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Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly in industrialized countries. AMD
is a multifactorial disease in	uenced by both genetic and environmental risk factors. Progression of AMD is characterized by an
increase in the number and size of drusen, extracellular deposits, which accumulate between the retinal pigment epithelium (RPE)
and Bruch’s membrane (BM) in outer retina. �e major pathways associated with its pathogenesis include oxidative stress and
in	ammation in the early stages of AMD. Little is known about the interactions among these mechanisms that drive the transition
from early to late stages of AMD, such as geographic atrophy (GA) or choroidal neovascularization (CNV). As part of the innate
immune system, in	ammasome activation has been identi
ed in RPE cells and proposed to be a causal factor for RPE dysfunction
and degeneration. Here, we will 
rst review the classic model of in	ammasome activation, then discuss the potentials of AMD-
related factors to activate the in	ammasome in both nonocular immune cells and RPE cells, and 
nally introduce several novel
mechanisms for regulating the in	ammasome activity.

1. Introduction

Age-related macular degeneration (AMD) is a neurodegen-
erative disease characterized by the deterioration of pho-
toreceptors in the macula, a specialized region of the retina
responsible for 
ne visual acuity that is required for tasks
such as reading, facial recognition, and driving [1]. According
to the World Health Organization, AMD currently ranks
as the third global leading cause of blindness, second only
to cataract and glaucoma [2]. However, among the elderly,
AMD is the most common cause of irreversible vision
loss in developed countries. Approximately 30–50 million
individuals worldwide are a�icted with AMD.�e economic
costs for treatment and care of individuals who suer vision
loss fromAMDare projected to bemore thanUS$ 300 billion
annually, a heavy toll that will signi
cantly impact global
social and public health systems and one that prompts an
urgent need to decipher its underlying mechanisms [3].

Being a complex disease, the pathogenesis and progres-
sion of AMD are in	uenced by a variety of risk factors.
Among them, advanced chronologic aging is thought to be

the strongest [4–6].�eprevalence ofAMDsteadily increases
with age, aecting 2% of the population at age 40 and 25% by
age 80 [7]. Besides aging, other risk factors such as cigarette
smoking and diet also contribute to the development of the
disease [8–11]. Clinically, early stages of AMD are de
ned
by the presence of drusen, the extracellular deposits located
between the retinal pigment epithelium (RPE) and Bruch’s
membrane (BM) (Figure 1). Despite the fact that early AMD
is usually not associated with appreciable vision loss, the
number and the size of drusen deposits serve as signs of
disease progression [12]. When the disease progresses into
the late stage, it takes one of two forms: geographic atrophy
(GA), featured by con	uent regions of RPE and photorecep-
tor degeneration, and choroidal neovascularization (CNV),
characterized by the abnormal growth of leaky choroidal
vessels invading retina. Initially considered a supporting cell
in the outer retina, RPE are active in awide range of biological
processes that maintain local homeostasis. �ese processes
include recycling components of the visual cycle, secreting
trophic factors, controlling cross-epithelium transport, and
maintaining the outer blood-retinal barrier [13, 14]. Central to
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Figure 1: Clinical stages and signs of age-related macular degeneration. (a) Fundus photos demonstrate clinical features of AMD at dierent
stages. Early AMD shows yellow extracellular drusen deposits surrounding macular area. Late AMD (GA) shows hypopigmentation or
background darkening (∗) around drusen. A large number of drusen deposits are observed accumulated in the macular area. (b) Schematic
diagramof drusen accumulation andRPE/photoreceptor degeneration from early to late stageAMD (GA). (c) Staining of human postmortem
donor eye tissues depicting normal, early AMD, and late AMD. Arrows point to dierent forms of drusen: a large hard drusen in an early
AMD eye and a diuse, so� drusen in a late AMD (GA) eye. GA, geographic atrophy; ONH, optic nerve head; PR, photoreceptors; RPE,
retinal pigment epithelium; BM, Bruch’s membrane; CH, choroidal capillaries.

AMDpathogenesis, the RPEundergoes signi
cant changes in
structure and function that predispose individuals to disease
processes associated with AMD. Suggestive of an associated,
and perhaps causal, role inRPEdysfunction is the 
nding that
RPE cells overlying drusen appear swollen and vacuolated
[15]. It is further proposed that the spontaneous release
of drusen components during drusen regression in AMD
development may result in RPE loss in GA [16].

2. NLRP3 Inflammasome

Recent advances have highlighted the essential role of
immune processes in the development, progression, and
treatment of AMD [1]. Both the innate and adaptive immune
systems have been shown to contribute to AMDpathogenesis

(for reviews, see [28, 29]). �e innate immune system is an
evolutionarily conserved system that constitutes the 
rst line
of defense against pathogens. In	ammasome activation is a
key component of innate immunity, which when overactive
has been linked with many human immune diseases [30–33].
�e in	ammasome is an intracellular, multiprotein complex
whose molecular composition is stimulus dependent. �e
canonical in	ammasome complexes are assembled around
protein members of the nod-like receptor (NLRs) or HIN-
200 protein families, converting the procaspase-1 zymogen
into a catalytically active enzyme. �e in	ammasome family
is further categorized based on the presence of an apoptosis-
associated speck-like protein containing a caspase recruit-
ment domain (ASC). �e canonical in	ammasome can be
further categorized into ASC-dependent (NLRP3 and AIM2)
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and ASC-independent (NLRP1 and NLRC4) subtypes [34].
�e noncanonical in	ammasome complex with an, as yet,
unknown structural composition is proposed to promote the
activation of caspase-11 [35]. Despite the gap in knowledge of
the structure of the noncanonical in	ammasome, there is a
wealth of evidence to 
rmly establish the mode of action for
several canonical in	ammasomes in the immune signaling
pathway, especially the most widely studied NLRP3 in	am-
masome [36].

�e NLRP3 in	ammasome senses and responds to a
diversity of pathogen- or danger-associated molecular pat-
terns (PAMPs or DAMPs), including bacterial/viral/fungal
pathogens, pore-forming toxins, uric acid crystals, partic-
ulate aggregates, and adenosine triphosphate (ATP). To be
activated, the NLRP3 in	ammasome requires the presence of
two signals, a “priming signal” and an “activation signal,” both
of which are vital to control the degree of immune response
driven by the products of in	ammasome activation. In most
cases, the “priming signal” channels through the nuclear
factor kappa B (NF-�B) pathway, upregulating the transcrip-
tion of NLRP3 and prointerleukin-1� (pro-IL-1�) [37]. It is
a fact that, in both immune and RPE cells, pro-IL-1� is not
constitutively expressed and the endogenous level of NLRP3
appears to be inadequate for in	ammasome activation, thus
making the priming process critical [17, 38]. In contrast,
other in	ammasome-related proteins, ASC, procaspase-1,
and pro-IL-18, are constitutively expressed in RPE cells and
therefore priming may, or may not, further increase their
protein levels [17, 20, 39, 40]. In addition to the classic,
transcription-dependent priming, it is now known that
NLRP3 in	ammasome can be “primed” posttranslationally,
adding another layer of regulation [41]. Common priming
signals for immune cells of the body and human RPE cells are
lipopolysaccharide (LPS), tumor necrosis factor-� (TNF-�),
nitric oxide, and IL-1� [17, 42]. In the presence of foreign or
endogenous “activation signals,” NLRP3 senses one or more
of the following intracellular changes: K+ e�ux [43], release
of lysosomal resident cathepsin B [44], overproduction of
reactive oxygen species (ROS) [45], NLRP3 translocation to

mitochondria [46], cell volume change, and Ca2+ disequilib-
rium [42]. Once the NLRP3 is activated, it recruits ASC and
mediates the proximity-induced procaspase-1 autoactivation.
�e assembled NLRP3 in	ammasome then turns itself into a
cytokine processing platform by cleaving pro-IL-1�/pro-IL-
18 into mature peptides and releasing them into extracellular
space for downstream eects (Figure 2). Of note, the gener-
alized NLRP3 in	ammasome activation process summarized
above is much simpler than what actually happens in a given
cell. Further discussion on NLRP3 in	ammasome regulation
will be provided in Section 4.

3. NLRP3 Inflammasome Activators
Relevant to AMD

More recently, the role of the NLRP3 in	ammasome in AMD
pathogenesis has been extensively investigated using AMD
related stimuli. Being a hallmark ofAMDprogression, drusen
has a rich proteinaceous composition, including complement

regulators, amyloid-beta (A�), and oxidation by-products
[15, 47–54], which makes drusen components ideal triggers
for potential interactions with the NLRP3 in	ammasome.

3.1. Complement Factors. As part of the innate immunity, the
complement system is one of the 
rst that responds to tissue
damage during aging and is activated by cell death [55]. In this
regard, stressed, damaged, or dying RPE could trigger local
complement activation, which is supported by the fact that
activated complement components as well as complement
regulators are present in drusen. �e degree of complement
activation is precisely regulated in healthy retina and is thus
bene
cial for tissue homeostasis and longevity. However,
when the complement system is in overdrive due to either
genetic polymorphisms [56] or chronic, sustained pathologi-
cal stimulation, it generates undesirable amounts of activated
complement factors, facilitates the formation of terminal
membrane attack complex (MAC), and thus advances AMD
pathology [57]. To bolster this notion, Doyle and colleagues
have showed that drusen extracts isolated from AMD donor
eye tissues are able to activate the NLRP3 in	ammasome in
LPS-primedmacrophages [18].�ey further revealed the role
of complement factor 1q (C1q) as an NLRP3 in	ammasome
“activation signal” by showing caspase-1 cleavage and elevated
IL-1� secretion a�er C1q stimulation on LPS-primed mouse
bonemarrow derivedmacrophages and THP1 humanmono-
cytic cells. Moreover, in addition to C1q stimulation, other
studies have suggested complement factor 3a (C3a) andMAC
may alsomediate the activation of the in	ammasome, further
linking many components of the complement pathway with
IL-1� and IL-18 production [24, 25, 58] by unique underlying
mechanisms. For instance, sublyticMAC is known to activate

NLRP3 in	ammasome through Ca2+ in	ux and/or K+ e�ux,
whereas C3a activation of the NLRP3 in	ammasome is initi-
ated by the release of ATP into the extracellular space. �ese
studies were primarily conducted on monocytes, dendritic
cells, or lung epithelial cells. Although the aforementioned
mechanisms are yet to be con
rmed in AMD models, they
do lend to the biological plausibility that similar processes
can happen in ocular tissue. We recently tested the systemic
administration of a small molecular inhibitor for MAC, aur-
intricarboxylic acid complex (ATAC), on NLRP3 in	amma-
some activation in rat RPE/choroid tissues at dierent ages.
We found that ATAC suppressed the age-dependent increase
inMAC formation and caspase-1 cleavage (a prominent indi-
cator for NLRP3 in	ammasome activation) in RPE/choroid
tissue homogenates, which implies potential bene
ts by
targeting MAC formation in AMD pathogenesis (Figure 2).

3.2. Amyloid-Beta. Amyloid-beta (A�) is a drusen com-
ponent found in AMD eyes [51, 59, 60]; more recently
there is growing interest in A� for its capacity to stimulate
in	ammasome activation and potentially contribute to AMD
pathogenesis. As a pathological peptide best known for its
neurotoxicity in Alzheimer’s disease (AD), A� is generated
through the amyloidogenic pathway by cleaving the amyloid
precursor protein (APP) into the intramembrane A� domain
of 36–43 amino acids in length [61]. �e accumulation of A�
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Figure 2: Current model of NLRP3 in	ammasome activation in RPE. (1) Priming of the RPE by one of the following factors (LPS [17], TNF-�
[17], IL-1� [17], CEP [18], and A�1-40 [19]) is needed in order to activate the NF-�B pathway, which can be speci
cally blocked by vinpocetine
or BAY 11-7082 [19]. Intriguingly, DICER1 de
ciency induced Alu RNA accumulation has also been demonstrated to prime NF-�B signaling,
independent of toll-like receptors (TLRs) [20]. (2) Once the NF-�B pathway is active, it promotes the transcription of NLRP3 and pro-IL-1�.
(3–7) For the production of mature IL-1� and IL-18; separate in	ammasome components are assembled as a multiprotein complex triggered
by one of the following mechanisms: K+ e�ux via P2X7 receptor activation in response to extracellular ATP accumulation or intracellular
Alu RNA [20] (3); cytoplasmic cathepsin B release from destabilized phagolysosomes of lipofuscin/A2E [21] (4); ROS overproduction caused
by 4-HNE [22] (5). Other NLRP3 in	ammasome activation mechanisms that have been reported in immune cells but not validated in RPE
cells are shown in red text and arrows.�ese include drusen components (C1q [18] and 
brillar A� [23]) induced lysosomal damage (4), C3a
triggered ATP e�ux [24], MAC formation [25] (6), BRCC3-mediated deubiquitylation [26], and LUBAC-mediated ubiquitylation [27] (7).
(8) Successful assembly of NLRP3 in	ammasome triggers autoproteolysis of procaspase-1 into active caspase-1, which further oligomerizes to
convert pro-IL-1� and pro-IL-18 into bioactive peptides. (9)�e biological signi
cance of NLRP3 in	ammasome activation is to release active
IL-1� and IL-18 into extracellular space through exocytosis.�e secreted IL-1�will facilitate in	ammation process in the tissue whereas IL-18
will either promote caspase-3 dependent RPE apoptosis viaMyD88 signaling or suppress neovascular vessels growth in the choroid capillaries.

in tissue results from its disturbed balance between produc-
tion and clearance, the latter of which is largely controlled
by themembrane-bounddegradation enzyme, neprilysin [62,
63]. A�’s intrinsic cytotoxicity lies in its aggregated forms as
soluble oligomers or insoluble 
brils. Originally thought as a
primary toxic structure, A� 
brillar plaques are now consid-
ered less harmful to brain neurons than the small spherical
oligomers that damage cell membranes and cause cell death
[61, 64–68]. A�’s ocular presence has been reported in studies
of postmortem human donor eyes [54, 60, 69] showing
speci
c deposition within drusen from AMD eyes [53]. �e
age-dependent deposition of A� in the outer retina [59, 70]

can be, at least partially, attributed to local RPE synthesis [51].
In this regard, transgenic animals lacking neprilysin exhibited
A� accumulation in both RPE and sub-RPE deposits, con-
comitant with signi
cant RPE atrophy [71]. When incubated
with A� oligomers, human primary RPE cells demonstrated
a prominent decrease in cell viability [72]. �ese 
ndings
point towards A�’s potential role in promoting RPE atrophy.
Nevertheless, the exact mechanism by which A� contributes
to RPE atrophy is still poorly understood but may involve
in	ammasome-related caspase-1 dependent cell death.

In addition to its cytotoxicity, A� is also a major proin-
	ammatory factor that has been extensively studied in the
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context of AMD. �e presence of A� in drusen is found to
overlap with complement activation sites [47, 51]. In an RPE
cell culture model, Kurji et al. discovered that in	ammation-
associated genes and immune response pathways were the
predominant responses of RPE to oligomeric A� stimulation
[72]. Proin	ammatory responses to A� stimulation were
also veri
ed further in an in vivo model using intravitreal
injections of A� in rodents, in which the RPE demon-
strated upregulation of NLRP3, IL-1�, and IL-18 [69]. In this
intravitreal A� injection model, in	ammasome activation
was demonstrated by caspase-1 cleavage, IL-1�, and IL-18
immunoreactivity in the RPE and surrounding tissue includ-
ing the vitreous, which was further suppressed by an NF-
�B inhibitor, vinpocetine [19]. �e secreted in	ammasome
eector cytokines, IL-1� and IL-18, are known to exert potent
cytotoxic eects on RPE cells [40], which might provide a
possible explanation for A� induced RPE cell death in vitro.
�ese 
ndings in RPE are consistent with amultitude of stud-
ies that implicate A� and NLRP3 in	ammasome activation
in glial cells and central nervous system disease, speci
cally
AD. Using 
brillar A�, Halle et al. reported the activation
of NLRP3 in	ammasome by lysosomal destabilization which
increased release of IL-1� inmurinemicroglia [23] (Figure 2).
To further substantiate the link between in	ammasome acti-
vation and the deleterious eect of A� in the brain, APP/PS1
mice with NLRP3 de
ciency demonstrated improved A�
clearance by microglia and preserved memory and behavior
patterns [73]. A�-induced NLRP3 in	ammasome activation
in glial cells may rely on activation of cathepsin family of
proteases and the degradation of NLRP10 [74].

3.3. Oxidation By-Products. Having the most abundant poly-
unsaturated fatty acids in the eye, photoreceptors are pro-
tected by RPE cells from excessive high-energy light expo-
sure. As part of the visual cycle, photoreceptors shed their
oxidized tips of outer segments, which are then phagocytosed
by RPE cells for the recycling of 11-cis-retinal. With age,
the ability of RPE cells to recycle the “waste” from photore-
ceptors decreases signi
cantly, leading to the accumulation
of lipid peroxidation by-products, lipofuscin, in the RPE. It
has been previously suggested that lipofuscin accumulation
in RPE causes lysosome damage and directly triggers the
formation of active NLRP3 in	ammasome [17, 21, 75]. Other
lipid peroxidation end products, such as 4-hydroxynone-
nal (HNE) and carboxyethylpyrrole (CEP), have also been
shown to contribute to NLRP3 in	ammasome activation [18,
22]. By incubating ARPE-19 cells, a cell line that possesses
key features of human RPE cells, with HNE alone or in
combination with LPS, Kauppinen et al. demonstrated a
substantial increase of secreted IL-18 and IL-1�, products of
NLRP3 in	ammasome activation [22]. Doyle and colleagues
discovered a priming eect for CEP, which promoted IL-1�
secretion when combined with an in	ammasome “activation
signal,” such asATP andC1q [18] (Figure 2). Furthermore, the
recently established CEP-immunized murine model of AMD
may serve as a useful platform to substantiate the role of CEP
in NLRP3 in	ammasome activation [76].

3.4. Genetic Variants. Adiseasewith complex etiology,AMD,
is also heavily in	uenced by genetic modi
cations. In GA
patients, Kaneko et al. reported the repetitive element-
derived Alu RNA transcripts as an inducer for RPE degen-
eration [77]. �ese retrotransposon elements are short inter-
spersed nuclear elements in eukaryotic genome, containing
internal promoter sequences for RNA polymerase III [78].
�us, the Alu mobile repeats are noncanonical targets of
DICER1, an evolutionarily conserved member of the RNase
III nuclease family, essential for the control of microRNA
biogenesis [79]. Originally considered as sel
sh “junk DNA”
entities in the host genome, the Alu elements are now
recognized for their complex regulatory functions, such as
transcriptional repression [80] and modulation of alternative
splicing [81], and involvement in human genetic diseases by
inducing insertion mutations, DNA breaks, genome insta-
bility, and exonization [82, 83]. It has been shown that the
loss of DICER1 expression, possibly due to oxidative stress in
the RPE, is responsible for the abnormal Alu repeats accu-
mulation in GA patients [77]. �ese Alu transcripts function
as both priming (toll-like receptors independent, TLRs) and
activating (P2X7 receptor dependent) signals to stimulate
NLRP3 in	ammasome activation, leading to the release of IL-
18 and subsequent caspase-8/caspase-3 dependent apoptotic
RPE death via MyD88 and/or Fas ligand mediated signaling
[20, 40, 84]. �ese 
ndings are novel as they provide us with
a new perspective into the apoptotic RPE death mechanism
underlying GA. �ese 
ndings are also unique and counter
intuitive at 
rst appearance, since MyD88 is a versatile adap-
tor protein for the TLR/IL-1R superfamily-mediated proin-
	ammatory signalling (reviewed in [85]), whereas apoptosis
is essentially a nonin	ammatory cell death mechanism.
Although very rare, there are cell-type speci
c reports con-
necting apoptosis with MyD88 mediated proin	ammatory
events, presumably as a 
nal attempt for the tissue to remove
the severely damaged cells. In pancreatic islet � cells, Dupraz
et al. showed that overexpression of a dominant negative
form ofMyD88 spared the cells from IL-1� induced apoptosis
[86]. Moreover, using human kidney epithelial 293 cells and
human monocytic THP-1 cells, Aliprantis and colleagues
found that MyD88 was crucial to the activation of TLR2 sig-
naling and its downstream induction of caspase-8 dependent
apoptosis in response to bacterial lipoproteins [87]. However,
similar mechanisms have not been previously reported in
ocular tissues or cells, including RPE, until recently.

Taken together, these lines of evidence suggest that dam-
aged RPE cells can respond to danger signals by activating the
in	ammasome pathway thatmay further lead to RPE atrophy
in GA (Figure 2).

4. Regulation of NLRP3
Inflammasome Activity

As a cellular property, the in	ammasome is a power-
ful double-edged sword. Insu�cient activation makes the
immune system vulnerable to PAMPs and DAMPs, whereas
overwhelming in	ammasome activation targets the host
itself. Hence, it is paramount to keep in	ammasome activity
in check. Clinically, in	ammasome antagonists are being
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explored as novel therapeutics for treating human immune
diseases [42, 88]. �e inhibition of in	ammasome can
potentially be achieved at four dierent levels along its
activation pathway [42]. �ese include blocking cell mem-
brane receptors (e.g., P2X7 receptor for ATP), controlling
cytoplasmic second messengers (e.g., K+, cathepsin B, ROS),
preventing in	ammasome components from assembling,
and antagonizing released cytokine products and/or their
cognate receptors. To better understand how in	ammasome
formation is regulated, we will review several newly discov-
ered mechanisms.

4.1. Mitochondria and NLRP3 In�ammasome. Mitochondria,
the symbolic “power house” in the cell, are also known
for other biological events, including intrinsic or “mito-
chondrial” apoptosis and innate immune signal transduction
[89]. �e role of mitochondria in RPE dysfunction has
previously been implicated in AMD pathogenesis [90]. In
addition to lipid and protein peroxidation mentioned earlier
in this review, mitochondrial DNA (mtDNA) is considered
particularly prone to ROS relative to its nuclear counterpart.
Research showed that when treated with hydrogen peroxide
or rod outer segments humanRPE cells generatedmore dam-
aged and unrepairedmtDNA, leading tomitochondrial redox
dysfunction, ine�cient energy production, RPE dysfunction,
and ultimate initiation of RPE apoptosis [90].Moreover, it has
been recently suggested that inherited mitochondrial DNA
variation can also impact pathways other than apoptosis, for
instance, in the complement activation [91]. By introducing
mitochondria from individuals with either high- or low-
risk haplogroups (accumulations of speci
c single nucleotide
polymorphisms) for AMD into ARPE-19 cells devoid of
mtDNA, Kenney et al. were able to map the relationship
between mtDNA polymorphisms and nuclear gene expres-
sion for a number of molecular pathways related to AMD.
ARPE-19 cybrids (cytoplasmic hybrids with native ARPE-
19 cell nuclear DNA and extrinsic mtDNA) harboring high-
risk mtDNA haplogroup for AMD demonstrated decreased
energy production and lower gene expression levels for
CFH and C3, key components of the complement pathway
[92]. When confronted with sublethal ultraviolet radiation,
these high-risk cybrids had a further decrease in CFH gene
expression, which could potentially lead to a greater degree
of complement activation [93]. As discussed in previous
sections, complement activation products and MAC may act
as potential triggers for in	ammasome activation. However,
the exact mechanisms bridging mitochondrial damage and
RPE apoptosis remain elusive.

Bruey et al. reported a novel role of Bcl-2 and Bcl-
xL, two mitochondria-associated antiapoptotic proteins, in
the suppression of the NLRP1 in	ammasome activation
in ATP stimulated macrophages [94]. By comparing the
macrophages isolated from Bcl-2 overexpressing transgenic
mice to their wild-type counterparts, Zhou et al. showed a sig-
ni
cant decrease of secreted IL-1� levels in association with
the increasing Bcl-2 expression, under classic NLRP3 in	am-
masome activation conditions [45]. Separately, Shimada and
colleagues also reported Bcl-2 attenuates NLRP3 in	amma-
some activity through inhibition of mtDNA release from the

dysregulated and apoptotic mitochondria in macrophages
[95].However, another study usingBcl-2 overexpressingmice
does not support Bcl-2’s role in regulating NLRP3 in	am-
masome function [96]. Clearly, further investigation on the
relationship between mitochondria-associated antiapoptotic
proteins and NLRP3 in	ammasome activation is warranted.
Another example showcasing mitochondria’s involvement in
NLRP3 in	ammasome activation comes from the studies
on mitochondrial ROS, which has been proposed to be
either necessary or facilitate the activation of the NLRP3
in	ammasome, by two research groups, independently [45,
97]. Zhou et al. further proposed it was the dissociation
between thioredoxin and thioredoxin-interacting protein
(TXNIP) under ROS stimulation that allowed TXNIP to bind
to NLRP3, resulting in NLRP3 conformational change and
ultimate activation [98]. Moreover, the use of antioxidants to
inhibit NLRP3 in	ammasome activity has been extensively
studied and proved eective, despite the fact that the detailed
underlying signaling pathways remain unclear. Nonetheless,
there is ongoing debate as to whether mitochondrial ROS
only works as a facilitator of NLRP3 in	ammasome activa-
tion, given the fact that increasing intracellular ROS levels
can as well inhibit caspase-1 activation and IL-1�maturation
[99–101]. Perhaps, a more comprehensive approach, such
as a model re	ecting intracellular antioxidant response to
mitochondrial ROS overproduction, might provide insights
regarding the determinants of the level of NLRP3 in	amma-
some activity, taking into account that both sides of the redox
axis could play a role [102].

4.2. Ubiquitylation and Deubiquitylation. Ubiquitylation is a
common posttranslational modi
cation of proteins through
a cascade of enzymatic activity of ubiquitin ligases. It has
multiple eects on proteasome- or lysosome-mediated pro-
tein degradation, cell signal transduction, and protein activity
regulation. According to the type and length of ubiquitin
linkage, there are three major forms of protein ubiquitylation
currently studied, including lysine 48 (K48) linked ubiqui-
tylation, lysine 63 (K63) linked ubiquitylation, and methio-
nine 1 (Met 1) linked linear ubiquitylation [103]. Mounting
evidence has implicated the involvement of ubiquitylation in
AMD pathophysiology. By looking at the retinal distribution
of several class III ubiquitin-conjugating enzymes in mice,
Mirza et al. reported robust protein expression of one such
enzyme, UbcM2, in murine photoreceptors and RPE cells.
�e authors further experimented UbcM2’s protective eects
on photoreceptors using an acute bright-light-damagemodel.
It was shown that mice with only one copy of functional
UbcM2 allele were protected from acute excessive light
damage to photoreceptors, suggesting a strong relationship
between UbcM2-mediated ubiquitylation and photoreceptor
survival [104]. In humanRPE cells, it is evident that there is an
active ubiquitin-proteasome mediated protein degradation
pathway, with low endogenous levels of ubiquitin to 
ght
against cellular stressors [105]. In the context of AMD, Ramos
de Carvalhol et al. tested the proteasome activity of primary
human RPE cells in response to complement factor C3a,
a known drusen component. C3a stimulation signi
cantly
reduced proteasome activity without changing its component
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at either protein or mRNA levels, indicating a potential
functional suppression of the proteasome in primary human
RPE [106]. On the other hand, the family of deubiquitinating
enzymes (DUBs) is another force balancing protein activity.
Glenn and colleagues reported altered proteomic pro
ling of
ARPE-19 cells cultured on advanced glycation end products
(AGEs, known drusen component) modi
ed Matrigel BM
extract compared to non-AGEmodi
ed control BM. Of note,
by immunocytochemistry, the authors were able to localize
upregulated protein expression of a DUB protein, ubiquitin
carboxyterminal hydrolase-1 (UCH-L1), in AGE-stimulated
ARPE-19 cells, suggesting a potential role for DUBs in AMD
pathogenesis [107].

However, few reports exist on the roles of both ubiqui-
tinating and deubiquitinating enzymes in NLRP3 in	amma-
some regulation. Recently, Py and colleagues demonstrated
that BRCC3, a JAMM domain-containing zinc metallopro-
tease DUB, promotes NLRP3 in	ammasome activation by
deubiquitinating the mixed K64 and K48 ubiquitin chains
on both the NACHT and LRR domains of NLRP3 [26].
�e authors further suggested that the deubiquitylation of
NLRP3 was critical for the in	ammasome activation based
on the facts that inhibiting BRCC3 could abolish NLRP3
in	ammasome activation under a diverse range of classic
“activation signals,” includingK+ e�ux, ROSoverproduction,
and lysosomal destabilization. Perhaps more intriguing is
the report by Rodgers et al. of the discovery that the linear
ubiquitylation of the ASC adaptor protein by the linear ubiq-
uitin assembly complex (LUBAC) is also essential for NLRP3
in	ammasome activation, independent of NF-�B activity
[27] (Figure 2). Clinically, these studies provide potential
alternative approaches for the treatment of in	ammasome-
related diseases by better controlling the ubiquitylation levels
of separate NLRP3 in	ammasome components, instead of
targeting secreted levels of the mature proin	ammatory
cytokines.

5. Concluding Remarks

In this review, we summarize the key features of NLRP3
in	ammasome activation and introduce newly discovered
regulatory mechanisms. We also discuss the involvement of
NLRP3 in	ammasome in the pathogenesis of AMD, with
the focus on individual drusen components as potential
facilitators for NLRP3 in	ammasome activation in RPE cells.
Despite the rapid development of in	ammasome research
towards chronic in	ammatory diseases such as AMD, there
are still many unsolved questions.�e biological signi
cance
of in	ammasome activation in the outer retina remains
controversial. On one hand, the mature product of in	am-
masome activation, IL-18, is hypothesized to carry out dual
functions in dierent target cell types: as a destructive factor
in GA [40] and as a protective, antiangiogenic factor in
CNV [18]. On the other hand, the precise mechanisms
underlying RPE demise in GA are still unclear. Does the
NLRP3 in	ammasome activation in RPE lead to canonical
caspase-1 dependent pyroptosis [108] or necrosis or apoptosis
or a combination of these mechanisms? It is well accepted
that as AMD progresses, RPE cells follow a common fate:

(1) accumulation of lipofuscin; (2) enlarged cell body; (3)
decrease in phagocytosis capacity; (4) formation of drusen;
(5) morphological rounding; (6) hyperpigmentation; (7)
hypopigmentation; (8) RPE loss [109]. In sections of human
postmortem donor eyes diagnosed with GA, Sarks et al.
identi
ed double-layered hyperpigmented RPE in the GA
lesion, characteristic of necrosis [110], which was further sup-
ported by the discovery that RPE cells adjacent to excessive
drusen accumulation die of necrosis [111]. Consistent with
this description is the 
nding that necrosis, particularly the
releasedATP, is a trigger forNLRP3 in	ammasome activation
[112]. Further studies are needed to understand, more fully,
the combination of cell death mechanisms associated with
GA. �e potential involvement of an apoptotic mechanism
is also supported by several studies discussed earlier in this
review and by a recent transcriptome analysis on AMD
eyes [113]. Furthermore, much of our knowledge of the
mechanisms associated with activation and regulation of
the in	ammasome comes from discoveries in nonocular
immune cells. Validation of these mechanisms in ocular cell
types, such as RPE and photoreceptors, will be useful towards
designing in	ammasome-related treatment strategies for
chronic in	ammatory diseases of the retina, such as AMD.

Conflict of Interests

�e authors declare that there is no con	ict of interests
regarding the publication of this paper.

Acknowledgments

�e authors apologize to those whose publications were not
cited due to space limitations.�isworkwas supported by the
Canadian Institutes of Health Research Grant (CIHR MOP-
97806) to Joanne A. Matsubara and by Vancouver General
Hospital and UBCHospital Foundation, Faculty of Medicine
(UBC).

References

[1] J. Ambati, J. P. Atkinson, and B. D. Gelfand, “Immunology of
age-related macular degeneration,” Nature Reviews Immunol-
ogy, vol. 13, no. 6, pp. 438–451, 2013.

[2] World-Health-Organization, “Age-related macular degenera-
tion,” in Prevention of Blindness and Visual Impairment—
Priority Eye Diseases, World-Health-Organization, 2014, http://
www.who.int/blindness/causes/priority/en/index7.html.

[3] Access-Economics, “�e global economic cost of visual impair-
ment,” http://www.icoph.org/resources/146/�e-Global-Eco-
nomic-Cost-of-Visual-Impairment.html.

[4] D. S. Friedman, J. Katz, N. M. Bressler, B. Rahmani, and J.
M. Tielsch, “Racial dierences in the prevalence of age-related
macular degeneration: the Baltimore Eye Survey,” Ophthalmol-
ogy, vol. 106, no. 6, pp. 1049–1055, 1999.

[5] K. J. Cruickshanks, R. Klein, and B. F. K. Klein, “Sunlight and
age-related macular degeneration. �e Beaver Dam Eye Study,”
Archives of Ophthalmology, vol. 111, no. 4, pp. 514–518, 1993.

[6] J. R. Vingerling, I. Dielemans, A. Hofman et al., “�e prevalence
of age-related maculopathy in the Rotterdam study,” Ophthal-
mology, vol. 102, no. 2, pp. 205–210, 1995.



8 Mediators of In	ammation

[7] D. S. Friedman, B. J. O’Colmain, B. Muñoz et al., “Prevalence of
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