ið Þ

−θ0

� �� �

" #

þ
1

2
θT ⋅θ þ θ0ð Þ2

 �

;

ð10Þ

The developed function allows the user to set the

value regularization parameters C that appear into the

cost function implemented in libsvm3.20 and the value

of the internal RBF parameter γ. In this case, to address

the multiclass classification problem it has been chosen

to rely on a one vs. one method as recommended by the

developers for practical usage of the library [23–30].

Since each of the aforementioned classifiers requires to

set internal parameters, in addition to classification parame-

ters θ, θ0, Θ
(l), and Θ0

(l), it is coupled with an iterative

optimization algorithm. The optimization strategy relies on

a three ways data split approach [25]. Hence, the initial

data set is divided into three subsets: “Training Set” (TR)

containing 60% of the data, “Cross Validation Set” (CV)

containing 20% of the data, and “Test Set” (TS) containing

the remaining 20% of the data. These subsets are iteratively

filled through a random shuffle until a configuration with a

proportionated class number is reached. The TR is used to

train the supervised classification algorithms by minimizing

the specific cost function. As minimization algorithm,

Resilient Backpropagation (RProp) [26] has been chosen for

NLR and MLP and Limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) [27] for SVM. Each single

classifier is iteratively trained with all the possible configu-

rations of its internal parameters, varying each of these

within an appropriate range of values. The CV is then used

to evaluate performance of each configuration (i.e. model),

in order to avoid overfitting and find out the best model.

The F1Score [28] was used in this study to assess per-

formance, in lieu of accuracy, being more robust also for

classes that do not have a perfect symmetrical cardinality.

Considering this simple confusion matrix

Where nP is the number of true positive, nN the num-

ber of true negative, nFP the number of false positive

and nFN the number of false negative, F1Score can be

evaluated as

PR ¼
nP

nP þ nFNð Þ

RE ¼
nP

nP þ nFP

F1Score ¼ 2⋅
PR⋅RE

PRþ RE
⋅100;

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð12Þ

where PR is called Precision and RE is called Recall.

After determining the optimal classifier model, the TS

is used to achieve an estimation of the performance that

the classifier is expected to show when new features are

provided as input.

NLR, MLP, SVM Downsampling and creation of

generalization set

For each subject involved in the experiment, the data

sampled at 1 kHz were organized in a matrix; each col-

umn of the matrix was coupled with an EMG sensor.

Hence, the choice of avoiding features extraction based

on time windowing of sEMG generated 105 × 6 data

(large-scale datasets) and, consequently, a very long

time (more than 4 h per subject) is required to

complete training and optimization for each classifica-

tion algorithm. Therefore, downsampling has been ap-

plied to speed up the whole process. The discarded

data were used to compose a new set of data called

“Generalization Set” (GS) which has been used as sec-

ond test set in order to obtain an estimation of the

generalization ability of each classification algorithm.

In particular, for a downsampling step equals to 10

(one in ten), the GS will contain 90% of the data, the

TR 6%, the CV 2%, and the TS the remaining 2% of

the data. In other terms, the results evaluated on TS

represent an estimation of the classification ability

when the signal to classify is sampled at the same fre-

quency of the training data (a downsampling step

equals to 10 produce a 100 Hz dataset) while results

evaluated on GS represents an estimation of the clas-

sification ability when classifying a signal sampled up

to 1 kHz.

LDA classifier

LDA is a linear and binary supervised classification

algorithm that considers a dichotomous distinction

between two classes, and assigns class label 1 or 2

to unknown data item relying on the following deci-

sion function

(11)
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hβ xð Þ ¼
βT ⋅xþ β0
� �

≥0→1

βT ⋅xþ β0
� �

< 0→2 ;

(

ð13Þ

where β and β0 are the classification parameters vector

and the bias term, respectively. Classification parameters

can be evaluated as

β ¼ Σ−1
⋅ μ1−μ2ð Þ

β0 ¼ −βT ⋅
μ1 þ μ2

2

0

@

1

Aþ ln
Π1

Π2

0

@

1

A ;

8

>

>

<

>

>

:

ð14Þ

where Σ is the pooled covariance matrix, μ1, μ2 and Π1,

Π2 are the mean vectors and the prior probabilities of

class 1 and class 2, respectively. Since this classifier does

not require setting internal parameters, training and test

rely on a two ways data split approach [25]. Hence, the

initial dataset is divided into training set and test set.

The training set contains 70% of the data (TR70%), and

the test set contains the remaining 30% of the data

(TS30%). The subsets are iteratively filled through a ran-

dom shuffle until a configuration with proportionated

class number is reached. The TR70% is used to train the

classifier evaluating classification parameters β and β0;

on the other hand, the TS30% is used to estimate the

classifier performance when new features are provided

as input. Being LDA a binary classification algorithm, a

one vs. all approach was implemented to address the

multi-class classification problem. The class label (c) is

predicted as

hβ xð Þ ¼ max
c cβ

T
⋅xþ cβ0

� �

and

cβ¼ Σ−1⋅μc

cβ0 ¼ −cβ
T
⋅

μc
2

0

@

1

Aþ ln Πcð Þ;

8

>

<

>

:

ð15Þ

where cβ
c and cβ

c0 are the classification parameters

vector and the bias term of c class, respectively. For

building our LDA benchmark classifier five commonly

used time domain features were considered2: Mean

Absolute Value (MAV), Root Mean Square (RMS), Slope

Sign Change (SSC), Waveform Length (WL) and Vari-

ance (σ2). They were extracted in windows of 250 ms

with an overlap of 200 ms [17]. Since the training of the

LDA classifier is performed by means of Eq. (13, 14) and

the feature extraction avoids the generation of large-

scale-dataset, a short time is required to complete the

training of the classifier and there is no need to perform

down sampling. The classification algorithm was imple-

mented in MATLAB with an ad hoc developed software

code.

Data analysis

The study was divided into three parts: the first one

investigated the optimal range of D (initial guess 1–7)

for NLR, and the range of maximum number of

layers (initial guess 1–10) and neurons (initial guess

1–30) for MLP, while the second part is focused on

the comparison among the NLR, MLP and SVM clas-

sification algorithms. The third part is focused on the

comparison with our ground truth, the LDA classifier.

The first part can be seen as a preliminary investiga-

tion in order to reduce the evaluation time of the

comparison among the three classifiers. A down-

sampling step equal to 10 (and corresponding to a

100 Hz sampling frequency) has been applied to data

collected from 30 people with trans-radial amputation.

Performance of each algorithm has been measured by

means of the F1Score (12) value and a statistical analysis

has been based on the Wilcoxon Signed-Rank test, which

has been shown to be appropriate for comparing different

classifiers in common datasets [1-29]. Statistical signifi-

cance was considered at p < 0.05. The maximum value of

D, of the number of layers, and of the number of neurons

have been obtained by means of a sequential statistical

analysis, starting from the simplest case and then sequen-

tially comparing all the others until a high significant

difference of performance is found. This is taken as the

new benchmark for all the subsequent comparisons. The

process ends when it is found the last case in which the

differences are not statistically significant compared to all

subsequent cases.

The second part, the core of our work, resorted to

the results obtained in the first part to compare NLR,

MLP, and SVM considering both performance and

run-time computational burden on EMG data col-

lected from 30 people with trans-radial amputation.

As regards the SVM, the range of variation of the

regularization parameter C belongs to 0–104, with

variable steps starting from 0.01 and doubling each

time, while γ belongs to 0–50 (with a pitch equals to

0.1); both have been empirically determined in previ-

ous tests. The computational burden was evaluated

through the number of parameters (nθ), expressing

the cardinality of classification vector θ (1) (7) or

matrices Θ (3) that identify the particular classifica-

tion algorithm. In detail, the number of matrix ele-

ments created by the libsvm training function, which

are necessary to run the evaluated SVM model, were

used for evaluating the cardinality of SVM parame-

ters. Particularly they were: rho, sv_coef, and SVs [30].

The values of sample rate were: 5 Hz, 10 Hz, 20 Hz,
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40 Hz, and 100 Hz (corresponding to 200, 100, 50,

25 and 10 downsampling step). Again, the statistical

analysis has been performed through a Wilcoxon

Signed-Rank test with significance threshold set to

0.05. Lastly a combined index, called EOF (Embed-

ding Optimization Factor), that takes into account

both performance and computational burden has been

calculated. It is defined as

if NΘ > nθð Þ→P ¼
NΘ−nθð Þ

NΘ
⋅100

if NΘ≤nθð Þ→P ¼ 0

EOF ¼
2⋅ F1Score⋅Pð Þ

F1Scoreþ Pð Þ
;

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð16Þ

where NΘ is the maximum acceptable number of

parameters. This index plays a paramount role in the

implementation of these algorithms in embedded

systems, where memory storage and program mem-

ory are limited. To this purpose, as representative

example, NΘ has been chosen as equal to the max-

imum number of parameters storable into a 256 KB

memory, which is typically used for high perform-

ance embedded microcontrollers applied to pros-

thetic hands (e.g. Touch Bionics I-Limb, Ultra and

Robo-Limb). As each parameter is coded as a float

which 4 memory bytes are needed to just store one

of them, hence, for our example, the maximum

number of storable parameters is 64 ∙ 103 classifica-

tion parameters. This is an application example of

how that index and NΘ can be evaluated, but the

same method can be applied taking into account

different size of memory and/or other constraints,

such as the available RAM memory or the evaluation

time for a single classification (which is related to

the microcontroller clock frequency).

In the third part a comparative analysis among the

three non-linear classifiers and the LDA was carried

out. Since LDA was trained and tested with data

sampled at 1 kHz (without downsampling), NLR,

MLP and SVM models with the highest EOF values

on GS were taken for the comparison. Again, the

analysis was performed taking into account classifica-

tion performance, computational burden and EOF

index. The statistical analysis was performed through

a Wilcoxon Signed-Rank test with significance thresh-

old set to 0.05.

Results

The results are presented in boxplots where the central

line represents the median value; the edges of the box

are the 25th and the 75th percentiles; the whiskers give

the range of the data without outliers; solid markers rep-

resent the mean value.

Max degree of polynomial features for NLR

Figure 4 shows the values of F1Score of TS and GS over

the max degree of polynomial features (indicated with

D) applied as input to NLR.

In both cases, the maximum is reached by setting 7 as

maximum D value, but the Wilcoxon Signed-Rank test

applied to the F1Score values points out no statistically

significant difference for polynomial features over the

value 5 for both GS and TS. The result seems to indicate

that, for people with trans-radial amputation, the system

Fig. 4 F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes over the maximum value of variable D calculated

from 30 people with trans-radial amputation. The figure also shows the trend of the mean value for both Sets. Statistical non-significance over

value 5 is shown by “ns”
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performance saturates setting the maximum D value of

the polynomial features over value 5 as showed in Fig. 3

by the trend lines of the mean values.

Max number of hidden layers for MLP

Figure 5 shows the values of F1Score of TS and GS over

the max number of hidden layers. Each hidden layer has

maximum 30 neurons for MLP.

In both cases, the best performance is obtained for

a maximum number of layers equal to 8, but the

Wilcoxon Signed-Rank test applied to the values of

achieved F1Score values points out no statistically sig-

nificant difference over 5 hidden layers for both GS

and TS. This probably means that for people with

trans-radial amputation the system performance satu-

rates for a maximum number of hidden layers over

the value 5.

Max number of neurons for MLP

Figure 6 summarizes the values of F1Score of TS and

GS with respect to the max number of neurons for a

MLP with maximum 5 hidden layers varying by 5 the

number of neurons until the value 23, for compactness.

Fig. 5 F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes over the maximum number of layers having fixed at

30 the maximum number of neurons for each hidden layer calculated from 30 people with trans-radial amputation. The figure also shows the

trend of the mean value for both Sets. Statistical non-significance over value 5 is shown by “ns”

Fig. 6 F1Score of Test Set (smaller boxes) and Generalization Set (bigger boxes) of 5 classes over the maximum number of neurons for each layer. The

maximum number of hidden layers calculated from 30 people with trans-radial amputation has been fixed at 5. The figure also shows the trend of the

mean value for both Sets. Statistical non-significances over value 23 for and overvalue 28 for GS are shown by “ns”
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The Wilcoxon Signed-Rank test applied to the achieved

values of F1Score points out no highly statistically sig-

nificant difference over 23 for TS and over 28 for GS.

This probably means that for people with trans-radial

amputation the system performance saturates for a max-

imum number of neurons between 23 and 28 depending

on the frequency of the signals to classify.

NLR, MLP, SVM comparison based on TR sampling rate

Figure 7 shows the values of F1Score of TS and GS, ob-

tained training the classifiers on TR sampled at increasing

sampling rate (or at decreasing downsampling step) for

NLR, MLP, and SVM. As mentioned in Sect. II, NLR and

MLP has been optimized by using the results previously

obtained by limiting to 5 the maximum D value, for NLR

and to 5 and 28 the maximum number of layers and

neurons, respectively, for MLP. Afterwards, performance

of NLR, MLP, and SVM were compared, at different

sampling frequencies of the dataset used to train the

algorithms, through a Wilcoxon Signed-Rank test. For

both TS and GS the analysis reports no statistically differ-

ence between the three classifiers when training the

algorithms with a 5 Hz sampled dataset, and that NLR

achieved significant lower value than MLP and SVM with

the others sampling frequencies. Conversely, MLP

achieved statistically significant lower performance than

SVM only using a 100 Hz frequency.

NLR, MLP, SVM comparison based on computational

burden

Figure 8 shows the number of classification parame-

ters (nθ), obtained training the classifiers on datasets

sampled at increasing sampling rate (or at decreasing

downsampling step) for NLR, MLP, and SVM.

Variable nθ is regarded as an index quantifying the

algorithm computational burden. Again NLR and

MLP has been optimized thanks to the previously ob-

tained results. As the model of the classifier adopted

for TS and GS is the same, also the complexity in

the two cases is the same.

By comparing the algorithms at different sampling

rates for the dataset used to train the three algorithms, it

can be observed that SVM is always characherized by

the highest computational cost, while NLR by the lowest

one. While NLR and MLP remain statistically different

they retained values of nθ that always belong to the

same order of magnitude (102 for NLR and 103 for

MLP), SVM initially scores values statistically equals to

MLP (5 Hz) and then diverged with respect to the

sampling rate. This difference in behavior of the SVM

classifier is due to its unique achitecture that generates a

number of landmarks (6), which are strictly related to

the number of the classification parameters, depending

on the numerosity of the dataset used to train the algo-

rithm. Therefore, the higher the sampling frequency the

more numerous the TR will be and, consequently, a high

number of landmarks to represent the data is needed.

All the others comparisons proved to be statistically dif-

ferent among them.

NLR, MLP, SVM comparison based on EOF

As previously mentioned in this section it was reported a

result of an applicative example comparing NLR, MLP

and SVM classifiers using EOF as comparison index. The

only constraint adopted in this analysis is the burden on a

256 KB memory that the classification parameters to be

stored produce. Figure 9 shows values of EOF for TS and

GS, obtained training the classifiers on datasets sampled

at increasing sampling rate (or at decreasing downsam-

pling step) for NLR, MLP, and SVM. Again, NLR and

MLP were optimized using the results previously ob-

tained. Hence, a comparative analysis among NLR, MLP,

and SVM was carried out (first for TS, then for GS).

Except that for TS at 5 Hz sampling frequency (where

SVM has obtained the maximum value of EOF) among

the three classifiers NLR attained the maximum EOF

a

b

Fig. 7 F1Score values from 30 people with trans-radial amputation

increasing the sampling frequency of the dataset used to train and

cross validate the NLR, MLP, and SVM algorithms and 5 classes.

Statistical significance is shown by “*”. a) F1Score values for Test Set;

b) F1Score values for Generalization Set
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value for both TS and GS and perhaps, the result means

that for people with trans-radial amputation NLR and

MLP classifiers represent the best compromise between

classification performance and computational burden.

The result is even more valuable considering the trend

of the value of EOF increasing the sampling rate. In fact,

for the NLR and the MLP classifier the value of this

index tends to slightly increase, while for the SVM

classifier it decreases more and more.

NLR, MLP, SVM and LDA comparison

In this section the results of the comparative analysis of

LDA withNLR, MLP, and SVM classifiers are reported.

For comparative purposes, NLR, MLP, and SVM models

that obtained the highest EOF values on GS were used.

The LDA classifier was considered as ground truth, in

terms of performance, number of parameters and EOF

index. Figure 10 shows the values of F1Score of GS for

NLR, and MLP on TR sampled at 100 Hz and SVM, on

TR sampled at 25 Hz, and of TS30% for LDA on TR70%

sampled at 1 kHz. By exploiting the previously obtained

optimization results, D value was limited to 5 for NLR,

while the maximum number of layers and neurons was

limited to5 and 28 for MLP. Table 2 shows the numeric

values of F1Scores averaged over 30 subjects with

trans-radial amputation and the corresponding stan-

dard deviation (s) for all the four algorithms.

A Wilcoxon Signed-Rank test was adopted for the

statistica analysis of comparison between NLR, MLP,

and SVM and LDA.. The analysis reports no statistically

significant difference between LDA and both NLR and

MLP classifiers, while SVM achieved significantly lower

value than the others. Figure 11 displays the number of

classification parameters (nθ and n nβ). Table 2 shows

a

b

Fig. 9 EOF values from 30 people with trans-radial amputation

increasing the sampling frequency of the dataset with 5 classes

used to train and cross validate the NLR, MLP, and SVM algorithms.

Statistical significance is shown by “*”. a) EOF values for Test Set; b) EOF

values for Generalization Set

Fig. 8 Number of classification parameters from 30 people with trans-radial amputation increasing the sampling frequency of the dataset used to train

and cross validate the NLR, MLP, and SVM algorithms and 5 classes. The y ax is in logarithmic scale. Statistical non-significance is shown by “ns”
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the number of classification parameters averaged over

30 subjects with trans-radial amputation and the corre-

sponding standard deviation (σ) for the four algorithms.

The analysis showed that LDA obtained the minimum

number of parameters, and no statistically significant

difference was observed only between MLP and SVM.

Finally, the EOF index for LDA was evaluated and

compared with NLR, MLP and SVM, as showed in

Fig. 12 and Table 2. While SVM achieved significantly

lower value than the other classifiers, MLP, NLR and

LDA showed similar EOF score. The Wilcoxon Signed-

Rank showed no statistically significant difference only be-

tween the NLR and LDA classifier.

Discussion

In this study an in-depth analysis has been carried out of

three of the most adopted classifiers for EMG signals,

i.e. NLR, MLP, and SVM using LDA with time domain

feature extraction as ground truth for the final validation

of the performed analysis. The choice fell on these be-

cause of the extensive discussion in the literature and

because of the high performance notwithstanding the

extremely different number of classification parameters.

In particular, an intensive analysis on data acquired from

30 people with trans-radial amputation was conducted

and performance were assessed, with special attention to

the problem of developing embedded classifier solutions.

Although the type and number of recruited subjects was

not sufficient to generalize the results to all kinds of

trans-radial amputations, this study wants to provide a

solid basis for reflecting upon the trade-off between per-

formance and computational burden of these classifiers.

Six commercial sEMG sensors produced analog signals

that were sampled at 1 kHz and used as “raw” input fea-

tures of the classifiers. In order to speed up the training

and the cross validation of NLR, MLP and SVM classifi-

cation algorithms, downsampling was applied to the data

creating one downsampled dataset (TR, CV, and TS)

and one dataset containing all the remaining data (GS).

While the TR and CV were used to train and cross val-

idate, TS and GS have been used to test the performance

of the classifiers.

The performance of NLR and MLP algorithms were

firstly evaluated and then analyzed with the Wilcoxon

Fig. 10 F1Score values from 30 people with trans-radial amputation for MLP, NLR, SVM, tested on GS, and LDA with 5 time domain features, on a

5 classes dataset. NLR and MLP where trained using data sampled at 100 Hz, while SVM using data sampled at 10 Hz. Statistical non-significance

is shown by “ns”

Table 2 Classification performance and computational burden for NLR, MLP and SVM models with highest EOF value on GS and

LDA sampled at 1 kHz with features

Classification Algorithm F1Score Number of Classification Parameters EOF

NLR (100 Hz) 92.0 (6.1 s) 362 (41 s) 95.5 (3.4 s)

MLP(100 Hz) 92.5 (5.9 s) 1654 (605 s) 94.8 (3.2 s)

SVM (10 Hz) 89.5 (7.3 s) 1361 (648 s) 93.3 (4.4 s)

LDA (1 kHz with features) 91.9 (6.5 s) 155 95.5 (3.7 s)

Mean values and standard deviation of F1Score values, classification parameters and EOF values from 30 people with trans-radial amputation for each classifier

involved in this study on a 5 classes dataset. The EOF and F1Score highest values and the lowest number of parameters are highlighted in bold. See Figs. 10-11-

12 for a graphic display and statistical significance
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Signed-Rank test for both TS and GS. The results

showed that for NLR no significant improvement of per-

formance can be obtained for a degree of polynomial

features greater than 5 and that for MLP no significant

improvements can be achieved by increasing the

complexity of the network up to 5 layers and 23 neurons

for TS and 28 neurons for GS, respectively (Fig. 5). This

result is very important because sets a boundary on the

complexity of the classifier, allowing to reduce the

training and cross-validating times when applying these

algorithms on raw sEMG data recorded from people

with trans-radial amputation. Furthermore, it is also

relevant to observe that NLR in the linear case analysis

(polynomial features of grade 1) obtained the lowest

F1Score value with respect of the other higher grade of

polynomial features, suggesting the use of a non-linear

classifier when as input features the raw outputs of the

Ottobock sEMG sensors are used.

After this preliminary investigation, a comparative

analysis among the NLR, MLP, and SVM algorithms was

performed using data at different frequencies (5 Hz,

10 Hz, 20 Hz, 40 Hz, and 100 Hz) as TR, CV and TS.

The comparison pointed out that the sampling rate and

the classification performance increased at the same

Fig. 11 Number of classification parameters from 30 people with trans-radial amputation for MLP, NLR, SVM, and LDA with 5 time domain features, on

a 5 classes dataset. NLR and MLP where trained using data sampled at 100 Hz, while SVM using data sampled at 10 Hz. The y ax is in logarithmic scale.

Statistical non-significance is shown by “ns”

Fig. 12 EOF values from 30 people with trans-radial amputation for MLP, NLR, SVM, tested on GS, and LDA with 5 time domain features, on a 5

classes dataset. NLR and MLP where trained using data sampled at 100 Hz, while SVM using data sampled at 10 Hz. Statistical non-significance is

shown by “ns”
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time (Fig. 7). In fact, for all the algorithms the maximum

performance was obtained with 100 Hz sampling rate,

however, increasing the sampling rate also tends to ele-

vate the number of classification parameters, used as

index of computational burden of the classifier. The ana-

lysis showed that, for both classification performance

and number of classification parameters (Fig. 8), SVM

attains the highest values followed by MLP, and then by

NLR. Although downsampling causes a loss of informa-

tion, classification performance was still high (ranging

from 91.1% to 94.5%) meaning that the signals kept the

main content related to the gesture. The reason is that,

for constructing a decision boundary, it is not necessary

to use high frequency sampled data during the classifier

training phase; data with similar range, dispersion and

redundancy are required. This also explains why GS sys-

tematically reports higher performance value than TS.

GS contains a larger number of data than TS and, con-

sequently, leads to higher performance scores. Hence,

the results carried out from it might better represents

the real behavior of the classifiers when data sampled up

to 1 kHz are provided as input.

Although when implementing these algorithms on

PC systems it is reasonable to choose the one with

the highest classification performance, when moving

to embedded systems for prosthetic devices, the com-

putational burden is no longer negligible. Hence, in

order to investigate the best compromise between

performance and computational burden, the EOF

index was presented. Using as unique constraint the

memory usage, the EOF has been evaluated referring

to a standard microcontroller 256 KB memory at dif-

ferent frequencies of TR, CV and TS. As previously

reported, this is just an application example but the

same method can be applied taking into account dif-

ferent memory values and/or other constraints, such

as the available RAM memory and/or the evaluation

time for a single classification for any microcontroller.

The analysis performed showed that, for people with

trans-radial amputation and using sampled sEMG sig-

nals to more than 5 Hz as input, the algorithm that

produces the best compromise is NLR, with the

highest values of EOF (95.5%), closely followed by

MLP (94.8%). Conversely, SVM algorithm, which ob-

tained the highest classification performance, presents

considerably lower values of EOF (93.3%) than the

other two algorithms (Fig. 9); this means that high

performance is achieved at the expenses of a sharp

increase of the computational burden and memory

usage. Hence, it is possible to summarize that in

order to choose the most suitable classifier in a real

application with data sampled at the same frequency

used for train and cross validate the algorithm, there

is no difference between NLR, MLP, and SVM up to

10 Hz, while from 10 to 100 Hz SVM becomes sig-

nificantly disadvantageous with respect to the other

two classifiers, which did not show significant differ-

ence. On the other hand, for use in a real application

with data sampled at higher frequency (up to 1 kHz)

than the ones used to train and cross validate the

algorithms, NLR resulted to be the most suitable

clearly representing the best compromise between

classification performance and computational burden.

Furthermore, the analysis suggests, among the tested

cases, a downsampling step equal to 10 (100 Hz) for

the training and the cross validation of NLR and

MLP algorithms, and equal to 100 (10 Hz) for SVM.

Finally, a comparison between each of the three non-

linear classifiers and LDA was carried out. Since LDA

was trained and tested with data sampled at 1 kHz

(without downsampling), NLR, MLP and SVM models

with the highest EOF values on GS for performance,

number of parameters and EOF index were used for the

comparative analysis. This analysis pointed out no statis-

tically significant difference between NLR and LDA in

terms of performance and EOF index (Figs. 10-11-12,

Table 2) confirming the results of the previously showed

comparisons (Figs. 7-8-9) despite LDA reported the

minimum computational burden. Therefore, this result

is also more appreciable if we consider that NLR was

trained and tested using raw sEMG data. So, this study

shows that it is possible to use non-linear classification

algorithms on raw sEMG signals recorded from people

with trans-radial amputation also for embedded applica-

tions. Furthermore, since LDA and NLR retained statisti-

cally similar value for both performance and computational

burden, it is possible to speculate that the features extrac-

tion step linearize the classification problem at the expense

of a delay on the class evaluation time and on the readiness

of the system during the transition between two different

gestures. Indeed, using raw sEMG signals as input features

the class evaluation time and system readiness approximate

the sampling time; on the other hand, using features based

on time windowing, the class evaluation time equals the

window shift and the readiness delay is around the half of

the time window length.

It is worth noticing that, when transient EMG signals

are included in classifier training, system controllability

and performance are shown to improve [31]; conversely,

offline classification accuracy degrades. This comparative

study was grounded on steady state sEMG signals,

however, this does not affect our comparative ana-

lysis, since the experimental data were the same for

all the analysed classifiers.

Conclusions

In this study the NLR, MLP and SVM classification

algorithms were developed, tested and optimized on a
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dataset of 5 hand gestures classes composed of the data

recorded from 30 people with trans-radial amputation,

using 6 commercial sEMG sensors. After evaluating the

maximum complexity of the NLR and MLP algorithms

needed to apply pattern recognition on this population,

the comparative analysis among the three algorithms

was carried out. It pointed out that, for both classifica-

tion performance and number of classification parame-

ters, SVM attains the highest values followed by MLP,

and then by NLR. Hence, in order to investigate the best

compromise between performance and computational

burden, the EOF index was presented. The analysis per-

formed showed that, for people with trans-radial

amputation and using sampled sEMG signals to more

than 5 Hz as input, the algorithm that reached the best

compromise is NLR (with the highest value of EOF)

closely followed by MLP. This result was also confirmed

by the comparative analysis with LDA with time domain

features, which showed no statistically significant differ-

ence with NLR. The proposed analysis would provide in-

novative engineering tools and indications on how to

choose the most suitable classifier, and its specific in-

ternal settings, based on the application and the desired

results for prostheses control. As the research has

reached an advanced grade of accuracy, these algorithms

were proved and the embedding is necessary for the

realization of prosthetic devices. Future developments

will exploit the results of this study by extending the

analysis to transient EMG signals, and developing a con-

trol unit embedding pattern recognition algorithms for

people with trans-radial amputation. Then, measures of

system robustness and reliability will be carried out

and performance of real-time myoelectric pattern rec-

ognition control of a multifunctional upper-limb pros-

thesis will be evaluated by means of specific tests

(e.g. TAC test [16]).

Endnotes
1note that in the following SVM will be used to indicate

SVM with RBF kernel
2note that in the following LDA will be used to indicate

LDA with 5 time domain features
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