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Inflammation is involved in tumor development and progression as well as antitumor

response to therapy. In the past decade, the crosstalk between inflammation, immunity,

and cancer has been investigated extensively, which led to the identification of several

underlying mechanisms and cells involved. The formation of inflammasome complexes

leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and

pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in

tumorigenesis. Conversely, other reports have indicated a protective role in certain

cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome

in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β

production and outline the current knowledge on therapeutic approaches.
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INTRODUCTION

It is well-established that inflammation caused by viral or microbial infections contributes to
tumorigenesis. However, emerging evidence have shown that it as well has a pivotal role in most
stages of cancer development, besides interfering with the ability of immune system to counteract
tumor cells and affecting response to treatment. These mechanisms are mainly driven by innate and
adaptive immune cells, such as dendritic cells, macrophages, natural killer (NK) cells, neutrophils,
and lymphocytes (1, 2).

One of the central mechanisms contributing to inflammation in immune cells is mediated
by special cytoplasmic protein complexes known as inflammasomes. They are divided based on
their structural features into nucleotide-binding and oligomerization domain (NOD)-like receptors
(NLRs) and absent in melanoma 2 (AIM2)-like receptors (ALRs). In addition, inflammasomes
belong to a larger family of receptors known as pattern recognition receptors (PRRs), where
their function is the recognition of pathogen- or danger-associated molecular patterns (PAMPs
or DAMPs), causing the activation, maturation, and production of pro-inflammatory cytokines
(3). Besides, emerging evidence has proposed that inflammasomes act as a “signal integrator”
detecting changes in cytoplasmic homeostasis. These perturbations, named as homeostasis-altering
molecular processes (HAMPs), are induced by the functional consequences of cellular processes,
where the inflammasome responds to a cellular imbalance rather than a molecular pattern,
triggering inflammation in a sterile context. This provides hints that inflammasome activation via
the HAMP detection pathway might also be involved in disease pathogenesis (4, 5).
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Amongst the inflammasomes family, NLRP3 inflammasome
is the most characterized. Mutations in NLRP3 are associated
with several autoimmune and inflammatory diseases, particularly
a group known as cold-induced auto-inflammatory syndrome
(CAPS). In addition, NLRP3 has been implicated in several
other diseases including inflammatory bowel disease (IBD),
rheumatoid arthritis, and Parkinson’s disease (6). In cancer,
analysis of copy number alterations in tumor samples has shown
NLRP3 with a high frequency of copy gains, thus acting more
as an oncogene (7). However, different roles of inflammasomes
in tumorigenesis and antitumor immunity have emerged in the
past decade (8), without overlooking the well-established role of
cytokines in cancer pathogenesis (9).

Here, we discuss the structure and activation pathways of
NLRP3, and provide a brief updated review on the most recent
research investigating its opposing roles in cancer. Lastly, we list
the potential therapeutic targets and the latest reports and clinical
trials investigating them.

NLRP3 INFLAMMASOME

Historical Background
Since the cloning of IL-1β in 1984 (10, 11) and the
characterization of its various immunological activities,
enormous research has been conducted to further explore
the biology of cytokines and their effects on inflammation
and other physiological roles. The first major contribution
following this, was the identification of IL-1-converting enzyme
(ICE), now named as caspase-1 (12, 13). Despite that, the
underlying mechanisms causing the processing and release of
IL-1ß remained unclear. It was only until 2002, when Martinon
et al. (14) identified a caspase-activating complex, which
leads to the maturation and secretion of IL-1β, now known
as the inflammasome. They continued their pioneering work
in this field (15), which led to discovering the association of
inflammasomes with CAPS (16), as well as gout and type 2
diabetes. Additionally, they reported several inflammasome
agonists, PAMPs including muramyl dipeptide (MDP) (17), viral
DNA (18) and malaria-associated hemozoin (19); DAMPs such
as monosodium urate (MSU) crystals (20); and environment-
derived factors like asbestos, silica (21) and alum (22). A
number of different clinical trials for inflammasome-related
inflammatory diseases were conducted which led to the
development of a therapy for CAPS patients in the clinic (23),
in addition to promising results in several clinical studies
involving gouty arthritis patients treated with anakinra (24, 25).
These revolutionary discoveries paved a new path in the
fields of inflammasome activation, innate immunity cytokines
production, and their involvement in health and disease.

Structure and Activation of the NLRP3
Inflammasome
Inflammasomes are danger-sensing, multimeric protein
complexes that are part of the innate immune response. The
most widely studied and well-characterized inflammasome is
NLRP3, which is characterized by the presence of a central
nucleotide-binding and oligomerization (NACHT) domain,

which is usually flanked by C-terminal leucine-rich repeat
(LRR), and N-terminal pyrin domain (PYD) (Figure 1A) (3).
In brief, a danger signal sensed leads to a conformational
change of NLRP3 causing the exposure of NACHT domain.
NLRP3 undergoes oligomerization by homotypic interactions
between NACHT domains. As a result, the PYD domain of
NLRP3 becomes exposed, recruit the adaptor apoptosis speck
protein (ASC, also known as PYCARD) and bind through their
shared PYD domains (Figure 1A). Following, ASC converts
to a prion-like form and generates long ASC filaments. This
interaction recruits the CARD of pro-caspase-1 facilitating its
binding to the complex. Additionally, the clustering of pro-
caspase-1 forms its own prion-like filaments that separates from
the ASC filaments allowing the auto-cleavage and formation
of the active caspase-1 p10/p20 tetramer, which then processes
cytokine pro-forms into active molecules. Therefore, the cluster
of oligomerized NLRP3-ASC-pro-caspase-1 complex results in
the assembly of the multi-subunit wheel-shaped inflammasome
complex (Figure 1B) (3, 14, 26–29). The activation of NLRP3
inflammasome causes two main effects, the induction of
programmed cell death known as pyroptosis, and/or a pro-
inflammatory response caused by the release of inflammatory
cytokines IL-1β and IL-18.

The canonical activation process requires two main steps
known as priming signal and activating signal (Figure 1C).
The first step is provided by inflammatory stimuli from toll-
like receptors (TLR) ligands or endogenous molecules, which
induce the expression of NF-κB. Additionally, other endogenous
factors and mechanisms have been identified to prime the
inflammasome in sterile inflammatory diseases, such as reactive
oxygen species (ROS), hypoxia, metabolites, oxidized low-density
lipoprotein (oxLDL), amyloids, and complement. The second
step is usually promoted by PAMPs and DAMPs, which cause
potassium ion (K+) efflux, calcium (Ca+2) flux, lysosomal
damage or ROS production leading to NLRP3 inflammasome
assembly, caspase-1 cleavage, and thus the maturation and
secretion of IL-1β and IL-18 (27, 28, 30).

On the other hand, other pathways for NLRP3 inflammasome
activation were described (reviewed elsewhere (31, 32). The
non-canonical NLRP3 inflammasome pathway is activated by
most Gram-negative bacteria, and requires capase-11 (33)
as well as vacuolar rupture mediated by interferon-inducible
guanylate-binding proteins (GBPs). Also, an alternative NLRP3
inflammasome pathway is activated in human monocytes
induced by LPS and requires the molecules RIPK1, FAS-
associated death domain protein (FADD), and caspase-8 (34).

NLRP3 Inflammasome in Cancer
The function of NLRP3 inflammasome in human cancers is
rather a conflicting topic (8, 35), where there is evidence of a
protective anti-tumorigenic effect as well as a pro-tumorigenic
role in different types of cancer (summarized in Table 1). Here,
we discuss both roles shown in murine and human studies and
introduce new insights for the effect of oncogenic mutations in
inducing NLRP3 inflammasome activation in leukemias.

NLRP3 inflammasome have been shown to promote the
development of several cancers, where most studies were
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FIGURE 1 | The structure and canonical activation of the NLRP3 inflammasome complex. (A) The structure of NLRP3 is comprised of three main domains: (i) NLRP3,

containing an N-terminal pyrin domain (PYD), a central NACHT domain, and a C-terminal leucine-rich repeat (LRR) domain; (ii) adaptor apoptosis speck (ASC) which

contains PYD and CARD domains; and (iii) pro-caspase-1 which contains caspase-1 and CARD domains. (B) Upon activation, NLRP3 undergoes oligomerization,

recruits, and binds ASC, which subsequently recruits and binds pro-caspase-1 via their shared domains. The formation of this NLRP3 inflammasome cluster results in

a prion-like assembly of the complex. (C) The activation process of NLRP3 inflammasome consists of two main signals: (i) Signal 1 (Priming), which is induced by

pathogen recognition receptors (PRRs) such as toll-like receptors (TLRs) activated by pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide

(LPS), or other endogenous factors and mechanisms such as reactive oxygen species (ROS), hypoxia, metabolites, oxidized low-density lipoprotein (oxLDL),

(Continued)
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FIGURE 1 | amyloids, and complement (not shown). This leads to the transcriptional upregulation of Nlrp3, Ill1b, and Il18 via transcription factors such as NF-κB. (ii)

Signal 2 (Activation), is provided by PAMPs or damage-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP) and crystals which activate

different signaling events including ROS, lysosomal damage and K+ efflux, leading to activation and recruitment of NLRP3, oligomerization, and formation of NLRP3

inflammasome complex. The activation and formation of NLRP3 inflammasome has two main consequences: (i) cleavage of Gasdermin D GSDMD and inducing

pyroptosis and/or (ii) auto-cleavage and formation of the active caspase-1 and p10/p20 tetramer which then proteolytically cleaves pro-IL-1β and pro-IL-18 into their

bioactive forms IL-1β and IL-18 prior to their release.

focused on proliferation, survival, metastasis, angiogenesis, and
immunosuppression. In breast cancer, NLRP3 inflammasome,
and IL-1β production promote the infiltration of myeloid cells
such as myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs), providing an inflammatory
microenvironment thus promoting breast cancer progression
(36). In addition, NLRP3 inflammasome in fibroblasts is
further linked with progression and metastasis (37), and IL-
1β was found to have an immunosuppressive, pro-tumorigenic
in the tumor microenvironment (38). Besides, the NLRP3
inflammasome seems to be an effector for promoting metastasis
via the lymphatic system and favoring mammary carcinoma
development (39). Interestingly, Huber et al. (42) demonstrated
that IL-18 induced by NLRP3 causes the downregulation of
the soluble IL-22 receptor, IL-22-binding protein (IL-22BP),
leading to an increase in the ratio of IL-22/IL-22BP, which at
later stages promotes tumor development (42). Additionally,
NLRP3 deficiency leads to suppression of metastases and
methylcholanthrene (MCA)-induced sarcomas inmouse models,
which were dependent on NK cell and IFN-γ (44). In epithelial
skin cancer, mice deficient for IL-1R and caspase-1 showed partial
protection against skin cancer development (43). Besides, the
roles of inflammasomes in melanoma pathogenesis is established
(65). In particular, NLRP3 inflammasome was shown to be
constitutively expressed and activated in human melanoma
cells. However, these cells secrete biologically active IL-1β
in an autonomous way without the presence of exogenous
stimuli at late stages of the disease (54). In HNSCC, NLRP3
inflammasome is found upregulated in carcinoma tissues
and associated with carcinogenesis and cancer stem cells
(CSCs) self-renewal activation (46–48). Also, NLRP3 signaling
seems to drive immunosuppression in pancreatic carcinoma,
by promoting tolerogenic T cell differentiation and adaptive
immune suppression via IL-10 (56).

In hematological malignancies, the role of NLRP3
inflammasome in normal and malignant hematopoiesis has
been lately reviewed (66). We have recently reported a novel
function of the NLRP3 inflammasome in the pathogenesis of
hematological malignancies, particularly myeloproliferation
in leukemias. Interestingly, and despite the manifestation of
oncogenic KRAS in hematopoietic cells, we could show that
the NLRP3 inflammasome has a key role in the development
of several myeloid leukemias features in vivo, including
cytopenias, splenomegaly, and myeloproliferation. These
phenotypes are often seen in chronic myelomonocytic leukemia
(CMML), juvenile myelomonocytic leukemia (JMML) and
more rarely acute myeloid leukemia (AML) patients harboring
KRAS mutations. Additionally, we found evidence of NLRP3
inflammasome activation upon analyzing JMML, CMML, and

AML patient samples harboring KRAS mutations, providing a
stronger evidence of the participation of NLRP3 inflammasome
in the disease development (49). An open question remains
how the NLRP3 inflammasome activation drives hematological
malignancies, whether by a cell-autonomous signal that
promotes cell proliferation directly or via a modification of the
TME or both.

Conversely, NLRP3 inflammasome was also shown to have an
anti-tumorigenic role. Previously, Ghiringhelli et al. (67) have
proposed that NLRP3 inflammasome is required for dendritic
cell-mediated priming of IFN-γ-producing T lymphocytes
against tumor cells. NLRP3 inflammasome seems to act as a
negative modulator of tumorigenesis in colitis-associated cancer
(59), which is confirmatory to the study emphasizing the
role of NLRP3 inflammasome in the regulation of intestinal
homeostasis and thus protection against colitis (60). In addition,
NLRP3 inflammasome deficiency seems to cause increased
tumor burdens in colorectal cancer. Moreover, Dupaul-Chicoine
et al. (62) reported that NLRP3 inflammasome-mediated IL-18
production suppresses colorectal cancer metastatic growth in
the liver. In contrast to the tumor-promoting function of IL-22
discussed above, NLRP3/IL-18-mediated downregulation of IL-
22BP under controlled production can also provide protective
roles against intestinal tissue damage during the inflammation
peak (42). In melanoma, it was shown that NLRP3 in the TME
weakens the anti-tumor immune response to a cancer vaccine,
by assisting the migration of myeloid-derived suppressor cells
(MDSCs), thus suppressing the T cell response (64).

NLRP3 inflammasome signaling in humans is controlled by a
variety of factors, such as genetic polymorphisms and mutations
that can affect gene expression and ultimately lead to its
activation. These effects were seen in patients with inflammatory
diseases (68–71). Similarly, genetic polymorphisms involved
with NLRP3 inflammasome have also been linked to cancer.
For instance, a single-nucleotide polymorphism (SNP) in
the NLRP3 gene, Q705K (rs35829419), was correlated with
poorer survival in patients with invasive colorectal cancer (41),
postulated as a risk allele for sporadic metastatic melanoma
in Swedish males (72), and also occurs at high frequency
in pancreatic cancer patients (73). Additionally, those with
NLRP3 polymorphisms (rs10754558 and rs4612666) are more
susceptible to gastric cancer when infected with Helicobacter
pylori (74). In hematological malignancies, polymorphisms
restricted only to IL-1β and IL-18 were associated with clinical
and pathophysiological characteristics in AML and chronic
myeloid leukemia (CML) (75, 76). Besides, studies utilizing gene
expression profiling have also implicated the upregulation of
NLRP3 inflammasome in several cancers. For example, NLRP3 is
overexpressed in HNSCC, LSCC, and squamous cell carcinoma
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TABLE 1 | The dual effect of NLRP3 inflammasome in cancers.

Type of cancer Role and mechanism of action References

Pro-tumorigenic role

Breast cancer NLRP3 and IL-1β promoted tumor growth and metastasis via infiltration of myeloid cells (MDSCs and TAMs) providing an

inflammatory microenvironment

(36)

Murine and human cancer-associated fibroblasts sense DAMPs and activate NLRP3 inflammasome pathway leading to

IL-1β secretion

(37)

IL-1β in a TNBC mouse model has an immunosuppressive, pro-tumorigenic role in the TME, and blocking it improves

checkpoint inhibition by anti-PD1

(38)

S1PR1 on TAMs is associated with NLRP3 expression and correlated with lymphangiogenesis and metastasis (39)

Colon cancer NLRP3 is highly expressed in mesenchymal-like colon cancer cells (SW620). NLRP3 is upregulated in colon cancer

epithelial cells HCT116 and HT29 during EMT via TNF-α and TGF-β1

(40)

Colorectal cancer NLRP3 polymorphisms are correlated with poorer survival in patients with invasive CRC patients (41)

NLRP3 senses tissue damage, promotes IL-18 which downregulates IL-22BP leading to IL-22 production and promoting

tumor development at later stages

(42)

Epithelial skin cancer IL-1 and caspase-1 play a role in tumor development. ASC expressed in infiltrating myeloid cells acts as a driver of

tumorigenesis

(43)

Fibrosarcoma NLRP3 acts as a suppressor of NK cell antimetastatic function and CD11b+Gr-1intermediate (Gr-1int ) myeloid cells causing

decreased levels of CCL5 and CXCL9

(44)

Gastric cancer (GC) NLRP3 inflammasome activation and IL-1β secretion is upregulated in GC, induce epithelial cells proliferation and

tumorigenesis by binding to cyclin-D1 promoter which could be reversed by miRNA-22

(45)

HNSCC P2X7 and NLRP3 is upregulated in carcinoma tissues and had a role in survival and invasiveness of HNSCC (46)

NLRP3 is associated with inflammation-induced carcinogenesis and CSCs markers (47)

NLRP3 is overexpressed in human HNSCC tissues, and IL-1β levels were increased in their peripheral blood (48)

Leukemias (CMML,

JMML, and AML)

NLRP3/IL-1β cause myeloproliferation and cytopenias in KRAS-mutant leukemias, mediated by RAC1 activation and ROS

production

(49)

LSCC NLRP3 expression is higher in human cancer tissues compared to normal tissues. High expression of NLRP3 and IL-1β is

correlated with a poorer prognosis

(50)

Lung cancer NLRP3 inflammasome activation enhances the proliferation and metastasis of lung adenocarcinoma cell line A549,

mediated by AKT, ERK1/2, CREB, and upregulation of SNAIL

(51)

Lymphoma NLRP3 inflammasome, through IL-18, promotes lymphoma cell proliferation and inhibits apoptosis, via upregulation of

C-MYC, BCL2, and downregulation of TP53 and BAX

(52)

Melanoma Inhibition of NLRP3 by thymoquinone suppresses metastasis of murine and human melanoma cells by deregulation of IL-1β

and IL-18

(53)

NLRP3 is activated in human melanoma cells, but also constitutively secrete IL-1β via NLRP3 and IL-1R in the absence of

exogenous stimulation

(54)

Myelodysplastic

syndromes (MDS)

NLRP3 inflammasome is overexpressed in MDS HSPCs, drives clonal expansion and pyroptosis via alarmin signals, gene

mutations, and ROS production.

(55)

Pancreatic ductal

adenocarcinoma

NLRP3 promotes differentiation of CD4+ T cells into tumor promoting Th2 cell, Th17, and regulatory T cell population and

suppresses cytotoxic CD8+ T cell, mediated by IL-10

(56)

Prostate cancer Hypoxia causes priming of NLRP3 and AIM2 through upregulation of their receptors and pro-IL-1β (57, 58)

Anti-tumorigenic role

Colitis-associated

cancer (CAC)

NLRP3, PYCARD, or caspase-1 deficiency causes worse disease outcome and morbidity via increased IL-1β and IL-18

secretion

(59)

NLRP3 or ASC and caspase-1 deficiency leads to higher susceptibility to DSS-induced colitis and mortality rate due to

decreased IL-18 levels

(60)

Colorectal cancer

(CRC)

Lack of NLRP3 or caspase-1 causes reduced tumor burden due to decreased levels of IL-18 and impaired production and

activation of IFN-γ and STAT1

(61)

NLRP3 inhibits CRC metastatic growth in the liver by IL-18, NK cells, and increased expression of FasL (62)

NLRP3 senses tissue damage, promotes IL-18 which downregulates IL-22BP leading to IL-22 production and exerting

protective effects against intestinal tissue damage at the peak of inflammation

(42)

Hepatocellular

carcinoma (HCC)

NLRP3 inflammasome components were absent or significantly downregulated in human HCC. NLRP3 deficiency is

correlated with advanced stages

(63)

Melanoma NLRP3 inflammasome impairs anti-tumor response by facilitating migration of myeloid-derived suppressor cells (MDSCs) (64)

AML: acute myeloid leukemia, CMML: chronic myelomonocytic leukemia, CSCs: cancer stem cells, DAMPs: Danger associated molecular patterns, DSS: dextran sodium sulfate, EMT:

epithelial-mesenchymal transition, HNSCC: Head and neck squamous cell carcinoma, HSPCs: hematopoietic stem and progenitor cells, IL-22BP: IL-22- binding protein, JMML: juvenile

myelomonocytic leukemia, LSCC: laryngeal squamous cell carcinoma, NK: natural killer, PDAC: Pancreatic ductal adenocarcinoma, ROS: reactive oxygen species, S1PR1: S1P receptor

1, TAMs: Tumor associated macrophages, TGF-β1: transforming growth factor-β1, Th2: T helper type 2 cell, TME: tumor microenvironment, TNF-α: tumor necrosis factors-α, Triple

Negative Breast Cancer (TNBC).

Frontiers in Immunology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1444

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hamarsheh and Zeiser NLRP3 Inflammasome Activation in Cancer

tissues compared to normal tissues, and often correlated with
poor prognosis and worse pathology (48, 50, 77). In bladder
cancer, high expression of NLRP3 inflammasome is also found,
making it a potential biomarker for its diagnosis (78). Further
studies will be required to understand the association between
genetic polymorphisms or differential expression of NLRP3
inflammasome and clinical features of cancer.

The understanding of this crosstalk between immunity,
inflammasomes, inflammation, and cancer is the foundation for
implementing anti-inflammatory therapeutic options in cancer
prevention and treatment.

THERAPEUTIC POTENTIAL OF
TARGETING NLRP3 INFLAMMASOME IN
CANCER

The involvement of the NLRP3 inflammasome in several
inflammation-related diseases, including cancer, provided it
as an attractive potential target in designing new drugs
for treatment. Several reported molecules and drugs were
shown to regulate the inflammasome activity. However, many
indirectly affect the inflammasome effector functions by targeting
other molecules. Until today, current treatment of NLRP3
inflammasome-related diseases in the clinic involve targeting
IL-1β or IL-1β receptor by monoclonal IL-1β antibodies or
recombinant IL-1 receptor antagonists. Nevertheless, several
specific small-molecule compounds have been shown to have
anti-inflammatory effects. Here, we review the variety of NLRP3
inflammasome inhibitors which either target components of its
canonical signaling pathway or are specific to NLRP3 protein
(summarized in Table 2).

Anakinra is a recombinant form of interleukin-1 receptor
antagonist (IL-1Ra) (79), which was approved by the US Food
and Drug Administration (FDA) for the treatment of rheumatoid
arthritis patients and autoinflammatory disorders (122, 123). We
have recently reported that treating KrasG12D-mutant leukemia
mouse models with anakinra improves myeloproliferation and
cytopenia phenotypes (49). Due to its clinical safety record and
short life, anakinra is an ideal drug to be used in conjugation
with chemotherapy. Indeed, one clinical trial on metastatic
colorectal cancer reported that the treatment of anakinra besides
fluorouracil (5-FU) plus bevacizumab showed survival benefit
(80), while another showed improved outcome in PDAC patients
when combining anakinra with gemcitabine, nab-paclitaxel, and
cisplatin (AGAP) (81). Although older reports indicated that
anakinra alone was not able to induce myeloma cell death, a
study involving multiple myeloma patients used anakinra in
combination with low-dose weekly dexamethasone, showed an
improved survival for over 10 years compared to the controls
(82). In breast cancer, the use of pre-clinical mouse models
indicated that anakinra treatment decreased tumor growth and
bone metastasis (83). Besides, a clinical pilot study investigated
the administration of anakinra prior to standard chemotherapy
in HER2-negative metastatic breast cancer female patients.
The study revealed that 2-weeks of anakinra treatment alone
could downregulate the expression of several genes for TLR

and IL-1β families, but upregulate the expression of tumor
lysis-associated genes like NK and CD8+ T-cells (84). These
results indicate a promising outlook for the use of anakinra
combined with standard chemotherapy in difference cancers.
However, the effectiveness of anakinra in antitumor applications
needs further investigation through in vivo models and later in
clinical trials.

Canakinumab is a human anti–IL-1β monoclonal antibody,
known for its high specificity to block IL-1β without interference
or cross-reactivity with other IL-1 family members. It was
approved by the US FDA and European Medicines Agency
for treating CAPS (23, 85). Canakinumab has a half-life of
a typical IgG1 antibody (124), which gives it an advantage
over recombinant IL-1Ra by ensuring the full inhibition of
IL-1β over a lengthier period. Interestingly, Canakinumab
Anti-inflammatory Thrombosis Outcomes Study (CANTOS),
a randomized, double-blinded clinical trial of 10,061 lung
cancer and atherosclerosis patients implemented the use of
canakinumab, and resulted in a significant reduction of lung
cancer-caused mortality. This antitumor effect was evident in
lung adenocarcinoma or poorly differentiated large cell cancer
due to the few cases of small-cell lung cancers or squamous
cell carcinomas (86). Currently, canakinumab is being applied in
clinical trials focusing on non-small cell lung cancer (NSCLC),
Triple Negative Breast Cancer (TNBC), colorectal cancer and
metastatic melanoma. In particular, two ongoing Phase III
clinical trials conducted by Novartis pharmaceuticals (CANOPY-
1 and CANOPY-2) are currently investigating pembrolizumab
plus chemotherapy with or without canakinumab, or docetaxel
with canakinumab in NSCLC (ClinicalTrials.gov Identifier:
NCT03626545, NCT03631199). The forthcoming results will
provide a better insight on in safety and efficacy of using
it as combination treatment. However, investigating the use
of canakinumab in other cancers remain less prominent, and
relatively requires more recognition.

P2X7R mediates NLRP3 inflammasome activation and
cytokine release. However, the role of P2X7R in tumor cells
is shown to be either pro-tumorigenic or anti-tumorigenic
[reviewed in Savio et al. (87)]. Nevertheless, several reports
have evaluated the potential of P2X7R antagonists in different
cancers and suggested their efficacy in altering tumor cells
and suppressing cancer progression. For instance, inhibition of
P2X7R caused attenuated tumor proliferation and invasion in
PDAC (88), and decreased invasiveness of A253 cells derived
from epidermoid carcinoma (46).

Thalidomide, a sedative or hypnotic drug, was used
particularly for morning sickness in pregnant women (100).
However, it was shown to have an anti-tumor activity due
to its antiangiogenic properties (125, 126), and later be an
inhibitor of caspase-1 (127). It has been approved as a first-line
therapeutic option in patients with advanced multiple myeloma
in combination with other chemotherapy drugs because of
its anti-tumor activities, resulting in improved response (101,
102). In prostate cancer, the administration of thalidomide
alone or in combination with docetaxel resulted in improved
response and overall median survival (103, 104). However, its
application in other cancer types, such as metastatic melanoma,

Frontiers in Immunology | www.frontiersin.org 6 July 2020 | Volume 11 | Article 1444

https://ClinicalTrials.gov
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hamarsheh and Zeiser NLRP3 Inflammasome Activation in Cancer

TABLE 2 | A list of compounds targeting NLRP3 inflammasome either indirectly or directly and their therapeutic potential in cancers.

Compound name Mechanism of action Reference Studies in cancer

1. Targets of NLRP3 inflammasome pathway

NLRP3 inflammasome effectors

Anakinra Interleukin-1 receptor inhibitor (79) (80–84)

Canakinumab IL-1β inhibitor (23, 85) (86)

NLRP3 inflammasome activators

P2X7 receptor inhibitors P2X7R inhibitors (87) (46, 88)

NLRP3 inflammasome expression

Andrographolide NF-κB inhibitor (89, 90) (91–95)

Parthenolide NF-κB inhibitor (96) (97–99)

2. Targets of NLRP3 inflammasome components

Thalidomide Caspase-1 inhibitor (100) (101–107)

VX-765 Caspase-1 inhibitor (108) –

Pralnacasan Caspase-1 inhibitor (109) –

Ac-YVAD-CHO Caspase-1 inhibitor (110, 111) –

3. Direct targets of NLRP3 protein

MCC950 Directly binds to the Walker B motif of NACHT domain,

blocking ATP hydrolysis, and formation of NLRP3

inflammasome

(112, 113) (48, 49, 55)

Oridonin NACHT domain and Oridonin share cysteine 279 binding site (114) (115, 116)

CY-09 Directly binds NLRP3 motif, leading to the abrogation of ATP

binding to NLRP3

(117) –

OLT1177 Binds to NLRP3 inhibiting its ATPase activity (118, 119) –

Tranilast Directly binds to the NACHT domain of NLRP3 and inhibition

of ASC oligomerization

(120, 121) –

NSCLC and hepatocellular carcinoma (105–107), did not show
significant usefulness.

In addition, VX-765 (108), Pralnacasan (109), and Ac-YVAD-
CHO (110, 111) are other caspase-1 inhibitors which have shown
few but promising results in their potential in NLRP3-related
diseases. However, their potential as therapeutic targets in cancer
was not investigated.

Other compounds include Andrographolide (89, 90) and
Parthenolide (96), which mainly target NF-κB signaling pathway,
but the later was also shown to directly inhibit NLRP3
inflammasome by interfering with its ATPase activity (128),
have also shown promising results in several cancers (129).
For instance, andrographolide was shown to suppress cancer
cell proliferation, promote apoptosis in colon cancer (91),
breast cancer (92, 93), multiple myeloma (94), and enhance
the antitumor effect of 5-FU in colorectal cancer (95). Besides,
parthenolide have shown positive results in inhibiting tumor cell
proliferation in gastric cancer (97), pancreatic adenocarcinoma
(98), colorectal cancer (99). However, these two compounds have
not been taken further beyond pre-clinical studies.

A number of small-molecule compounds were proposed to
show specific inhibitory effects on NLRP3 activation [reviewed
further in detail elsewhere (130, 131)]. One example is MCC950,
which prevents NLRP3-induced ASC oligomerization, leading
to the inhibition of both canonical and non-canonical NLRP3
inflammasome activation as well as IL-1β secretion, presenting
it as a promising agent in NLRP3-related diseases (112).

Mechanistic studies have revealed that MCC950 directly binds
to the Walker B motif of the NLRP3 central NACHT domain,
blocking the hydrolysis of ATP and thus the formation of
NLRP3 inflammasome. This action is independent of K+ efflux,
Ca2+ flux, or NLRP3–ASC interactions, and occurs without
interfering with TLR signaling or the priming step of NLRP3
activation (112, 113, 130). The use of MCC950 in head and
neck squamous cell carcinoma was shown to delay tumorigenesis
and improve the antitumor response by reducing the numbers
of MDSCs; regulatory T cells (Tregs) and TAMs (48). Besides,
MCC950 treatment in MDS was sufficient to halt restore effective
hematopoiesis by inhibition of pyroptosis (55). Furthermore, we
have recently reported that the use of MCC950 in KrasG12D-
mutant leukemia mouse models improves myeloproliferation
and cytopenia phenotypes, by attenuating NLRP3 inflammasome
(49). However, despite its promising potential in Parkinson’s
disease (132), preclinical and clinical reports studying MCC950
in cancer remain rather limited.

Oridonin is a major bioactive component of herbal plant
Rabdosia rubescens, and is widely used as an over-the-counter
(OTC) herbal medicine for the treatment of inflammatory
diseases (130). Studies have shown that Oridonin can specifically
inhibit NLRP3 inflammasome activation, where NACHT domain
and Oridonin share cysteine 279 binding site (114). The
ability of Oridonin to suppress cell proliferation was previously
demonstrated in breast (133) ovarian (115) and esophageal
(116) cancers. On the other hand, CY-09 (117), OLT1177(118,
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119), Tranilast (120, 121) present as promising specific NLRP3
inhibitors. However, their potential in NLRP3-related cancers has
not been investigated yet.

In conclusion, despite the promising prospective of the
compounds mentioned above, further studies are still needed
to fully understand their therapeutic potential in NLRP3-related
diseases, especially in cancers.

SUMMARY

Despite the well-characterized crucial functions for NLRP3
inflammasome in the immune system, their roles in cancer
remain rather complicated and elusive. The double-edged
sword effect of NLRP3 inflammasome in cancer appears to be
dependent on several factors, including its levels of expression,
downstream effector molecules (i.e., IL-1β or IL-18), cancer type,
stages of tumorigenesis as well as the potential presence of
mutations affecting NLRP3 expression. Therefore, in order to
further understand these roles, future research needs to address
several points: (i) driving factors of NLRP3 inflammasome
activation in tumors, such as oncogenic mutations or mutations
of inflammasome components, (ii) possible cross-talk pathways
and molecules interacting and affecting the regulation of NLRP3
inflammasome, (iii) effects of TME and its components on
NLRP3 inflammasome activation and vice versa, (iv) effect

of NLRP3 inflammasome on the regulation of immune cells,
antitumor immunity and efficiency of immunotherapy. In
summary, targeting the NLRP3 inflammasome or its downstream
pathways, either solely or in combination with chemotherapy
or other immunotherapeutic approaches, hold a promising
potential in cancers.
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