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Abstract

Conventional protein structure determination from nuclear magnetic resonance data relies heavily
on side-chain proton-proton distances. The necessary side-chain resonance assignment, however,
is labor intensive and prone to error. Here we show that structures can be accurately determined
without NMR information on the sidechains for proteins up to 25 kDa by incorporating backbone
chemical shifts, residual dipolar couplings, and amide proton distances into the Rosetta protein
structure modelling methodology. These data, which are too sparse for conventional methods,
serve only to guide conformational search towards the lowest energy conformations in the folding
landscape; the details of the computed models are determined by the physical chemistry implicit in
the Rosetta all atom energy function. The new method is not hindered by the deuteration required
to suppress nuclear relaxation processes for proteins greater than 15 kDa, and should enable
routine NMR structure determination for larger proteins.

The first step in protein structure determination by NMR is chemical shift assignment for the
backbone atoms. In contrast to the subsequent assignment of the sidechains, this is now
rapid, reliable, and largely automated (1–5). Global backbone structural information
complementing the local structure information provided by backbone chemical shift
assignments (6,7), can be obtained from HN-HN NOESY, residual dipolar coupling (RDC)
(8), and other (9,10) experiments. For larger proteins, deuteration becomes necessary to
circumvent the efficient spin relaxation properties resulting from their higher rotational
correlation times(11,12), but removing protons also eliminates long range NOESY
information from sidechains except for selectively protonated sidechain moieties (13). The
difficulty in determining accurate structures with no or limited sidechain information is a
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major bottleneck that currently prevents routine application of NMR to larger (> 15 kDa)
systems(14).

Here we show that structures of proteins up to 200 residues (23 kDa) can be determined
using information from backbone (HN, N, Cα, Cβ, C') NMR data by taking advantage of the
conformational sampling and all atom energy function in the Rosetta structure prediction
methodology, which for small proteins in favorable cases can produce atomic accuracy
models starting from sequence information alone(15). Structure prediction in Rosetta
proceeds in two steps; first a low resolution exploration phase using Monte-Carlo fragment
assembly and a coarse-grained energy function, and second a computationally expensive
refinement phase which cycles between combinatorial sidechain optimization and gradient-
based minimization of all torsional degrees of freedom in a physically-realistic all-atom
forcefield(15). The primary obstacle to Rosetta structure prediction from amino acid
sequence information alone is conformational sampling; native structures almost always
have lower energies than non-native conformations, but are very seldom sampled in
unbiased trajectories. Incorporating NMR chemical shift information in the selection of the
fragments used in the exploration phase (CS-Rosetta) (16,17) provides a robust approach to
determining accurate structures of small (< 100 residue) proteins using only backbone
and 13Cβ chemical shift data. For larger (> 12 kDa) proteins, the performance of CS-Rosetta
is very target dependent: structures sufficiently close to the native structure for the energy to
drop significantly may be generated rarely or not at all.

We investigated whether RDC data, which provide long range information on the
orientations between bond vectors, can guide the low resolution search closer to the native
structure and overcome the sampling problem for larger (100 – 200 residue) proteins. For
every attempted Monte Carlo move, the alignment tensor is calculated by singular value
decomposition(18), and the decision to accept or reject the conformation is biased by the
change in the agreement between the back-calculated and experimental couplings(19).
Incorporation of RDCs dramatically improved convergence on the correct structure in a
benchmark of 11 alpha, beta and alpha/beta proteins ranging in size from 62 to 166 residues
(Figs 1, S1 and Table 1). As indicated in Table 1, CSRDC-Rosetta consistently generates
accurate models for proteins up to 120 residues, and in favorable cases for larger proteins.

For proteins with over 120 residues, conformational sampling becomes limiting even for the
CS-RDC-Rosetta protocol and the low energy ensemble is not always close to the native
structure. To further focus sampling, we developed an iterative refinement protocol that
incorporates assigned backbone HN-HN NOEs in addition to backbone RDCs. As in the
previously described “rebuild and refine” protocol, a pool of diverse low energy
conformations is maintained and the highest energy structures in the pool are periodically
replaced with offspring(20). The new protocol, a genetic algorithm, generates hybrid
conformations by recombining first beta sheet pairings and subsequently fragments of the
low energy structures (see methods). To further enhance sampling, trajectories are seeded
with conformations harvested from previous trajectories that led to low energy
conformations(21).

The improvement in the model population with increasing generations in the iterative
protocol is illustrated in Figure 2 for the 200-residue ALG13 protein using experimentally
determined chemical shift, RDC, and assigned backbone amide HN-HN NOE data(22). The
Cα-RMSD to the native structure and the energy improve from generation to generation, and
after several rounds, discrimination towards lower RMSD structures is apparent (Figure 2a,
cyan to yellow). After high resolution refinement (Figure 2a, orange to red), the lowest
energy structures are close to the native structure. The final low energy structural ensemble
(Figure 2b) recapitulates the unusual topology in the previously determined NMR
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structure(22) (Figure 2d) to within 3.4 Å RMSD (Table 1). The Rosetta ensemble fits
independent RDC data as well as the NMR structure, and the backbone variation in the
ensemble is correlated with backbone dynamics as probed by the R1 relaxation rate (Figure
2c). The iterative-CS-RDC-NOE-Rosetta models of ALG13 thus appear to be comparable in
quality to the previously published structure that required substantial effort, including
preparation of selectively methyl and aromatic-protonated samples(22).

The iterative-CS-RDC-NOE protocol was tested further on 12 proteins with sizes ranging
from 120 to 266 residues (Table 1 and Fig S3). For all proteins but 1g68 a considerable part
of the structure converges (Table 1). Backbone HN-HN NOE data was required for
convergence of 2z2i, 1i1b, arf1, 2rn2 and 1sua but not for 5pnt, 1s0p, 1f21 and er553. The
RMSDs to the native structures over the converged regions range from 1.7–4.3Å with the
exceptions of 1sua and 1f21. For 1f21 high accuracy (1.6 Å) was reached for a 92 residue
subset (Fig S3). Sidechain accuracy was generally quite high in the converged regions (Fig
S5).

We carried out a blind test of the new methods on five data sets generated in the Northeast
Structural Genomics (NESG) Center before conventional NMR structures were determined.
For four of the proteins, the CS-RDC protocol converged (Figure 3a–d), while for a fifth,
convergence was not observed and blind structure determination was instead carried out
using the iterative CS-RDC-NOE protocol (Figure 3e). In all five cases (Table I) the
resulting Rosetta determined structure is very similar to the conventionally determined NMR
solution structure over both the backbone (Figure 3, left panels) and the core sidechains
(Figure 3, right panels), which is notable because no experimental sidechain information is
used in the Rosetta protocol; the details of core packing are determined by the Rosetta all
atom energy function.

Thus, our methodology is able to generate accurate structures of proteins up to ~25 kDa
from sparse NMR data without side-chain assignments. To be useful in practice, it is
important that there be a means of assessing the reliability of the computed models. Cross-
validation with independently collected data is an excellent way to do this, but truly
independent data may not always be available, and if the available data are already sparse, it
may not be possible to remove a subset for independent validation.

Our approach to structure validation is based on the interplay between the two contributing
sources of structural information—the detailed physical chemistry implicit in the Rosetta all
atom energy function, and the experimental NMR data. As illustrated in Figure 4a, the all
atom energy landscape (black) is rugged with many local minima, making optimization
difficult. The experimental bias based on backbone NMR data (red), although smoother, is
degenerate and lacks resolution. Since the constrained minimization of a function will
almost always result in higher function values than unconstrained minimization, NMR data
constrained optimization in general should result in higher energy structures than bias-free
optimization (arrow 1 in Figure 4a). This scenario may hold for traditional structure
determination in which the search is almost completely driven by the experimental data.
However, if the two sources of information are in concordance, the bias from the
experimental data can have two favorable effects (Figure 4b)—first, optimization far from
the native minimum is impeded, resulting in an upward shift of the energy of non-native
structures (arrow 1), and second, optimization near the native minimum is improved as the
data guide the search towards the global minimum (Figure 4a–b, arrow 2).

The scenario illustrated in Figure 4b is unlikely to occur if there is no sampling near the
correct structure: the experimental data and the energy function will almost never
independently favor the same incorrect structure. Hence, we propose the following three
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criteria for evaluating the reliability of a calculated structure (Table 1, column 6–8). First,
the calculation should converge — the lowest energy conformations should be very similar
to each other over a large fraction of the structure. For both the CS-RDC-Rosetta and the
iterative protocol, whenever the calculation converged for more than 60% of the structure,
the RMSD to native over this region was less than 4 Å (Table 1, column 6). Second, the
converged structures should be clearly lower in energy than all significantly different
(RMSD greater than 7 Å) structures; this was the case for nearly all of our test cases (Table
1, column 7). Third, the structures generated with experimental data should be at least as
low in energy as those generated without experimental data; for none of the successful
calculations does the energy increase significantly when the experimental data are included
in the optimization (Table 1, column 8). For larger proteins (>120) the data in fact guide the
trajectories to lower energy structures than obtained by unconstrained optimization (Figure
4d and Table 1 column 8)— as argued above, this is a strong indicator that the correct
structure has been found.

For the twenty proteins in our test set, when all three criteria were satisfied the low energy
ensemble resembles the independently determined structures. Importantly, the clear structure
calculation failure — 1f21 — which converged to a wrong conformation with an RMSD of
9.4 to the native, fails the third criterion: the energy is higher rather than lower when the
experimental data are included in the optimization (Figure 4c and Table 1, column 8). Since
we had only one such failure, we simulated additional failures by deleting all-near native
structures from the model populations and computed the three metrics described above for
these `fake' minima, (Table S1, cf. Methods). For almost all the proteins, these constructed
pathological cases again fail the third criterion: they have higher energies in the
experimentally biased optimization.

For the proteins in our set in the ~30 kDa molecular weight range, the computed structures
are not completely converged and have large disordered regions. This is clearly a sampling
problem since the native structure has lower energy (Figure 4d, S3); even with the NMR
data as a guide, Rosetta trajectories fail to sample very close to the native state. Increased
convergence on the low energy native state can be achieved either by collecting and utilizing
additional experimental data (1ilb_2 in Fig S3;) or by improved sampling. While at present
the former is the more reliable solution, the latter will likely become increasingly
competitive as the cost of computing decreases and conformational search algorithms
improve.

We have shown that accurate structures can be computed for a wide range of proteins using
backbone only NMR data. These results suggest a change in the traditional NOE-constraint-
based approach to NMR structure determination (Suppl. Fig. S4). In the new approach, the
bottlenecks of sidechain chemical shift assignment and NOESY assignment are eliminated,
and instead, more backbone information is collected: RDCs in one or more media, and a
small number of unambiguous HN-HN constraints are collected using 3D or 4D experiments,
which restrict the number of β-strand registers. Advantages of the approach are that 1H,15N-
based NOE and RDC data quality is relatively unaffected in slower tumbling larger proteins
and that the analysis of resonance and NOESY peak assignments can be done in a largely
automated fashion with fewer opportunities for error. The approach is compatible with
deuteration necessary for proteins greater than 15 kDa, and for larger proteins can be
extended to include methyl- NOEs on selectively protonated samples. The method should
also enable a more complete structural characterization of transiently populated states(24)
for which the available data are generally quite sparse.
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Summary

Protein structures can be determined using the limited NMR information obtainable for
larger proteins
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Figure1.
Impact of RDC data on conformational search. Lines depict RMSD histograms for the
lowest low-resolution energy 10% of structures generated using CS-Rosetta(black) or CS-
RDC-Rosetta(red). (a) BcR103A (b) DvR115G (b) RrR43 (d) SrR115C
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Figure 2.
Determination of ALG13 structure from backbone NMR data with Rosetta. (a) RMSDs and
energies of structures generated in batches of 2000 during the iterative protocol. Each
generation of structures (color code: blue to red, corresponds to number of generation) is
based on information from previous runs (cf. Methods). Strong convergence is reached
already in the computational less expensive low-resolution mode. The last generations
(orange to red) increase both the precision and accuracy of the ensemble, by refining the
structures within the Rosetta all-atom energy. The RMSD is computed over the residues for
which convergence within 3Å root mean square fluctuations (RMSF) was reached in the 50
lowest energy Rosetta models (5–70, 81–139, 151–180). (b) Ensemble of 10 lowest energy
Rosetta structures (below line in panel a). Regions with more than 3 Å RMSF are colored in
grey. (c) Comparison of the RMSF at each residue in the low energy Rosetta ensemble to
NMR R1 relaxation rate (Red, relaxation rates; black, RMSF in Rosetta ensemble). Regions
variable in the low energy structures exhibit increased dynamics in solution; these data were
not used in the structure calculation. (d) NMR solution ensemble based on side-chain NOEs,
RDC and PRE data as deposited in the Protein Data Bank (PDB code: 2jzc).
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Figure 3.
Blind predictions with the CS-RDC-Rosetta and iterative CS-RDC-Rosetta protocols. Left
panels: superposition of the lowest energy 10 predicted structures (red) over the
experimentally solved ensemble of NMR structures (blue); right panels: magnified view of
the core side-chains. Rosetta models in panels (a–d) were determined with CS-RDC-Rosetta
and in (e) with iterative CS-RDC-Rosetta. (a) BcR268F (b) DvR115G (c) MaR214A (d)
SrR115C (e) AtT7
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Figure 4.
Effect of incorporation of experimental data on energy minimization. (a) The Rosetta all
atom energy (black line) has many local minima making minimization difficult, but the
global minimum is generally close to the native structure (N). The experimental bias (red
line), while smoother, has degeneracies and lacks resolution because the data are sparse.
Local minima of the all-atom energy and the experimental bias are uncorrelated far away
from the native structure but coincide close to the native structure. Accordingly, far from the
global minimum, including the experimental data during optimization usually results in
higher energies (arrow 1), while close to the native structure (N), including the data results
in lower energies(arrow 2). (b) Lines represent the lowest energies sampled by structures at
various RMSDs after optimization in the absence (black line) or presence (red line) of
experimental data. Generally, the all-atom energy and experimental data are in concordance
for conformations close to the native protein structure but not for conformations far from the
native structure. If this concordance condition is met, close to the native structure the
experimental data can guide sampling towards the global minimum (arrow 2) and thus
constrained optimization can result in lower energy conformations than unconstrained
optimization, while biased optimization is less effective than unconstrained optimization
distant from the native structure leading to higher energies(arrow 1). In contrast, (c–d) All-
atom energy and RMSD of final Rosetta ensemble from iterative refinement with and
without experimental data. Lines represent the median of the 10 lowest energy models per
RMSD-bin. (c) 1f21 – an unsuccessful calculation; biased optimization with RDC data(red)
yields similar energies as unbiased optimization (black); there is a large remaining energy
gap to the native structure (blue dots). (d) Alg13 – a successful calculation; biased
optimization with the experimental data (red) results in lower energies than unbiased
optimization (black).
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