
NLSR: Named-data Link State Routing Protocol

A K M Mahmudul Hoque Syed Obaid Amin Adam Alyyan
ahoque1@memphis.edu soamin@memphis.edu aalyyan@memphis.edu

Beichuan Zhang Lixia Zhang Lan Wang
bzhang@cs.arizona.edu lixia@cs.ucla.edu lanwang@memphis.edu

ABSTRACT

This paper presents the design of the Named-data Link State Rout-
ing protocol (NLSR), a routing protocol for Named Data Network-
ing (NDN). Since NDN uses names to identify and retrieve data,
NLSR propagates reachability to name prefixes instead of IP pre-
fixes. Moreover, NLSR differs from IP-based link-state routing
protocols in two fundamental ways. First, NLSR uses Interest/Data
packets to disseminate routing updates, directly benefiting from
NDN’s data authenticity. Second, NLSR produces a list of ranked
forwarding options for each name prefix to facilitate NDN’s adap-
tive forwarding strategies. In this paper we discuss NLSR’s main
design choices on (1) a hierarchical naming scheme for routers,
keys, and routing updates, (2) a hierarchical trust model for routing
within a single administrative domain, (3) a hop-by-hop synchro-
nization protocol to replace the traditional network-wide flooding
for routing update dissemination, and (4) a simple way to rank mul-
tiple forwarding options. Compared with IP-based link state rout-
ing, NLSR offers more efficient update dissemination, built-in up-
date authentication, and native support of multipath forwarding.

Categories and Subject Descriptors

C.2.2 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Protocols—Routing Protocols

General Terms

Design, Security

Keywords

Routing, NDN, Trust Model

1. INTRODUCTION
The Named Data Networking (NDN) [3, 4] architecture is a

fundamental paradigm shift from the current IP-based Internet ar-
chitecture. Instead of carrying the destination IP address in each

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICN’13, August 12, 2013, Hong Kong, China.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2179-2/13/08 ...$15.00.

packet, NDN puts a data name in each packet; a data consumer
sends out an Interest packet whose name identifies the desired data,
and the response is a Data packet containing the name, the data, and
a signature by the original data producer. By explicitly naming and
signing data, NDN enables features such as in-network caching,
multipath forwarding, multicast data delivery and data authenticity.

For NDN to work well over wide-area networks, a routing proto-
col is needed to compute and install proper forwarding entries into
an NDN node’s forwarding table (FIB). Each FIB entry contains a
name prefix and one or multiple next-hops, and is used to forward
Interest packets whose names match the name prefix of the entry.
While IP has to either use a single best next-hop or limit its forward-
ing to multiple equal-cost paths in order to avoid forwarding loops,
NDN can utilize multiple paths freely because it has built-in loop
prevention in the forwarding process. Thus an NDN network needs
a routing protocol that can support name-based multipath routing.

We previously developed OSPFN [8], an extension to OSPF (Open
Shortest Path First) for routing in NDN, and deployed it on the
NDN testbed. OSPFN defines a new type of opaque link state an-
nouncement (LSA) to carry name prefixes in routing messages. It
installs the best next-hop to each name prefix in the FIB; operators
may manually configure a list of alternative next-hops for OSPFN
to install in the FIB in addition to the best one. Although OSPFN
can build a FIB with name prefixes, it has significant limitations.
As in conventional IP-based routing protocols, OSPFN still uses
IP addresses as router IDs, relies on GRE tunnels to cross legacy
networks, and computes only a single best next-hop for each name
prefix. Our experience from OSPFN deployment shows that man-
aging IP addresses and tunnels are major operational problems, and
the inadequate multipath support limits NDN’s effectiveness.

In this paper we present the design of Named-data Link State
Routing protocol (NLSR), which runs on top of NDN. In other
words, NLSR uses NDN’s Interest/Data packets to exchange rout-
ing messages. It is a link-state protocol as OSPF – link state adver-
tisements are propagated throughout the entire network and each
router builds a complete network topology. However, the route
computation no longer produces just a single shortest path. It now
ranks all policy-compliant next-hops and installs them into the FIB
in order, essentially providing a name-based multipath routing table
as input to NDN’s forwarding strategy [9].

NLSR uses names instead of IP addresses to identify routers and
links, therefore it can use any underlay communication channels
(e.g., Ethernet, IP tunnels, TCP/UDP tunnels) for routing message
exchanges. NLSR directly benefits from NDN’s built-in data au-
thenticity: since a routing update is carried in an NDN data packet
and every NDN data packet carries a signature, a router can verify
the signature of each routing message to ensure that it was gen-

15

University of Memphis University of Memphis University of Memphis

University of MemphisUniversity of Arizona

University of California, Los Angeles

erated by the claimed origin router and was not tampered during
dissemination.

As the first distributed routing protocol on NDN, NLSR’s design
needs to answer the following important questions that are unique
to applications running over NDN:

• Naming: how to name routers, links and routing updates.

• Trust: how to distribute routers’ cryptographic keys and how to
derive trust in these keys.

• Information Dissemination: how to disseminate routing up-
dates in the network. While IP-based routing protocols push

updates to other routers, NLSR routers need to pull the updates.

• Multipath: how to produce and rank the next-hops to facilitate
multipath forwarding.

In this paper we describe our design choices and articulate the
rationales behind these choices. Our goal is not to invent a new
routing scheme as NLSR is essentially another link-state protocol,
but rather, to demonstrate the feasibility and benefits of building a
routing protocol using NDN.

Since NDN’s adaptive, multipath forwarding is able to handle
many packet delivery problems at the forwarding plane, the re-
quirements on the routing plane is relaxed. For example, ensuring
loop-freedom at the routing plane is no longer critical. Thus rout-
ing protocol designs that previously do not work in IP networks
may now work in NDN networks, and new types of routing de-
signs may also become possible. Exploring other types of routing
designs would be our future work.

The remainder of the paper is organized as follows. The next
section briefly introduces a few basic functions provided in an NDN
network. Section 3 presents the design details. Section 4 provides
the evaluation results. Section 5 discusses related work, and finally
Section 6 concludes our work.

2. NDN PRIMER
NDN has three main components in its forwarding plane [3]: (1)

Forwarding Information Base (FIB): it stores the forwarding entries
that direct Interest packets toward potential source(s) of matching
Data. Unlike IP, it allows for a list of outgoing faces (next-hops)
rather than a single one for each name prefix. The FIB is populated
manually and/or by an NDN routing protocol in the control plane;
(2) Pending Interest Table (PIT): it stores the unsatisfied Interest
packets and the faces on which they were received, so that Data
packets can be routed back to the nodes interested in the data; and
(3) Content Store (CS): it is used for caching data.

When an Interest arrives at an NDN router, the CS is checked
first for any matching data. If the Interest can be fulfilled by the
CS, a Data packet is sent back on the face on which the Interest
was received. Otherwise, it is added to the PIT. If there exists an
entry with the same name, the new face number is added to the face
list, so that a copy of the matching Data packet can be sent on all
faces from which the Interest arrived. Finally, if the Interest does
not have a matching PIT entry, the Interest is forwarded to the next-
hop(s) based on the FIB. If multiple next-hops exist in a FIB entry,
a module called “forwarding strategy" determines how the multiple
routes will be used in forwarding Interests.

3. DESIGN
As a link-state protocol, NLSR disseminates Link State Adver-

tisements (LSAs) to both build a network topology and distribute
name prefix reachability. An NLSR router establishes and main-
tains adjacency relations with neighbor routers. Whenever it de-
tects the failure or recovery of any of its links or neighbor pro-

cesses, it disseminates a new LSA to the entire network. Moreover,
it advertises name prefixes from both static configuration and dy-
namic registration by local content producers. Whenever any name
prefix is added or deleted, it also disseminates a new LSA. The lat-
est version of the LSAs are stored in a Link State Database (LSDB)
at each node.

Such topology and reachability dissemination may at first appear
to be straight-forward as similar functions have been implemented
in IP routing protocols. However, because we implement NLSR
using NDN Interest and Data packets, the design must shift away
from the familiar concepts of IP addresses and IP data pushing (i.e.,
any node can simply send any packet to any other node). Instead,
we have to think in terms of data names and data retrieval. More
specifically, we need a systematic naming scheme for routers and
routing updates (Section 3.1). We also need to retrieve routing up-
dates promptly without a priori knowledge of when an update may
be generated, since a topology or name prefix change can happen
any time (Section 3.3).

In terms of routing functionality, NLSR distinguishes itself from
all previous link-state routing protocols in two aspects: (a) provid-
ing multiple routes to each name prefix, instead of a single short-
est path; and (b) signing and verification of all LSAs to ensure that
each router can originate only its own prefix and connectivity infor-
mation. We present our route calculation algorithm in Section 3.4
and our trust model in Section 3.6.

As a preliminary step in developing NDN-based routing proto-
cols, our initial design of NLSR is in the context of a single routing
domain with a single authority that our trust model is built upon.
We are in the process of deploying NLSR on the NDN testbed. We
believe that this initial design and deployment experience can of-
fer us a concrete stepping stone toward developing an NDN-based
inter-domain routing protocol that incorporates routing policies and
an inter-domain trust model.

3.1 Naming
Perhaps the most important piece in our design is a proper nam-

ing scheme for each element in the routing system and its corre-
sponding public key. Based on the current network structures and
operational practices, a hierarchical naming scheme seems best to
capture the relationship among various components in the system,
thus making it easy to identify routers belonging to the same net-
work, as well as messages generated by a given routing process. It
also helps associating keys with their corresponding owners.

In our design, each router is named according to the network
it resides in, the specific site it belongs to, as well as an assigned
router name, i.e., /<network>/<site>/<router>. For ex-
ample, an ATT router in a PoP (point of presence) in Atlanta may
be named /ATT/AtlantaPoP1/router3. This way, we know
that if two routers share the same name prefix /<network>, they
belong to the same network; and if they share the same prefix
/<network>/<site>, they belong to the same site. This nam-
ing scheme makes it easy to filter out erroneous routing messages.

The NLSR process on a router is named after the router name:
the router name is used as its prefix, followed by the process name
NLSR, i.e., /<network>/<site>/<router>/NLSR. This
NLSR routing demon name is used in periodic info messages be-
tween adjacent NLSR routers to detect the failure of either links or
routing processes themselves (see Section 3.5).

Ideally, any routing updates originated by an NLSR process should
have the process name as its prefix to easily identify the messages
originator. In other words, the name for an LSA should begin
with /<network>/<site>/<router>/NLSR/LSA to indi-
cate that it is generated by the NLSR process. However, because

16

Table 1: Contents of an LSA
Type Content

Adjacency LSA # Active Links (N), Neighbor 1 Name, Link 1
Cost, ..., Neighbor N Name, Link N Cost

Prefix LSA isValid, Name Prefix

our implementation uses CCNx Sync [5] and Repo [5] to dissem-
inate LSA data, and CCNx repo imposes a constraint that all the
data to be synchronized must share a common name prefix, our
current implementation is confined to using a common prefix for
the LSAs generated by all the routers. We name each LSA us-
ing the common prefix /<network>/NLSR/LSA (we call this
<LSA-prefix>), and append /<site>/<router> to this pre-
fix to differentiate LSAs originated by different NLSR routers.

3.2 LSAs
NLSR is designed to propagate two types of LSAs – Adjacency

LSA and Prefix LSA. The Adjacency LSA is used to advertise all
active links connecting one NDN router to its neighbors. The Prefix
LSA, on the other hand, is used to advertise a name prefix that has
been registered with the router. Their contents are shown in Table 1.

An Adjacency LSA has the name format /<LSA-prefix>
/<site>/<router>/LsType.1/<version>, where <router>
is the name of the router that originates the LSA and <version> in-
dicates the ordering in the various versions of a particular LSA as
it changes over time. It is currently implemented as the LSA orig-
ination times in microseconds from epoch time. However, similar
to OSPF, sequence numbers can also be used for this purpose. As
shown in Table 1, the Adjacency LSA contains all the active links
of a router, each associated with a neighboring router’s name and
a link cost. It is created at router startup time and whenever there
is any status change in a router’s links, as detected by periodical
“info” Interest messages (Section 3.5).

A Prefix LSA has the name format /<LSA-prefix>/<site>
/<router>/LsType.2/LsId.<ID>/<version>. Note that
each Prefix LSA advertises one name prefix. Since one router may
have multiple name prefixes registered with it, it needs to announce
multiple Prefix LSAs, using a unique LSA ID1 in their name to
differentiate them. The rationale for this design decision is that
bundling all the name prefixes of a router in a single LSA may make
it too large to be transported in one message and also inefficient to
update (even if only one prefix is added or removed, all the other
prefixes in the same LSA need to be advertised again). Each Prefix
LSA contains a flag isValid (set to 1 initially) and the name prefix
to be advertised (Table 1). When a name prefix is de-registered,
NLSR updates the corresponding prefix LSA by setting isValid to
0, and disseminates the new LSA to other nodes. An NLSR node
receiving this LSA will delete this name prefix from its LSDB and
update its FIB accordingly.

In order to remove obsolete LSAs caused by router crashes, ev-
ery router periodically refreshes each of its advertised LSAs by
generating a newer version. Every LSA has a lifetime associated
with it, and will be removed from the LSDB when the lifetime ex-
pires. Therefore if a router crashes, its LSAs will not persist in other
routers’ LSDBs. Note that route calculation should not be impacted
by the obsolete LSAs in NLSR – if a router crashes, its neighbors
will update the status of their LSAs so traffic will not be directed
over those links. Since we do not use the refreshes to handle packet
losses or state corruption (CCNx Sync handles it) and the obsolete

1The LSA ID can be manually configured or calculated based on
the name prefix (e.g., a hash of the name prefix).

Figure 1: LSA dissemination from router to router via CCNx

Sync/repo (dotted line represents periodic messages.)

LSAs do not affect route calculation, these refreshes should be sent
at a relatively long interval, e.g., on the order of days.

3.3 LSDB Synchronization
To simplify our design conceptually, we decided to view the

LSDB as a collection of data, and the LSA dissemination prob-
lem as a data synchronization problem of the LSDBs maintained
by the routers. Routers periodically exchange their hashes of the
LSDB to detect inconsistencies and recover from them. This hop-
by-hop synchronization approach avoids unnecessary flooding to
the network – when the network is stable, only one hash, instead
of all the LSAs, is exchanged between neighbors. Moreover, it is
also receiver-driven, meaning that a router will request LSAs only
when it has CPU cycles. Thus it is less likely a router will be over-
whelmed by a flurry of updates.

Our current implementation uses the CCNx synchronization pro-
tocol, or Sync [5], to disseminate the LSAs to the neighboring
routers. Sync is associated with the CCNx repository (or Repo).
It allows applications to define collections of named data in a repo,
called slices, which are kept in sync with identically defined slices
in neighboring repos. Sync computes a hash tree over all the data
in a slice and exchanges the root hash between neighbors to detect
inconsistencies. If the hash values do not agree, two neighboring
nodes then exchange the hash values of nodes on the next tree level
until they detect the specific leaf nodes (data) causing the problems.
They then exchange the data to reach consistency.

Figure 1 shows how an LSA is disseminated in the network. To
synchronize the slice containing LSAs, the Sync protocol periodi-
cally sends special Interest messages, called Root Advise, with the
combined hash value of the slice to the neighboring nodes (step 1).
When Router A’s NLSR creates an LSA and writes it in the Sync
slice (step 2), its hash value becomes different from that of Router
B, which causes Router A’s Sync to reply to the Root Advise Inter-
est from Router B with the new hash value of its local slice (step 3).
Router B’s Sync then compares the hashes and recursively requests
for the next level hashes that cause the differences. Eventually,
Router B’s Sync identifies the data that needs to be synchronized
(LSAs in the context of NLSR) and retrieves them using Interest
messages (step 4 and 5). The Sync on Router B then sends the data
name to the local NLSR agent (step 6), which fetches the data from
the local repo (step 7 and 8) and updates its LSDB (step 9).

Each Root Advise Interest has a lifetime and a new Root Advise
is sent when the lifetime expires. Such periodic transmission is de-
signed to handle the loss of Root Advise Interests, and thus reduce

17

the delay in routing convergence caused by the losses. However, if
the loss rate is low, frequent transmission of the Root Advise may
lead to high overhead without much benefit. Ideally we would like
to adjust the frequency of Root Advise Interests based on routing
requirements and network characteristics. To support this feature
and address other issues with the CCNx Sync implementation, we
are working on a newer version of NLSR with its own sync mech-
anism to achieve the same hop-by-hop distribution of LSAs.

3.4 Multipath Calculation
Based on the information available in the Adjacency LSAs, each

NLSR node builds a network topology. It then runs a simple exten-
sion of the Dijkstra’s algorithm to produce multiple next-hops for
each destination node. From the Prefix LSAs, we know the name
prefixes associated with each router (destination). Therefore, we
can then obtain a list of next-hops to reach each name prefix.

Our multipath calculation works as follows. It removes all imme-
diately adjacent links except one and uses the Dijktra’s algorithm
to calculate the cost of using that link to reach every destination in
this topology. This process is repeated for every adjacent link. Af-
terwards, it ranks the next-hops for each destination based on their
costs to reach the destination. Note that NLSR allows an operator
to specify the maximum number of paths per name prefix to insert
into a FIB, so that the FIB size can be controlled when a node has
many neighbors. The computational cost, however, still increases
as the number of faces increases, because we need to go through all
available faces to produce the cost for each possible path. We plan
to investigate other multipath algorithms to address this issue.

Unlike in IP, routing information in NDN acts only as a hint to
the forwarding plane; the forwarding plane can observe data deliv-
ery performance using state maintained in the PIT and thus rank
the multiple next-hops of a name prefix using the actual observa-
tion as well as the ranking from the routing protocol. However, the
ranking information from the routing protocol is still important for
forwarding of the initial Interest to a name prefix, and for exploring
alternative routes when the current route fails to retrieve data.

3.5 Failure and Recovery Detection
To detect link failures, as well as failures of remote NLSR pro-

cesses, NLSR sends periodic “info” Interest to each neighboring
node. If an info Interest is timed out, NLSR will try sending it a
few times at short intervals in case the Interest was lost. If there
is no response from the neighbor during this period, the adjacency
with the neighbor is considered down. Afterwards, NLSR contin-
ues sending these Interests to detect the recovery of this adjacency,
but at a relatively long interval to avoid high message overhead dur-
ing a long-lasting failure. Note that it is impossible to determine
whether the remote NLSR process has died or the link has failed.
However, this distinction is not important since in either case the
link should not be used to forward traffic.

When the adjacency recovers, NLSR will receive a response to
its “info” Interest and change the adjacency status to ‘Active’. This
change will result in updating the Adjacency LSA, disseminating
the LSA in the network, and scheduling a routing table calculation.
Figure 2 illustrates how Node A detects an adjacency failure with
Node C and a recovery with Node B.

3.6 Security
Every NDN Data packet is digitally signed and the generated

signature is part of the Data packet. The signature covers the name,
the content, and a small amount of supporting data useful in signa-
ture verification [3]. One piece of the supporting data is the key

Figure 2: Adjacency failure and Recovery detection

locator [1, 3], which indicates the name of the key used to sign the
packet, thus the receiver can fetch the key to verify the signature.

An LSA with a valid signature merely states that the signature
is produced using the public key indicated in the key locator field.
It does not tell us whether the key belongs to the router that can
legitimately originate the LSA. For example, an attacker can sign
a Prefix LSA with his/her public key and inject this LSA into the
routing system. In order to check the authenticity of the informa-
tion, we need to verify that this LSA is indeed signed by an autho-
rized NLSR process. In other words, we need to check that the key
has the correct name of the corresponding NLSR process. How-
ever, the attacker can still forge a key with the same name. We then
need a trust model to verify the authenticity of the key.

NLSR is an intra-domain routing protocol. In the context of a
single network domain, there is usually a network administrator
(trust anchor) that can certify the authenticity of keys in the net-
work. Therefore we use this trust anchor for key signing and ver-
ification, which is easy to setup and manage. We could let this
trust anchor sign the public key of every router, but this approach
presents a greater security risk when one key is used to sign a large
number of keys. Instead, we design a hierarchy of five levels rooted
at the trust anchor, which limits the signing scope of each key to a
smaller size. Table 2 shows the name of each key at every level of
the hierarchy. Note that the last component of a key name is always
the hash of the key (not shown in the table), so that when someone
expresses an Interest to a key, the name always matches a specific
key. At the top of the hierarchy is a root key, owned by the net-
work domain’s administrator. The next level is a set of site keys,
each owned by the administrator of a single site2 in the domain and
signed by the root key. Each site key signs a set of operator keys
(there may be more than one operator in a site). Each operator key
signs a set of router keys, each of which signs the key of the NLSR
routing process on that router. Finally, the NLSR key signs the rout-
ing data originated by NLSR. Note that we use CCNx sync/repo
to disseminate the keys, so all the keys share the common prefix
/<network>/keys, but they do follow a hierarchical structure.
Moreover, we use two tags, %C1.O.N.Start and %C1.O.R.Start, to
indicate operator keys and router keys, respectively.

NLSR strictly enforces the trust model rooted at the trust anchor.
Figure 3 depicts the flow of signing and verification process of each
NLSR packet. When an NLSR router sends an LSA to the network,
it signs the packet with its NLSR key and puts the key name in
‘SignedInfo/KeyLocator/KeyName’ field of the Data packet. Upon

2A site can be a department in an organization or a PoP in an ISP.

18

Table 2: Keys Names
Key Owner Key Name

Root /<network>/keys
Site /<network>/keys/<site>

Operator /<network>/keys/<site>/%C1.O.N.Start/<operator>

Router /<network>/keys/<site>/%C1.O.R.Start/<router>

NLSR /<network>/keys/<site>/%C1.O.R.Start/<router>/NLSR

Figure 3: Signing and Verification Chain of Each NLSR packet

receiving an LSA, an NLSR router fetches the key from its local
content store or repo (since the key has been distributed through the
key repo) and verifies the content. NLSR also checks whether the
key indeed belongs to the origination router’s NLSR. This process
repeats until NLSR reaches the self-signed key of the trust anchor.
If at any step key fetching is unsuccessful, or NLSR finds that the
key is signed by an unauthorized key, or the final verification step
does not reach the trust anchor, the LSA is considered illegitimate.
Note that once a key is verified, we record this information and do
not repeat the verification on this key for future packets.

4. EVALUATION
This section evaluates the performance of NLSR in terms of pro-

cessing time, messaging overhead and convergence time. All tests
are conducted on a network consisting of six heterogeneous nodes
with different OS’s and system specifications. The network topol-
ogy is shown in Figure 4. Note that in order to test the protocol
in a short period of time, we set the refresh timer to be 30 minutes
instead of on the order of days.

Figure 4: Network Topology

Figure 5 shows the CPU utilization of NLSR at each node. The
number in parenthesis following the node’s name represents the
degree, or the number of neighbors of each node. The nodes with
a higher degree of connectivity exhibit higher CPU utilization. In
other words the computational cost increases as the number of links
increases at a node. This is mainly because of the per link shortest
path calculations (Section 3.4), and higher messaging overhead.

Figure 6 shows the processing overhead of NLSR with and with-
out the proposed trust model. Even with the proposed trust model,
which requires multiple levels of keys to sign and verify a packet,
NLSR hardly incurs any extra processing cost. This is due to the
fact that by design NDN signs all outgoing Data packets. The only

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e
 C

P
U

 (
J
if
fi
e
s
 =

 1
/1

0
0
 s

e
c
o
n
d
)

Time (seconds)

NLSR CPU Usage

Node 3(4)
Node 4(3)
Node 6(3)
Node 1(2)
Node 2(2)
Node 5(2)

Figure 5: NLSR CPU utilization at each node

difference between the two schemes lies in the verification, where
NLSR with the proposed trust scheme requires more time to fetch
multiple keys recursively from the repo and verify them; however
as this is done locally and only once per new key it incurs a very low
CPU cost. Figure 6 also shows that with multipath routing, NLSR
shows higher CPU usage than the single path. Since the CPU cost
due to messaging is the same in the two schemes, the difference
here is mainly due to the higher cost of multipath calculation.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 1000 2000 3000 4000 5000 6000 7000

C
u
m

u
la

ti
v
e
 C

P
U

 (
J
if
fi
e
s
 =

 1
/1

0
0
 s

e
c
o
n
d
)

Time (seconds)

NLSR Average CPU Usage

Multipath with Key
Single Path with Key

Multipath without Key
Single Path without Key

Figure 6: Average CPU utilization

The average per-node message overhead is depicted in Figure 7.
We varied the lifetime of Sync’s Root Advise (RA) messages from
10 seconds to 30 seconds (the default is 20 seconds). The numbers
shown are the average number of Interests sent and the correspond-
ing Data packets received by NLSR and Sync on each node. NLSR
only sends info Interest messages, which is independent of the Root
Advise (RA) interval, so the number of NLSR messages remains
the same for different RA intervals. Interests generated by Sync
mainly stems from the ‘RA’ interest, which is sent periodically, and
get replied only if there is a disagreement on hashes, therefore the
number of RA Interests sent are higher than the number of received
RA packets. As expected, a longer RA interval leads to a lower
number of RA messages. Sync also transmits Node Fetch (NF) in-
terests to fetch the nodes on Sync Trees. NF does not contribute as
much to the messaging overhead as RA, especially when the net-
work is stable. The Interest sent to fetch the actual LSA data is
broadcasted to all the faces, but gets replied only from the resource

19

that has the missing LSAs. Therefore the number LSA interests
sent is higher than the LSA Data packets received.

 0

 500

 1000

 1500

 2000

 2500

10 20 30

A
v
g
.
N

u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

Root Advise Interval (s)

Messages Sent and Received

NLSR Info Interests
NLSR Info DATA

Sync RA Interests
Sync RA Data

Sync NF Interests
Sync NF Data

Interests for LSAs
Data for LSAs

Figure 7: Number of packets sent and received

The same topology is used for the convergence tests. After boot-
ing up all the nodes, enough time was provided so that all LSDBs
can get synchronized. Once the network is in a converged state, we
generated traffic using the ccnping utility [7]. The ccnping server
is hosted on node 6, while node 2 is used to generate the ccnping
Interest (ping) messages, with a default time out value of 4 seconds.
After 60 seconds, we brought down node 4, which forces node 2 to
change the path to node 6. Figure 8 shows the benefits of multipath
routing – node 2 did not need to recalculate the path and it moved to
an alternate path as soon as it detected a failure. In contrast, NLSR
with only single-path calculation took more than a minute to find
the alternate route and moved back to the old path once we brought
it up back again at 180sec. The convergence time can be controlled
by info Interest timeout value and the number of retries, which are
set to 60 seconds initially and 3 times with a 15-second interval,
respectively, before declaring a node or link as down.

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

R
o

u
n

d
-T

ri
p

 T
im

e
 (

m
s
)

Time (seconds)

NLSR Convergence Time

Node Down

Single Path Converged

Node Up

Convergence Time

Multi Path
Single Path

Figure 8: Convergence time with & without multipath support

5. RELATED WORK
To the best of our knowledge, very limited work has been done in

the routing area of NDN. The routing protocol proposed by Dai et
al. [2] is similar to NLSR on the surface, but it differs from NLSR
in the following aspects. First, it uses OSPF to collect the topology
and compute shortest path. We use SYNC to disseminate LSAs,

not flooding. Second, their routing messages are not sent as Inter-
ests/Data and therefore cannot enjoy the benefit of signed updates,
i.e., security. Third, their multipath forwarding is limited to con-
tents served by multiple producers, e.g., anycast among a number
of server replica. While we support that scenario, we also support
multiple paths to the same producer.

In [6], authors proposed a Controller-based Routing Scheme (CRoS)
for NDN. The controllers store the network topology, calculate the
routes, and store named data locations, so that they can install route
for any named data in the network. Although the idea of hav-
ing decentralized Controllers is interesting, the network needs to
be flooded with specially formatted Interest message to search for
controllers, which can result in high overhead.

6. CONCLUSION
Although the design of link-state routing protocols for IP-based

networks is a well understood subject, our design of NLSR so far
has served as a great learning experience. To meet NDN’s rout-
ing needs, NLSR departs from the conventional routing protocol’s
single path forwarding and instead provides multiple forwarding
options for each name prefix.

However our major gains from this experience came from NLSR
being a specific case of developing a new application on top of
NDN, which requires: (1) careful considerations on the name space
design, (2) the development of a trust model for key verification,
and (3) a mental adjustment to NDN’s new design patterns of using
Interest-Data exchanges for routing update messages. Furthermore,
the use of named data for communication enables the concept of
Sync, which facilitates dataset synchronization in distributed sys-
tems. Our NLSR design utilizes Sync to make the routing protocol
more robust and conceptually simpler.

The results so far represent a preliminary step toward the devel-
opment of an NDN-based routing system. Our ongoing efforts in-
clude real-world deployment and operation, exploring new routing
schemes, and extending into inter-domain routing.

7. REFERENCES
[1] C. Bian, Z. Zhu, E. Uzun, and L. Zhang. Deploying key

management on NDN testbed. Technical Report NDN-0009,
Febryary 2013.

[2] H. Dai, J. Lu, Y. Wang, and B. Liu. A two-layer intra-domain
routing scheme for Named Data Networking. Globecom 2012

- Next Generation Networking and Internet Symposium,
December 2012.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking named content.
In Proceedings of ACM CoNEXT, 2009.

[4] L. Zhang et al. Named data networking (NDN) project.
Technical Report NDN-0001, PARC, October 2010.

[5] PARC. CCNx open srouce platform.
http://www.ccnx.org.

[6] J. Torres, L. Ferraz, and O. Duarte. Controller-based routing
scheme for Named Data Network. Technical report, Electrical
Engineering Program, COPPE/UFRJ, December 2012.

[7] University Of Arizona. ccnping.
https://github.com/NDN-Routing/ccnping.

[8] L. Wang, A. M. Hoque, C. Yi, A. Alyyan, and B. Zhang.
OSPFN: An OSPF based routing protocol for Named Data
Networking. Technical Report NDN-0003, July 2012.

[9] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang.
Adaptive forwarding in named data networking. SIGCOMM

Comput. Commun. Rev., 42(3):62–67, June 2012.

20

