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Schizophrenia is a disabling mental illness that is now recognized as a neurodevelopmental

disorder. It is likely that genetic risk factors interact with environmental perturbations to

affect normal brain development and that this altered trajectory results in a combination
of positive, negative, and cognitive symptoms. Although the exact pathophysiology

of schizophrenia is unknown, the N-methyl-D-aspartate receptor (NMDAR), a major
glutamate receptor subtype, has received great attention. Proper expression and

regulation of NMDARs in the brain is critical for learning and memory processes

as well as cortical plasticity and maturation. Evidence from both animal models and
human studies implicates a dysfunction of NMDARs both in disease progression and

symptoms of schizophrenia. Furthermore, mutations in many of the known genetic risk

factors for schizophrenia suggest that NMDAR hypofunction is a convergence point for
schizophrenia. In this review, we discuss how disrupted NMDAR function leads to altered

neurodevelopment that may contribute to the progression and development of symptoms
for schizophrenia, particularly cognitive deficits. We review the shared signaling pathways

among the schizophrenia susceptibility genes DISC1, neuregulin1, and dysbindin, focusing

on the AKT/GSK3β pathway, and how their mutations and interactions can lead to NMDAR
dysfunction during development. Additionally, we explore what open questions remain

and suggest where schizophrenia research needs to move in order to provide mechanistic

insight into the cause of NMDAR dysfunction, as well as generate possible new avenues
for therapeutic intervention.
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INTRODUCTION

Schizophrenia is a devastating psychological disorder that consists

of a complex set of positive, negative, and cognitive symptoms.

Although the pathophysiological mechanisms associated with this

disease remain unclear, the dopamine (DA) hypothesis has dom-

inated the theories of schizophrenia for several decades (Howes

and Kapur, 2009; Abi-Dargham, 2012). It was proposed that

hyperactivity in the mesolimbic DA pathway is the mediator of

positive symptoms of schizophrenia, whereas hypoactivity in the

mesocortical DA pathway mediates the negative and cognitive

Abbreviations: Akt, also known as Protein Kinase B (PKB), is a serine/threonine-

specific protein kinase; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole pro-

pionic acid receptor; BDNF, brain derived neurotrophic factor; cAMP, cyclic
adenosine monophosphate; CaMKII, Ca2+/calmodulin dependent protein kinase

II; cdk5, cyclin-dependent kinase 5; CK2, casein kinase 2; COMT, catechol-o-

methyltransferase; DA, dopamine; Dysbindin, also known as dystrobrevin-binding

protein 1; DISC1, disrupted in schizophrenia-1; DAOA, D-amino acid oxidase
activator; HDAC, histone deacetylase; DNMT1, DNA-methyltransferase 1; ERK,

extracellular-signal-regulated kinase; GABA, gamma-aminobutyric acid; GAD65,

glutamic acid decarboxylase 65; GAD67, glutamic acid decarboxylase 67; GSK-3β,
glycogen synthase kinase 3β; LTP, long-term potentiation; MAGUK, membrane-

associated guanylate kinase; mGluR, metabotropic glutamate receptor; MK801,

dizocilpine; NMDAR, N-methyl-D-aspartate receptor; NRG1, neuregulin 1; PCP,

phencyclidine; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase
C; PSD95, post synaptic density protein 95; SAP102, synapse associated protein

102; SFK, Src family of kinases; PDE4B, cAMP-specific phosphodiesterase 4B; SR,

serine racemase; vGluT, vesicular glutamate transporter.

symptoms of schizophrenia. However, focusing on the DA system

has led to limited progress in understanding the pathophysiolog-

ical processes in schizophrenia, and subsequently has led to min-

imal development of novel therapeutics (Miyamoto et al., 2012).

In the past two decades, hypotheses of schizophrenia have pro-

gressed beyond the DA hypothesis. In a major paradigm shift on

the etiology of schizophrenia, it has been proposed that numerous

genetic and environmental risk factors converge on the N-methyl-

D-aspartate receptors (NMDAR)-mediated glutamatergic system

and result in NMDAR hypofunction in the limbic system during

neurodevelopment.

NMDARs are widely thought to be crucial in synaptic plasticity

and circuit formation for pre- and early postnatal stages of brain

development, otherwise known as the “critical developmental

window.” Numerous studies have indicated that the maturation

of brain circuitry is usually coincident with the NMDAR subunit

switch (e.g., NR2B-to-NR2A and NR3A-to-NR3B) that occurs at

the onset of the critical period of development (Monyer et al.,

1994; Sheng et al., 1994; Quinlan et al., 1999; Wang et al., 2008;

Roberts et al., 2009; Wang and Gao, 2009; Snyder et al., 2013).

The NMDAR subunit shift therefore marks the transition from

juvenile to “adult” neural processing (Dumas, 2005; Henson et al.,

2010) and the subunit switch makes the NMDARs extremely vul-

nerable to genetic and environmental risk factors (Spear, 2000).

Because NMDARs regulate DA neurons and DA transmission,
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hypofunction of NMDARs may be responsible for the abnor-

mal DA activity associated with the symptoms of schizophrenia.

Indeed, the NMDAR-mediated glutamatergic model provides an

alternate approach for conceptualizing the brain abnormalities

associated with schizophrenia (Harrison and Weinberger, 2005;

Lewis and Moghaddam, 2006; Lisman et al., 2008). Although it

remains unclear what changes induce the onset of cognitive dys-

function, NMDAR dysfunction appears to be a convergence point

for progression and symptoms of schizophrenia, especially for

cognitive deficits. There have been several elegant review articles;

some issues on a specific topic, such as neuregulin1, circuit-level

glutamatergic hypothesis and metabotropic glutamate receptors,

can be found in these references (Moghaddam, 2003; Coyle,

2006; Lisman et al., 2008; Banerjee et al., 2010; Marek et al.,

2010; Niswender and Conn, 2010; Geddes et al., 2011; Lin et al.,

2012; Millan et al., 2012; Vinson and Conn, 2012). Below we

focus on the current literature and explain how the hypothesis of

NMDA hypofunction is formulated, why NMDA hypofunction

could be a convergence point for the progression and symptoms

of schizophrenia, what mechanisms are associated with regula-

tion of NMDAR function, as well as possible signaling pathways

related to the regulation of NMDAR function by high-risk genes

for schizophrenia. It is likely that convergent mechanisms tar-

get NMDAR, which in turn contribute to negative symptoms

and neurocognitive dysfunction directly (Lau and Zukin, 2007),

as well as to positive symptoms via dysregulation of brain DA

systems indirectly (Howes and Kapur, 2009; Abi-Dargham, 2012).

EVIDENCE FOR ABNORMAL GLUTAMATE TRANSMISSION

AND NMDAR HYPOFUNCTION IN SCHIZOPHRENIA

In the past two decades, the abnormalities found in human

subjects with schizophrenia and the various animal models for

schizophrenia all point to an important contribution of the gluta-

matergic system to the disease (Moghaddam and Jackson, 2003;

Javitt, 2004; Millan, 2005). Accumulating studies have shown

that aberrant NMDAR function, namely NMDAR hypofunc-

tion, in the limbic brain region, may underlie many aspects of

molecular, cellular, and behavioral abnormalities associated with

schizophrenia (Mohn et al., 1999; Olney et al., 1999; Tamminga,

1999; Dracheva et al., 2001; Krystal et al., 2002; Moghaddam and

Jackson, 2003; Javitt, 2004; Coyle, 2006). First, mice with reduced

NMDAR expression display behaviors related to schizophrenia

(Mohn et al., 1999). Second, NMDAR antagonists, such as phen-

cyclidine (PCP), dizocilpine (MK-801), and ketamine, produce

“schizophrenia like” symptoms in healthy individuals (Javitt and

Zukin, 1991; Krystal et al., 1994; Lahti et al., 1995). Compelling

evidence has suggested that the NMDAR antagonist PCP and

its analog compounds can produce a pattern of metabolic,

neurochemical, and behavioral changes that reproduce almost

exactly those seen in patients with schizophrenia, with remarkable

regional specificity (Morris et al., 2005). This finding has provided

considerable insight into the processes that lead to the devel-

opment of the disease, emphasizing the potential importance of

NMDAR hypofunction. Third, a majority of the genes that are

associated with an increased risk for schizophrenia can influence

the function of NMDARs or related receptor-interacting proteins

and signal transduction pathways (Moghaddam, 2003; Harrison

and Weinberger, 2005) (see below for detail). Fourth, dysregu-

lated NMDAR subunits are usually seen in postmortem tissue

from patients with schizophrenia (Akbarian et al., 1996; Gao et al.,

2000; Kristiansen et al., 2007; Geddes et al., 2011; Weickert et al.,

2012) and in animal models of NMDAR antagonism (Lisman

et al., 2008; Gunduz-Bruce, 2009). Postmortem studies also show

changes in glutamate receptor binding, transcription, and subunit

protein expression in the prefrontal cortex (Akbarian et al., 1996;

Kristiansen et al., 2006; Beneyto and Meador-Woodruff, 2008),

thalamus (Ibrahim et al., 2000; Clinton and Meador-Woodruff,

2004; Clinton et al., 2006; Dracheva et al., 2008), and hippocam-

pus (Gao et al., 2000; Beneyto et al., 2007; McCullumsmith et al.,

2007) of subjects with schizophrenia (Geddes et al., 2011). These

changes include decreased NR1, increased excitatory amino-acid

transporter, and altered NMDA receptor-affiliated intracellular

proteins such as post synaptic density protein 95 (PSD95) and

synapse associated protein 102 (SAP102) in the prefrontal cortex

and thalamus [see (Geddes et al., 2011) Table 1 for detail]. Fifth,

glutamatergic neurons also interact with other neurons that have

been strongly implicated in the pathophysiology of schizophre-

nia, including morphologically altered GABAergic interneurons

(Lewis et al., 2005) and antipsychotic drug-targeted DA neurons

(Howes and Kapur, 2009; Abi-Dargham, 2012; Grace, 2012).

On the basis of these observations, it has been postulated

that the glutamatergic disturbances may involve hypofunctioning

of NMDARs on gamma-aminobutyric acid (GABA) interneu-

rons in the limbic circuit (Olney and Farber, 1995; Olney et al.,

1999; Lindsley et al., 2006; Lisman et al., 2008). How might

this be achieved? Activity in the corticolimbothalamic circuit is

strongly regulated by local GABAergic interneurons, especially

basket and chandelier cells. Output from the cortical pyramidal

neurons is suppressed and coordinated by GABAergic interneu-

rons. These cells are activated by recurrent collaterals from the

pyramidal neurons and exert a powerful feedback inhibitory

action on pyramidal cells via synapses onto the soma and axon

hillock (Figure 1). Both basket and chandelier cells are particu-

larly important for restraining excessive pyramidal neuron activ-

ity, the impairment of these cells leads to dramatic disinhibition

of the pyramidal neuron efferent activity and elevated uncoor-

dinated firing throughout the corticolimbic circuit. Considering

the dysfunction of NMDAR subunits in patients with schizophre-

nia (Akbarian et al., 1996; Eastwood et al., 1997; Goff and Wine,

1997; Grimwood et al., 1999; Gao et al., 2000; Clinton et al., 2003;

Clinton and Meador-Woodruff, 2004; Weickert et al., 2012), it has

been speculated that NMDAR subunits distributed on interneu-

rons may be responsible for NMDAR hypofunction (Nakazawa

et al., 2012). The central pathological characteristics seem to be

caused by NMDAR hypofunction acting on GABAergic interneu-

rons, followed by the disinhibition of glutamatergic transmission

and an overstimulation of non-NMDARs on pyramidal neurons

(Figure 1) (Olney and Farber, 1995; Olney et al., 1999; Lindsley

et al., 2006; Lisman et al., 2008). The postulated existence of disin-

hibited glutamatergic transmission and the subsequent cascade of

excitotoxic events resulting from NMDAR hypofunction, degen-

eration of GABAergic interneurons, or a combination of both,

have suggested diverse experimental therapeutic interventions for

schizophrenia, such as facilitation of NMDA receptor-mediated
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FIGURE 1 | Hypothesis of NMDAR hypofunction. (A) Schematic diagram of

NMDAR complex. (B) NMDAR hypoactivity and glutamate neurotoxicity.

PCP/MK801 ⇒ NMDAR hypofunction on GABAergic neurons ⇒ disinhibition

of pyramidal neurons ⇒ more glutamate release ⇒ AMPA/KA receptors

excessively stimulated ⇒ excitotoxic damage [Figure 1B was modified from

(Olney et al., 1999)].

neurotransmission and potentiation of GABAergic inhibition

(Coyle and Tsai, 2004; Javitt, 2004). Recently, a heuristic model

for the pathophysiology of schizophrenia that attempts to rec-

oncile the neuropathological and neurocognitive features of the

disorder has been proposed (Lisman et al., 2008).

When does the hypofunction of NMDAR occur and what

are the mechanisms involved? Specifically, it is crucial to under-

stand which neurons express altered glutamate receptor subtypes,

whether these neurons are inhibitory or excitatory, and how the

circuitries are affected. It is possible that the hypofunction of

the NMDAR on GABAergic interneurons disrupts the functional

integrity of the corticolimbic circuit, causing cognitive impair-

ments and negative symptoms. Based on this hypothesis, it is

reasonable to speculate that the NMDARs on frontal cortical

and limbic GABAergic interneurons are most sensitive to these

antagonists and therefore may be an important site of pathology

resulting in NMDAR dysfunction. To address these possibili-

ties, we have examined the developmental changes and functions

of NMDARs in identified prefrontal neurons. Interestingly, we

found that the development of NR2 subunits in pyramidal neu-

rons and GABAergic interneurons of rat prefrontal cortex is cell

type-specific (Wang et al., 2008; Wang and Gao, 2009). NR2B

levels remain high until adulthood, without significant NR2B-

to-NR2A subunit switch, in layer 5 pyramidal neurons in the

prefrontal cortex (Wang et al., 2008); however, they are grad-

ually replaced by NR2A subunits in fast-spiking interneurons

(Wang and Gao, 2009). Particularly, fast-spiking interneurons

in the prefrontal cortex undergo dramatic changes in gluta-

matergic receptors during the adolescent period (Wang and

Gao, 2009, 2010) and consequently, a cell type-specific change

of NMDAR subunits in parvalbumin-positive interneurons is

clearly evidenced (Xi et al., 2009). These findings strongly sug-

gested that fast-spiking or parvalbumin-positive interneurons are

more sensitive to pharmacological or environmental stimulation.

Indeed, we found that MK-801 induces distinct changes of AMPA

and NMDARs in the fast-spiking interneurons and pyramidal

cells in adolescent rat prefrontal cortex (Wang and Gao, 2012).

Furthermore, when the NR1 subunit was selectively eliminated

in parvalbumin-positive interneurons in forebrain cortices and

hippocampus in early (neonatal) development, the rats exhibited

reduced glutamic acid decarboxylase 67 (GAD67) and parval-

bumin as well as distinct schizophrenia-related symptoms that

emerged after adolescence; in contrast, post-adolescent deletion

of NR1 did not result in such abnormalities (Belforte et al.,

2010). These basic studies in NMDAR development in the pre-

frontal cortex have been extremely useful in the formulation

of an NMDAR hypofunction hypothesis. The high vulnerability

of corticolimbic fast-spiking interneurons to genetic predisposi-

tions and early environmental insults such as excitotoxicity and

oxidative stress could help to better explain their significant con-

tribution to the development of schizophrenia (Nakazawa et al.,

2012). Given that both DA and GABA systems are indeed the

targets of NMDAR disruption, it is plausible to propose that dys-

function of NMDARs in the DA neurons and GABAergic cells

induce DA hyperactivity or GABA downregulation, which in turn

results in psychosis.

Still, this does not completely explain the pathophysiology

of schizophrenia, as there is evidence of NMDAR dysfunction

in other key brain areas, especially during development. In

addition to the prefrontal cortex, the hippocampus is a brain

region that is consistently implicated in schizophrenia (Bogerts

et al., 1990; Medoff et al., 2001; Harrison, 2004; Witthaus

et al., 2009). In hippocampus, like other cortical regions, proper

NMDAR subunit expression and function is necessary for hip-

pocampal development, with NMDAR misregulation affecting

synaptogenesis and circuit maturation (Roberts et al., 2009;

Brigman et al., 2010; Gambrill and Barria, 2011; John Gray

et al., 2011). Therefore, misregulation of NMDAR subunit com-

position and function during hippocampal development may

contribute to the pathogenesis in schizophrenia. Indeed, we

recently found in the MAM neurodevelopmental schizophrenia

model, that NMDAR function is disrupted in CA1 pyrami-

dal neurons early in hippocampal development (Snyder et al.,

2013). Understanding when and how NMDAR function is dis-

rupted in regards to schizophrenia progression is a key area of

research.
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SCHIZOPHRENIA IS A NEURODEVELOPMENTAL DISORDER

WITH MULTIPLE SUSCEPTIBILITY GENES CONVERGING ON

NMDARs

It is increasingly recognized that schizophrenia is a neurodevel-

opmental disorder that involves disrupted alterations in brain

circuits (Weinberger, 1987; Lewis and Gonzalez-Burgos, 2008;

Jaaro-Peled et al., 2009). Although psychosis usually emerges

in late adolescence or early adulthood, we still do not under-

stand all of the changes in normal or abnormal development

prior to and during this period. It is particularly unclear what

factors alter the excitatory-inhibitory synaptic balance in the

juvenile brain and what changes induce the onset of cognitive

dysfunction. Current studies suggest that problems related to

schizophrenia are evident much earlier than the juvenile stage

of development. The emerging picture from genetic and epige-

netic studies indicates that early brain development is affected.

However, after many years of intensive investigations, no sin-

gle gene has been found to be responsible for schizophrenia.

Although recent findings have generated great interest in the copy

number variations of genes in schizophrenia patients, they are

rare and are unlikely to account for the majority of cases of the

disorder (Allen et al., 2008; O’Donovan et al., 2008; Stefansson

et al., 2008). Rather, a number of high-risk genes have been iden-

tified as increasing susceptibility for schizophrenia (Allen et al.,

2008), including the catechol-o-methyltransferase gene (COMT)

(Weinberger et al., 2001; Bilder et al., 2004; Cannon, 2005;

Harrison and Weinberger, 2005; Savitz et al., 2006; Tunbridge

et al., 2006; Tan et al., 2009), neuregulin 1 (NRG1) (Roy et al.,

2007; Mei and Xiong, 2008; Kato et al., 2011), disrupted in

schizophrenia-1 (DISC-1) (Lipina et al., 2010; Niwa et al., 2010),

and dystrobrevin-binding protein 1 (dysbindin) (Iizuka et al.,

2007; Ji et al., 2009; Papaleo and Weinberger, 2011; Papaleo

et al., 2012), among others. Many of these genetic variants asso-

ciated with schizophrenia are involved with neurodevelopment

that is related to the glutamatergic system in the brain (Hahn

et al., 2006; Allen et al., 2008; Shi et al., 2008; Papaleo et al.,

2012).

Recent studies indicate that single genes may not be suffi-

cient to cause schizophrenia. Instead, multiple “susceptibility”

genes could possibly work together to trigger disease onset with

each susceptibility gene coding for a subtle molecular abnormality

in transmitter receptors, enzymes, protein kinases, transcription,

and translation (Harrison and Weinberger, 2005). These subtle

changes could disrupt neurodevelopment, intracellular signaling

pathways and neurotransmission, consequently resulting in dis-

turbed information processing in brain circuits that mediate the

symptoms of schizophrenia. It is therefore not surprising that

many of the susceptibility genes for schizophrenia regulate not

only neuronal proliferation, neuronal migration, and synaptoge-

nesis during early development, but also have functions linked

to glutamate neurotransmission, especially the NMDA receptor,

in postnatal development (Straub and Weinberger, 2006; Karam

et al., 2010).

Numerous susceptibility genes have been shown to be able

to regulate various elements of NMDAR mediated signaling.

Dysbindin, neuregulin, and DISC1 all function to affect NMDAR

function through a variety of mechanisms. Both dysbindin

and neuregulin regulate the formation and function of the

postsynaptic density (PSD), a set of proteins that interacts with

the postsynaptic membrane to provide structural and functional

regulatory elements for neurotransmission and for NMDARs

(Numakawa et al., 2004; Hahn et al., 2006). Neuregulin also acti-

vates an Erb signaling system that is co-localized with NMDARs

(Hahn et al., 2006). This Erb signaling system is a member of

the receptor tyrosine kinase and neurotrophin signal transduc-

tion system, interacts with PSD, and is involved in neuroplas-

ticity mediated by NMDARs (Huang et al., 2000). Furthermore,

neuregulin has been shown to alter NMDAR expression (Ozaki

et al., 1997; Li et al., 2007; Mei and Xiong, 2008; Banerjee

et al., 2010) [see (Geddes et al., 2011) for detail]. Preventing

NRG1/ErbB4 signaling leads to loss of NMDA synaptic currents

and dendritic spines (Li et al., 2007). Dysbindin also regu-

lates the activity of the vesicular glutamate transporter, vGluT

(Fanous et al., 2005), and may contribute to NMDAR dysfunction

(Karlsgodt et al., 2011). Furthermore, the degree of dysbindin-

induced NR1 degradation correlates with impairment in spatial

working memory performance (Karlsgodt et al., 2011). This is

strong evidence that dysbindin’s effects on NMDAR expression

could contribute to the cognitive symptoms of schizophrenia.

DISC1 affects presynaptic glutamate release from axonal ter-

minals (Maher and LoTurco, 2012), and regulates cyclic adeno-

sine monophosphate (cAMP) signaling, which would affect

the functions of glutamate neurotransmission mediated by

metabotropic glutamate receptors (mGluR) (Millar et al., 2005).

DISC1 also binds to and stabilizes serine racemase (SR), the

enzyme that generates D-serine, an endogenous co-agonist of the

NMDA receptor. In a mouse model of selective and inducible

expression of mutant DISC1 in astrocytes, the main source of

D-serine in the brain, Ma et al. found that mutant DISC1 leads

to SR degradation, resulting in D-serine deficiency that coincides

with behavioral changes indicative of altered NMDAR neuro-

transmission (Ma et al., 2012). While not yet specifically tested,

these changes would likely lead to reduced function of NMDARs

at synapses. In addition, the DAOA gene encodes a protein

that activates the enzyme D-amino acid oxidase, which degrades

the co-transmitter D-serine that acts at glutamate synapses and

at NMDARs. DAOA activates this enzyme, so abnormalities

in this gene would be expected to alter the metabolism of

D-serine, which in turn would alter glutamate neurotransmission

at NMDARs (Stahl, 2007a).

Thus, there is strong evidence that the known susceptibility

genes for schizophrenia converge on glutamate synapses, specif-

ically at NMDARs. These observations support the notion that

the NMDAR hypofunction hypothesis is a plausible theory for

schizophrenia (Stahl, 2007a) and NMDAR dysfunction is a con-

vergence point for schizophrenia (Kantrowitz and Javitt, 2010).

Genes that code for any subtle molecular abnormalities linked

to NMDAR function in specific brain circuits theoretically could

create inefficient information processing at glutamate synapses

that can produce the symptoms of schizophrenia, especially cog-

nitive dysfunctions. If these genetically mediated abnormalities

occur simultaneously in a permissive environment, the syndrome

of schizophrenia could be induced and onset of symptoms will be

triggered (Stahl, 2007b).
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MOLECULAR MECHANISMS ASSOCIATED WITH NMDAR

REGULATION AND NMDAR HYPOFUNCTION IN

SCHIZOPHRENIA

As discussed above, there are many risk genes associated with

schizophrenia. However, changes in their expression and func-

tion are unlikely to entirely account for the pathophysiology of

schizophrenia. A fundamental question is what causes the alter-

ation of NMDAR during neurodevelopment in schizophrenia.

In addition to genetic modifications, there are several possi-

ble mechanisms, including altered transcription/translation and

posttranslational modifications that could contribute to NMDAR

hypofunction in schizophrenia. For example, NMDAR hypofunc-

tion could result from reduced levels of mRNA and transla-

tion and in fact, there is evidence of reduced mRNA levels of

some NMDAR subunits in postmortem tissue of schizophren-

ics (Dracheva et al., 2001; Beneyto and Meador-Woodruff, 2008;

Weickert et al., 2012) but plenty of evidence also suggests an

increase or no change in some subunits (Akbarian et al., 1996;

Geddes et al., 2011; Weickert et al., 2012). Given the complexity

of the disorder and the numerous risk genes involved, it is likely

that several mechanisms work in concert. Fortunately, substantial

knowledge exists as to how NMDARs are translated, trafficked

to synaptic membranes, stabilized, exocytosed, and removed for

recycling or degradation (Sans et al., 2003; Wenthold et al., 2003;

Perez-Otano and Ehlers, 2004; Lau and Zukin, 2007). However,

any disruption of this well-regulated process can lead to NMDAR

hypofunction and contribute to altered development and symp-

tomatology seen in schizophrenia. Thus, it becomes a daunt-

ing challenge to understand the pathophysiological processes

involved.

An exciting avenue of research in schizophrenia and other

psychiatric disorders is evaluating the epigenetic changes that

occur in these illnesses. Epigenetics is a broad term that describes

changes to chromatin which alter the frequency of gene tran-

scription without changing the genetic sequence. These changes

include DNA methylation and a variety of histone modifica-

tions. In general, increasing DNA methylation, particularly at

CpG islands of promoter sequences, will decrease gene expres-

sion (Bird, 2002). Therefore, even if a gene is not found to be

definitively altered in human schizophrenic patients by standard

genome-wide association study (GWAS), it is possible that epige-

netic changes are contributing to altered neurodevelopment and

cognitive symptoms in schizophrenia (Borrelli et al., 2008; Day

and Sweatt, 2011; Rodenas-Ruano et al., 2012). Indeed, a role

for histone acetylation and methylation in cognition is increas-

ingly being appreciated (Jeremy Day and Sweatt, 2011). Other

data suggest that chromatin modifications by histone deacety-

lases (HDACs) may underlie cognitive dysfunctions in a variety

of mental disorders (Fischer et al., 2010). Thus far, epigenetic

modulation of several genes, including GAD1 and RELN, has

been found to be altered in schizophrenia (Abdolmaleky et al.,

2005; Ruzicka et al., 2007). Additionally, the DNA methylating

enzyme, DNA-methyltransferase 1 (DNMT1), showed increased

expression in cortical interneurons in postmortem tissue from

schizophrenics (Veldic et al., 2005). This change in DNMT1 cor-

related with the alterations in GAD1 and RELN. However, it

is possible that other genes and associated interacting proteins

are also similarly affected. For example, animal research has

shown that NMDAR subunit expression can be altered through

various epigenetic changes (Stadler et al., 2005; Jiang et al.,

2010; Rodenas-Ruano et al., 2012). Furthermore, DNA methy-

lation changes have been found in the promoter sequence for

NR3B in major psychosis (Mill et al., 2008). These studies sug-

gest that epigenetic regulation of NMDARs could contribute to

the pathophysiology of schizophrenia. Still, it is unclear how epi-

genetic factors control the expression of NMDARs, particularly

mRNA expression of individual subunits. It is possible that CpG

islands in the promoter region of a NMDAR subunit are regulated

by chromatin modification (Rodenas-Ruano et al., 2012). Gene

mutation or environmental risk factors could alter gene promoter

sequences via either DNA methylation or histone modification

and thus result in mis-expression of NMDARs.

Furthermore, NMDAR subunits undergo several post-

translation modifications including phosphorylation,

palmitoylation, and polyubiquitination. Dysregulation of

any of these processes can greatly impact channel function

and expression and consequently contribute to NMDAR hypo-

function. The most-studied posttranslational modification of

NMDARs is phosphorylation, which is a well-characterized

means for regulating synaptic localization, stabilization, and

channel kinetics. Therefore, changes in NMDAR phosphoryla-

tion have important implications both for synaptic plasticity and

cognitive symptoms in schizophrenia (Rosenblum et al., 1996;

Lu et al., 1998; Li et al., 2009). This dynamic process not only

involves the direct phosphorylation of NMDARs, but also kinase

activation and subsequent phosphorylation of other synaptic

proteins (Lau and Zukin, 2007; Lau et al., 2010). Moreover,

the NR2 subunit’s large C-terminus has many putative sites for

phosphorylation which can affect channel gating and stabiliza-

tion at the synapse (Monyer et al., 1992; Kornau et al., 1995).

NMDAR subunits are phosphorylated at serine or threonine and

at tyrosine residues (Raymond et al., 1994; Wang and Salter, 1994;

Kohr and Seeburg, 1996; Tingley et al., 1997). These sites are

substrates for phosphorylation by a variety of kinases including

the Src family of kinases (SFK), cAMP-dependent protein kinase

A (PKA), protein kinase C (PKC), cyclin-dependent kinase 5

(Cdk5), casein kinase 2 (CK2), and CaMKII (Omkumar et al.,

1996; Raman et al., 1996; Li et al., 2001; Chung et al., 2004).

In fact, the activity and expression of many of these kinases are

altered in postmortem tissue from human schizophrenic patients

(Aksenova et al., 1991; Engmann et al., 2011; Funk et al., 2012).

This provides strong evidence that altered kinase signaling likely

plays a role in NMDAR function in schizophrenia.

It is clear that the interaction between synaptic scaffold-

ing proteins and the NR2 subunit C-terminal tails are criti-

cal for NMDAR synaptic targeting and thus could contribute

to NMDAR hypofunction. PDZ-containing proteins can bind

directly to NR2 subunits via PDZ recognition sequences in the

distal portions of their C-termini, and this association is crit-

ical for targeting NDMARs to the synapse (Mori et al., 1998;

Steigerwald et al., 2000; Lin et al., 2004). Further, both NR2A

and NR2B are known to interact with membrane-associated

guanylate kinase (MAGUK) family of proteins, including PSD-

95, PSD-93, and SAP102 (Al-Hallaq et al., 2007). Interestingly,
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the neuregulin receptor ErbB4 also associates with similar PDZ

domains, positioning NRG-Erb signaling to affect NMDAR func-

tion (Garcia et al., 2000). Furthermore, ErbB4 interacts with

FYN, a member of SFKs. SFKs phosphorylate tyrosine residues

on both NR2A and NR2B subunits affecting channel gating and

increasing NMDAR currents (Wang and Salter, 1994; Kohr and

Seeburg, 1996; Hisatsune et al., 1999; Nakazawa et al., 2001;

Takasu et al., 2002). NRG1-Erb signaling can prevent Src upregu-

lation of NMDAR-mediated currents by inhibiting NR2B phos-

phorylation (Li et al., 2001; Bjarnadottir et al., 2007; Pitcher

et al., 2011). Additionally, NMDAR tyrosine phosphorylation is

important for synaptic plasticity. NR2B tyrosine phosphorylation

is increased following long-term potentiation (LTP) and inhibit-

ing Src activation prevents LTP induction (Grant et al., 1992;

Rosenblum et al., 1996; Rostas et al., 1996; Lu et al., 1998). In

hippocampus, NRG-Erb signaling can suppress LTP (Kwon et al.,

2005; Pitcher et al., 2008). Therefore, NRG1 could contribute to

cognitive dysfunction in schizophrenia by altering NMDAR func-

tion and/or affecting synaptic plasticity (Mei and Xiong, 2008).

Similarly, DISC1 is a known binding partner of PDE4B, which

regulates cAMP activity and thus PKA activity (Millar et al.,

2005; Clapcote et al., 2007). PKA-mediated phosphorylation of

NMDARs can affect their release from the endoplasmic reticu-

lum, and regulate expression levels of NR2B (Scott et al., 2003;

Llansola et al., 2004). However, it has not been directly tested

whether mutations in DISC1 affect NMDAR expression and func-

tion. Additionally, it remains an open question if disruption of

dysbindin would produce similar modifications in NMDARs. If

and how the schizophrenia risk genes affect NMDAR phosphory-

lation and thus expression and function is an area of research that

needs to be further explored.

Another crucial mechanism for proper NMDAR function is

the maintenance of appropriate levels of NMDARs in the synapse.

This process requires a balance between NMDAR insertion

and endocytosis. Specialized endocytic zones involving clathrin-

coated pits have been described lateral to the PSD for gluta-

matergic synapses, and serve to internalize NMDARs (Blanpied

et al., 2002; Petralia et al., 2003; Nong et al., 2004). Altered dys-

bindin expression can alter NMDAR surface expression through

clathrin-dependent endocytosis (Jeans et al., 2011). Further,

palmitoylation and ubiquitination can also regulate NMDAR

synaptic numbers. Palmitoylation is a reversible process that

involves the covalent attachment of palmitate group to proteins

via thioester bonds at cysteine residues. Palmitoylation is a crit-

ical regulator of many cellular processes involved in neuronal

development and synaptic plasticity (Fukata and Fukata, 2010).

Therefore, dysregulation of palmitoylation could contribute to

synaptic dysfunction and cognitive symptoms in schizophrenia.

Furthermore, key proteins implicated in schizophrenia, includ-

ing GAD65 and PSD-95 are known to be regulated dynamically

through palmitoylation (El-Husseini Ael et al., 2002; Kanaani

et al., 2008). More recently, it was discovered that palmitoylation

can regulate NR2A and NR2B trafficking (Hayashi et al., 2009). In

fact, palmitoylation can promote synaptic stabilization or seques-

tering of NMDARs in the Golgi apparatus to affect the level of

NMDARs at synapses. Interestingly, altered protein palmitoyla-

tion was found in a mouse model of 22q11.2 deletion, a high risk

factor of developing schizophrenia (Madry et al., 2008). However,

it remains unknown if NMDAR palmitoylation is disrupted in

schizophrenia and if or how other schizophrenia risk genes may

be involved.

Equally as important as trafficking and stabilizing proteins

in the synapse is the process of targeting proteins for removal

and degradation. It is known that ubiquitin-based protein degra-

dation of NMDARs is an important homeostatic regulator of

NMDAR levels at synapses (Ehlers, 2003). For example, down-

regulation of synaptic NR1 has been associated with polyu-

biquitination (Groblewski and Stafford, 2010; Bangash et al.,

2011). Additionally, ubiquitination of scaffolding proteins, such

as Shank3, is linked to NR2B downregulation (Mao et al., 2009a).

Also, NR2B itself is ubiquitinated in a Fyn dependent manner

(Jurd et al., 2008). Given NRG1-ErbB4 interactions with Fyn, it

is possible that their signaling could contribute to ubiquitination

of NR2B. However, this relationship has not been tested exper-

imentally. Therefore, while there is evidence that the ubiquitin

proteasome pathway is disrupted in schizophrenia (Nilsson et al.,

2007), it is currently unknown how ubiquitination of NMDARs

and other synaptic proteins contribute to the disease process.

Exploring this relationship as well as how schizophrenia risk genes

could alter these processes is an important line of research.

Given the diverse set of mechanisms that could contribute

to NMDAR hypofunction, it is not surprising that multi-

ple signaling pathways are implicated in schizophrenia. For

example, both PLC/IP3R/Ca2+ and Ras/MEK/ERK (extracellu-

lar signal-regulated kinase) signaling pathways are involved in

the neuregulin-induced reduction of NMDAR currents, which

likely occurs through enhancing NR1 internalization via an actin-

dependent mechanism (Gu et al., 2005). While the candidate

genes discussed activate many signaling cascades to affect neu-

rodevelopment and NMDAR function, the AKT (also known as

protein kinase B) signaling pathway, and its downstream target

glycogen synthase kinase 3β (GSK-3β) may serve as a convergence

point or common pathway. AKT is a serine/threonine kinase

that serves in a variety of processes including regulation of pro-

tein synthesis, neurodevelopment, and neuronal plasticity (Sanna

et al., 2002; Jiang et al., 2005; Balu et al., 2012). Further, DISC1,

NRG1, and dysbindin all contribute to these cellular processes,

and are all known regulators of AKT and GSK3β (Lemke, 1996;

Huang et al., 2000; Kamiya et al., 2005; Ghiani et al., 2010; Lee

et al., 2011). DISC1 regulates the AKT-GSK3β signaling path-

way to affect neurodevelopment and adult neurogenesis (Kim

et al., 2009; Mao et al., 2009b). Furthermore, knockdown of

DISC1 with siRNA caused a decrease in AKT phosphorylation,

which would in turn increase GSK3β activity (Hashimoto et al.,

2006). Interestingly, reducing GSK3β activity was able to correct

behavioral deficits in DISC1 mutant mice, strongly implicating

DISC1 affects GSK3β in schizophrenia pathogenesis (Lipina et al.,

2011, 2012). Similarly, both NRG1 and dysbindin can regulate

AKT phosphorylation (Numakawa et al., 2004; Guo et al., 2010).

Additionally, AKT protein levels and phosphorylation of GSK3β

are altered (Emamian et al., 2004) and NRG1-stimulated phos-

phorylation of AKT is reduced in schizophrenia (Keri et al., 2009).

Yet, how would regulation of the AKT/GSK3β signaling pathway

by DISC1, NRG1, and dysbindin affect NMDAR function? It was
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recently demonstrated that GSK3β activity can regulate NMDAR

expression and function (Li et al., 2009; Xi et al., 2011). While this

evidence provides a possible common link between schizophre-

nia risk genes and NMDAR hypofunction, direct experimental

evidence is still needed.

CONCLUSION AND FUTURE PERSPECTIVE

In this review, we have summarized the current literature and dis-

cussed the various mechanisms that are associated with NMDAR

regulation in schizophrenia. All of the findings derived from

the known genetic risk factors for schizophrenia suggest that

NMDARs may serve as a convergence point for the progression

and symptoms of schizophrenia. Despite such progress, there are

still many questions that need to be answered to confirm this

intriguing hypothesis. For example, it is unclear how gene muta-

tions in neurons and/or astrocytes and their interaction can lead

to NMDAR dysfunction during development. It is also unknown

how disrupted NMDAR function leads to altered neurodevel-

opment, which contributes to the progression and development

of this devastating disease. The vast majority of schizophrenia

research has focused on changes in adulthood, leaving neu-

rodevelopmental alterations relatively unexplored. So, while it

is known that proper expression and regulation of NMDARs is

critical for cortical maturation and synaptic plasticity that under-

lie cognitive functioning, it is unknown if there is a common

signaling pathway, such as AKT/GSK-3β pathway, mediates this

pathophysiological process among the schizophrenia susceptibil-

ity genes. If yes, what are the downstream target substrates of

AKT and/or GSK-3β that contribute to the regulation of NMDAR

functions? It is possible that AKT/GSK-3β act directly upon

NMDARs as our recent research suggests (Li et al., 2009; Xi et al.,

2011). However, given their diverse targets (Kockeritz et al., 2006;

Peineau et al., 2008; Karam et al., 2010; Li and Gao, 2011), it is

also possible they indirectly affect NMDARs by acting on other

targets, such as β-catenin (Mao et al., 2009b), β-arrestin (Beaulieu

et al., 2005), DISC1 and/or PDE4 interaction (Mao et al., 2009b;

Lipina et al., 2012), as well as the AKT/mTOR signaling pathway.

Activation of mTOR has been functionally linked with local pro-

tein synthesis in synapses, resulting in the production of proteins

required for synaptic formation and maturation (Kelleher et al.,

2004; Hoeffer and Klann, 2010).

In addition, although psychosis manifests primarily in late

adolescence or early adulthood, the emerging picture from

genetic and epigenetic studies indicates that early brain devel-

opment is affected, and cognitive symptoms, such as learn-

ing and memory deficits, are evident much earlier. Specifically,

schizophrenia may progress from risk to prodrome in the early

stage until onset of psychosis and chronic disability in the late

stage (Insel, 2010). Therefore, theoretically, the key to forestall the

disorder is to detect and prevent early stages of risk and prodrome

with novel therapeutic targets for early treatment (Lieberman

et al., 2006; Insel, 2010). However, in general, schizophrenia-

related research has focused on how NMDAR function in adults

contributes to psychosis and cognitive symptoms. These find-

ings, although intriguing, are limited in that they do not reveal

the changes before psychosis, specifically during neurodevelop-

ment. In fact, there is no consensus among animal models to

what changes occur pre-pubertally and how the genetic sus-

ceptibilities interact. Does the process occur simultaneously or

sequentially, with various changes culminating in altered devel-

opment? If it is a sequential process, when do these changes occur

and is there a point of no return in terms of preventing cog-

nitive symptoms and psychosis? It appears that adolescence is

a critical period for onset of psychosis, but how and by what

mechanisms? Therefore, in studying molecular mechanisms that

underlie the pathophysiology of schizophrenia and related disor-

ders, a sharp focus on the specific neurodevelopmental trajectory,

especially in early development and adolescent brain matura-

tion, is vitally important (Jaaro-Peled et al., 2009; Insel, 2010).

Animal studies, particularly developmental models, will certainly

help to reveal the neurodevelopmental trajectory of schizophre-

nia, yield disease mechanisms, and eventually offer opportunities

for the development of new treatments, especially for early treat-

ment of cognitive deficits. Utilizing multiple animal models to

address similar questions will provide the greatest opportunity

for determining consistent changes that most likely contribute

to the progression of schizophrenia. It would also be important

to definitively determine which neurons express altered gluta-

mate receptor subtypes, whether these neurons are inhibitory or

excitatory, and how the circuitries are affected by these high-risk

genes.

Furthermore, it is critical to determine if there comes a point

during neurodevelopment where brain circuitry is sufficiently

altered that no therapeutics will halt the progression of the dis-

ease. At present, there are no approved medications for the

treatment of either negative symptoms or cognitive dysfunction

in schizophrenia (Ibrahim and Tamminga, 2011). However, new

pharmacological and behavioral approaches aimed at potentiat-

ing glutamatergic neurotransmission, particularly at NMDARs,

offer new hope for future clinical development. Although many

studies support the theory of NMDAR hypofunction, they do not

address the very important conceptual question of whether early

treatment with mGluR agonists or other agents is able to pre-

vent the progression or reverse the cognitive deficits and even

psychosis that occur in the late stage of the disease. A failure

to correct mutant phenotypes with treatment administered after

symptom onset would suggest a missed critical period window

and indicate that schizophrenia is a terminally differentiated phe-

notype of altered brain development. Earlier theories supported

the notion that effective treatment for developmental disorders

such as schizophrenia and autism could only occur during the

critical developmental window, after which the brain would be

hard wired. Indeed, recent studies demonstrated that a compre-

hensive phenotype correction is possible with pharmacological

intervention (mGluR5 inhibitor) starting in young (3–5 postna-

tal weeks) animals, after development of the phenotype, in both

a Fragile X syndrome model (Michalon et al., 2012) and Shank-2

knockout mice (Won et al., 2012). In addition, adolescent admin-

istration of mGluR5 PAMs not only reverse adult-onset deficits,

but also prevent the emergence of cognitive impairment induced

by neonatal treatment with PCP in a developmental model of

schizophrenia (Clifton et al., 2013). These findings certainly offer

fresh hope for schizophrenia treatment, suggesting that NMDARs

could be critical targets for treatment. Currently, our experiments
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are under way to test this hypothesis in rats with gestational

methylazoxymethanol exposure (Snyder et al., 2013) and other

animal models.

Finally, if NMDAR dysfunction in schizophrenia is relative,

rather than absolute, enhanced practice might be able to over-

come reduced plasticity. Given the number of convergent mech-

anisms that may contribute to impaired NMDAR function,

ideal treatment in schizophrenia may engage optimizing func-

tion within a number of convergent pathways. Combinatorial

pharmacological and behavioral interventions, rather than simply

targeting the point of convergence, may prove to be the most suc-

cessful strategy in treating schizophrenia symptoms. Nevertheless,

focusing on NMDAR hypofunction provides a wonderful oppor-

tunity for correcting cognitive impairment in schizophrenia dis-

ease progression.
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