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Abstract. This article gives an introduction into the program nMoldyn, which has been originally conceived
to support the interpretation of neutron scattering experiments on complex molecular systems by the
calculation of appropriate time correlation functions from classical and quantum molecular dynamics
simulations of corresponding model systems. Later the functionality has been extended to include more
advanced time series analyses of molecular dynamics trajectories, in particular the calculation of memory
functions, which play an essential role in the theory of time correlation functions. Here we present a
synoptic view of the range of applications of the latest version of nMoldyn, which includes new modules
for a simulation-based interpretation of data from nuclear magnetic resonance spectroscopy, far infrared
spectroscopy and for protein secondary structure analysis.

1. INTRODUCTION

With the advent of computers, their usefulness for studying condensed matter systems has been
immediately understood, as they permit to simulate a more or less representative part of a real system
on an atomistic level in fully controlled conditions. Since the fundamental goal of statistical physics is
to understand macroscopic phenomena on a microscopic, atomistic basis, computer simulations have
been used from the very beginning for theoretical studies. We mention here the invention of the Monte
Carlo (MC) technique by Metropolis et al. [1] to study the equation of state of model liquids and the
pioneering molecular dynamics (MD) study of liquid argon by Rahman, which extended the scope of
computer simulations to time dependent phenomena [2]. With the technical and methodological progress
over the last decades, increasingly complex systems could be treated, including also electronic degrees
of freedom [3]. In this way computer simulations became also interesting for experimentalists, as the
systems under consideration could be represented more and more realistically.

For most spectroscopic experiments, the link between computer simulations and experimental data
is established by a specific time correlation function, which is either measured directly, or indirectly
in form of a Fourier spectrum. Classical molecular dynamics simulations are particularly useful to
simulate spectra which are obtained from scattering of thermal neutrons. The reason is that neutrons
are scattered by the atomic nuclei in the sample, if the surrounding electrons are not spin-polarized,
as they are in magnetic systems [4]. Since the atomic nuclei are the objects in classical molecular
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dynamics simulations (the “particles”) and since the wavelength and the energy of thermal neutrons
coincide, respectively, with typical atomic distances and energies in condensed matter systems, the
comparison between experiment and simulation is very direct. If simulated and measured data match
well, the simulated trajectories can be analyzed in detail and give information which is not accessible in
experiments. In this way hypotheses and theoretical models can be tested and the information content in
the experimental data can be fully appreciated.

In this spirit, the program package nMoldyn has been developed since the 1990’s, focusing first
on a neutron scattering oriented analysis of the dynamics of complex molecular systems (molecular
liquids and solids, biomolecules) in terms of rigid body motions [5]. To enable an efficient time
series analysis of the MD trajectories, the latter were treated as two-dimensional arrays, enabling
direct access to the time series of single atoms. In this way Fast Fourier Transform (FFT) techniques
could be used for the calculation of certain types of correlation functions, allowing for speedups
of several orders of magnitude compared to conventional techniques. Typical applications can be
found in [6–9]. A completely revised version of nMoldyn was published in 2003 [10], extending the
functionality essentially to autoregressive (AR) modeling of MD trajectories, including the calculation
of memory functions [11], which are the pivot element in the theory of the generalized Langevin
equation [12]. Applications in this context were the study of fractional Brownian dynamics in proteins
on the nanosecond time scale [13] and the refinement of a memory-function based model for liquid
water [14]. The advantage of AR modeling for a computation of Fourier spectra without broadening
through spectral windows has been exploited in recent studies of lysozyme under pressure [15, 16].
From a technical point of view, the code was completely rewritten, passing from Fortran 77 to object-
oriented programming in Python, using as a basis the Molecular Modeling Toolkit (MMTK) [17]. The
2003 version (nMoldyn2) shares in particular the data structure for trajectories with MMTK and has a
graphical user interface.

Over the last years, an effort has been made to interface nMoldyn with NMR relaxation
spectroscopy, and recently also with Terahertz spectroscopy, for the study of protein dynamics and to
include in this context also analyses of the dynamics of secondary structure elements with the ScrewFit
algorithm [18]. In the following we give a short overview of the latest version of nMoldyn, emphasizing
in particular the new functionalities.

2. TIME CORRELATION FUNCTIONS

2.1 Definition

Most of the functionalities of nMoldyn imply the computation of time correlation functions (TCF) of
specific dynamical variables. They are the pivot elements in both theoretical and experimental studies
of systems close to thermal equilibrium. In the following we recall some basic properties of TCFs.

TCFs are special forms of thermal averages, in which the quantity to be averaged is the product of
two dynamical variables, each taken at a different time. In statistical mechanics the thermal average of
a dynamical variable A is defined as an ensemble average,

〈A(t)〉 =
∫
�

d6N� f (�)A(�; t), (2.1)

where � is the 6N dimensional “position vector” � = {R1, ..., RN , P1, ..., PN } in the phase space spanned
by all coordinates and momenta of the N particles (atoms) in the system, and f (�) is the equilibrium
probability density which is determined by the Hamiltonian of the system. Correspondingly a TCF is
defined as

cAB(t1, t0)
.= 〈A(t1)B(t0)〉 =

∫
�

d� f (�)A(�; t1)B(�; t0). (2.2)
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Since molecular dynamics simulations generate phase space trajectories of fixed length T by a
stepwise integration of the equations of motion, ensemble averages are computed through time averages,
assuming that the ergodic hypothesis holds [19]

〈A(t0)〉 = lim
T→∞

1

T

∫ T /2

−T /2
d� A(�+ t0), (2.3)

〈A(t1)B(t0)〉 = lim
T→∞

1

T

∫ T /2

−T /2
d� A(�+ t1)B(�+ t0). (2.4)

In thermal equilibrium, thermodynamic averages and TCFs are invariant with respect to a shift of the
time arguments (stationarity), which means that 〈A(t)〉 does not depend on t and that 〈A(t1)B(t0)〉
depends only on the time-difference t1 − t0 = t , i.e. 〈A(t1)B(t0)〉 = 〈A(t1 − t0)B(0)〉 ≡ 〈A(t)B(0)〉. In
the following we will use the notation

cAB(t)
.= 〈A(t)B(0)〉 (2.5)

and it follows that from the stationarity of equilibrium TCFs that

cAB(t) = cBA(−t). (2.6)

In the framework of classical statistical physics, autocorrelation functions (ACFs) are thus symmetric in
time.

2.2 Wiener-Khinchin theorem

There exists an important relation between the Fourier spectrum of a signal A and the Fourier transform
of its autocorrelation function. Defining the Fourier transform of f and its inverse, respectively, through

f̃ (�) =
∫ +∞
−∞

dt f (t) exp(−i�t) ≡ F{f (t), t , �}, (2.7)

f (t) = 1

2�

∫ +∞
−∞

d� f̃ (�) exp(i�t) ≡ F−1{f̃ (�), �, t}, (2.8)

and the correlation integral

(f ◦ g)(t) =
∫ +∞
−∞

d� f (t + �)g∗(�), (2.9)

it is straightforward to show that

F{(f ◦ g)(t), t , �} = f̃ (�)g̃∗(�). (2.10)

Defining a signal aT (t) of length T , such that

aT (t) =
{

a(t) if |t | < T /2,
0 otherwise,

it follows that caa∗ (t) = limT→∞(a� ◦ a�)(t)/T , and with (4.18)

c̃aa∗ (�) = lim
T→∞

1

T
|ãT (�)|2. (2.11)

This is the famous Wiener-Khinchin theorem, relating the Fourier transformed ACF of a signal to its
power spectrum [19, 20].
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2.3 Mean square displacements

The mean square displacement (MSD) of a diffusing particle, defined as

W (t) ≡ 〈(x(t)− x(0))2〉 = lim
T→∞

1

T

∫ T /2

−T /2
d� (x(t + �)− x(�))2 , (2.12)

where x is its position, plays a fundamental role in the description of diffusion processes. It has a close
relation to the velocity autocorrelation function of the tagged particle,

W (t) = 2
∫ t

0
dt ′ (t − t ′)〈v(t ′) · v(0)〉. (2.13)

For spatially unconstrained, “normal” diffusion, the MSD follows asymptotically Einstein’s law [21],

W (t) ∼ 2ndDt , t →∞, (2.14)

where D is the diffusion coefficient and nd the dimension of x. The diffusion constant can be expressed
in form of the Kubo-relation [22]

D = 1

nd

∫ ∞
0

dt 〈v(t) · v(0)〉. (2.15)

If the motion of the diffusing particle is spatially constrained, the MSD tends for long times to a plateau
value,

lim
t→∞W (t) = 2(〈x2〉 − 〈x〉2). (2.16)

2.4 Generalized Langevin equation

Memory functions play a key role in the theory of the generalized Langevin equation (GLE). To
introduce the concept, it is useful to consider the GLE of a tagged particle in a liquid or a many particle
system in general. For simplicity we consider motion in a particular direction and v is the velocity of
the particle in that direction. The equation of motion of the tagged particle can then by cast into the
form [12],

v̇ = −
∫ t

0
d� �(t − �)v(�)+ f +(t), (2.17)

where �(.) is the memory function. The GLE (2.17) resembles the Langevin equation [23], with f +(.)
being the “random force” and the convolution integral being the “friction force”. The GLE is, however,
an exact equation of motion, and the memory function as well as f +(.) can be expressed in terms of the
microscopic forces acting between the tagged particle and the rest of the system. They represent, in fact,
the remaining system. For details we refer to the excellent monograph by Zwanzig [12]. The important
point is that f +(.) is constructed such that

〈v(0)f +(t)〉 = 0, t > 0, (2.18)

in analogy to the corresponding relation in the normal Langevin equation, where f +(t) is white noise.
Due to relation (2.18), one can derive a closed equation for the VACF,

dcvv(t)

dt
= −

∫ t

0
d� �(t − �)cvv(�), (2.19)

which has the starting point for the development of various models for the time evolution of the
VACF [22, 24]. The reason is that rather effective approximations to the time correlation functions
of interest can be obtained by relatively simple models for the memory function. In the simplest case,
where �(t) = ��(t), Eq. (2.19) becomes a normal differential equation, whose solution is an exponential,
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cvv(t) = cvv(0) exp(−�t), which is well known as the VACF of a particle whose dynamics follows a
Langevin equation. The latter describes thus “memory-less” motion, representing more precisely a time
scale separation between the dynamics of the tagged particle and its environment.

The derivation of the expressions for the memory function and f +(t) does not depend on the
dynamical variable under consideration, and one can derive a generalized Langevin equation for any
dynamical variable, A

Ȧ = −
∫ t

0
d� �AA(t − �)v(�)+ f +A (t), (2.20)

and the ACF of A verifies

dcAA(t)

dt
= −

∫ t

0
d� �AA(t − �)cAA(�). (2.21)

For a complete description on the memory function formalism the reader is referred to standard
textbooks (see for example [22]).

3. CALCULATIONS WITH NMOLDYN

In this section we give an overview of the quantities which can be calculated by nMoldyn, with some
examples of applications. Most analyses involve averages over atoms, which can be attributed specific
weights. For this purpose a new and powerful atom selection scheme has been implemented.

3.1 Velocity autocorrelation function and density of states

nMoldyn allows to calculate the atom-averaged velocity autocorrelation function,

cvv(t) =
N∑

�=1

w�cvv,�(t), with
∑

�

w� = 1, (3.1)

where the atomic VACF can be calculated with two options:
1. Isotropic average: cvv,�(t)

.= 1
3 〈v�(0) · v�(t)〉, where v� is the velocity of atom �.

2. Along a given direction: cvv;�(t)
.= 〈v�,n(0)v�,n(t)〉, where v�,n(t) = n · v�(t) and n is an arbitrary

unit vector.
Furthermore, nMoldyn calculates the so-called density of states (DOS), which is defined as the Fourier
cosine transform of the VACF,

g(�) =
∫ ∞

0
dt cos(�t)cvv(t). (3.2)

From the definition of the DOS and the Kubo relation (2.15) it follows that

g(0) = D. (3.3)

Algorithmic considerations: The VACF can be either calculated with the Fast Fourier Transform (FFT)
based Algorithm described in Section 4.1 or by autoregressive modeling of the underlying velocity
time series, which is described in Section 4.5. Correspondingly, the DOS is calculated by a smoothed
discrete Fourier transform or by the the so-called maximum entropy method, which are described in
Sections 4.3 and 4.4, respectively. A comparison between these computational approaches can be found
in references [11] and [10] for liquid argon and pure water respectively.

Application: Figure 1 shows the VACF and the DOS of hydrogen and oxygen atoms in water. In the
DOS plot one can recognize two peaks centered at about 2 and 8 THz, appearing in both the hydrogen
and the oxygen spectra, and a more pronounced peak at about 15 THz, appearing only in the hydrogen
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Figure 1. Left: VACF of hydrogen and oxygen atoms in water. Right: DOS of hydrogen and oxygen atoms in water.
Here the contribution of each atom has been weighted by the incoherent scattering length. The input trajectory has
been computed using the simulation program DLPOLY (version2) [25]. The simulated system consists of 256 water
molecules in a cubic box of edge length 1.9552 nm. The simulations have been performed in the thermodynamic
NpT -ensemble at a temperature of T = 300 K and a pressure of 1 bar , using the SPC/E potential [26] and Ewald
summation for long-range electrostatic interactions. The integration time step was 1 f s. The trajectory length is
100 ps with a sampling interval of 10 f s.

spectrum. Since the two peaks at lower frequency are identical in both hydrogen and oxygen spectra,
they are usually associated to the diffusion motion of the whole water molecule. On the contrary, the
peak at higher frequency is usually interpreted in terms of hindered motions around the center of mass
of the water molecule, which is almost coincident with the oxygen atom. This behavior is reflected in the
VACFs. The latter are characterized by a damped oscillatory decay, more pronounced for the hydrogen
than for the oxygen, which can be related to the confinement of the tagged particle in the cage formed
by its neighbors. Negative values of the the VACF reflect likely changes in the particle velocity due to
“rattling” motions of a tagged particle in the cage of nearest neighbors.

3.2 Mean-square displacement

In nMoldyn the mean square displacement is an atom-averaged quantity,

W (t) =
N∑

�=1

w�W�(t), with
∑

�

w� = 1, (3.4)

where W�(t) is the MSD of atom � which can be calculated according to the following options:
1. Total isotropic MSD: W�(t)

.= 〈(x�(t)− x�(0))2〉.
2. Along a given direction n: W�(t)

.= 〈(x�,n(t)− x�,n(0))2〉, where x�,n(t) = n · x�(t) and n is an
arbitrary unit vector.

Algorithmic considerations: The MSD is calculated with the Fast Fourier Transform (FFT) based
Algorithm described in Section 4.2.

Application: In the left panel of figure 2 we show as an example the MSD of pure water. For time
lags larger than 0.5 ps, the MSD is well described by a straight line as expected for a Brownian
particle diffusing in the absence of external forces. Using equation (2.14) one can calculate the diffusion
coefficient, whose value is reported in the legend of the left panel of figure 2. The atomic contributions
have been weighted by w� ∝ b2

�,inc, where {b�,inc} are the incoherent scattering lengths of the atoms. In
this type of average the contributions from the hydrogen atoms dominate. The diffusion coefficient can
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Figure 2. Left: MSD of pure water. Here the contribution of each atom has been weighted by the incoherent
scattering length. The input trajectory is the one used for the analysis shown in Figure 1. Right: MSD of lysozyme
in water. Molecular dynamics simulations have been performed for a system consisting of one lysozyme molecule
surrounded by 3403 water molecules, using the program package MMTK [17] with the AMBER94 force field. [27]
The system was enclosed in a rectangular box of an average size of 6.15× 4.10× 4.61 nm3, applying periodic
boundary conditions. The lysozyme structure was taken from the Brookhaven protein data bank [28] (code
193L[29]) and hydrogen atoms were added to the structure according to standard criteria concerning the chemical
bond structure of amino acids. To mimic realistic thermodynamic conditions the system was simulated in the
thermodynamics NpT -ensemble, employing the extended system method [30, 31] with an integration time step
of 0.001 ps. Global translations and rotations of the lysozyme molecule have been subtracted by superposing its
configuration for each time frame with the corresponding initial configuration [32]. This option is now available
within the new version of nMoldyn.

also be extracted from the DOS shown in the right panel of Fig. 1, using relation (3.3) and noting that
the long time diffusion constants of hydrogen and oxygen in a water molecule are the same.

In the case of particles performing confined motions in space the MSD tends to plateau value in
the long time limit (see Eq. (2.16)). An example is provided by atomic motions in a protein once the
global motion has been removed. To illustrate this fact we show, in the right panel of figure 2, the MSD
averaged over all atoms in a lysozyme molecule, using again the weights w� ∝ b2

�,inc.

3.3 Neutron intermediate scattering functions and dynamic structure factors

3.3.1 Intermediate scattering functions

In the following we consider correlation functions of the spatially Fourier-transformed particle density.
With

��(x, t) = �(x− x�(t)) (3.5)

being the probability density to find a single “point-like” particle (atom) � at time t at position x, (�(.)
denotes the Dirac delta distribution) and

�̃�(q, t) =
∫

d3x exp(−iq · x)��(q, t) = exp(−iq · x�(t)), (3.6)

its spatial Fourier transform, we define

�̃(q, t) =
∑

�

w�,coh�̃�(q, t). (3.7)

In terms of the above definitions the coherent and incoherent intermediate scattering functions
[4, 33, 34], respectively, are defined as the (weighted) autocorrelation functions

Fcoh(q, t) = 〈�̃(q, t)�̃∗(q, 0)〉, (3.8)
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Finc(q, t) =
∑

�

w�,inc〈�̃�(q, t)�̃∗�(q, 0)〉. (3.9)

One sees that Fcoh(q, t) gives information about collective motions, whereas Finc(q, t) describes single
particle correlations. The weights are normalized, such that∑

�

w2
�,coh = 1, (3.10)

∑
�

w�,inc = 1. (3.11)

The standard choice for comparison to experimental data is w�,coh ∝ b�,coh and w�,inc ∝ b2
�,inc, where

b�,coh and b�,inc are, respectively, the coherent and incoherent scattering length of atom �. With the
normalizations (3.10) and (3.11) it follows that

lim
|q|→∞

Fcoh(q, 0) = 1, (3.12)

Finc(q, 0) = 1, (3.13)

where

Fcoh(q, 0) ≡ S(q) (3.14)

is the static structure factor.

3.3.2 Gaussian approximation of the incoherent intermediate scattering function

The mean-square displacement can be related to the incoherent intermediate scattering function via the
cumulant expansion [35, 36]

Finc(q, t) =
∑

�

w�,inc exp[−q2��,1(t)+ q4��,2(t)∓ . . .]. (3.15)

Here q = |q|, and the cumulants ��,k(t) are defined as

��,1(t) = 1

2!
〈d2

� (t ; nq)〉, (3.16)

��,2(t) = 1

4!

{〈d4
� (t ; nq)〉 − 3〈d2

� (t ; nq)〉2} , (3.17)

...

where d�(t ; nq) is defined as

d�(t ; n)
.= nq · (x�(t)− x�(0)), (3.18)

and nq is the projection of the displacement x�(t)− x�(0) onto the unit vector in the direction of q.
In the Gaussian approximation the above expansion is truncated after the q2-term. For certain model
systems like the ideal gas, the harmonic oscillator, and a particle undergoing Einstein diffusion, this is
exact. For these systems the incoherent intermediate scattering function is completely determined by
the mean-square displacement. A comparison between the full calculation of the incoherent scattering
function and its Gaussian approximation is shown in reference [10] for pure water.



JDN 18 209

3.3.3 Dynamic structure factor

Closely related to the intermediate scattering functions is the dynamic structure factor, S(q, �), which is
the quantity directly measured by neutron scattering experiments. Defining its coherent and incoherent
component through

Scoh/inc(q, �) = 1

2�

∫ +∞
−∞

dt exp(−i�t)Fcoh/inc(q, t), (3.19)

the total differential neutron scattering cross section is given by

d2	

d�d�
= |k||k0|

{	tot,coh

4�
Scoh(q, �)+ 	tot,inc

4�
Sinc(q, �)

}
(3.20)

Here d� denotes a differential solid angle element, h̄k0 is the momentum of the incident neutrons,
h̄k the momentum of the scattered neutrons, h̄q = h̄(k0 − k) the momentum transfer from the neutron
to the sample, and h̄� = E0 − E the corresponding energy transfer. Moreover 	tot,coh = 4�

∑
� b2

�,coh

denotes the total coherent scattering cross section and 	tot,inc = 4�
∑

� b2
�,inc the incoherent counterpart.

On account of (3.14) the static structure factor may be written as

S(q) =
∫ +∞
−∞

d�Scoh(q, �). (3.21)

3.3.4 Symmetry relations and detailed balance

The dynamic structure factor being a measurable quantity, it must be real. This condition is fulfilled if
and only if (the indices “coh” and “inc” are omitted)

F∗(q, t) = F(q,−t). (3.22)

This relation is indeed verified, which follows from (2.6), setting A(t) = �̃(q, t), B(0) = �̃∗(q, 0) and
using the stationarity of equilibrium time correlation functions. By definition, the intermediate scattering
functions calculated from MD simulations are classical correlation functions and must be considered
as approximations for the quantum correlation functions describing the full neutron scattering law [37].
The quantum intermediate scattering functions fulfill also (3.22), ensuring thus the reality of the dynamic
structure factor. The following symmetry relation,

F(q, t) = F(−q,−t − i
h̄), (3.23)

differs, however, from the corresponding relation of their classical counterparts, which are obtained by
the formal limit h̄→ 0. From (3.23) one obtains the detailed balance relation for the dynamic structure
factor

S(q, �) = S(−q,−�) exp(−
h̄�). (3.24)

Here 
 = (kBT )−1, where kB is the Boltzmann constant and h̄ the Planck constant divided by 2�. Since
h̄� is here the energy transfer to the scattering system, relation (3.24) expresses that energetically higher
levels in the scattering system are lower weighted than energetically lower levels, the weights being
given by the Boltzmann factor. From a physical point of view the description of neutron scattering
by a scattering law derived from classical correlation functions corresponds to neglecting momentum
transfer from the neutron to the sample, even when the scattering system can be described by the laws
of classical mechanics [38].
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3.3.5 Partial terms

In the analysis of neutron scattering spectra it is sometimes desirable to consider groups of atoms
with common properties (species) in the analysis of MD simulations. A typical application is the
decomposition of the coherent intermediate scattering functions or dynamic structure factors into “self”
and “distinct” contributions from such groups, which are denoted MI (I = 1, . . . , Nspecies) in the
following. For all atoms � ∈MI , we then have the same weight. Defining

�I (q, t) = 1√
nI

∑
�∈MI

�̃�(q, t), (3.25)

where nI is the number of atoms inMI , with
∑Nspecies

I=1 nI = Natoms, and

wI ,coh = √nI w�,coh, for � ∈MI , (3.26)

we have

Fcoh(q, t) =
Nspecies∑
I ,J=1

wI ,cohwJ ,cohFcoh,IJ (q, t), (3.27)

where the partial intermediate scattering functions are given by

Fcoh,IJ (q, t) = 〈�̃I (q, t)�̃∗J (q, 0)〉. (3.28)

Analogously one may define the partial incoherent intermediate scattering functions

Finc,I (q, t) = 1

nI

∑
�∈MI

〈�̃�(q, t)�̃∗�(q, 0)〉, (3.29)

and the weights

wI ,inc = nI w�,inc, for � ∈MI , (3.30)

such that the total incoherent scattering takes the form

Finc(q, t) =
Nspecies∑
I=1

wI ,incFinc,I (q, t). (3.31)

It follows from (3.26) and (3.30) that the species weights are normalized as their atomic counterparts,
i.e.

∑Nspecies

I=1 w2
I ,coh = 1 and

∑Nspecies

I=1 wI ,inc = 1.
The partial intermediate scattering functions introduced above fulfill the symmetry relations

F ∗coh,IJ (q, t) = Fcoh,JI (q,−t), (3.32)

F ∗inc,I (q, t) = Finc,I (q,−t), (3.33)

which show that the Fourier transforms of the coherent cross terms are not necessarily real and thus
cannot be interpreted as physically meaningful partial dynamic structure factors. Setting

F sym
coh,IJ (q, t) = 1

2

{Fcoh,IJ (q, t)+ Fcoh,JI (q, t)
}

(3.34)

the latter maybe defined as

Scoh,IJ (q, �) = 1

2�

∫ +∞
−∞

dt exp(−i�t)F sym
coh,IJ (q, t), (3.35)
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Sinc,I (q, �) = 1

2�

∫ +∞
−∞

dt exp(−i�t)Finc,I (q, t). (3.36)

Algorithmic considerations: The intermediate scattering functions are either calculated by the FFT-
based method described in Section 4.1, or by autoregressive modeling of the underlying time series,
which is described in Section 4.5. The associated dynamics structure factors are, respectively, obtained
from a smoothed discrete Fourier transform (see Section 4.3) or by maximum entropy estimation (see
Section 4.4). All quantities are normally isotropically averaged over a user-defined number of q-vectors,
which are grouped in “shells” of resolution �q. In this way one can account for non-crystalline samples,
like liquids, solutions and powders, on which the majority of combined neutron scattering and MD
simulation experiments are performed.

3.4 Neutron elastic incoherent structure factor

nMoldyn allows the computation of the elastic incoherent structure factor (EISF), which is defined as
the limit

EISF (q) = lim
t→∞Finc(q, t) (3.37)

of the incoherent intermediate scattering function. The EISF owes its name to the fact that it describes
the elastic part of the incoherent neutron scattering spectrum. Writing

Finc(q, t) = EISF (q)+ F ′inc(q, t) (3.38)

it follows that

Sinc(q, �) = EISF (q)�(�)+ S ′inc(q, �), (3.39)

where S ′inc(q, �) describes quasi-elastic and inelastic scattering. One may also define an elastic coherent
structure factor, but this quantity is not considered here, since incoherent scattering dominates from
hydrogen atoms in most neutron scattering studies of soft matter systems that are typically accompanied
by MD simulations. In practice expression (3.37) is not useful for the calculation of EISFs from MD
simulations. For this purpose one can rely on the relation

〈exp(−iq · x�(0)) exp(iq · x�(t))〉 t→∞= 〈| exp(iq · x�)|2〉, (3.40)

which reduces its calculation to the evaluation of thermal averages,

EISF (q) =
∑

�

w�,inc〈| exp(iq · x�)|2〉. (3.41)

In terms of contributions from different species, the EISF may be written as

EISF (q) =
Nspecies∑
I=1

wI ,incEISFI (q), (3.42)

with

EISFI (q) = 1

nI

∑
�∈MI

〈| exp(iq · x�)|2〉. (3.43)

being the partial contribution from the different species. Strictly speaking, the EISF is non-zero
only for systems in which the atomic motions are confined in space, but in practice spurious elastic
contributions to a neutron scattering spectrum arise from the limited resolution of spectrometers, or
from an insufficient trajectory lengths in case of calculation from MD simulations.
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A typical application for the calculation of EISFs concerns elastic incoherent neutron scattering from
hydrated powders of proteins [39], and in this case one usually applies the Gaussian approximation. The
latter follows from the cumulant expansion (3.15) in the limit t →∞, keeping only the leading term.
Defining

u�,q = nq · (x� − 〈x�〉), (3.44)

where nq is the unit vector in the direction of q, the Gaussian approximation of the EISF reads

EISF (q) ≈
∑

�

w�,inc exp(−q2〈u2
�,q〉). (3.45)

This relation becomes correct in the the limit q → 0. If one neglects motional heterogeneity for different
atoms, one obtains the cruder approximation

EISF (q) ≈ exp(−q2〈u2
q〉), (3.46)

which is often used in practice. Here uq is the displacement of a “representative atom” in the sample.

Algorithmic considerations: As described above, EISFs are computed as static time averages, and, in
analogy to the intermediate scattering functions, they are normally isotropically averaged over a user-
defined number of q-vectors, which are grouped in shells of resolution �q.

Application: A recent study [40] explores the origin of non-Gaussian behavior of the EISF of proteins,
using lysozyme as an example. As Fig. 3 shows, a simple Gaussian model (dashed lines) is a very poor
fit of the EISF calculated from a Molecular Dynamics trajectory, even for small q. It should be noted
that the Gaussian model was fitted to the EISF data over the entire q range; a fit to small-q data would
lead to a better agreement in this region. A much better fit (drawn-out line) can be obtained using a
model based on a distribution of many Gaussians:

EISF (q) =
∫ ∞

0
d� w(�) exp(−�q2). (3.47)

The integration variable � represents the mean-square atomic fluctuation and the distribution w(�)
represents the heterogeneity of the fluctuations. The simple Gaussian model motivated by the
“representative atom” view corresponds to

w(�) = �(� − 〈u2
q〉), (3.48)

where �(.) denotes the Dirac distribution. The model that was used for the fit shown in Fig. 3 is given by

w(�) = 1

	2
p
( �

	2

)
. (3.49)

where p(�) is given by the shifted Gamma distribution [41],

p(�; �, 
) = p0(�− �; 
), � > 0, (3.50)

the standard Gamma distribution being

p0(�; 
) = 
(�)
(
�)


��(
)
exp(−
�), 0 < 
 <∞, (3.51)

where 
(.) is the Heaviside unit step function. The model defined by Eq. (3.49) has in total three
parameters. The parameter 	2 describes the scale of the atomic fluctuations in the protein. The parameter

 describes how fast the distribution decays with increasing �. Finally, the shift parameter � must
be introduced because atomic fluctuations in proteins have a clearly non-zero minimal value that
corresponds to the fastest vibrational modes in the molecule.
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Figure 3. Simulated EISF of lysozyme (points) fitted with a single Gaussian (dashed line) and with a superposition
of multiple Gaussians (drawn-out line). The simulation has been performed for a single lysozyme molecule [29]
in the presence of 3403 water molecules. The molecular dynamics simulation over a time of 1ns was performed
with the MMTK simulation package [42], using the Amber94 force field [27], periodic boundary conditions and a
velocity-Verlet integrator with a time step of 1 f s. A thermodynamic NpT -ensemble [30, 31], with T = 300K and
p = 1atm was used. Prior to the EISF calculation, the global translational and rotational motions of the lysozyme
molecule have been removed by nMoldyn. The data have been taken from Ref. [40].

Since w(�) is the distribution of the atomic fluctuation values over the atoms of the protein, it can be
computed directly from the Molecular Dynamics trajectory in the form of a histogram. Fig. 4 shows this
distribution in comparison to the shifted Gamma distribution that was fitted to the EISF. The agreement
is quite remarkable and supports the conclusion that the deviation of the EISF from a simple Gaussian is
essentially due to the heterogeneity of atomic fluctuations in a protein. The “representative atom” does
not exist.

3.5 Isotropic static structure factors

The static structure factor introduced in (3.14) is the central object in structural studies of liquids and
amorphous solids, and in many applications a decomposition into cross and self contributions from
different groups of atoms is of interest. Using the decomposition (3.27) of the coherent intermediate
scattering function we may write

S(q) =
Nspecies∑
I ,J=1

wI ,cohwJ ,cohSIJ (q), (3.52)

where SIJ (q) = Fcoh,IJ (q, 0). In the static case the symmetrization (3.34) leads to S∗IJ (q) = SJI (q) and
may be neglected if the partial static structure factor is invariant under the reflection q→−q. This is
in particular the case in all studies of liquids and amorphous solids, where the static structure factor is
invariant under rotations of the coordinate system and depends thus on |q|, rather than on the vector q.
This situation is considered in nMoldyn and can be exploited to calculate partial static structure factors
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Figure 4. The distribution of atomic fluctuations relevant to the Molecular Dynamics trajectory from which the
EISF shown in figure 3 was computed (points), and the shifted Gamma distribution that was fitted to the EISF (line).
The atomic fluctuations were computed as time-averages over the trajectory and their distribution was obtained as
a histogram over the values for the different atoms.

by performing the isotropic average over all directions of q analytically. One then obtains

SIJ (q) = �IJ + 1

nI

′∑
�∈MI ,
∈MJ

〈
sin(qr�
)

qr�


〉
(3.53)

where q = |q| and r�
 = |x� − x
|. The prime indicates that terms � = 
 for I = J are to be excluded.

Algorithmic considerations: In nMoldyn expression (3.53) is evaluated for a user-defined grid of
q-values, averaging over the configurations in the input MD trajectory. The q-dependent contributions
for each configuration are computed by summing over all pairs of atoms inMI andMJ .

3.6 Pair correlation functions

The partial static structure factors have a direct relation to the corresponding pair correlation functions,
which are also referred to as radial distribution functions [4, 43, 44]. Interpreting the average in
Expression (3.28) as an ensemble average, one arrives at

SIJ (q) = �IJ +√�I �J

∫
d3r exp(iq · r)gIJ (r), (3.54)

where �I = nI /V and �J = nJ /V are the densities of species I and J , respectively, and gIJ (r) is the
pair correlation function. Multiplied by �J , it gives the conditional probability density to find an atom
of species J at position r if an atom of species I is at the origin. For isotropic systems, relation (3.54)
can be cast into the form

SIJ (q) = �IJ +
√

4��I �J

q

∫ ∞
0

dr sin(qr)rgIJ (r), (3.55)
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where q ≡ |q| and r ≡ |r|. Here

gIJ (r) = nIJ (r)

�J 4�r2dr
(3.56)

can be interpreted as the average number of atoms of species J in a shell of width dr at distance r from
an atom of species I , divided by the volume 4�r2dr of that shell and the average density �J .

Algorithmic considerations: In nMoldyn the partial pair correlation functions are computed via
corresponding histograms for nIJ (r), averaging over the configurations in the MD trajectory.

3.7 Memory functions

The numerical study of memory functions by Molecular Dynamics simulations has for a long time been
hindered by the lack of a suitable numerical algorithm for their calculation. Such an algorithm has been
published in [11] and it has been implemented in nMoldyn to calculate according to the general scheme
(2.21) the memory functions corresponding to the following time correlation functions,

• Velocity autocorrelation function.
• Incoherent intermediate scattering function.
• Coherent intermediate scattering function.

Some examples are given in the following.

Algorithmic considerations: The algorithm is described in Section 4.6, referring to Sections 4.4
and 4.5. It is important to note that memory functions associated with atom-weighted self-correlation
functions are computed as averages over the corresponding individual memory functions. Consider for
example the VACF (see definition (3.1)). Here a memory function is first computed for each atom,
according to the definition

dcvv,�(t)

dt
= −

∫ t

0
d� ��(t − �)cvv,�(�), (3.57)

and nMoldyn computes the final result as average over the individual memory functions,

�(t) =
∑

�

w���(t − �). (3.58)

The same applies to the calculation of the memory function associated with the incoherent intermediate
scattering function.

Application: In Figure 5 we show the memory functions relevant to the VACF of hydrogen and
oxygen atoms in water [14, 45]. In both curves, the initial sharp decay reflects the effects of individual
interactions between the tagged particle and its neighbors. For larger times the memory function of
the oxygen atom stays close to zero, thus indicating the absence of appreciable memory effects. The
hydrogen memory function shows, in contrast, another component for t > 0.2 ps which displays a
slower decay than the initial one. This second component can be interpreted as a manifestation of the
collective dynamics of the hydrogen bond network.

From the initial values of the memory functions one obtains the square of the so-called Einstein
frequency,

�(0) = 〈v̇
2〉
〈v2〉 ≡ �2, (3.59)

for the hydrogen and oxygen atoms, respectively, which directly relates to the mean square force and
can be interpreted as a “rattling frequency” in the cage of nearest neighbors. For hydrogen and oxygen
we find 11881 ps−2 and 1941 ps−2, respectively.
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Figure 5. Memory functions relevant to the VACFs of hydrogen and oxygen atoms in water. The data have been
taken from Refs. [14, 45]. The input trajectory is the one described in Figure 1.

Memory functions can also be used to estimate diffusion coefficients. From a Laplace transform of
equation (2.19) one obtains

ĉvv(s) = 〈v2〉
s + �̂(s)

, (3.60)

where �̂(s) and ĉvv(s) are, respectively, the Laplace transform of the normalized VACF and the
corresponding memory function. Using that ĉvv(0) = ∫∞

0 dt cvv(t) = D, Eq. (3.60) yields

D = 〈v
2〉

�v

, (3.61)

where �v is the friction constant

�v := �̂(0) =
∫ ∞

0
dt �(t). (3.62)

For the hydrogen atom this yields DH = 3.8 · 10−5 cm2/s, and for the oxygen atoms DO = 2.8 · 10−5

cm2/s, which is higher than the estimation from the slope of the MSD (D = 2.5 · 10−5 cm2/s) and the
experimental value (D = 2.23 · 10−5 cm2/s [46]).

3.8 Time correlation functions relevant to NMR spectroscopy

nMoldyn allows the calculation of time autocorrelation functions relevant to nuclear magnetic resonance
(NMR) spectroscopy

Cii(t) = 〈P2(���i(t) · ���i(0))〉. (3.63)

Here P2(.) is the second order Legendre polynomial and ���i(t) is the unit vector pointing along the
instantaneous direction of the vector relating the pair of interacting nuclear spins considered for analysis.
For example in the case of the relaxation measurement of amide backbone 15N nuclei, which is
routinely used for the investigation of protein backbone dynamics, relaxation primarily occurs through
fluctuations of the 15N -1H dipole-dipole interactions with the directly bonded amide proton and of the
15N chemical shift anisotropy tensor, which is commonly assumed to be axially symmetric with its
axis parallel to the NH bond. For a general reference, see Ref. [47]. In this case ���i(t) is the unit vector
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pointing along the direction of the 15N1H bond of residue i. The new atom selection engine of nMoldyn
allows the user to select the vector of interest.

To compute the time correlation functions from the simulated trajectory, nMoldyn uses the
representation of P2(���i(t) · ���i(0)) in terms of spherical harmonic functions,

Cii(t) = 4�

5

2∑
m=−2

(−1)m〈Y−m
2 (�i(0))Y m

2 (�i(t))〉, (3.64)

which allows for an efficient calculation by the FFT-based algorithm described in Section 4.1. Here, �i

denotes the polar angles defining the instantaneous orientation of the ith vector in the given reference
frame, and Y m

2 (·) are the second rank spherical harmonics [41].
The program provides also the asymptotic value of the time correlation functions Cii(∞) = S2

i –
known as generalized order parameter [48] – which indicates the degree of spatial restriction of the
motions of the vector in the given reference frame (for isotropic tumbling it is zero). The asymptotic
values is computed through

S2
i = lim

t→∞CI
ii(t) =

4�

5

2∑
m=−2

| 〈 Y m
2 (�i) 〉 |2. (3.65)

Algorithmic considerations: The NMR time correlation functions are computed according to the Fast
Fourier Transform (FFT) based Algorithm described in Section 4.1.

Application: One of the main reasons for computing the microscopic time correlation functions relevant
to the NMR relaxation spectroscopy by MD simulations is that experimental approaches provide their
spectra at a very limited number of frequencies, corresponding to the Larmor frequencies of the nuclei
involved in the spin relaxation. This fact makes it difficult to infer the underlying dynamics by a
numerical reconstruction of the corresponding spectra. Here MD simulations provide very detailed
information about the time correlation functions, which allows discriminating among different models
of microscopic dynamics.

We cite as an example a recent publication dealing with the computation of the internal time
correlation functions relevant to the relaxation of the amide backbone 15N nuclei of lysozyme [49].
Some typical curves are displayed in Fig. 6. The computed time correlation functions have been used
to test a new model for the reorientation of the 15N–1H bond, which is based on fractional Brownian
Dynamics (fBD) and describes internal protein dynamics more realistically than the traditional model-
free (MF) approach by Lipari and Szabo [48]. In the MF approach the assumption is made that the
internal reorientational correlation functions decay exponentially, which is a natural assumption in
absence of detailed information on the rotational diffusion of NH vectors. However a direct calculation
of the time correlation function from MD simulations shows systematic deviations from an exponential
form, which can be well described in terms of a superposition of exponential functions, with a broad
spectrum of decay rates, which is typical for non-markovian stochastic models, such as fractional
Brownian dynamics [50]. Some typical fits of the time correlation functions to the MF and fBD models
are shown in figure 6. In each panel the top-right inset shows a zoom on the first few picoseconds of
the time correlation function characterized by the well-known initial fast decay associated to librations,
which is usually neglected in the analysis of NMR relaxation data since these fast motions cannot be
experimentally resolved. Besides the initial fast decay the time correlation functions show an asymptotic
power law behavior and the bottom-left inset shows the underlying distribution of relaxation rates. The
latter is calculated in the framework of the fBD approach. For more details concerning the models we
refer to Ref. [49]. Some technical information concerning the input trajectory are given in the figure
caption.
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Figure 6. Internal correlation functions CI
ii(t) for selected residues (Val 2, Gly 26, Asn 74, Ala122) in Lysozyme

computed by nMoldyn from MD simulation (dots) together with the fits to the fBD (solid line) and MF (short
dashes) models. Both fits are performed in the time window from 1 ps to 1000 ps. In each panel the top-right inset
shows a zoom on the first few picoseconds of the time correlation function and the bottom-left inset shows the
distribution of relaxation rates. The MD trajectory used for the calculation nMoldyn has been computed by the
program package NAMD [51]. The simulated system consists of one hen egg white lysozyme molecule [29] and
6775 water molecules. The simulations have been performed in the NpT ensemble using the the AMBER99SB [52]
and SPC/E [26] force fields for the protein and the water molecules, respectively. To mimic a macroscopic system,
periodic boundary conditions have been applied and electrostatic interactions have been computed using the particle
mesh Ewald method (PME) [53], with a cut-off of 12 Å. The integration time step was set to 1 fs and atomic
configurations were recorded with a sampling time step of 50 fs over 10 ns in total. In order to extract a trajectory
describing only the internal dynamics of the simulated lysozyme molecule, global translations and rotations of the
protein molecule have been filtered out by performing for each sampling time step a rigid body fit of its actual
conformation to its initial conformation in the trajectory [32, 54].

3.9 IR-THz spectroscopy

One of the most recent functionalities implemented in nMoldyn concerns the computation of IR spectra
in the THz frequency region. The collective modes probed in this frequency region can be described in
the framework of classical physics and are, a priori, suitable for comparison with MD simulation data.
The program calculates the time correlation functions describing the fluctuations of the total dipole
moment M(t) =∑

� q�R�(t)− 〈∑� q�R�〉 and its frequency spectrum

I (�) = 1

2�

∫ +∞
−∞

dt exp(−i�t)〈M(0)M(t)〉 (3.66)

The above computation is performed over the whole system and, for complex systems that consist of
several components, on the different components as well. In this way their individual contribution to the
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Figure 7. Left: IR spectra of Lysozyme calculated from MD simulations. Total dipole refers to the spectrum of the
fluctuations of the total dipole moment of the protein, while side chains, peptides, and residues dipole refer to the
the spectra of the fluctuations of the dipole moment associated to side chains, peptides, and residues, respectively.
The side chains+peptides dipole results from the summation of the spectra side chains dipole and peptide dipole.
Right: Comparison between measured and calculated spectra. The experimental data have been collected by the
spectrometer AILES at Synchrotron Soleil. Figure from ref. [56]

total spectrum as well as the contribution from the cross terms can be evaluated. For example, in the
case of a protein, the program recognizes the side chains, the peptide groups and the amino acids, as
substructures.

Knowing I (�), the absorption cross section is computed according to [55]

�(�) = 4�2�(1− exp(−
h̄�))

3h̄cn
I (�) (3.67)

which is related to the measured absorbance spectrum via a constant factor depending on the number
density of absorbers and on the path length of the light. In the above equation the refractive index is
assumed to be constant over the analyzed frequency range.

Algorithmic considerations: The time correlation functions of the total dipole moment are computed
according to the Fast Fourier Transform (FFT) based Algorithm described in Section 4.1.

Application: In the left panel of figure 7 we show as an example the IR spectra of hydrated lysozyme in
the terahertz frequency region [56]. We calculate the fluctuations of the permanent dipole moment of the
whole protein and of different components of the protein (side chains, peptides groups, amino acids),
to evaluate their contributions to the total spectrum. The spectra labeled “side-chains” result from the
fluctuation of the permanent dipole moments associated to the side-chains (no cross correlations between
different side-chains are considered) the spectra labeled “peptide” result from the fluctuation of the
permanent dipole moments associated to the peptide groups (no cross correlation between different
peptide groups are considered) and the spectra labeled “residues” result from the fluctuation of the
permanent dipole moments associated to the different residues (no cross correlations between different
residues are considered, while the cross correlations between side-chains and peptides group are taken
into account). This analysis shows that the main contribution to the absorption band at 110 cm−1 arises
from the fluctuations of the peptide groups and from the cross correlations between different residues.
Moreover, the MD simulation suggests that the absorption spectrum in the frequency range 1–25 cm−1 is
mainly dominated by side-chain fluctuations, without cross correlation contributions. In the right panel
of figure 7 we compare the spectrum computed by nMoldyn with a measured spectrum. The comparison
shows that MD simulations are able to qualitatively reproduce the experimental data.
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3.10 Protein secondary structure analysis

The latest version of nMoldyn also contains a module for the analysis of the time-varying secondary
structure of proteins in MD simulations.

3.10.1 Protein secondary structure

The description of protein structures is commonly hierarchized into primary, secondary, tertiary and
quaternary structure, following the characterization of atomic conformations in three-dimensional
space in a progressively larger scale. While the primary structure only gives information about the
sequence of amino acids which composes proteins, the secondary structure concerns the configuration
of local segments of proteins. But the latter does not take into account the overall atomic positions in
three-dimensional space, which are instead considered to be the tertiary structure.

Motifs in protein secondary structure are traditionally described in terms of two torsional angles,
� and �, per amino acid, which define for each C�-atom the rotation of the left and right peptide plane
about the N–C� and C�–C bond, respectively [57]. Alternatively they can be defined by the patterns of
hydrogen bonds between backbone amide and carboxyl groups. The knowledge of secondary structure is
an essential tool to assess local flexibilities in proteins and to interpret the structural changes induced, for
example, by ligand binding or by different environmental conditions (pressure, temperature or molecular
crowding, for instance).

The ScrewFit algorithm [18] implemented in nMoldyn provides an efficient description of structural
motifs in terms helicoidal motions, relating consecutive peptide planes (see left panel of Fig. 8). It
provides, in particular, a description of non-ideal protein secondary structures and of their structural
changes due to external stress (pressure, chemical agents etc.). The method is based on Chasles’
theorem, which states that any rigid body displacement can be described by a screw motion. The
parameters are

1. The orientational (angular) distance between consecutive peptide planes
2. The radius of the local screw motion
3. The straightness of consecutive screw axes

Panel a) of Figure 8 gives an illustration of the helix (screw motion) parameters. By definition, the
C-atoms of the peptide planes are on the surface of the cylinder defining the envelope of the screw
motion. Details about the algorithms are described in Section 4.7 and an application to protein ligand
binding, a typical problem relevant to structural biology, can be found in Ref [58].

Application: In the following we consider an application of the ScrewFit algorithm to a small protein,
bovine pancreatic trypsin inhibitor. Panel b) of Fig. 8 gives a sketch of a typical ScrewFit profile
of a protein (in this figure, bovine pancreatic trypsin inhibitor). By applying ScrewFit to different
protein configurations obtained from an MD simulation, one can easily recognize the stability of
structural motifs and the precise points where their changes occur, which is more difficult to achieve
by the standard analysis of positional differences. The reason is that the latter might indicate important
structural differences in a large region, although the corresponding position differences are induced by
one single localized change in the winding of the protein backbone.

4. ALGORITHMS

4.1 Fast Correlation Algorithm

In practice the time averages are calculated over a finite time window, which corresponds to the
trajectory length and the dynamical variables are sampled at fixed time intervals, A = A(k · �t) and
B = B(k · �t) with k = 0, . . . (Nt − 1). The discrete representation of Eqs. (2.3) and (2.4) yields,
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b)a)

Figure 8. Panel a) A tri-peptide with two peptide bonds in the extended conformation. The yellow triangles formed
by the atoms {O, C, N} of the peptide planes define the local helix structure of the polypeptide. The green spheres,
labeled with “R”, indicate dummy atoms replacing the side-chains. The radius of the cylinder shown in the figure
defines the radius � of the screw motion relating the two consecutive peptide planes. Panel b) A typical ScrewFit
profile for a protein structure. In this figure the three parameters refers to the BPTI (PDB code: 4PTI). Vertical
stripes superimposed on ScrewFit plots represent motifs detected by the latter method ((
-strands: blue; �-helices:
red; 3–10-helices: green).

respectively,

〈A〉 = 1

Nt

Nt−1∑
k=0

A(k · �t), (4.1)

and

cAB(m · �t) =




1

Nt −m

Nt−m−1∑
k=0

B∗(k · �t)A((k +m) · �t), m = 0 . . . Nt − 1,

1

Nt − |m|
Nt−1∑
k=|m|

B∗(k · �t)A((k − |m|) · �t)m = −(Nt − 1) . . .− 1.

(4.2)

In the above equations Nt is the number of sampled values of the dynamical variables, �t is the sampling
time step (Nt − 1) · �t is the trajectory length and cAB(m · �t) is the TCF relevant to A and B. The
prefactors in front of the sums ensure the proper normalization. According to (4.2), cAB(m · �t) has
2Nt − 1 data points.

In practice the direct calculation of the time correlation functions by Eq. (4.2) is prohibitive because
of the computational complexity (measured by the number of multiplications), ∝ N2

t . To increase the
computational efficiency, all TCFs in nMoldyn are calculated by the Fast Correlation Algorithm (FCA),
which relies on the Fast Fourier Transform (FFT) technique [59]. Compared to the direct computation,
FCA allows the reduction of the computational complexity (measured by the number of multiplications),
from∝ N2

t to∝ Nt log2(Nt ). To exploit the correlation theorem for discrete periodic functions we define
an extended periodic version of the the time series A(k · �t) and B(k · �t) introduced in Section 2.1. In
the following, �t is dropped for simplicity.

a(k) =
{

A(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (4.3)

b(k) =
{

B(k) k = 0 . . . Nt − 1
0 k = Nt . . . 2Nt − 1

, (4.4)
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and

a(k) = a(k +m · 2Nt ), b(k) = b(k +m · 2Nt ), m = 0,±1,±2, . . . . (4.5)

The discrete, cyclic correlation of a(k) and b(k) is defined as

Sab(m) =
2Nt−1∑
k=0

a∗(k)b(k +m). (4.6)

It is easy to see that

cAB(m) = 1

Nt − |m|Sab(m), −(Nt − 1) ≤ m ≤ Nt − 1. (4.7)

Using the correlation theorem for discrete periodic functions [59], Sab(m) can be written as

Sab(m) = 1

2Nt

2Nt−1∑
n=0

exp

[
2�i

(
mn

2Nt

)]
ã∗
(

n

2Nt

)
b̃

(
n

2Nt

)
(4.8)

where ã
(

n
2Nt

)
and b̃

(
n

2Nt

)
are the discrete Fourier transforms of a(k) and b(k), respectively:

ã

(
n

2Nt

)
=

2Nt−1∑
k=0

exp

[
−2�i

(
nk

2Nt

)]
a(k), (4.9)

b̃

(
n

2Nt

)
=

2Nt−1∑
k=0

exp

[
−2�i

(
nk

2Nt

)]
b(k). (4.10)

The FCA algorithm and the direct scheme (4.2) give, apart from round-off errors, identical results
and we note here that the FCA is, in fact, based on the discrete version of the Wiener-Khinchin
theorem (2.11), performing an appropriate “zero padding” of the discrete signals to be correlated.

4.2 Efficient Computation of Mean-square displacements

In the discrete case, the mean-square displacement of a particle is given by

�2(m) = 1

Nt −m

Nt−m−1∑
k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (4.11)

where r(k) ≡ r(k�t) is the particle trajectory. We now define the auxiliary function

S(m)
.=

Nt−m−1∑
k=0

[r(k +m)− r(k)]2, m = 0 . . . Nt − 1, (4.12)

which is split as follows:

S(m) = SAA+BB(m)− 2SAB(m), (4.13)

SAA+BB(m) =
Nt−m−1∑

k=0

[r2(k +m)+ r2(k)], (4.14)

SAB(m) =
Nt−m−1∑

k=0

r(k) · r(k +m). (4.15)
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The function SAB(m) can be computed using the FCA method described in Section 4.1. For SAA+BB(m)
the following recursion relation holds:

SAA+BB(m) = SAA+BB(m− 1)− r2(m− 1)− r2(Nt −m), (4.16)

SAA+BB(0) = 2
Nt−1∑
k=0

r2(k). (4.17)

This allows one to construct the following efficient scheme for the computation of mean-square
displacements:

1. Compute DSQ(k) = r2(k), k = 0 . . . Nt − 1; DSQ(−1) = DSQ(Nt ) = 0.
2. Compute SUMSQ = 2 ·∑Nt−1

k=0 DSQ(k).
3. Compute SAB(m) using the FFT method.
4. Compute the mean-square displacement MSD(m) in the following loop:

SUMSQ← SUMSQ−DSQ(m− 1)−DSQ(Nt −m)
MSD(m)← (SUMSQ− 2 · SAB(m)/(Nt −m)
m running from 0 to Nt − 1

It should be noted that the efficiency of this algorithm is the same as for the FCA computation of time
correlation functions since the number of operations in step (1), (2), and (4) grows linearly with Nt .

4.3 Direct computation of frequency spectra

In contrast to the estimation of TCFs, the estimation of their Fourier spectra by straight-forward
application of discrete Fourier transforms is not improved by adding data points for longer time intervals.
On the contrary, such additional points tend to add noise to the spectra. A classical method to obtain
smooth Fourier spectra is to use convolutions with frequency windows [60]. Using the convolution
theorem of the Fourier transform in frequency space,

F{f (t)g(t), t , �} = 1

2�

∫ +∞
−∞

d�′ f̃ (�− �′)g̃(�′), (4.18)

one sees that f̃ (�) acts as a smoothing window for g̃(�) and vice versa. Defining a window function
with w(0) = 1, one obtains a smoothed estimation for the Fourier spectrum of a correlation function
c(t) by computing the discrete Fourier transform

c̃smoothed

(
n

2Nt

)
= �t

Nt−1∑
m=−(Nt−1)

exp

[
−2�i

(
nm

2Nt

)]
w(m)c(m), (4.19)

where c(m) ≡ c(m�t), m = −(Nt − 1), . . . , Nt − 1. The choice of the frequency window can be
optimized using various criteria [61]. In nMoldyn a Gaussian window is used,

w(t) = exp

(
−1

2

[
t

	t

]2
)

, (4.20)

where 	t > 0 is the width of the Gaussian. The latter is defined relatively to the trajectory length T ,

	T = �T , (4.21)

where � > 0 is a dimensionless parameter. We note here that

w̃(�) =
√

2�	t exp

(
−1

2
	2

t �
2

)
, (4.22)
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which shows that the the width in (angular) frequency space is simply given by

	� = 1

	t

. (4.23)

This well-known relation facilitates the estimation of the frequency resolution of the window function.

4.4 Maximum entropy estimation of power spectra

The estimation of frequency spectra according to the method described in Section 4.3 suffers from some
arbitrariness concerning the choice of the frequency window. For autocorrelation functions, which are
most important in spectroscopic experiments, there exists an alternative method, known as the Maximum
Entropy Method (MEM) [20, 62]. The idea is to estimate the spectrum of an ACF such that its Fourier
spectrum is as “white as possible”, using the information of the ACF for a fixed number of points as
constraints. For this purpose the (discrete) signal, A(n) ≡ A(n�t) (n = 0, . . . , Nt − 1), to be correlated
is fitted by an autoregressive (AR) model

A(t) =
P∑

n=1

a(P )
n A(t − n�t)+ εP (t). (4.24)

Here P � Nt is the order of the process and εP (t) is white noise with zero mean and amplitude 	P .
A system of linear equations for the coefficients {a(P )

n } can be obtained correlating Eq. (4.24) for
t = j�t with A(t ′) for t ′ = k�t and using the stationarity of the ACF cAA(t). This yields the so-called
Yule-Walker equations

P∑
k=1

cAA(|j − k|�t)ak = cAA(j�t), j = 1, . . . , P . (4.25)

As input for cAA(t) one can use the estimation (4.2). Since the matrix of coefficients of the system of
equations (4.25) has Toeplitz form, particularly efficient algorithms can be established. In nMoldyn the
Burg algorithm [62, 63] is used. Once the coefficients {a(P )

n } have been found, 	P can be computed via

	2
P = cAA(0)−

P∑
n=1

a(P )
n cAA(n�t). (4.26)

The coefficients {a(P )
n } and 	P being determined, the Fourier transform of cAA(t) can then be obtained

through Z-transform techniques. Introducing the two-sided z-transform of a discrete function f (n) and
its inverse through

F̂ (z) =
+∞∑

n=−∞
f (n)z−n ≡ Z{f (n), n, z}, (4.27)

f (n) = 1

2�i

∮
C

dz zn−1F̂ (z) ≡ Z−1{F̂ (z), z, n}, (4.28)

where the contour C lies in the region of convergence of F̂ (z), it follows from (4.24) that

Â(z) = ε̂P (z)

1−∑P
k=1 a

(P )
k z−k

. (4.29)

As for the Fourier transform, there exists a correlation theorem for the Z-transform. Defining

(f ◦ g)(n) =
∞∑

k=−∞
f (n+ k)g∗(k) (4.30)
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it follows that

Z{(f ◦ g)(n), n, z} = F (z)G∗(1/z∗) (4.31)

if the individual Z-transforms exist. For the finite signal

fN (n) =
{

f (n) if n = 0, 1, . . . N − 1,
0 otherwise,

(4.32)

one obtains

cff (n) = lim
N→∞

(fN ◦ fN )(n)/(2N + 1) (4.33)

and

ĉff (z) = lim
N→∞

1

2N + 1
fN (z)f ∗N (1/z∗). (4.34)

This is the Wiener-Khinchin theorem for the Z-transform, from which one can infer an estimation of the
power spectrum of A(n), noting that with (4.29)

ĉ
(AR)
AA (z) = ĉεε(z)(

1−∑P
k=1 a

(P )
k z−k

) (
1−∑P

l=1 a
(P )∗
l zl

) .

Since εP (n) is white noise, its autocorrelation function is given by cεε(n) = 	2
P �n,0, and therefore

ĉεε(z) = 	2
P . This leads to the so-called all-pole form of ĉAA(z),

ĉ
(AR)
AA (z) = 	2

P(
1−∑P

k=1 a
(P )
k z−k

) (
1−∑P

l=1 a
(P )∗
l zl

) . (4.35)

From the approximation

c̃
(AR)
AA (�) ≈ �t

+∞∑
n=−∞

cAA(n) exp(−in��t) = �t ĉAA

(
ei��t

)
(4.36)

one obtains finally an approximation for the Fourier spectrum of the ACF of a(t), which is based on the
AR model [61, 64],

c̃(AR)
aa (�) = �t 	2

P∣∣∣1−∑P
k=1 a

(P )
k e−ik��t

∣∣∣2 . (4.37)

In contrast to the estimation of Fourier spectra through smoothed discrete Fourier transforms described
in Section 4.3, no window functions are applied here and the frequency scale is moreover continuous. Its
evaluation for small values of � must be considered as an estimation on the basis of the MEM approach,
which amounts effectively to extrapolating cAA(t) beyond the trajectory length. The calculation of ACFs
according to the AR model is described in Section 4.5.

4.5 Autoregressive (AR) model for autocorrelation functions

The estimation for the ACF of A corresponding to the power spectrum (4.37) can be obtained by inverse
Z-transform of (4.35),

c
(AR)
AA (n) = 1

2�i

∮
C

dz zn−1ĉ
(AR)
AA (z), (4.38)

where n can be any integer number, in particular |n| > Nt , where Nt is the number of data points
in the discrete signal A(n) = {A(0), . . . , A(Nt − 1)} available from an MD simulation. The inverse
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Z-transform (4.38) can be performed by transforming ĉ
(AR)
AA (z) into a rational function [11], which is

achieved by multiplying the numerator and the denominator by −zP /a
(P )
P .

ĉ
(AR)
AA (z) = 1

a
(P )
P

−zP 	2
P(

zP −
P∑

k=1

a
(P )
k zP−k

)
︸ ︷︷ ︸

p(z)

(
P∑

k=1

[
a

(P )∗
l

a
(P )
P

]
zl − 1

a
(P )
P

)
︸ ︷︷ ︸

q(z)

. (4.39)

Now the contour integral (4.38) can be evaluated by applying the residue theorem, choosing a contour
in the annulus of convergence of ĉ

(AR)
AA (z), which is given by

|zk|max < |z| < 1

|zk|max

. (4.40)

This condition follows from the zeros of the polynomial q(z) in (4.35) which are given by 1/zk if zk

(k = 1, . . . , P ) are the zeros of the characteristic polynomial

p(z) = zP −
P∑

k=1

a
(P )
k zP−k . (4.41)

Clearly, the domain of convergence of (4.35) is non-empty only if all zeros of p(z) lie within the unit
circle,

|zk| < 1, k = 1, . . . , P . (4.42)

This condition is fulfilled if the Burg algorithm [20, 62] is chosen for the calculation of the coefficients
{a(P )

k }. In this case the integration contour in (4.38) can be chosen to be the unit circle and one obtains

c
(AR)
AA (n) =

P∑
j=1


j z
|n|
j , (4.43)

where the coefficients {
j } have the form


j = 1

a
(P )
P

−zP−1
j 	2

P∏P
k=1,k �=j (zj − zk)

∏P
l=1(zj − z−1

l )
, (4.44)

assuming that the characteristic polynomial p(z) has only simple roots. In the light of expression (4.43)
relation (4.42) appears effectively as a stability criterion.

4.6 Discrete memory function within the AR model

An estimation of the memory function associated with a given numerical ACF can be obtained from the
discretized version of the memory function equation (2.21). Defining for convenience the normalized
ACF of the dynamical variable A under consideration through

�(t) = CAA(t)

CAA(0)
, (4.45)

we then have

�(n+ 1)− �(n)

�t
= −

n−1∑
k=0

�t �(n− k)�(k). (4.46)
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This equation is now subjected to a one-sided Z-transform, which is defined as

f̂ >(z) =
∞∑

n=0

f (n)z−n. (4.47)

This leads to

�̂>(z) = 1

�t2

(
z

�>(z)
+ 1− z

)
, (4.48)

using that �(0) = 1. As shown in [11], the AR model allows to express �>(z) as

�(AR)
> (z) =

∞∑
n=0

�(AR)(n)z−n =
P∑

j=1


j

z

z − zj

, (4.49)

where the coefficients 
j are given by Eq. (4.44). Inserting (4.49) into (4.48) yields �̂(AR)
> (z), the

z-transform of the discrete memory function within the AR model,

�̂(AR)
> (z) = 1

�t2

(
z

�(AR)
> (z)

+ 1− z

)
. (4.50)

In nMoldyn the time series �(AR)(n) is obtained from �̂(AR)
> (z) by polynomial division. Writing (4.50) in

the form �̂>(z) = c0 + c1z−1 + c2z−2 + . . . one can identify c0 ≡ �(0), c1 ≡ �(1), . . ..
A numerical estimation of the generalized friction coefficient is obtained from

�0 =
∞∑

n=0

�t �(n) = �t �̂>(1). (4.51)

which corresponds to the integral over the memory function. Using (4.50) we obtain thus within the AR
model

�(AR)
0 = 1

�t

1∑P
j=1 
j

1
1−zj

, (4.52)

where {zj } are again the zeros of the characteristic polynomial (4.41).

4.7 ScrewFit algorithm

The ScrewFit parameters for the secondary structure analysis of proteins are obtained through a
quaternion-based superposition fit of the protein peptide planes (formed by the atoms O, C, N in the
protein backbone). The superposition fit of molecular structures is described by the target function

m(q) =
N∑

�=1

w�(D · x� − x′�)2, (4.53)

where {x�} and {x ′�} are the coordinate sets giving the atomic positions of two successive planes relative
to the respective rotation centers. In ScrewFit, the rotation centers are chosen to be the C atoms. The
weights w� are a positive numbers that satisfy

∑
� w� = 1, and D is the orthogonal rotation matrix

expressed in terms of the parameters of a normalized quaternion q = {q0, q1, q2, q3}:

D(q) =


 q2

0 + q2
1 − q2

2 − q2
3 2(−q0q3 + q1q2) 2(q0q2 + q1q3)

2(q0q3 + q1q2) q2
0 + q2

2 − q2
1 − q2

3 2(−q0q1 + q2q3)

2(−q0q2 + q1q3) 2(q0q1 + q2q3) q2
0 + q2

3 − q2
1 − q2

2 .


 (4.54)

The function (4.53) is to be minimized with respect to these four parameters, which must obey the
normalization condition q2

0 + q2
1 + q2

2 + q2
3 = 1. As demonstrated in previous works [32, 54], the
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constrained minimization problem can be mapped to an eigenvector problem for a positive semi-definite
matrix of the type M ≡M({x�, x ′�}),

M · q = �q, (4.55)

where � is the superposition error. One then obtains four eigenvectors qj and four associated eigenvalues
�j = m(qj ), the smallest of which is associated with the quaternion yielding the optimal superposition.
The description of a rotation in terms of quaternion parameters does not only lead to an efficient
and elegant solution of the superposition problem, but also allows the rotation axis to be easily
determined. Defining n to be a unit vector along the rotation axis and � the rotation angle, we have
q ≡ (q0, qv) = (cos(�/2), sin(�/2)n). The corresponding rotation axis n is also the direction of the
screw motion, according to Chasles’ theorem [18].

The ScrewFit Analysis (SFA) implemented in nMoldyn provides three ScrewFit parameters to
characterize protein secondary structures and their evolution in time during a molecular dynamics
simulation:

1. The orientational distance is defined as

� =
√∑3

�=1(x� − x ′�)2

�max

. (4.56)

where the quaternion associated with the largest eigenvalue, �max , describes the “worst”
superposition and thus the eigenvalue �max defines the maximal Euclidean distance between the
two peptide planes. By definition 0 ≤ � ≤ 1.

2. The radius of the screw motion defined by the Chasles’ theorem and relating two consecutive
peptide planes,

�i = |t⊥|
2

√
1+ cot2(�/2). (4.57)

where, defining t to be the vector relating the C-atoms of consecutive peptide planes, t⊥ is its
component perpendicular to the unit vector n which defines the rotation axis. The radius � is a
measure of the local curling of the backbone conformation. In a flat backbone conformation, such
as an extended 
-strand, � is close to zero; when the local backbone conformation is curled, as in
the case of �-helices and 
-turns, � increases.

3. The straightness parameter 	. For residue i the latter is defined as

	i = �T
i · �i+1, (4.58)

where

�i =
R⊥i+1 − R⊥i
|R⊥i+1 − R⊥i |

, (4.59)

and R⊥i is the point on the helix axis, which is closest to the C-atom of peptide plane i. The
straightness gives information about the curvature of a secondary structure element.

4.8 File formats

nMoldyn expects trajectory files to follow the conventions of the Molecular Modelling Toolkit. This
means that all trajectory data is stored in a netCDF file, which also contains the definition of the
system. The advantage of using this format is that the files are platform-independent, compact, and self-
contained, which reduces the risk of user errors. Moreover, it is possible to read trajectory data atom by
atom efficiently, i.e. without reading in the whole file each time. In the latest version of nMoldyn, several
format converters have been implemented to allow the treatment of trajectories produced by simulation
programs other than MMTK, such as Amber, CHARMM/X-PLOR, DL POLY, MaterialsStudio, NAMD
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and VASP. The output files produced by nMoldyn are in netCDF format, which allows more compact
data storage especially for the functions of two variables. nMoldyn also provides a plotting facility for
these functions, with both 3D and 2D representations. Furthermore, the variables contained in a netCDF
file (frequency, time, momentum transfer, time correlation function, frequency spectrum, . . . ) can be
extracted and exported to ASCII file.

5. CONCLUSIONS

nMoldyn is a flexible and user-friendly analysis programs for simulation data. Among the new function-
alities introduced in the latest version we emphasize the computation of radial distribution function,
static structure factor, partial terms of all scattering-related properties, time correlation functions relevant
to NMR relaxation spectroscopy, and secondary structure analysis of proteins. An effort has been
made to offer also a new and much more powerful atom selection engine. The implementation of
analyses devoted to the IR-THz spectroscopy is in progress. nMoldyn is now also parallelized and the
corresponding details will be published elsewhere.
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