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Abstract

Motivation: The repetitive nature of plant disease resistance genes encoding for nucleotide-

binding leucine-rich repeat (NLR) proteins hampers their prediction with standard gene annotation

software. Motif alignment and search tool (MAST) has previously been reported as a tool to

support annotation of NLR-encoding genes. However, the decision if a motif combination repre-

sents an NLR protein was entirely manual.

Results: The NLR-parser pipeline is designed to use the MAST output from six-frame translated

amino acid sequences and filters for predefined biologically curated motif compositions. Input

reads can be derived from, for example, raw long-read sequencing data or contigs and scaffolds

coming from plant genome projects. The output is a tab-separated file with information on start

and frame of the first NLR specific motif, whether the identified sequence is a TNL or CNL, poten-

tially full or fragmented. In addition, the output of the NB-ARC domain sequence can directly be

used for phylogenetic analyses. In comparison to other prediction software, the highly complex

NB-ARC domain is described in detail using several individual motifs.

Availability and implementation: The NLR-parser tool can be downloaded from Git-Hub

(github.com/steuernb/NLR-Parser). It requires a valid Java installation as well as MAST as part of

the MEME Suite. The tool is run from the command line.

Contact: burkhard.steuernagel@jic.ac.uk; fjupe@salk.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plants have evolved a multi-layered innate immune system to protect

themselves against pests and pathogens (Jones and Dangl, 2006).

Breeding efforts towards disease resistance in crops rely on the

introgression of quantitative trait loci or major dominant disease

resistance (R) genes from wild relatives (reviewed in (Dangl et al.,

2013). The largest class of R genes encodes nucleotide-binding

domain leucine-rich repeat proteins (NLRs or NB-LRRs). These are

key receptors that recognize secreted pathogen effector molecules or

their effect in the plant. On recognition, these proteins commonly

lead to a hypersensitive response in the form of local cell death to

prevent further spread of pathogens relying on living tissue (Jones

and Dangl, 2006).

In dicotyledonous plants, NLR proteins come in two flavours that

are determined by an N-terminal extension and internal amino acid

motif composition. CNL proteins possess in most cases a coiled-coil

domain followed by the highly conserved p-loop and RNBS-A motif

(Meyers et al., 2003). TNL proteins possess a Toll-interleukin recep-

tor-like (TIR) domain followed by the p-loop but lack the RNBS-A

motif. The TNL class is absent from monocotyledonous plants, like

wheat and barley. A set of 20 NLR descriptive motifs have previously

been identified using MEME (Bailey et al., 2009), and were used in
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motif alignment and search tool (MAST) searches against predicted

potato proteins (Jupe et al., 2012). Originally set out to discover NLR

sequences from members of the plant family Solanaceae, this set also

contains two Triticeae specific motifs.

The identification and annotation of the very large NLR gene

family, with for example over 750 members in potato, is currently

very laborious and time-consuming, as most automated gene callers

fail to capture the full complement. Several studies have shown that

these automated annotations miss up to 50% of the total NLR gene

complement, or that full sequences are split into small fragments

and then annotated as ‘partial’ (Meyers et al., 2003; Jupe et al.,

2013; Andolfo et al., 2014).

There is, therefore, a clear need for an automated NLR annota-

tion tool. Here, we present an NLR-MAST-parser, a java applica-

tion for the identification of NLR-like sequences that uses the highly

specific amino acid motif composition found in plant NLR gene

products and parses this information into an easy-to-use tabular file.

The impact of this tool comes from a high accuracy, reduction in

hands-on time of NLR annotation projects and its independence

from gene prediction software. We further provide evidence that it is

functional in monocotyledonous and dicotyledonous plant species.

2 Methods

2.1 Motif composition discriminates NLRs
The amino acid motif composition of NLR gene products is highly

conserved amongst all plant species, sufficient to separate these

from other protein sequences and sufficient to separate the two

main types of NLRs (TNL and CNL). We use 20 previously bio-

logically characterized motifs (Jupe et al., 2012) in the MAST tool

to identify potential NLR encoding sequences. The NLR parser uses

a variety of biologically defined input motif compositions to search

the MAST xml-format output and report on confirmed NLRs only.

These motif compositions can be found in the online manual.

2.2 Mast parser features
The annotation of NLR genes is a manual process that is simplified

by several output features of this NLR parser. The MAST input is a

protein sequence, which is usually not available from, for example

de novo assembled genomes or NLR-enriched sequence data. The

best procedure to identify NLRs in a set of sequences is to perform a

translation into all six reading frames. The MAST Parser accepts a

pattern, which splits a common prefix from frame-specific suffixes,

as an input argument. That way, every nucleotide sequence can be

annotated, regardless of the actual reading frame or even a shift of

the frame. It has been shown that NLR genes are often under selec-

tion (Michelmore and Meyers, 1998), resulting in a large number of

pseudogenes. We defined sets of motifs that indicate the complete-

ness of an NLR gene. The output of the Mast Parser includes this

annotation as a column. Finally, we add the class of each NLR, i.e.

CNL or TNL, to the output.

2.3 TAIR validation
In a proof-of-concept study, we screened the available set of

Arabidopsis thaliana TAIR proteins (TAIR10_pep_20101214) for

NLR gene products using the here presented MAST pipeline. In

total, we identified 266 from within 35 386 Arabidopsis proteins as

partial or complete NLRs. The original TAIR protein annotation

provides 219 sequences with one of the following annotation terms:

‘Toll-Interleukin-Resistance (TIR) domain’, ‘NB-ARC’ or

‘NBS-LRR’ and 212 of these were also identified with our MAST

pipeline. Blastp analyses of the seven remaining proteins identified

two false-negatives with an NB-ARC and LRR domains, but five

that had neither an NB-ARC nor an LRR domain and thus can be

excluded. Detailed analysis shows that the two false-negatives cor-

respond to the ancient and small group of NLRs with similarity to

ADR1 (Chini and Loake, 2005). Here, the discriminatory Motif 8

had a P-value of 8e�5 and was, therefore, discarded. We, therefore,

observe a sensitivity of more than 99%. We found five complete

NLRs with the NLR-Parser that were not annotated accordingly in

TAIR. We validated the structure of those proteins by scanning for

TIR, NB-ARC and LRR-related PFAM domains using HMMER

(Eddy, 2011) and found consistently an NB-ARC domain and LRRs

in each of the protein sequences (Supplementary Table 1).

Therefore, we report a 100% specificity for the NLR-Parser.

2.4 Monocot validation
We further tested the MEME motifs in our NLR-parser for their

functionality in monocotyledonous plant genomes and screened the

publicly available set of annotated genes from Brachypodium dis-

tachyon. The NLR-parser pipeline identified 586 partial or complete

NLRs. All 190 proteins that the NLR-parser annotated as complete

NLRs have previously been annotated as resistance genes (http://

phytozome.jgi.doe.gov/). The general quality of the Brachypodium

annotation, relying on similarity to Arabidopsis and rice does not

allow a precise estimation of sensitivity and selectivity. However,

there is a good consistency between annotation, found PFAM do-

mains and NLR-Parser. Eight genes with NB-ARC domain and LRR

have not been found by the NLR-Parser, including an ADR1-like.

Conversely, the NLR-Parser annotated 47 proteins as complete

NLRs while HMMER only detected the NB-ARC domain, not any

LRR (Supplementary Table 2).

3 Discussion

Due to the biological importance and relevance for breeding, the

identification and annotation of NLR-type disease resistance genes

has high priority in all plant genome sequencing projects. These

annotations, however, rely heavily on gene-prediction software. In

the past, we were able to show that up to 50% of the total NLR

complement was either wrongly predicted or completely missing.

Our MAST Parser tool provides high precision identification of

NLR gene sequences from every input format that is available from

genome sequencing projects including contigs, scaffolds, pseudomo-

lecules or chromosomes. In two experiments with the model plants

A. thaliana and B. distachyon, we were able to show the functional-

ity of the 20 well-characterized MEME motifs in monocotyledonous

and dicotyledonous plants. The output of this tool is directly usable

for downstream applications including phylogenetic analyses, or

visualization on the corresponding reference sequence. The tab de-

limited output format is publishable as a Supplementary Table.

4 Conclusion

The MAST Parser pipeline that we present here will streamline NLR

identification efforts within genome sequencing projects in mono-

cotyledonous and dicotyledonous plants.
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