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Diabetic nephropathy is a growing health concern with

characteristic sterile inflammation. As the underlying

mechanisms of this inflammation remain poorly defined,

specific therapies targeting sterile inflammation in diabetic

nephropathy are lacking. Intriguingly, an association of

diabetic nephropathy with inflammasome activation has

recently been shown, but the pathophysiological relevance

of this finding remains unknown. Within glomeruli,

inflammasome activation was detected in endothelial cells

and podocytes in diabetic humans and mice and in

glucose-stressed glomerular endothelial cells and podocytes

in vitro. Abolishing Nlrp3 or caspase-1 expression in bone

marrow–derived cells fails to protect mice against diabetic

nephropathy. Conversely, Nlrp3-deficient mice are protected

against diabetic nephropathy despite transplantation of

wild-type bone marrow. Pharmacological IL-1R antagonism

prevented or even reversed diabetic nephropathy in mice.

Mitochondrial reactive oxygen species (ROS) activate the

Nlrp3 inflammasome in glucose or advanced glycation

end product stressed podocytes. Inhibition of mitochondrial

ROS prevents glomerular inflammasome activation and

nephropathy in diabetic mice. Thus, mitochondrial ROS

and Nlrp3-inflammasome activation in non-myeloid-derived

cells aggravate diabetic nephropathy. Targeting the

inflammasome may be a potential therapeutic approach

to diabetic nephropathy.

Kidney International (2015) 87, 74–84; doi:10.1038/ki.2014.271;

published online 30 July 2014

KEYWORDS: diabetic nephropathy; endothelial cell; inflammasome;

mitochondrial ROS; Nlrp3; podocyte

Diabetic nephropathy is the leading cause of end-stage renal

disease in adults, putting an enormous burden on affected

individuals and health-care systems. Current therapies are

insufficient, necessitating the search for new therapeutic

strategies in diabetic nephropathy. Inflammatory processes

have been identified as potential modulators of diabetic

nephropathy. Accumulation of macrophages or T cells has

been demonstrated in humans with and in rodent models

of diabetic nephropathy.1,2 The extent of inflammatory cell

accumulation in the kidney is associated with the decline of

renal function, suggesting a causative link.1–4 Indeed, inhibi-

tion of inflammatory cell recruitment into the kidney has

been shown to be protective in experimental diabetic nephro-

pathy.5,6 Local generation of pro-inflammatory cytokines,

such as interleukin 1b (IL-1b), contributes to inflammatory

cell recruitment.3,7 Cytokines are thought to be released from

activated immune cells.3,7 However, renal cells, such as podo-

cytes, endothelial cells, or mesangial cells, can likewise secrete

pro-inflammatory cytokines and may thus aggravate diabetic

nephropathy.8–11 However, whether non-myeloid-derived

glomerular resident cells promote diabetic nephropathy by
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secreting cytokines and how cytokine secretion from these

cells may be controlled remain unknown.

The release of the pro-inflammatory cytokines IL-1b and

IL-18 is controlled by the inflammasome. Various danger

signals, including mitochondrial reactive oxygen species

(ROS), activate the Nlrp3 (nucleotide-binding domain

and leucine-rich repeat pyrin 3 domain) inflammasome.12,13

Upon detecting cellular stress, Nlrp3 recruits and assembles

with ASC (apoptosis-associated speck-like protein containing

a caspase recruitment domain) and caspase-1, resulting in

caspase-1 activation, maturation of IL-1b and IL-18, and

promotion of inflammatory cell recruitment.14 Although

initially thought to be restricted to immune cells it has been

recently shown that the inflammasome can be functional in

nonimmune cells, including podocytes.11,13,15 In addition,

inflammasome activation has lately been demonstrated in

diabetic nephropathy,16 but the pathophysiological relevance

and the mechanism of inflammasome activation in diabetic

nephropathy remain elusive. Likewise, the potential involve-

ment of glomerular resident cells, such as podocytes or

endothelial cells, for inflammasome activation in diabetic

nephropathy remains unknown. To address these questions

we evaluated the role of inflammasome activation in glo-

merular cells in the current study. Answering these questions

may be of therapeutic relevance, as the inflammasome is

amendable to therapeutic interventions.17

RESULTS
The onset of diabetic nephropathy is associated with renal
inflammasome activation

To evaluate the relevance of the inflammasome in diabetic

nephropathy we analyzed diabetic mice of various ages.

Levels of (cleaved) IL-1b and IL-18 were low in plasma

(Figure 1a) and hardly detectable in renal cortex extracts

(Figure 1b and c) of 4-week-old db/db mice, but significantly

increased in 8- and 12-week-old db/db mice. In parallel,

Nlrp3 and cleaved caspase-1 levels increased, while nephrin

expression declined in renal cortex extracts of db/db mice

with age (Figure 1b and c). Thus, inflammasome activation

occurs at an early stage of nephropathy in db/db mice.18

Albuminuria and glomerular extracellular matrix accumula-

tion (FMA, fractional mesangial area) were significantly

increased in 12, but not in 8-week-old db/db mice (Figure 1d

and e and Supplementary Figure S1a online), suggesting that

inflammasome activation precedes and may hence be

mechanistically linked with diabetic nephropathy. Changes

suggestive of nephropathy or inflammasome activation were

not apparent in nondiabetic db/m control mice (Figure 1a

and b and Supplementary Figure S1d–f online).

The renal inflammasome activation observed in db/db

mice could reflect insulin resistance and obesity19,20 and may

thus be independent of renal pathology. To address this

possibility we analyzed mice with persistent hyperglycemia

in the absence of obesity or insulin resistance (streptozotocin

(STZ) model). In these mice albuminuria and loss of nephrin

expression were likewise associated with an early increase of

Nlrp3 and cleaved IL-1b levels in the renal cortex (Figure 2

and Supplementary Figure S2 online), whereas inflamma-

some activation was not observed in nondiabetic control

mice (Figure 2a and Supplementary Figure S2d online).

Hence, renal inflammasome activation is independent of

obesity and insulin resistance.

Next, we analyzed markers of inflammasome activation in

type 2 diabetic patients in a pilot study. In albuminuric diabetic

patients, serum IL-1b levels were significantly increased

compared with diabetic patients without albuminuria or

nondiabetic controls (Figure 3a) and the degree of albumi-

nuria correlated with serum IL-1b (Figure 3b). This correla-

tion remained stable after correcting for age, sex, and disease

duration. Furthermore, Nlrp3 expression was on average

increased in glomeruli of albuminuric diabetic patients
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Figure 1 | Inflammasome activation is associated with the onset
of diabetic nephropathy in db/db mice. IL-1b and IL-18 plasma
levels (a) and tissue levels of Nlrp3 (nucleotide-binding domain and
leucine-rich repeat pyrin 3 domain) and cleaved IL-1b (cl IL-1b) in
renal cortex extracts (b, c) are increased in db/db mice at 8 weeks of
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increase between age 4 and 8 weeks and then remain elevated
(b, c). Nephrin expression is reduced at 8 and decreases further
at 12 weeks of age (b, c). These changes are associated with a
significant increase in albuminuria (Alb) and the fractional mesangial
area (FMA) in 12- but not in 8-week-old db/db mice (d, e). Markers of
inflammasome activation (plasma IL-18, a; cleaved IL-1b, b) remain
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FMA, fractional mesangial area; IL, interleukin; NS, not significant.
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compared to diabetic patients without albuminuria or non-

diabetic controls (Figure 3c and d).

Inflammasome inhibition ameliorates diabetic nephropathy
in mice

To explore the functional relevance of inflammasome activa-

tion in diabetic nephropathy we induced persistent hyper-

glycemia in uninephrectomized Nlrp3� /� or caspase-1� /�

mice using STZ. Nlrp3 or caspase-1 deficiency ameliorated

albuminuria and the FMA without affecting the body weight

or blood glucose levels (Figure 4 and Supplementary Figure

S3 online), establishing a functional role of inflammasome

activation in diabetic nephropathy.

Pathological sequelae of inflammasome activation are fre-

quently amendable to therapeutic approaches.17 Application

of the IL-1 receptor antagonist anakinra in hyperglycemic

mice with insulin resistance (db/db mice) or insulinopenia

(STZ model) reduced albuminuria and FMA (Figure 5a and b).

Treatment with anakinra (for 12 weeks) reduced the body

weight and blood glucose levels in db/db mice, but not in

insulinopenic mice (STZ model, Supplementary Figure S4a–c

online), illustrating that anakinra can ameliorate diabetic

nephropathy independent of its metabolic effects. Of note, in

12-week-old db/db mice with established nephropathy18 (and

current data) the intervention with anakinra for 8 weeks

normalized albuminuria and FMA (Figure 5c). Thus, inhibi-

tion of IL-1 receptor signaling can not only prevent, but also

reverse, diabetic nephropathy in mice.

Hyperglycemia triggers inflammasome activation in
glomerular cells

Whether inflammasome activation occurs in glomerular cells

in diabetic nephropathy and the potential implications of this

remained unknown hitherto. Using confocal microscopy we

observed partial colocalization of Nlrp3 or cleaved caspase-1

with podocytes and glomerular endothelial cells in histological

sections of diabetic humans or mice, respectively (Figure 6a

and b, Supplementary Figure S5a online). In 12-week-old

db/db mice cleaved caspase-1 localized predominately to

glomeruli (Supplementary Figure S5b online).

In vitro glucose, but not mannitol, induced Nlrp3 expres-

sion cell-autonomously and cleaved IL-1b in glomerular

endothelial cells and podocytes (Figure 6c). Furthermore,

cleaved IL-1b was readily observed in primary podocytes

isolated from C57BL/6 wild-type mice and was induced

following glucose, but not mannitol, treatment (Figure 6d).

Of note, only pro-IL-1b, but not cleaved IL-1b, could be

detected in primary podocytes isolated from caspase-1� /�

mice (Figure 6d), consistent with cell-autonomous matura-

tion of IL-1b in podocytes.

Inflammasome deficiency in bone marrow–derived cells fails
to ameliorate early stages of diabetic nephropathy

To address the pathogenic relevance of inflammasome

activation in myeloid vs. non-myeloid-derived cells, we next

conducted bone marrow transplantation experiments. First,

Nlrp3� /� , caspase-1� /� , or wild-type (control) bone

marrow was transplanted into lethally irradiated db/db mice

(age 8 weeks, Figure 7a). This had no impact on body weight,

blood glucose levels (Supplementary Figure S6 online), or the

glomerular frequency of CD11cþ cells (Figure 7b). Of note,

in db/db mice transplanted with Nlrp3� /� bone marrow no

cleaved caspase-1 could be detected in glomerular CD11cþ

cells (Figure 7c). In comparison to control db/db mice

albuminuria and FMA increased to the same extend in db/db

mice transplanted with Nlrp3� /� or caspase-1� /� bone

marrow after 12 weeks (Figure 7d and e). Thus, Nlrp3- or

caspase1-deficiency in bone marrow–derived cells does not

ameliorate diabetic nephropathy in mice.

Next, we conducted the reverse experiment transplanting

wild-type bone marrow into Nlrp3� /� mice to evaluate the

role of the Nlrp3 inflammasome in glomerular resident cells

(Figure 7f). As Nlrp3� /� mice are not readily available on a

Weeks

C 10 16 24

Nlrp3

Pro IL-1β

cl IL-1β

Nephrin

β-Actin

Alb/crea FMA

21400 C 10W

18

300
*

*

15

12
200 *

9* 16W

6

F
M

A
 (

%
)

3

100A
lb

/c
re

a
 (

μ
g
/m

g
)

*

*

00
C 10W 16W 24W

C57BL/6 + STZ

24W

*
*

0

50

100

150

200

250

300

350

10w 16w 24w

Nlrp3

cl IL-1β

cl IL-1β (no DM)
R

e
la

ti
v
e

 c
h

a
n

g
e

 (
%

) 
 

Nephrin

NS

* * *

*

* * *

C

(6) (6)

C57BL /6 + STZ

(6) (7)

Figure 2 | Inflammasome activation is associated with the onset
of diabetic nephropathy in streptozotocin (STZ)-treated C57BL/6
mice. Tissue levels of Nlrp3 (nucleotide-binding domain and leucine-
rich repeat pyrin 3 domain) and cleaved interleukin-1b (cl IL-1b)
increase, whereas expression of nephrin declines in renal cortex
extracts of diabetic C57BL/6 mice (STZ model; a, b). Inflammasome
activation is paralleled by an increase in albuminuria and fractional
mesangial area (FMA, c, d; overviews for d in Supplementary Figure
S2a online). Cleaved IL-1b remains normal in nondiabetic C57BL/6
control mice (no DM, a). Mean value±s.e.m. Number of mice (a–d)
in each group is shown in parentheses in a; representative
immunoblots in b and periodic acid Schiff-stained glomeruli in d,
scale bar¼ 20mm; *Po0.05. DM, diabetic mice; NS, not significant.

76 Kidney International (2015) 87, 74–84

bas i c resea rch K Shahzad et al.: Inflammasome aggravates diabetic nephropathy



db/db background we used the STZ model. Following trans-

plantation of wild-type bone marrow into Nlrp3� /� mice,

body weight, blood glucose levels, and the presence of

CD11cþ cells in glomeruli (Figure 7g, Supplementary Figure

S6 online) were not altered. Of note, albuminuria and FMA

remained normal in diabetic and nondiabetic Nlrp3� /�

mice despite reconstitution with wild-type bone marrow

(Figure 7h and i). These data suggest that inflammasome

activation primarily in renal resident cells contributes to

diabetic nephropathy.

Inflammasome activation by mitochondrial ROS in diabetic
mice

Mitochondrial ROS promote diabetic nephropathy21,22 and

can trigger Nlrp3-inflammasome activation.13,23 To evaluate

whether mitochondrial ROS are mechanistically linked with

glomerular Nlrp3-dependent inflammasome activation we

used the mitochondria-targeted antioxidant MitoTempo,

a superoxide dismutase mimetic that accumulates in mito-

chondria.24 MitoTempo reduced mitochondrial ROS

(Supplementary Figure S7a online) and in parallel Nlrp3

levels and IL-1b activation in glucose-stressed podocytes

(Figure 8a and b).

Enhanced glycolytic flux is sufficient to increase mito-

chondrial ROS, but glucose-modified proteins such as AGEs

(advanced glycation endproducts) may likewise induce mito-

chondrial ROS generation through a RAGE (receptor for

AGEs)-dependent mechanism.25 Indeed, AGE-BSA induced

Nlrp3 expression and IL-1b cleavage in podocytes, an effect

that was prevented by RAGE inhibition (Figure 8a and b).

Thus, glucose and glucose-induced metabolites may synergis-

tically contribute to ROS-dependent inflammasome activa-

tion, in particular in the in vivo situation. Of note, MitoTempo

failed to reduce levels of cleaved IL-1b in glucose-stressed

human podocytes transfected with the constitutive active

human Nlrp3 mutant Q705K,26 indicating ROS triggered

Nlrp3-dependent IL-1b maturation in podocytes (Figure 8c).

To evaluate the role of mitochondrial ROS for inflamma-

some activation in vivo we next treated db/db and

uninephrectomized diabetic C57BL/6 mice (STZ model,

STZ mice) with MitoTempo. MitoTempo treatment had no

effect on body weight or blood glucose levels (Supplementary

Figure S7b online). In db/db mice, MitoTempo treatment

markedly reduced levels of Nlrp3, cleaved IL-1b, albuminur-

ia, and FMA in comparison with control db/db mice

(Figure 8d–f). Likewise, indices of diabetic nephropathy
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and inflammasome activation were reduced in MitoTempo-

treated STZ mice when compared with phosphate-buffered

saline-treated diabetic controls (Figure 9a–d).

Genetic ablation of p66Shc reduces mitochondrial ROS

and protects mice from diabetic nephropathy.21 Again, persi-

stent hyperglycemia failed to induce Nlrp3 expression and

IL-1b cleavage in p66Shc deficient diabetic mice (Figure 10a–c),

supporting a critical role of mitochondrial ROS for inflam-

masome activation in diabetic nephropathy.

DISCUSSION

Diabetic nephropathy is considered an inflammatory disease,

and several reports recently demonstrated inflammasome

activation in association with diabetic nephropathy. In the

current study we establish that inflammasome activation is

causatively linked with diabetic nephropathy. IL-1 receptor

antagonism or inhibition of mitochondrial ROS, an estab-

lished activator of the Nlrp3 inflammasome, ameliorates

diabetic nephropathy in mice, suggesting that interventions

targeting this mechanism of sterile inflammation may be a

feasible therapeutic approach in diabetic nephropathy.

Although originally thought to be specific for the innate

immune system, inflammasome activation and signaling has

recently been described in cells not belonging to the immune

system.13,15,27 Previous to the currently observed hyperglycemia-

associated inflammasome activation in podocytes, similar

observations have been made in mice with hyperhomocy-

steinanemia or diet-induced obesity.8,11,28 In addition to

these reports we observed inflammasome activation in glo-

merular endothelial cells, suggesting that inflammasome

activation in various kidney cells may contribute to diabetic

nephropathy. Indeed, kidney-restricted silencing of ASC,

an adaptor protein required for the inflammasome

complex, attenuated proteinuria, albuminuria, and glome-

rular sclerosis.8,11,28 This approach, however, targets all cells

within the kidney, including inflammatory cells. Thus,

although demonstrating a role of inflammasome activation

in glomerular disease, the question as to whether inflam-

masome activation in resident glomerular cells, such as

podocytes or endothelial cells, contributes to glomerular

sclerosis remained unresolved in these studies.

To address this question we conducted bone marrow–

transplantation experiments, which demonstrated that

inflammasome activation in renal resident cells, but not in

bone marrow–derived cells, is sufficient to trigger diabetic

nephropathy in mice. We acknowledge that the chosen

method, bone marrow transplantation, has limitations and

that cell-specific inactivation of inflammasome regulators

such as Nlrp3 or caspase-1 would be preferred. Cell-specific

deletion would likewise enable a researcher to specifically

address the role of inflammasome activation in glomerular

and tubular cells. However, mice with conditional inactiva-

tion of Nlrp3 or caspase-1 are currently not readily available.

In addition, inflammasome activation occurred at least in

podocytes and endothelial cells. Hence, genetic inflamma-

some inactivation in multiple renal cell types will be required

to address the functional role of inflammasome activation

in resident glomerular cells vs. bone marrow–derived cells.

Considering these obstacles, we believe that the chosen

method constitutes a reasonable approach. In view of the

current data, more sophisticated experimental approaches to

clarify the role of inflammasome activation in renal resident

cells are now justified and required.

Following transplantation of Nlrp3-deficient bone marrow

we failed to detect CD11cþ cells with signs of inflamma-

some activation in renal glomeruli, indicating efficient

replacement of renal dendritic cells. This is consistent with

the replacement of innate immune cells in tissues such as

skin, lung, or liver following bone marrow transplanta-

tion.29–32 While persistence of some Nlrp3 or caspase-1-

expressing innate immune cells in the kidney despite bone

marrow transplantation cannot be excluded, the current data

argue against a role of inflammasome activation in cells

actively recruited from the bone marrow into the kidney

during the disease course. This, however, does not exclude a

pathogenetic function of bone marrow–derived cells in the

course of diabetic nephropathy. Bone marrow–derived cells
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shown in parentheses in a; representative periodic acid Schiff-stained
glomeruli; scale bar (a, b)¼ 20mm; *Po0.05, **Po0.01.
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may aggravate the disease progression independent of the

inflammasome, as previously proposed.6,7,33,34 In addition,

we cannot exclude that inflammasome activation in bone

marrow–derived cells contributes to the later disease stages or

interstitial tissue damage. On the basis of available data it

appears possible that inflammasome activation in renal

resident cells including glomerular cells triggers recruitment

of bone marrow–derived cells, which then aggravate the

disease progression. This possibility has to be experimentally

evaluated.

Inflammasome inhibition may be superior to blocking

inflammatory cell recruitment1,5 as IL-1b and IL-18 impair

podocyte and endothelial function independent of inflam-

matory cell recruitment.35 Whether modulation of noncano-

nical functions of Nlrp3, such as the Nlrp3-dependent

modulation of Smad2/3 phosphorylation by transforming

growth factor-b in tubular cells,36 will constitute an

additional benefit of inflammasome inhibition remains to

be evaluated.

The identification of mitochondrial ROS as the Nlrp3

activator in diabetic glomeruli provides a mechanistic link

between ROS and sterile inflammation in diabetic nephro-

pathy.12,21,22,37 ROS-dependent activation of the Nlrp3

inflammasome has been recently described in monocytes

and macrophages from diabetic patients,38 indicating that

this pathway is also functional in non-renal cells. Mito-

chondrial ROS have been proposed as a common pathway

mediating Nlrp3 activation.12,37 Mitochondrial ROS

dissociate TxNIP from thioredoxin, and free TxNIP can

bind to and activate Nlrp3.12,13,39 In addition, accumulation

of dysfunctional, ROS-generating mitochondria is sufficient

to activate the Nlrp3 inflammasome.12,13 Although we used

two independent approaches to evaluate the relevance

of mitochondrial ROS (MitoTempo- and p66Shc-deficient

mice), tools to specifically inhibit ROS in glomerular cells

were not available to us. Hence, stringent evidence pinpoint-

ing a causative role of glomerular-derived mitochondrial

ROS is still pending.

db/db +WT BM

db/db +WT BM

db/db

WT BM

+Casp1–/– BM+Nlrp3–/– BM

+Nlrp3–/– BM

+Nlrp3–/–BM +Casp1–/–BM

db/m db/db Nlrp3–/–WT

C
D

1
1

c
 c

l 
C

a
s
p

1

Casp1–/–

NS
**

NS

800
4 30

NS

2

3
20(8)(6) (6) (7)(7)

400
1 10

00 0

F
M

A
 (

%
)

C
D

1
1

c
+

/G
lo

m

A
lb

/c
re

a
 (

μ
g

/m
g

)

WT DM WT→Nlrp3
–/–

C

WT→Nlrp3
–/–

DM

500 * *WT

400

16300
C

WT Nlrp3–/–

*
12200

C DM DM

8
100

0

4

0
A

lb
/c

re
a
 (

μ
g
/m

g
)

F
M

A
 (

%
)

(8) (7) (6) (6)

1200

0

1

2

3

4

C
D

1
1
c
+

/G
lo

m

NS

WT DM WT→Nlrp3
–/–

C

WT→Nlrp3
–/–

DM

Figure 7 | Non-myeloid-derived cells are sufficient to promote diabetic nephropathy. Following transplantation of Nlrp3� /� or Casp1� /�

bone marrow into db/db mice (a: experimental approach) the frequency of CD11cþ cells in glomeruli is similar to that in control db/db
mice (b), immunofluorescence, CD11c: green; 4,6-diamidino-2-phenylindole (DAPI) counterstain, but no cleaved caspase-1 (cl Casp1) can be
detected in CD11cþ cells (c), representative immunofluorescence following transplantation of Nlrp3� /� bone marrow; cleaved caspase-1:
red; CD11c: green; colocalization: yellow; white dotted lines indicate areas shown at higher magnification above. Albuminuria and FMA remain
high in db/db mice despite transplantation with Nlrp3� /� or caspase-1� /� bone marrow (d, e). Conversely, diabetic and uninephrectomized
Nlrp3� /� mice are protected from nephropathy despite transplantation of Nlrp3þ /þ bone marrow (f: experimental approach). The frequency
of CD11cþ cells in glomeruli is similar in experimental groups (g); CD11c: green; DAPI counterstain, but albuminuria and FMA remain normal in
diabetic Nlrp3� /� mice despite reconstitution with Nlrp3þ /þ bone marrow (h, i). Mean value±s.e.m. Number of mice (a–e and f–i) in
each group is shown in parentheses in a and f; representative periodic acid–Schiff–stained glomeruli in e and i; scale bar¼ 20mm (b, c, e, g,
and i); white arrows in b and g indicate CD11cþ cells; *Po0.05; **Po0.01. BM, bone marrow; DM, diabetic mice; FMA, fractional mesangial
area; IL, interleukin; Nlrp3, nucleotide-binding domain and leucine-rich repeat pyrin 3 domain; NS, not significant; WT, wild type.

80 Kidney International (2015) 87, 74–84

bas i c resea rch K Shahzad et al.: Inflammasome aggravates diabetic nephropathy



Mitochondrial ROS do not only mediate harmful effects

but are also required for maintaining cellular homeostasis.40

This dual function may limit the therapeutic efficacy of mito-

chondrial-targeted ROS inhibition. Rather, cell-damaging

pathways initiated by ROS, but amendable to therapeutic

interventions, ought to be identified. Mitochondrial ROS

activate the inflammasome, and inhibition of inflammasome

signaling using anakinra provided nephroprotection and

even reversed diabetic nephropathy in the current study,

whereas inhibition of mitochondrial ROS using MitoTempo

was only partially protective. Thus, inflammasome inhibi-

tion, which is already clinically established,17 constitutes a

feasible therapeutic target.

Inflammasome inhibition in diabetic patients may provide

additional benefits due to its metabolic effects.19,20,41 Indeed,

we observed a reduction in body weight and blood glucose

levels in db/db mice. Yet, anakinra conveyed nephropection

not only in db/db mice, but also in mice with STZ-induced

insulinopenia and hyperglycemia (reflecting type 1 diabetes).

Hence, nephroprotection by inflammasome inhibition is at

least partially independent of these metabolic effects. The

efficacy, feasibility, and safety of inflammasome inhibition in

patients with diabetic nephropathy, potentially using small

molecule inhibitors,42 remains to be evaluated.

The current findings extend recent studies imputing

an immune modulatory function to podocytes.43–46 Thus,

besides inflammasome activation8,11 (and current study)

podocytes are competent to signal via TLR,44,45 to modulate

complement,43,46,47 and to activate naive T cells following

antigen presentation.45 The ability of podocytes to sense
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danger signals and to initiate an immune response may

render the glomerular filtration barrier not only sensitive to

inflammatory disease, but in addition endow the kidney,

which continuously controls a large portion of the body’s

blood, with an immune-surveillance function, reminiscent of

the dual function of teleost’s kidneys.48 These immunological

functions may be pathologically relevant not only in infec-

tious or autoimmune diseases.49 Rather, the current and

previous studies50 suggest that sterile inflammation in the

kidney may be of pathogenic relevance in the context of

metabolic diseases. This may lay ground for novel therapeutic

approaches to nephropathies associated with metabolic

diseases.

MATERIALS AND METHODS
See online Supplementary materials for additional information.

Mice
Caspase1� /� , db/db (Lepr db/db), and nondiabetic db/m control

mice (C57BL/6J background) were obtained from Jackson

Laboratories, Bar Harbor, ME. p66shc� /� and Nlrp3� /� mice

have been previously described.21,51,52 In the current study we used

littermates that have been backcrossed for at least 10 generations on

a C57BL/6 or C57BL/6J background. All animal experiments were

conducted following standards and procedures approved by the

local Animal Care and Use Committee (Landesverwaltungsamt

Halle, Germany).

Diabetic nephropathy models
Two different STZ-dependent models of diabetic nephropathy were

used in the current study. A long-term model (24 weeks) following a

previously published protocol21,46,53,54 was used in genetically modi-

fied p66Shc� /� mice and their controls. In these mice, persistent

hyperglycemia was induced by intraperitoneal administration

of 60mg/kg STZ freshly dissolved in 0.05mol/l sterile sodium

citrate at pH 4.5 for 5 consecutive days in 8-week-old mice, as

described.21,46,53,54

In addition we used the unilateral nephrectomy model of diabetic

nephropathy.21,55 This short-term model is particularly useful to test

therapeutic interventions. Briefly, 8-week-old mice were anesthetized

with pentobarbital (1mg/kg body weight, intraperitoneally). A

dorso-lumbar incision (approximately 1 cm) was made and the

ureter, the renal artery, and renal vein were ligated and subsequently

severed. The kidney was removed and the incision was sutured. Two

weeks after surgery, diabetes was induced by injections of STZ

(intraperitoneally, 40mg/kg body weight, freshly dissolved in

0.05mol/l sterile sodium citrate, pH 4.5) for 5 consecutive days.
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Age-matched control mice received 100ml phosphate-buffered saline

intraperitoneally for 5 consecutive days.

In both models mice were considered diabetic if blood glucose

levels were above 300mg/dl 16 d after the last STZ injection.21,53,54

Blood glucose levels were determined from blood samples taken

from the tail vein by using ACCU-CHEK glucose strips. In the first

3 weeks after the onset of diabetes, blood glucose values were

measured three times per week, and thereafter once per week.21,53,54

Mice with blood glucose levels above 500mg/dl received 1–2U of

insulin (Lantus) to avoid excessive and potentially lethal hypergly-

cemia.21,53,54 Blood and tissue samples were obtained after 24 weeks

(long-term model) or 8 weeks (short-term model) of persistent

hyperglycemia in diabetic mice. Age-matched littermates served as

controls.

In vivo intervention studies
A subset of mice was treated with the IL-1R antagonist (Anakinra,

10mg/kg, intraperitoneally)56 or the mitochondria-targeted antioxidant

MitoTempo (700 mg/kg body weight per day; subcutaneous).57

Interventions with Anakinra or MitoTempo were initiated in

8-week-old db/db mice to determine its preventive effect. In

uninephrectomized, STZ-treated mice, treatment with Anakinra or

MitoTempo was initiated 2 weeks after establishment of stable

hyperglycemia and continued for 8 weeks. Treatment with anakinra

was initiated in 12-week-old db/db mice to determine its effect after

onset of diabetic nephropathy. Control mice were injected with

phosphate-buffered saline.

Analyses of human samples
Patients (N¼ 87) with type 2 diabetes, according to the American

Diabetes Association criteria,58 were recruited from the diabetes

outpatient clinic at the University Hospital Heidelberg. Micro-

albuminuria was diagnosed if at least two separate urine samples out

of three consecutive urine samples (albumin excretion rate

AERX30mg/24 h) were positive. Nondiabetic control subjects

(N¼ 33) were recruited at the outpatient clinic of the University

Hospital Heidelberg and Magdeburg. Nondiabetic controls had

either stable and minor osteoporosis or stable and well-controlled

thyroid function (e.g., after thyreoidectomy). Nondiabetic controls

were on vitamin D and calcium substitution only (osteoporosis

patients) or thyroid hormones, but no other medication. All

patients and controls were Caucasian. The study complied with the

Declaration of Helsinki; all patients entered the study according to

the guidelines of the local ethics committees after giving informed

consent (Ethic-Committee-No: 204/2004).

Statistical analysis
The data are summarized as the mean±s.e.m. (standard error of the

mean). Statistical analyses were performed with Student’s t-test and

analysis of variance. Post-hoc comparisons of analysis of variance

were corrected with the method of Tukey. For the patient data,

Pearson’s correlation coefficient (r) was determined and the two-

tailed P-value is given. The correlation was corrected for age, sex,

disease duration, and estimated glomerular filtration rate by

multiple regression analysis. StatistiXL (www.statistixl.com) and

Prism 5 (www.graphpad.com) software were used for statistical

analyses. Statistical significance was accepted at values of Po0.05.
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