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Fifty years of developments in nuclear magnetic resonance sNMRd have resulted in an unrivaled

degree of control of the dynamics of coupled two-level quantum systems. This coherent control of

nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum

information processing. NMR has been the workhorse for the experimental implementation of

quantum protocols, allowing exquisite control of systems up to seven qubits in size. This article

surveys and summarizes a broad variety of pulse control and tomographic techniques which have been

developed for, and used in, NMR quantum computation. Many of these will be useful in other

quantum systems now being considered for the implementation of quantum information processing

tasks.
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I. INTRODUCTION

Precise and complete control of multiple coupled
quantum systems is expected to lead to profound in-
sights in physics as well as to novel applications, such as
quantum computation sBennett and DiVincenzo, 2000;
Nielsen and Chuang, 2000; Galindo and Martin-
Delgado, 2002d. Such coherent control is a major goal in
atomic physics sWieman et al., 1999; Osborne and
Coontz, 2002; Leibfried et al., 2003d, quantum optics
sZeilinger, 1999; Osborne and Coontz, 2002d and
condensed-matter research sClark, 2001; Maklin et al.,
2001; Osborne and Coontz, 2002; Zutic et al., 2004d, but
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surprisingly, many of the leading experimental results
are coming from one of the oldest areas of quantum
physics: nuclear magnetic resonance sNMRd.

The development of NMR control techniques origi-
nated in a strong demand for precise spectroscopy of
complex molecules: NMR is the premier tool for protein
structure determination, and in modern NMR spectros-
copy, often thousands of precisely sequenced and phase-
controlled pulses are applied to molecules containing
hundreds of nuclear spins. More recently, over the past
seven years, a wide variety of complex quantum infor-
mation processing tasks have been realized using NMR,
on systems ranging from two to seven quantum bits squ-
bitsd in size, on molecules in liquid sChuang, Vander-
sypen, et al., 1998; Jones et al., 1998; Nielsen et al., 1998;
Somaroo et al., 1999; Knill et al., 2000; Vandersypen et
al., 2001d, liquid crystal sYannoni et al., 1999d, and solid-
state samples sZhang and Cory, 1998; Leskowitz et al.,
2003d. These demonstrations have been made possible
by application of a menagerie of new and previously
existing control techniques, such as simultaneous and
shaped pulses, composite pulses, refocusing schemes,
and effective Hamiltonians. These techniques allow con-
trol and compensation for a variety of imperfections and
experimental artifacts invariably present in real physical
systems, such as pulse imperfections, Bloch-Siegert
shifts, undesired multiple-spin couplings, field inhomo-
geneities, and imprecise system Hamiltonians.

The problem of control of multiple coupled quantum
systems is a signature topic for NMR and can be sum-

marized as follows: given a system with Hamiltonian H

=Hsys+Hcontrol, where Hsys is the Hamiltonian in the ab-
sence of any active control, and Hcontrol describes terms
that are under external control, how can a desired uni-

tary transformation U be implemented, in the presence
of imperfections, and using minimal resources? Similar
to other scenarios in which quantum control is a well-
developed idea, such as in laser excitation of chemical
reactions sWalmsley and Rabitz, 2003d, Hcontrol arises
from precisely timed sequences of multiple pulses of
electromagnetic radiation, applied phase-coherently,
with different pulse widths, frequencies, phases, and am-
plitudes. However, importantly, in contrast to other ar-
eas of quantum control, in NMR Hsys is composed from
multiple distinct physical pieces, i.e., the individual
nuclear spins, providing the tensor product Hilbert-
space structure vital to quantum computation. Further-
more, the NMR systems employed in quantum compu-
tation are better approximated as being closed, as
opposed to open, quantum systems.

Nuclear spins and NMR provide a wonderful model
and inspiration for the advance of coherent control over
other coupled quantum systems, as many of the chal-
lenges and solutions are similar across the world of
atomic, molecular, optical, and solid-state systems ssee,
for example, Steffen, 2003d. Here, we review the control
techniques employed in the field of NMR quantum com-
putation, focusing on methods that are robust under ex-
perimental implementation, and including experimental
prescriptions for evaluation of the efficacy of the tech-

niques. In contrast to other reviews of NMR quantum
computation which have appeared in the literature
sCory et al., 2000; Jones, 2000; Vandersypen, 2001d, and
introductions to the subject sGershenfeld and Chuang,
1998; Jones, 2001; Steffen et al., 2001; Vandersypen et al.,
2002d, we do not assume prior knowledge of, or give
specialized descriptions of quantum computation algo-
rithms, nor do we review NMR quantum computing ex-
periments. And although we do not assume prior de-
tailed knowledge of NMR, a self-contained treatment of
several advanced topics, such as composite pulses, and
refocusing, is included. Finally, because the primary pur-
pose of this article is to elucidate control techniques
which may generalize beyond NMR, we also assume a
regime of operation in which relaxation and decoher-
ence mechanisms are simple to treat and physical evolu-
tion is dominated by closed-system dynamics.

The organization of this article is as follows. In Sec. II,
we briefly review the physics of NMR, using a Hamil-
tonian description of single and interacting nuclear spins
1/2 placed in a static magnetic field, controlled by radio-
frequency fields. This establishes a foundation for the
first major part of this review, Sec. III, which discusses
the ways in which the control Hamiltonian can be used
to construct all the elementary quantum gates, and the
limitations that arise from the given system and control
Hamiltonian, as well as from instrumental imperfec-
tions. The second major part of this review, Sec. IV, pre-
sents three classes of advanced techniques for tailoring
the control Hamiltonian, which permit accurate quan-
tum control despite the existing limitations: the methods
of amplitude and frequency shaped pulses, composite
pulses, and average Hamiltonian theory. Finally, in Sec.
V, we describe a set of standard experiments, derived
from quantum computation, which demonstrate coher-
ent qubit control and can be used to characterize deco-
herence. These include procedures for quantum state
and process tomography, as well as methods for evaluat-
ing the fidelity of quantum states and gates.

For further reading on NMR, we recommend the text-
books of Abragam s1962d, Ernst, Bodenhausen, and
Wokaun s1987d and Slichter s1996d for their rigorous dis-
cussions of the nuclear-spin Hamiltonian and standard
pulse sequences; Freeman s1997d for an intuitive expla-
nation of advanced techniques for control of the spin
evolution; and Levitt s2001d for an intuitive understand-
ing of the physics underlying the spin dynamics. Many
useful reviews on specific NMR techniques are compiled
in the Encyclopedia of NMR sGrant and Harris, 2001d.

For additional reading on quantum computation, we
recommend the book by Nielsen and Chuang s2000d for
the basic theory of quantum information and computa-
tion; Bennett and DiVincenzo s2000d; and Braunstein
and Lo s2000d for reviews of the state of the art in ex-
perimental quantum information processing; and Lloyd
s1995d, for a simple introduction to quantum computa-
tion. Excellent presentations of quantum algorithms are
given by Ekert and Jozsa s1996d and Steane s1998d.

The original papers introducing NMR quantum com-
puting are those of Cory et al. s1996, 1997; Cory, Price,
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and Havel, 1998d, and Gershenfeld and Chuang s1997d.
Gershenfeld and Chuang s1998d and Steffen et al. s2001d
give elementary introductions to NMR quantum com-
puting, while introductions geared towards NMR spec-
troscopists are presented by Jones s2001d and Vander-
sypen et al. s2002d. Summaries of NMR quantum
computing experiments and techniques are given by
Cory et al. s2000d, Jones s2000d, and Vandersypen s2001d.

II. THE NMR SYSTEM

We begin with a description of the NMR system,
based on its system Hamiltonian and the control Hamil-
tonian. The system Hamiltonian gives the energy of
single and coupled spins in a static magnetic field, and
the control Hamiltonian arises from the application of
radio-frequency pulses to the system at, or near, its reso-
nant frequencies. A rotating reference frame is em-
ployed, providing a very convenient description.

A. The system Hamiltonian

1. Single spins

The time evolution of a spin-1/2 particle swe shall not
consider higher-order spins in this paperd in a magnetic

field BW 0 along ẑ is governed by the Hamiltonian

H0 = − "gB0 Iz = − "v0 Iz = F− "v0/2 0

0 "v0/2
G , s1d

where g is the gyromagnetic ratio of the nucleus, v0 /2p

is the Larmor frequency,1 and Iz is the angular momen-

tum operator in the ẑ direction. Iz, Ix, and Iy relate to the
well-known Pauli matrices as

sx = 2Ix, sy = 2Iy, sz = 2Iz, s2d

where, in matrix notation,

sx ; F0 1

1 0
G ; sy ; F0 − i

i 0
G ; sz ; F1 0

0 − 1
G . s3d

The interpretation of Eq. s1d is that the u0l or u↑ l en-

ergy sgiven by k0uHu0l, the upper left element of Hd is

lower than the u1l or u↓ l energy sk1uHu1ld by an amount

"v0, as illustrated in the energy diagram of Fig. 1. The
energy splitting is known as the Zeeman splitting.

We can pictorially understand the time evolution U

=e−iHt/" under the Hamiltonian of Eq. s1d as a precessing

motion of the Bloch vector about BW 0, as shown in Fig. 2.

As is conventional, we define the ẑ axis of the Bloch
sphere as the quantization axis of the Hamiltonian, with

u0l along +ẑ and u1l along −ẑ.
For the case of liquid-state NMR, which we shall

largely restrict ourselves to in this article, typical values

of B0 are 5–15 T, resulting in precession frequencies v0

of a few hundred MHz, the radio-frequency range.
Spins of different nuclear species sheteronuclear spinsd

can be easily distinguished spectrally, as they have very

distinct values of g and thus also very different Larmor
frequencies sTable Id. Spins of the same nuclear species
shomonuclear spinsd which are part of the same mol-
ecule can also have distinct frequencies, by amounts

known as their chemical shifts s̃i.

The nuclear-spin Hamiltonian for a molecule with n
uncoupled nuclei is thus given by

H0 = − o
i=1

n

"s1 − s̃idgiB0Iz
i = − o

i=1

n

"v0
i Iz

i , s4d

where the i superscripts label the nuclei.
The chemical shifts arise from partial shielding of the

externally applied magnetic field by the electron cloud
surrounding the nuclei. The amount of shielding de-
pends on the electronic environment of each nucleus, so
like nuclei with inequivalent electronic environments
have different chemical shifts. Pronounced asymmetries
in the molecular structure generally promote strong

chemical shifts. The range of typical chemical shifts s̃i

varies from nucleus to nucleus, e.g., <10 parts per mil-

lion sppmd for 1H, <200 ppm for 19F, and <200 ppm for
13C. At B0=10 T, this corresponds to a few kHz to tens

of kHz scompared to v0’s of several hundred MHzd. As
an example, Fig. 3 shows an experimentally measured
spectrum of a molecule containing five fluorine spins
with inequivalent chemical environments.

1We shall sometimes leave the factor of 2p implicit and call
v0 the Larmor frequency.

FIG. 1. Energy diagram for a single spin-1 /2 particle.

FIG. 2. Precession of a spin-1 /2 particle about the axis of a

static magnetic field.

TABLE I. Larmor frequencies sMHzd for some relevant nu-
clei, at 11.74 T.

Nucleus 1H 2H 13C 15N 9F 31P

v0 /2p 500 77 126 −51 470 202
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In general, the chemical shift can be spatially aniso-
tropic and must be described by a tensor. In liquid solu-
tion, this anisotropy averages out due to rapid tumbling
of the molecules. In solids, the anisotropy means that
the chemical shifts depend on the orientation of the mol-

ecule with respect to BW 0.

2. Interacting spins

For nuclear spins in molecules, nature provides two
distinct interaction mechanisms which we now describe,
the direct dipole-dipole interaction, and the electron-

mediated Fermi contract interaction known as J cou-
pling.

a. Direct coupling

The magnetic dipole-dipole interaction is similar to the
interaction between two bar magnets in each other’s vi-
cinity. It takes place purely through space—no medium
is required for this interaction—and depends on the in-

ternuclear vector rWij connecting the two nuclei i and j, as
described by the Hamiltonian

HD = o
i,j

m0gigj"

4purWiju
3 FIWi · IWj −

3

urWiju
2
sIWi · rWijdsIW

j · rWijdG , s5d

where m0 is the usual magnetic permeability of free

space and IWi is the magnetic moment vector of spin i.
This expression can be progressively simplified as vari-
ous conditions are met. These simplifications rest on av-
eraging effects and can be explained within the general
framework of average-Hamiltonian theory sSec. IV.Cd.

For large v0
i =giB0 si.e., at high B0d, HD can be ap-

proximated as

HD = o
i,j

m0gigj"

8purWiju
3

s1 – 3 cos2uijdf3Iz
i Iz

j − IWi · IWjg , s6d

where uij is the angle between B0 and rWij. When uv0
i

−v0
j u is much larger than the coupling strength, the

transverse coupling terms can be dropped, so HD simpli-
fies further to

HD = o
i,j

m0gigj"

4purWiju
3

s1 – 3 cos2uijdIz
i Iz

j , s7d

which has the same form as the J coupling we describe
next fEq. s9dg.

For molecules in liquid solution, both intramolecular
dipolar couplings sbetween spins in the same moleculed
and intermolecular dipolar couplings sbetween spins in
different moleculesd are averaged away due to rapid
tumbling. This is the case we shall focus on in this ar-
ticle. In solids, similarly simple Hamiltonians can be ob-
tained by applying multiple-pulse sequences which aver-
age out undesired coupling terms sHaeberlen and
Waugh, 1968d, or by physically spinning the sample at an

angle of arccoss1/Î3d sthe “magic angle”d with respect to
the magnetic field.

b. Indirect coupling

The second interaction mechanism between nuclear

spins in a molecule is the J coupling or scalar coupling.
This interaction is mediated by the electrons shared in
the chemical bonds between the atoms and due to the
overlap of the shared electron wave function with the
two coupled nuclei, a Fermi contact interaction. The

through-bond coupling strength J depends on the respec-
tive nuclear species and decreases with the number of
chemical bonds separating the nuclei. Typical values for

J are up to a few hundred Hz for one-bond couplings
and down to only a few Hz for three- or four-bond cou-
plings. The Hamiltonian is

HJ = "o
i,j

2pJijI
Wi · IWj = "o

i,j

2pJijsIx
i Ix

j + Iy
i Iy

j + Iz
i Iz

j d , s8d

where Jij is the coupling strength between spins i and j.
Similar to the case of dipolar coupling, Eq. s8d simplifies
to

FIG. 3. sColor in online editiond Fluorine NMR spectrum sab-

solute valued centered around <470 MHz of a specially de-

signed molecule, shown in sbd. The five main lines in the spec-

trum correspond to the five fluorine nuclei in the molecule.

The two small lines derive from impurities in the sample. The

NMR spectra were acquired by recording the oscillating mag-

netic field produced by a large ensemble of precessing spins

and by taking the Fourier transform of this time-domain signal.

The precession motion of the spins is started by applying a

radio-frequency pulse sSec. II.B.1d, which tips the spins from

their equilibrium position along the ẑ axis into the x̂ - ŷ plane.

sbd From Vandersypen, Steffen, Breyta, Yannoni, Cleve, and

Chuang, 2000.
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HJ = "o
i,j

n

2pJijIz
i Iz

j , s9d

when uvi−vju@2puJiju, a condition easily satisfied for het-
eronuclear spins and which can also be satisfied for small
homonuclear molecules.

The interpretation of the scalar coupling term of Eq.

s9d is that a spin “feels” a static magnetic field along ±ẑ
produced by the neighboring spins, in addition to the

externally applied BW 0 field. This additional field shifts
the energy levels as in Fig. 4. As a result, the Larmor

frequency of spin i shifts by −Jij /2 if spin j is in u0l and by

+Jij /2 if spin j is in u1l.
In a system of two coupled spins, the frequency spec-

trum of spin i therefore actually consists of two lines

separated by Jij and centered around v0
i , each of which

can be associated with the state of spin j, u0l or u1l. For
three pairwise coupled spins, the spectrum of each spin
contains four lines. For every additional spin, the num-
ber of lines per multiplet doubles, provided all the cou-
plings are resolved and different lines do not lie on top
of each other. This is illustrated for a five-spin system in
Fig. 5.

The magnitude of all the pairwise couplings can be

found by looking for common splittings in the multiplets

of different spins. The relative signs of the J couplings
can be determined via appropriate spin-selective two-
pulse sequences, known in NMR as two-dimensional
correlation ssoft-COSYd experiments sBrüschweiler et
al., 1987d or via line-selective continuous irradiation;
both approaches are related to the CNOT gate sSec.
III.A.3d. The signs cannot be obtained from just the
simple spectra.

In summary, the simplest form of the Hamiltonian for

a system of n coupled nuclear spins is thus ffrom Eqs. s4d
and s9dg

Hsys = − o
i

"v0
i Iz

i + "o
i,j

2pJijIz
i Iz

j . s10d

In almost all NMR quantum computing experiments
performed to date, the system is well described by a
Hamiltonian of this form.

B. The control Hamiltonian

1. Radio-frequency fields

We turn now to physical mechanisms for controlling
the NMR system. The state of a spin-1/2 particle in a

static magnetic field BW 0 along ẑ can be manipulated by

applying an electromagnetic field BW 1std which rotates in

the x̂-ŷ plane at vrf, at or near the spin precession fre-

quency v0. The single-spin Hamiltonian corresponding
to the radio-frequency sRFd field is, analogous to Eq. s1d
for the static field B0,

Hrf = − "gB1fcossvrft + fdIx − sinsvrft + fdIyg , s11d

where f is the phase of the RF field, and B1 its ampli-
tude sthe minus sign in front of the sine term makes the
RF field evolve in the same sense as the spin evolution

under H0d. Typical values for v1=gB1 are up to

<50 kHz in liquid NMR and up to a few hundred kHz in

solid NMR experiments. For n spins, we have

Hrf = − o
i

n

"giB1fcossvrft + fdIx
i − sinsvrft + fdIy

i g . s12d

In practice, a magnetic field is applied which oscillates
along a fixed axis in the laboratory, perpendicular to the
static magnetic field. This oscillating field can be decom-
posed into two counter-rotating fields, one of which ro-

tates at vrf in the same direction as the spin and so can
be set on or near resonance with the spin. The other
component rotates in the opposite direction and is thus

very far off-resonance sby about 2v0d. As we shall see,
its only effect is a negligible shift in the Larmor fre-
quency, called the Bloch-Siegert shift sBloch and Siegert,
1940d.

Note that both the amplitude B1 and phase f of the

FIG. 4. Energy-level diagram for sdashed linesd two uncoupled

spins and ssolid linesd two spins coupled by a Hamiltonian of

the form of Eq. s7d or Eq. s9d in units of ".

FIG. 5. sColor in online editiond The spectrum of spin F1 in the

molecule of Fig. 3. This is an expanded view of the left line in

the spectrum of Fig. 3. Frequencies are given with respect to

v0
1. The state of the remaining spins is as indicated, based on

J12,0 and J13 ,J14 ,J15.0; furthermore, uJ12u. uJ13u. uJ15u. uJ14u.
From Vandersypen, Steffen, Breyta, Yannoni, Cleve, and

Chuang, 2000.
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RF field can be varied with time,2 unlike the Larmor
precession and the coupling terms. As we shall shortly
see, it is the control of the RF field phases, amplitudes,
and frequencies which lies at the heart of quantum con-
trol of NMR systems.

2. The rotating frame

The motion of a single nuclear spin subject to both a
static and a rotating magnetic field is rather complex
when described in the usual laboratory coordinate sys-
tem sthe lab framed. It is much simplified, however, by
describing the motion in a coordinate system rotating

about ẑ at vrf sthe rotating framed:

uclrot = exps− ivrftIzducl . s13d

Substitution of ucl in the Schrödinger equation

i"sducl /dtd=Hucl with

H = − "v0Iz − "v1fcossvrft + fdIx − sinsvrft + fdIyg

s14d

gives i"sduclrot /dtd=Hrotuclrot, where

Hrot = − "sv0 − vrfdIz − "v1fcos fIx − sin fIyg . s15d

Naturally, the RF field lies along a fixed axis in the frame

rotating at vrf. Furthermore, if vrf=v0, the first term in
Eq. s15d vanishes. In this case, an observer in the rotat-

ing frame will see the spin simply precess about BW 1 fFig.

6sadg, a motion called nutation. The choice of f controls
the nutation axis. An observer in the lab frame sees the
spin spiral down over the surface of the Bloch sphere
fFig. 6sbdg.

If the RF field is off-resonance with respect to the spin

frequency by Dv=v0−vrf, the spin precesses in the ro-

tating frame about an axis tilted away from the ẑ axis by
an angle

a = arctansv1/Dvd , s16d

and with frequency

v18 = ÎDv2 + v1
2, s17d

as illustrated in Fig. 7.
It follows that the RF field has virtually no effect on

spins that are far off resonance, since a is very small

when uDvu@v1 ssee Fig. 8d. If all spins have well-
separated Larmor frequencies, we can thus in principle
selectively rotate any one qubit without rotating the
other spins.

Moderately off-resonance pulses suDvu<v1d do rotate
the spin, but due to the tilted rotation axis, a single such

pulse cannot, for instance, flip a spin from u0l to u1l ssee
again Fig. 8d. Of course, off-resonance pulses can also be
useful, for instance, for direct implementation of rota-

tions about an axis outside the x̂-ŷ plane.
We could also choose to work in a frame rotating at

v0 sinstead of vrfd, where

Hrot = − "v1hcosfsvrf − v0dt + fgIx

− sinfsvrf − v0dt + fgIyj . s18d

This transformation does not give a convenient time-

independent RF Hamiltonian sunless vrf=v0d, as was

the case for Hrot in Eq. s15d. However, it is a natural
starting point for the extension to the case of multiple

2For example, the Varian Instruments Unity Inova 500 NMR
spectrometer achieves a phase resolution of 0.5° and 4095 lin-
ear steps of amplitude control, with a time base of 50 ns. Ad-
ditional attenuation of the amplitude can be done on a loga-
rithmic scale over a range of about 80 dB, albeit with a slower
time base.

FIG. 6. Nutation of a spin subject to a transverse RF field sad
observed in the rotating frame and sbd observed in the lab

frame.

FIG. 7. Axis of rotation sin the rotating framed during an off-

resonant radio-frequency pulse.

FIG. 8. sColor in online editiond Trajectory in the Bloch

sphere described by a qubit initially in u0l salong +ẑd, after a

250-ms pulse of strength v1=1 kHz is applied off-resonance by

0,0.5,1 , . . . ,4 kHz. On-resonance, the pulse produces a 90° ro-

tation. Far off-resonance, the qubit is hardly rotated away

from u0l.
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spins, where a separate rotating frame can be introduced
for each spin:

uclrot = Fp
i

exps− iv0
i tIz

i dGucl . s19d

In the presence of multiple RF fields indexed r, the RF
Hamiltonian in this multiply rotating frame is

Hrot = o
i,r

− "v1
rhcosfsvrf

r − v0
i dt + frgIx

i

− sinfsvrf
r − v0

i dt + frgIy
i j , s20d

where the amplitudes v1
r and phases fr are under user

control.
The system Hamiltonian of Eq. s10d is simplified, in

the rotating frame of Eq. s19d; the Iz
i terms drop out,

leaving just the JijIz
i Iz

j couplings, which remain invariant.

Note that coupling terms of the form IWi ·IWj do not trans-
form cleanly under Eq. s19d.

Summarizing, in the multiply rotating frame, the

NMR Hamiltonian H=Hsys+Hcontrol takes the form

Hsys = "o
i,j

2pJijIz
i Iz

j , s21d

Hcontrol = o
i,r

− "v1
rhcosfsvrf

r − v0
i dt + frgIx

i

− sinfsvrf
r − v0

i dt + frgIy
i j . s22d

C. Relaxation and decoherence

One of the strengths of nuclear spins as quantum bits
is precisely the fact that the system is very well isolated
from the environment, allowing coherence times to be
long compared with the dynamical time scales of the
system. Thus our discussion here focuses on closed-
system dynamics, and it is important to be aware of the
limits of this approximation.

The coupling of the NMR system to the environment
may be described by an additional Hamiltonian term
Henv, whose magnitude is small compared to that of Hsys

or Hcontrol. It is this coupling which leads to decoherence,
the loss of quantum information, which is traditionally

parametrized by two rates: T1, the energy relaxation

rate, and T2, the phase randomization rate ssee also
Secs. V.A.4 and V.A.5d.

T2 originates from spin-spin couplings which are im-
perfectly averaged away, or unaccounted for in the sys-
tem Hamiltonian. For example, in molecules in liquid
solution, spins on one molecule may have a long-range,
weak interaction with spins on another molecule. Fluc-
tuating magnetic fields, caused by spatial anisotropy of
the chemical shift, local paramagnetic ions, or unstable

laboratory fields, also contribute to T2. Nevertheless, in
well-prepared samples and in a good experimental appa-

ratus at reasonably high magnetic fields, the T2 for mol-
ecules in solution is easily on the order of 1 s or more.

This decoherence mechanism can be identified with elas-
tic scattering in other physical systems; it does not lead
to loss of energy from the system.

T1 originates from couplings between the spins and
the “lattice,” that is, excitation modes that can carry
away energy quanta on the scale of the Larmor fre-
quency. For example, these may be vibrational quanta,
paramagnetic ions, chemical reactions such as ions ex-
changing with the solvent, or spins with higher-order

magnetic moments ssuch as 2H, 17Cl, or 35Brd, which re-
lax quickly due to their quadrupolar moment’s interact-
ing with electric field gradients. In well-chosen mol-

ecules and liquid samples with good solvents, T1 can
easily be tens of seconds, while isolated nuclei embed-
ded in solid samples with a spin-zero host crystal matrix

ssuch as 31P in 28Sid can have T1 times of days. This
mechanism is analogous to inelastic scattering in other
physical systems.

The description of relaxation in terms of only two pa-
rameters is known to be an oversimplification of reality,
particularly for coupled spin systems, in which coupled
relaxation mechanisms appear sRedfield, 1957; Jeener,
1982d. Nevertheless, the independent spin decoherence
model is useful for its simplicity and because it can cap-
ture well the main effects of decoherence on simple
NMR quantum computations sVandersypen et al., 2001d,
which are typically designed as pulse sequences shorter

in time than T2.

III. ELEMENTARY PULSE TECHNIQUES

This section begins our discussion of the main subject
of this article, a review of the control techniques devel-
oped in NMR quantum computation for coupled two-
level quantum systems. We begin with a quick overview
of the language of quantum circuits and its important
universality theorems, then connect this with the lan-
guage of pulse sequences as used in NMR, and indicate
how pulse sequences can be simplified. The main ap-
proximations employed in this section are that pulses
can be strong compared with the system Hamiltonian
while selectively addressing only one qubit at a time,
and can be perfectly implemented. The limits of these
approximations are discussed in the last part of the sec-
tion.

A. Quantum control, quantum circuits, and pulses

The goal of quantum control, in the context of quan-
tum computation, is the implementation of a unitary

transformation U, specified in terms of a sequence U

=UkUk−1¯U2U1 of standard “quantum gates” Ui, which
act locally susually on one or two qubitsd and are simple
to implement. As is conventional for unitary operations,

the Ui are ordered in time from right to left.

1. Quantum gates and circuits

The basic single-qubit quantum gates are rotations,
defined as
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Rn̂sud = expF−
iun̂ · sW

2
G , s23d

where n̂ is a sthree-dimensionald vector specifying the

axis of the rotation, u is the angle of rotation, and sW

=sxx̂+syŷ+szẑ is a vector of Pauli matrices. It is also
convenient to define the Pauli matrices fsee Eq. s3dg
themselves as logic gates, in terms of which sx can be
understood as being analogous to the classical NOT gate,

which flips u0l to u1l and vice versa. In addition, the

HADAMARD gate H and p /8 gate T

H =
1

Î2
F1 1

1 − 1
G, T = F1 0

0 expsip/4d
G s24d

are useful and widely employed. These and any other

single-qubit transformation U can be realized using a
sequence of rotations about just two axes, according to

Bloch’s theorem: for any single-qubit U, there exist real

numbers a , b , g, and d such that

U = eiaRxsbdRysgdRxsdd . s25d

The basic two-qubit quantum gate is a controlled-NOT

sCNOTd gate,

UCNOT = 3
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
4 , s26d

where the basis elements in this notation are u00l, u01l,
u10l, and u11l from left to right and top to bottom. UCNOT

flips the second qubit sthe targetd if and only if the first

qubit sthe controld is u1l. This gate is the analog of the

classical exclusive-OR gate, since UCNOTux ,yl= ux ,x % yl,
for x ,yP h0,1j and where % denotes addition modulo
two.

A basic theorem of quantum computation is that up to

an irrelevant overall phase, any U acting on n qubits can

be composed from UCNOT and Rn̂sud gates sNielsen and
Chuang, 2000d. Thus the problem of quantum control
can be reduced to implementing UCNOT and single-qubit
rotations, where at least two nontrivial rotations are re-
quired. Other such sets of universal gates are known, but
this is the one that has been employed in NMR.

These gates and sequences of such gates may be con-
veniently represented using quantum circuit diagrams,
employing standard symbols. We shall use a notation
commonly employed in the literature sNielsen and
Chuang, 2000d in this article.

2. Implementation of single-qubit gates

Rotations on single qubits may be implemented di-
rectly in the rotating frame using RF pulses. From the
control Hamiltonian, Eq. s22d, it follows that when an

RF field of amplitude v1 is applied to a single-spin sys-

tem at vrf=v0
, the spin evolves under the transformation

U = expfiv1scos fIx − sin fIydtpwg , s27d

where tpw is the pulse width sor pulse lengthd, the time

duration of the RF pulse. U describes a rotation in the

Bloch sphere over an angle u proportional to the prod-

uct of tpw and v1=gB1, and about an axis in the x̂-ŷ

plane determined by the phase f.

Thus a pulse with phase f=p and v1tpw=p /2 will per-

form Rxs90d fsee Eq. s23dg, which is a 90° rotation about

x̂, denoted for short as X. A similar pulse but twice as

long realizes a Rxs180d rotation, written for short as X2.

By changing the phase of the RF pulse to f=p /2, Y and

Y2 pulses can similarly be implemented. For f=0, a

negative rotation about x̂, denoted Rxs−90d or X̄, is ob-

tained, and similarly f=−p /2 gives Ȳ. For multiqubit
systems, subscripts are used to indicate on which qubit

the operation acts, e.g., Z̄3
2 is a 180° rotation of qubit 3

about −ẑ.
It is thus not necessary to apply the RF field along

different spatial axes in the lab frame to perform x̂ and ŷ
rotations. Rather, the phase of the RF field determines
the nutation axis in the rotating frame. Furthermore,
note that only the relative phase between pulses applied
to the same spin matters. The absolute phase of the first
pulse on any given spin does not matter in itself. It just
establishes a phase reference against which the phases of
all subsequent pulses on that same spin, as well as the
read-out of that spin, should be compared.

We noted earlier that the ability to implement arbi-

trary rotations about x̂ and ŷ is sufficient for performing

arbitrary single-qubit rotations fEq. s25dg. Since ẑ rota-
tions are very common, two useful explicit decomposi-

tions of Rzsud in terms of x̂ and ŷ rotations are

Rzsud = XRysudX̄ = YRxs− udȲ . s28d

3. Implementation of two-qubit gates

The most natural two-qubit gate is the one generated
directly by the spin-spin coupling Hamiltonian. For
nuclear spins in a molecule in liquid solution, the cou-
pling Hamiltonian is given by Eq. s9d sin the lab frame as
well as in the rotating framed, from which we obtain the

time evolution operator UJstd=expf−i2pJIz
1Iz

2tg, or in
matrix form

UJstd = 3
e−ipJt/2 0 0 0

0 e+ipJt/2 0 0

0 0 e+ipJt/2 0

0 0 0 e−ipJt/2
4 . s29d

Allowing this evolution to occur for time t=1/2J gives a
transformation known as the controlled phase gate, up to

a 90° phase shift on each qubit and an overall sand thus
irrelevantd phase

UCPHASE = Î− iZ̄1Z̄2UJs1/2Jd = 3
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1
4 . s30d
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This gate is equivalent to the well-known CNOT gate up
to a basis change of the target qubit and a phase shift on
the control qubit

UCNOT = iZ1
2Ȳ2UCPHASEY2

= iZ1
2Ȳ2fÎ− iZ̄1Z̄2UJs1/2JdgY2

= ÎiZ1Z̄2X2UJs1/2JdY2 = 3
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
4 . s31d

The core of this sequence, X2UJs1/2JdY2, can be graphi-
cally understood via Fig. 9 sGershenfeld and Chuang,

1997d, assuming the spins start along ±ẑ. First, a spin-

selective pulse on spin 2 about ŷ san rf pulse centered at

v0
2 /2p and of a spectral bandwidth such that it covers

the frequency range v0
2 /2p±J12 /2 but not v0

1 /2p±J12 /2d
rotates spin 2 from ẑ to x̂. Next, the spin system is al-

lowed to freely evolve for a duration of 1/2J12 seconds.
Because the precession frequency of spin 2 is shifted by

±J12 /2 depending on whether spin 1 is in u1l or u0l ssee

Fig. 4d, spin 2 will arrive in 1/2J seconds at either +ŷ or

−ŷ, depending on the state of spin 1. Finally, a 90° pulse

on spin 2 about the x̂ axis rotates spin 2 back to +ẑ if

spin 1 is u0l, or to −ẑ if spin 1 is in u1l.
The net result is that spin 2 is flipped if and only if

spin 1 is in u1l, which corresponds exactly to the classical

truth table for the CNOT. The extra ẑ rotations in Eq.
s31d are needed to give all elements in UCNOT the same
phase, so the sequence works also for superposition in-
put states.

An alternative implementation of the CNOT gate, up
to a relative phase factor, consists of applying a line-

selective 180° pulse at v0
2+J12 /2 ssee Fig. 4d. This pulse

inverts spin 2 sthe target qubitd if and only if spin 1 sthe

controld is u1l sCory, Price, and Havel, 1998d. In general,
if a spin is coupled to more than one other spin, half the
lines in the multiplet must be selectively inverted in or-
der to realize a CNOT. Extensions to doubly controlled
NOT’s are straightforward: in a three-qubit system, for
example, this can be realized through inversion of one
out of the eight lines sFreeman, 1998d. As long as all the
lines are resolved, it is in principle possible to invert any
subset of the lines. Demonstrations using very long mul-
tifrequency pulses have been performed with up to five
qubits sKhitrin et al., 2002d. However, this approach can-

not be used whenever the relevant lines in the multiplet
fall on top of each other.

If the spin-spin interaction Hamiltonian is not of the

form Iz
i Iz

j but contains also transverse components fas in
Eqs. s5d, s6d, and s8dg, other sequences of pulses are
needed to perform the CPHASE and CNOT gates. These
sequences are somewhat more complicated sBremner et
al., 2002d.

If two spins are not directly coupled to each other, it is
still possible to perform a CNOT gate between them, as
long as there exists a network of couplings that connects
the two qubits. For example, suppose we want to per-
form a CNOT gate with qubit 1 as the control and qubit 3
as the target, CNOT13, but 1 and 3 are not coupled to each
other. If both are coupled to qubit 2, as in the coupling
network of Fig. 10sbd, we can first swap the states of
qubits 1 and 2 svia the sequence CNOT12 CNOT21 CNOT12d,
then perform a CNOT23, and finally swap qubits 1 and 2
again sor relabel the qubits without swapping backd. The

net effect is CNOT13. By extension, at most Osnd SWAP

operations are required to perform a CNOT between any

pair of qubits in a chain of n spins with just nearest-
neighbor couplings fFig. 10sbdg. SWAP operations can
also be used to perform two-qubit gates between any
two qubits that are coupled to a common “bus” qubit
fFig. 10scdg.

Conversely, if a qubit is coupled to many other qubits
fFig. 10sadg and we want to perform a CNOT between just
two of them, we must remove the effect of the remaining
couplings. This can accomplished using the technique of
refocusing, which has been widely adopted in a variety
of NMR experiments.

4. Refocusing: Turning off undesired Iz
i Iz

j couplings

The effect of coupling terms during a time interval of
free evolution can be removed via so-called “refocusing”

techniques. For coupling Hamiltonians of the form Iz
i Iz

j ,
as is often the case in liquid NMR experiments fsee Eq.
s9dg, the refocusing mechanism can be understood at a
very intuitive level. Reversal of the effect of coupling
Hamiltonians of other forms, such as in Eqs. s5d, s6d, and
s8d, is less intuitive, but can be understood within the

FIG. 9. Bloch-sphere representation of the operation of the

CNOT12 gate between two qubits 1 and 2 coupled by "2pJIz
1Iz

2.

Here, qubit 2 starts off in u0l salong ẑd and is depicted in a

reference frame rotating about ẑ at v0
2 /2p. Solid and dashed

arrows correspond to the case where qubit 1 is u0l and u1l,
respectively. Adapted from Gershenfeld and Chuang, 1997.

FIG. 10. Three possible coupling networks between five

qubits. sad A full coupling network. Such networks will in prac-

tice always be limited in size, as physical interactions tend to

decrease with distance. sbd A nearest-neighbor coupling net-

work. Such linear chains with nearest-neighbor couplings or

two-dimensional variants are used in many solid-state propos-

als. scd Coupling via a “bus.” This network is used in ion-trap

schemes, for example. As in case sad, the bus degree

of freedom will in reality couple well to only a finite number of

qubits.
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framework of average Hamiltonian theory sSec. IV.Cd.
Let us first look at two ways of undoing Iz

i Iz
j in a two-

qubit system. In Fig. 11sad, the evolution of qubit 1 in

the first time interval t is reversed in the second time

interval, due to the 180° pulse on qubit 2. In Fig. 11sbd,
qubit 1 continues to evolve in the same direction all the

time, but the first 180° pulse causes the two components
of qubit 1 to be refocused by the end of the second time

interval. The second 180° pulse ensures that both qubits
always return to their initial state.

Mathematically, we can see how refocusing of J cou-

plings works using the fact that for all t

X1
2UJstdX1

2 = UJs− td = X2
2UJstdX2

2, s32d

which leads to

X1
2UJstdX1

2UJstd = I = X2
2UJstdX2

2UJstd . s33d

Replacing all Xi
2 with Yi

2, the sequence works just the

same. However, if we sometimes use Xi
2 and sometimes

Yi
2, we get the identity matrix only up to some phase

shifts. Also, if we applied pulses on both qubits simulta-

neously, e.g., X1
2X2

2 UJstdX1
2X2

2 UJstd, the coupling would
not be removed.

Figure 12 gives insight into refocusing techniques in a
multiqubit system. Specifically, this scheme preserves the

effect of J12, while effectively inactivating all the other
couplings. The underlying idea is that a coupling be-

tween spins i and j acts “forward” during intervals where
both spins have the same sign in the diagram, and acts

“in reverse” whenever the spins have opposite signs.
Whenever a coupling acts forward and in reverse for the
same duration, it has no net effect.

Systematic methods for designing refocusing schemes
for multiqubit systems have been developed specifically
for the purpose of quantum computing. The most com-
pact scheme is based on Hadamard matrices sJones and
Knill, 1999; Leung et al., 2000d. A Hadamard matrix of

order n, denoted by Hsnd, is an n3n matrix with entries

±1 such that

HsndHsndT = nI . s34d

The rows are thus pairwise orthogonal, and any two

rows agree in exactly half of the entries. Identifying +1

and −1 with + and − as in the diagram of Fig. 12, we see

that Hsnd gives a valid decoupling scheme for n spins

using only n time intervals. An example of Hs12d is

3
+ + + + + + + + + + + +

+ + + − − + − − + − − +

+ + + + − − − + − + − −

+ − + + + − − − + − + −

+ − − + + + − − − + − +

+ + − − + + − + − − + −

+ − − − − − − + + + + +

+ − + − − + + − − + + −

+ + − + − − + − − − + +

+ − + − + − + + − − − +

+ − − + − + + + + − − −

+ + − − + − + − + + − −

4 . s35d

If we want the coupling between one pair of qubits to
remain active while removing the effect of all other cou-

plings, we can simply use the same row of Hsnd for those
two qubits.

Hsnd does not exist for all n, but we can always find a

decoupling sequence for n qubits by taking the first n

rows of Hsn̄d, with n̄ the smallest integer that satisfies

n̄ùn with known Hsn̄d. From the properties of Had-

amard matrices, we can show that n̄ /n is always close to

1 sLeung et al., 2000d. So decoupling schemes for n spins

require n̄ time intervals and no more than nn̄ 180°
pulses.

Another systematic approach to refocusing sequences
is illustrated via the following four-qubit scheme sLin-
den, Barjat, et al., 1999d:

3
+ + + + + + + +

+ + + + − − − −

+ + − − − − + +

+ − − + + − − +
4 . s36d

For every additional qubit, the number of time intervals

is doubled, and 180° pulses are applied to this qubit after

the first, third, fifth, . . . time interval. The advantage of
this scheme over schemes based on Hadamard matrices

FIG. 11. Bloch-sphere representation of the operation of two

simple schemes to refocus the coupling between two coupled

qubits. The diagram shows the evolution of qubit 1 sin the

rotating framed initially along −ŷ, when qubit 2 is in u0l ssolidd
or in u1l sdashedd. The refocusing pulse can be applied to either

sad qubit 2 or sbd qubit 1.

FIG. 12. Refocusing scheme for a four-spin system, designed

to leave J12 active the whole time but to neutralize the effect of

the other Jij. The interval is divided into slices of equal dura-

tion, and the “+” and “−” signs indicate whether a spin is still

in its original position, or upside down. The black rectangles

represent 180° pulses, which flip the corresponding spin.
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is that it does not require simultaneous rotations of mul-
tiple qubits. The main drawback is that the number of
time intervals increases exponentially.

We end this subsection with three additional remarks.
First, each qubit will generally be coupled to no more
than a fixed number of other qubits, since coupling
strengths tend to decrease with distance. In this case, all
refocusing schemes can be greatly simplified sJones and
Knill, 1999; Linden, Barjat, et al., 1999; Leung et al.,
2000d.

Second, if the forward and reverse evolutions under Jij

are not equal in duration, a net coupled evolution takes
place corresponding to the excess forward or reverse
evolution. In principle, therefore, we can organize any
refocusing scheme such that it incorporates any desired
amount of coupled evolution for each pair of qubits.

Third, refocusing sequences can also be used to re-

move the effect of Iz
i terms in the Hamiltonian. Of

course, these terms vanish in principle if we work in the
multiply rotating frame fsee Eq. s21dg. However, there
may be some spread in the Larmor frequencies, for in-
stance, due to magnetic-field inhomogeneities. This ef-
fect can then be reversed using refocusing pulses, as is
routinely accomplished in spin-echo experiments sSec.
V.A.4d.

5. Pulse sequence simplification

There are many possible pulse sequences which in an
ideal world result in exactly the same unitary transfor-
mation. Good pulse sequence design therefore attempts
to find the shortest and most effective pulse sequence
that implements the desired transformations. In Sec. IV,
we shall see that the use of more complex pulses or

pulse sequences may sometimes increase the degree of
quantum control. Here, we look at three levels of pulse
sequence simplification.

At the most abstract level of pulse sequence simplifi-
cation, careful study of a quantum algorithm can give
insight into how to reduce the resources needed. For
example, a key step in both the modified Deutsch-Jozsa
algorithm sCleve et al., 1998d and the Grover algorithm
sGrover, 1997d can be described as the transformation

uxluyl→ uxlux % yl, where uyl is set to su0l− u1ld /Î2, so

that the transformation in effect is uxlsu0l− u1ld /Î2

→ s−1dfsxduxlsu0l− u1ld /Î2. Thus we might as well leave
out the last qubit as it is never changed.

At the next level, that of quantum circuits, we can use
simplification rules such as those illustrated in Fig. 13. In
this process, we can fully take advantage of commuta-
tion rules to move building blocks around, as illustrated
in Fig. 14. Furthermore, gates that commute with each
other can be executed simultaneously. Finally, we can
take advantage of the fact that most building blocks
have many equivalent implementations, as shown, for
instance, in Fig. 15.

Sometimes, a quantum gate may be replaced by an-
other quantum gate, which is easier to implement. For
instance, refocusing sequences sSec. III.A.4d can be kept
simple by examining which couplings really need to be
refocused. Early on in a pulse sequence, several qubits

may still be along ±ẑ, in which case their mutual Iz
i Iz

j

couplings have no effect and thus need not be refocused.
Similarly, if a subset of the qubits can be traced out at
some point in the sequence, the mutual interaction be-
tween these qubits does not matter anymore, so only
their coupling with the remaining qubits must be refo-
cused. Figure 16 gives an example of such a simplified
refocusing scheme for five coupled spins.

FIG. 13. Simplification rules for quantum circuits, drawn using

standard quantum gate symbols, where time goes from left to

right, each wire represents a qubit, boxes represent simple

gates, and solid black dots indicate control terminals.

FIG. 14. Commutation of unitary operators can help simplify

quantum circuits by moving building blocks around such that

cancellation of operations as in Fig. 13 becomes possible. For

example, the three segments sseparated by dashed linesd in

these two equivalent realizations of the TOFFOLI gate sdoubly-

controlled NOTd commute with each other and can thus be ex-

ecuted in any order.

FIG. 15. Choosing one of several equivalent implementations

can help simplify quantum circuits, again by enabling cancella-

tion of operations as in Fig. 13. For instance, the two control

qubits in the TOFFOLI gate play equivalent roles, so they can be

interchanged.

FIG. 16. Simplified refocusing scheme for five spins, designed

such that the coupling of qubits 1-2 with qubits 3-5 is switched

off, i.e., J13 , J14 , J15 , J23 , J24, and J25 are inactive whereas

J12 , J34 , J35, and J45 are active.
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More generally, the relative phases between the en-
tries in the unitary matrix describing a quantum gate are
irrelevant when the gate acts on a diagonal density ma-
trix. In this case, we can, for instance, implement a CNOT

simply as X2UJs1/2JdY2 rather than the sequence of
Eq. s31d.

At the lowest level, that of pulses and delay times,
further simplification is possible by taking out adjacent

pulses which cancel out, such as X and X̄ san instance of
the first simplification rule of Fig. 13d and by converting
“difficult” operations to “easy” operations.

Cancellation of adjacent pulses can be maximized by
properly choosing the pulse sequences for subsequent
quantum gates. For this purpose, it is convenient to have
a library of equivalent implementations for the most
commonly used quantum gates. For example, two

equivalent decompositions of a CNOT12 gate swith J12

.0d are

Z1Z̄2X2UJS 1

2J
DY2, s37d

as in Eq. s31d, and

Z̄1Z̄2X̄2UJS 1

2J
DȲ2. s38d

Similarly, two equivalent implementations of the
HADAMARD gate on qubit 2 are

X2
2Y2 s39d

and

Ȳ2X2
2. s40d

Thus, if we need to perform a HADAMARD operation on
qubit 2 followed by a CNOT12 gate, it is best to choose the
decompositions of Eqs. s37d and s40d, such that the re-
sulting pulse sequence,

Z1Z̄2X2UJS 1

2J
D Y2 Ȳ2X2

2, s41d

simplifies to

Z1Z̄2X2UJS 1

2J
D X2

2. s42d

An example of a set of operations that is easy to per-

form is the rotations about ẑ. While the implementation

of ẑ rotations in the form of three RF pulses fEq. s28dg
takes more work than a rotation about x̂ or ŷ, rotations

about ẑ need in fact not be executed at all, provided the

coupling Hamiltonian is of the form Iz
i Iz

j , as in Eq. s21d.
In this case, ẑ rotations commute with free evolution
under the system Hamiltonian, so we can interchange

the order of ẑ rotations and time intervals of free evo-
lution. Using equalities such as

ZȲ = XYX̄Ȳ = XZ , s43d

we can also move ẑ rotations across x̂ and ŷ rotations,

and gather all ẑ rotations at the end or the beginning of

a pulse sequence. At the end, ẑ rotations do not affect

the outcome of measurements in the usual u0l, u1l “com-

putational” basis. Similarly, ẑ rotations at the start of a
pulse sequence have no effect on the usually diagonal

initial state. In either case, Z rotations do not then re-
quire any physical pulses and are in a sense “for free”

and perfectly executed. Indeed, Z rotations simply de-

fine the reference frame for x̂ and ŷ and can be imple-
mented by changing the phase of the reference frame
throughout the pulse sequence.

It is thus advantageous to convert as many X and Y

rotations as possible into Z rotations, using identities
similar to Eq. s28d, for example,

XY = XYX̄X = ZX . s44d

A key point in pulse sequence simplification of any
kind is that the simplification process must itself be effi-
cient. For example, suppose an algorithm acts on five

qubits with initial state u00000l and outputs the final

state su01000l+ u01100l /Î2. The overall result of the al-
gorithm is thus that qubit 2 is flipped and that qubit 3 is

placed in an equal superposition of u0l and u1l. This net
transformation can obviously be obtained immediately

by the sequence X2
2Y3. However, the effort needed to

compute the overall input-output transformation gener-
ally increases exponentially with the problem size, so
such extreme simplifications are not practical.

6. Time-optimal pulse sequences

Next to the widely used but rather naive set of pulse
sequence simplification rules of the previous subsection,
there exist powerful mathematical techniques for de-
terming the minimum time needed to implement a
quantum gate, using a given system and control Hamil-
tonian, as well as for finding time-optimal pulse se-
quences sKhaneja et al., 2001d. These methods build on
earlier optimization procedures for mapping an initial
operator onto a final operator via unitary transforma-
tions sSørenson, 1989; Glaser et al., 1998d, as in coher-
ence or polarization transfer experiments, common tasks
in NMR spectroscopy.

The pulse sequence optimization technique expresses
pulse sequence design as a geometric problem in the
space of all possible unitary transformations. The goal is
to find the shortest path between the identity transfor-

mation I and the point in the space corresponding to the

desired quantum gate, U, while traveling only in direc-
tions allowed by the given system and control Hamil-

tonian. Let us call K the set of all unitaries k that can be
produced using the control Hamiltonian only. Next we
assume that the terms in the control Hamiltonian are
much stronger than the system Hamiltonian sas we shall
see in Sec. III.B.2, this assumption is valid in NMR only
when using so-called hard, high-power pulsesd. Then,

starting from I, any point in K can be reached in a neg-

ligibly short time, and similarly, U can be reached in no

time from any point in the coset KU, defined by hkUuk
PKj. Evolution under the system Hamiltonian for a fi-
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nite amount of time is required to reach the coset KU

starting from K. Finding a time-optimal sequence for U

thus comes down to finding the shortest path from K to

KU allowed by the system Hamiltonian.
Such optimization problems have been extensively

studied in mathematics sBrockett, 1981d and have been
solved explicitly for elementary quantum gates on two
coupled spins sKhaneja et al., 2001d and a three-spin
chain with nearest-neighbor couplings sKhaneja et al.,
2002d. For example, a sequence was found for producing

the trilinear propagator exps−i2pIz
1Iz

2Iz
3d from the system

Hamiltonian "2pJsIz
1Iz

2+Iz
2Iz

3d in a time Î3/2J, the short-
est possible time sKhaneja et al., 2002d. This propagator
is the starting point for useful quantum gates such as the
doubly controlled NOT or TOFFOLI gate. The standard
quantum circuit approach, in comparison, would yield a

sequence of duration 3/2J sit uses only one coupling at a
time while refocusing the other couplingd, and the com-

mon NMR pulse sequence has duration 1/J.
Clearly, the time needed to find a time-optimal pulse

sequence increases exponentially with the number of qu-

bits n involved in the transformation, since the unitary

matrices involved are of size 2n32n. Therefore the main
use of the techniques presented here lies in finding effi-
cient pulse sequences for building blocks acting on only
a few qubits at a time, which can then be incorporated in
more complex sequences acting on many qubits by add-
ing appropriate refocusing pulses to remove the cou-
plings with the remaining qubits. While the examples
given here are for the typical NMR system and control
Hamiltonian, the approach is completely general and
may be useful for other qubit systems too.

B. Experimental limitations

Many years of experience have taught NMR spectros-
copists that while the ideal control techniques described
above are theoretically attractive, they neglect impor-
tant experimental artifacts and undesired Hamiltonian
terms which must be addressed in any actual implemen-
tation. First, a pulse intended to selectively rotate one
spin will to some extent also affect the other spins. Sec-

ond, the coupling terms 2pJijIz
i Iz

j cannot be switched off
in NMR. During time intervals of free evolution under
the system Hamiltonian, the effect of these coupling
terms can easily be removed using refocusing techniques
sSec. III.A.4d, so long as the single-qubit rotations are
perfect and instantaneous. However, during RF pulses
of finite duration, the coupling terms also distort the
single-qubit rotations. In addition to these two limita-
tions arising from the NMR system and control Hamil-
tonian, a number of instrumental imperfections cause
additional deviations from the intended transformations.

1. Cross-talk

Throughout the discussion of single- and two-qubit
gates, we have assumed that we can selectively address
each qubit. Experimentally, qubit selectivity could be ac-
complished if the qubits were well separated in space or,

as in NMR, in frequency. In practice, there will usually
be some cross-talk, which causes an RF pulse applied on
resonance with one qubit to slightly rotate another qubit
or shift its phase. Cross-talk effects are even more com-
plex when two or more pulses are applied simulta-
neously.

The frequency bandwidth over which qubits are ro-

tated by a pulse of length tpw is roughly speaking of

order 1/ tpw. Yet, since the qubit response to an RF field

is not linear sit is sinusoidal in v1tpwd, the exact fre-
quency response cannot be computed using Fourier
theory.

For a constant-amplitude srectangulard pulse, the uni-

tary transformation as a function of the detuning Dv is
easy to derive analytically from Eqs. s16d and s17d. Al-
ternatively, we can exponentiate the Hamiltonian of Eq.

s15d to get U directly. An example of a qubit response to
a rectangular pulse is shown in Fig. 17.

It is evident from Fig. 17 that short rectangular pulses
sknown as “hard” pulsesd excite spins over a very wide
frequency range. The frequency selectivity of a pulse can

of course be increased by increasing tpw while lowering

B1 accordingly sthus creating what is known as a “soft”
pulsed, but decoherence effects become more severe as
the pulses get longer. Fortunately, as we shall see in Secs.
IV.A and IV.B, the use of shaped and composite pulses
can dramatically improve the frequency selectivity of the
RF excitation.

Even if a pulse is designed not to produce any net x̂ or

ŷ rotations of spins outside a specified frequency win-
dow, the presence of RF irradiation during the pulse still

causes a shift DvBS
i in the precession frequency of spins

i at frequencies well outside the excitation frequency
window sEmsley and Bodenhausen, 1990d. As a result,
each spin accumulates a spurious phase shift during RF
pulses applied to spins at nearby frequencies.

This effect is related to the Bloch-Siegert shift men-
tioned in Sec. II.B.1 and is known as the transient gener-
alized Bloch-Siegert shift in the NMR community. It is
related to the ac Stark effect in atomic physics. At a
deeper level, the acquired phase can be understood as

FIG. 17. Simulation of the spin response to a 1-ms constant-

amplitude RF pulse as a function of the frequency offset Dv

between v0 and vrf. The spin starts off in u0l salong +ẑ in the

Bloch sphered and v1 /2p=500 Hz is chosen such that the ro-

tation angle amounts to 180° for an on-resonance pulse.
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an instance of Berry’s phase sBerry, 1984d: the spin de-
scribes a closed trajectory on the surface of the Bloch
sphere and thus returns to its initial position, but it ac-
quires a phase shift proportional to the area enclosed by
its trajectory.

The frequency shift is given by

DvBS <
v1

2

2sv0 − vrfd
s45d

sprovided v1! uv0−vrfud, where v0 /2p is the original
Larmor frequency sin the absence of the RF fieldd. In
typical NMR experiments, the frequency shifts can eas-
ily reach several hundred Hz in magnitude. We see from

Eq. s45d that the Larmor frequency shifts up if v0.vrf

and shifts down if v0,vrf.
Fortunately, the resulting phase shifts can be easily

computed in advance for each possible spin-pulse com-
bination, if all the frequency separations, pulse ampli-
tude profiles, and pulse lengths are known. The unin-

tended phase shifts Rzsud can then be compensated for
during the execution of a pulse sequence by inserting

appropriate Rzs−ud, which can be executed at no cost, as
we saw in Sec. III.A.5.

Cross-talk effects are aggravated during simultaneous
pulses, applied to two or more spins with nearby fre-

quencies v0
1 and v0

2 ssay v0
1,v0

2d. The pulse at v0
1 then

temporarily shifts the frequency of spin 2 to v0
2+DvBS.

As a result, the pulse on spin 2, if applied at v0
2, will be

off-resonance by an amount −DvBS. Analogously, the

pulse at v0
1 is now off the resonance of spin 1 by DvBS.

The resulting rotations of the spins deviate significantly
from the intended rotations.

The detrimental effect of the Bloch Siegert shifts dur-
ing simultaneous pulses is illustrated in Fig. 18, which
shows the simulated inversion profile for a spin subject

to two simultaneous 180° pulses separated by 3273 Hz.
The centers of the inverted regions have shifted away
from the intended frequencies and the inversion is in-

complete, which can be seen most clearly from the sub-

stantial residual x̂–ŷ-magnetization s.30%d over the
whole region intended to be inverted. Note also that
since the frequencies of the applied pulses are off the
spin resonance frequencies, complete inversion cannot
be achieved no matter what tip angle is chosen ssee Sec.
II.B.2d.

In practice, simultaneous soft pulses at nearby fre-
quencies have been avoided in NMR sLinden, Kup~e,
and Freeman, 1999d or the poor quality of the spin rota-
tions was accepted. Pushed by the stringent require-
ments of quantum computation, several techniques have
meanwhile been invented to generate accurate simulta-
neous rotations of spins at nearby frequencies ssee Secs.
IV.A.2 and IV.B.2d.

2. Coupled evolution

The spin-spin couplings in a molecule are essential for
the implementation of two-qubit gates sSec. III.A.3d, but
they cannot be turned off and are thus also active during
the RF pulses, which are intended to be just single-qubit

transformations. Unless v1 is much stronger than the
coupling strength, the interactions strongly affect the in-

tended nutation. For couplings of the form JIz
i Iz

j , the
effect is similar to the off-resonance effects illustrated in
Fig. 7: the coupling to another spin shifts the spin fre-

quency to v0 /2p±J /2, so a pulse sent at v0 /2p hits the

spin off-resonance by 7J /2.

In practice, J coupling terms can only be neglected for
short, high-power pulses used in heteronuclear spin sys-

tems: typically J,300 Hz while v1 is up to <50 kHz.
For low-power pulses, often used in homonuclear spin

systems, v1 can be of the same order as J and coupling
effects become prominent. The coupling terms also lead
to additional complications when two qubits are pulsed
simultaneously. In general, the qubits become partially
entangled sKup~e and Freeman, 1995d.

As was the case for cross-talk, NMR spectroscopists
have developed special shaped and composite pulses to
compensate for coupling effects during RF pulses while
performing spin-selective rotations. In recent years, the
use of such pulses has been extended and perfected for
quantum computing experiments sSecs. IV.A and IV.Bd.

3. Instrumental errors

A number of experimental imperfections lead to er-
rors in the quantum gates. In NMR, the most common
imperfections are inhomogeneities in the static and RF
magnetic field, pulse length calibration errors, frequency
offsets, and pulse timing and phase imperfections.

The static field B0 in modern NMR magnets can be
made homogeneous over the sample volume sa cylinder

5 mm in diameter and 1.5 cm longd to better than 1 part

in 109. This amazing homogeneity is obtained by meticu-
lously adjusting the current through a set of so-called
“shim” coils, which compensate for the inhomogeneities

produced by the large solenoid. At v0=500·2p MHz,

linewidths of 0.5 Hz can thus be obtained, correspond-

FIG. 18. Simulation of the spin response to two simultaneous

pulses with carrier frequencies at 0 Hz and 3273 Hz svertical

dashed linesd away from the spin-resonance frequency, with a

calibrated pulse length of 2650 ms sas for an ideal 180°d. The

amplitude profile of the pulses is Hermite shaped sSec. IV.Ad
in order to obtain a smooth spin response. For ideal inversion,

the solid line should be −1 at the two frequencies, and the

dashed line should be zero. From Steffen et al., 2000.
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ing to a dephasing time constant T2
* ssee Sec. V.A.2d of

1/ s2p0.5d=0.32 s. In the course of long pulse sequences

sof order 0.1–1 sd, even the tiny remaining inhomogene-
ity would therefore have a large effect, so its effect must
be reversed using refocusing sequences sSec. III.A.4d

The RF field homogeneity is typically very poor, due
to constraints on the geometry of the RF coils: the en-
velope of Rabi oscillations sSec. V.A.1d often decays by

as much as 5% per 90° rotation, corresponding to a

quality factor of only <5. In sequences containing only a
few pulses, this is not problematic, but in multiple-pulse
experiments, the RF field inhomogeneity is often the
dominant source of errors and signal loss.

Imperfect pulse length calibration has an effect similar

to B1 inhomogeneity: the qubit rotation angle is differ-
ent than was intended. Only the correlation time for the
error is different. Miscalibrations are constant through-
out an experiment, whereas the RF field experienced by
any given molecule changes on the time scale of diffu-
sion through the sample volume.

Frequency offsets occur in different contexts. In tradi-
tional NMR experiments, the Larmor frequencies are
often not known in advance. RF pulses are then ex-
pected to rotate the spins over a wide range of frequen-
cies, quite the opposite case to that of quantum comput-
ing, where the Larmor frequencies are precisely known
and rotations should be spin selective. However, we

have seen earlier that Iz
i Iz

j coupling terms act as a fre-
quency offset of one spin, which depends on the state of

the other spin. Qubit-selective rotations of qubit i thus

require a uniform rotation over a range v0
i ±ojÞi uJiju /2.

Various approaches have been developed to reduce
the sensitivity of RF pulses and pulse sequences to these
instrumental errors, sometimes in combination with so-
lutions to cross-talk and coupling artifacts. These ad-
vanced techniques are the subject of the next section.

IV. ADVANCED PULSE TECHNIQUES

The accuracy of quantum gates that can be achieved
using the simple pulse techniques of the previous section
is unsatisfactory when applied to multispin systems,
where the given NMR system and control Hamiltonian
lead to undesired cross-talk and coupling effects. In ad-
dition, the available instrumentation can only imper-
fectly approximate ideal pulse amplitudes, timings, and
phases, for realistic sample geometries and coil configu-
rations, and any real molecule includes additional
Hamiltonian terms such as couplings to the environ-
ment, which are undesired. Nevertheless, extremely pre-
cise control can be achieved despite these imperfections,
and this is accomplished using the art of shaped pulses,
composite pulses, and average Hamiltonian theory, the
subject of this second major section of this review.

These advanced techniques are based on the assump-
tion that errors are, at least on some accessible time
scale, systematic, rather than random. This assumption
clearly holds for the terms in the ideal NMR Hamil-
tonian of Eqs. s21d and s22d, and applies also to most

instrumental errors. Then, by using the special proper-

ties of evolution in unitary groups, such as the SUs2nd
which describes the space of operators acting on n qu-
bits, the systematic errors can in principle be canceled
out.

A. Shaped pulses

The amplitude and phase profile of RF pulses can be
specially tailored in order to ease the cross-talk and cou-
pling effects discussed in Secs. III.B.1 and III.B.2. In
practice, the pulse is divided into a few tens to many
hundreds of discrete time slices; to achieve an arbitrarily
shaped pulse, it suffices to control the amplitude and
phase of the slices separately. Furthermore, multiple
shaped pulses applied at various frequencies can be
combined into a single pulse shape, since a linear vector
sum of pulse slices also results in a valid pulse. Here, we
consider simple amplitude and phase shaped pulses.

1. Amplitude profiles

The frequency selectivity of RF pulses can be much
improved compared to standard rectangular pulses with
sharp edges, by using pulse shapes that smoothly modu-
late the pulse amplitude with time. Such pulses are typi-
cally especially designed to excite or invert spins over a

limited frequency region, while minimizing x̂ and ŷ ro-
tations for spins outside this region sFreeman, 1997,
1998d.

Furthermore, specialized pulse shapes exist which
minimize the effect of couplings during the pulses. Such
self-refocusing pulses sGeen and Freeman, 1991d take a
spin over a complicated trajectory in the Bloch sphere,
in such a way that the net effect of couplings between
the selected and nonselected spins is reduced sFig. 19d. It

FIG. 19. sColor in online editiond Trajectory on the Bloch

sphere of a qubit initially in u0l, when a so-called IBURP1 pulse

sGeen and Freeman, 1991d is applied, of duration 1 ms and

v1=3342 Hz, with a frequency offset sanalogous to Iz
i Iz

j cou-

plingd of 0, 100, and 200 Hz. This pulse is intended to rotate

the qubit from u0l s+ẑd to u1l s−ẑd. We see that the effect of the

frequency offset is largely removed by the specially designed

pulse shape; all three trajectories terminate near −ẑ.
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is as if those couplings are only in part or even not at all
active during the pulse scouplings between pairs of non-
selected spins will still be fully active but their effect can
be removed using the standard refocusing techniques
described in Sec. III.A.4d. As a general rule, it is rela-

tively easy to make 180° pulses self-refocusing, but much

harder to do so for 90° pulses.
The self-refocusing behavior of certain shaped pulses

can be intuitively understood to some degree. Neverthe-
less, many actual pulse shapes have been the result of

numerical optimizations. Often, the pulse shape is ex-
pressed in a basis of several functions, for instance, a
Fourier series sGeen and Freeman, 1991d,

v1std = HA0 + o
n

FAn cosSn
2p

tpw

tD + Bn sinSn
2p

tpw

tDGJ ,

s46d

and the weights of the basis functions, An and Bn, are
optimized using numerical routines such as simulated
annealing.

Comparison of the performance of various pulse
shapes is facilitated by computing the corresponding
spin responses. This is most easily done by concatenat-
ing the unitary operators of each time slice of the shaped
pulse, as the Hamiltonian is time independent within
each time slice. Figure 20 presents the amplitude profile
and pulse response for three standard pulse shapes of
equal duration, illustrating that different pulse shapes
produce strikingly different spin response profiles.

Properties relevant for choosing a pulse shape in-
clude:

• frequency selectivity: product of excitation band-
width and pulse length slower is more selectived,

• transition range: the width of the transition region
between the selected and nonselected frequency re-
gion,

• power: the peak power required for a given pulse
length and tip angle slower is less demandingd,

• self-refocusing behavior: degree to which the J cou-
pling between the selected spin and other spins is
refocused sthe signature for self-refocusing behavior
is a flat top in the excitation profiled,

• robustness to experimental imperfections such as
pulse length errors,

• universality: whether the pulse performs the in-
tended rotation for arbitrary input states or only for
specific input states.

FIG. 20. sLeftd Time profile for, from top to bottom, a 1-ms

Gaussian, Hermite 180, and REBURP shaped pulse. sRightd
Corresponding frequency response of a qubit initially along

+ẑ, displaying the ẑ and x̂-ŷ components of the qubit after the

pulse.

TABLE II. Properties of relevant pulse shapes. The Gaussian sBauer et al., 1984d and Hermite
sWarren, 1984d shapes are described by analytical functions and were identified early on. The BURP

family of pulses sGeen and Freeman, 1991d resulted from numerical optimization routines. Continued
work in this area has produced a large number of additional pulse shapes, such as the AV 90 sAbra-
movich and Vega, 1993d.

Selectivity Transition range Power Self-refocusing Robustness

Rectangular poor very wide minimal no good

Gauss 90 excellent wide low fair good

Gauss 180 excellent wide low fair good

Hrm 90 moderate moderate average good fair

Hrm 180 good moderate average very good fair

UBURP 90 poor narrow high excellent poor

REBURP180 poor narrow high excellent poor

AV 90 fair moderate average good fair
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Table II summarizes these properties for a selection of
widely used pulse shapes. Only universal pulses salso
known as general-rotation pulsesd are included in the
table, since quantum computations must work for any
input state.

Obviously, no single pulse shape optimizes for all
properties simultaneously, so pulse shape design consists
of finding the optimal tradeoff for the desired applica-
tion. For quantum computing experiments, we can select
molecules with large chemical shifts, so sharp transition
regions are not so important. Furthermore, the probe
and spectrometer can deal with relatively high powers.
The crucial parameters are the self-refocusing behavior,
the selectivity sshort, selective pulses minimize decoher-
enced, and to some extent the robustness.

It is also possible to start from a desired frequency
response and invert the transformation to find the pulse
shape that produces this response. Again, given the non-
linear nature of the response, the inverse transformation
is not given by a Fourier transform, but it can neverthe-
less be computed directly sPauly et al., 1991d.

Even self-refocusing shaped pulses do not generally
remove the coupling terms completely. Furthermore,
when two spins are pulsed simultaneously with self-
refocusing pulses, the refocusing effects are often de-
stroyed sKup~e and Freeman, 1995d. In both cases, the
remaining coupled evolution that takes place during the
pulses must be reversed at an earlier and/or later stage
in the pulse sequence.

If we could decompose the evolution during an actual

pulse into an idealized, instantaneous X or Y rotation
with no coupling present, followed and/or preceded by a
time interval of free evolution, we could compensate for
the coupling effects simply by adjusting the appropriate
time intervals of free evolution in between the pulses
sSec. III.A.4d. However, Hrf and HJ do not commute, so
such a decomposition is not possible.

Nevertheless, the coupled evolution can still be un-
wound to first order sKnill et al., 2000; Vandersypen et
al., 2001d, when a time interval of reverse evolution both
before and after the pulse is used:

e+iHJt/"e−isHrf+HJdtpw/"e+iHJt/" < e−iHrftpw/", s47d

where t is chosen such that the approximations are as
good as possible according to some distance or fidelity

measure ssee Sec. V.Cd. The optimal t is usually close to

but not equal to tpw /2. In comparison, a negative time
interval only before or after the pulse,

e+iHJt/"e−isHrf+HJdtpw/" < e−iHrf tpw/"

< e−isHrf+HJdtpw/"e+iHJt/", s48d

is much less effective.

2. Phase profiles

An alternative to amplitude shaping that is often use-
ful is frequency or phase shaping. One specific phase-

shaping method utilizes fixed, small increments Df to
the phase of successive slices of a pulse to achieve an
excitation profile centered at a frequency that differs

from the RF carrier frequency vrf by Df /Dt, where Dt is
the duration of each time slice. This technique for shift-
ing the RF frequency is known as phase ramping sPatt,
1991d. We can express the effect of phase ramping math-
ematically by replacing Eq. s11d by

Hrf/s− "v1d = cosFvrft + Sf0 +
Df

Dt
tDGIx

− sinFvrft + Sf0 +
Df

Dt
tDGIy

= cosFSvrf +
Df

Dt
Dt + f0GIx

− sinFSvrf +
Df

Dt
Dt + f0GIy. s49d

The use of phase shifts thus permits us to obtain an RF
field at a different frequency than is generated by the
signal generator. Furthermore, the displaced frequency
can be chosen to be different for every pulse and can
even be varied in the course of a pulse.

A useful application of phase ramping lies in compen-
sation for Bloch-Siegert effects during simultaneous

pulses, where the RF applied at v0
i shifts the resonance

frequency of spin j to v0
j +DVBS sSec. III.B.1d. The rota-

tions of both spins can be significantly improved simply
by shifting the RF excitation frequencies via phase
ramping such that they track the shifts of the corre-
sponding spin frequencies sSteffen et al., 2000d. In this
way, the pulses are always applied on-resonance with the
respective spins. The calculation of the frequency shift
throughout a shaped pulse is straightforward and needs
to be done only once, at the start of a series of experi-
ments.

Figure 21 shows the simulated inversion profiles for
the same conditions as in Fig. 18, but this time using the
frequency shift corrected scheme. The inversion profiles
are clearly much improved and there is very little left-

over x̂− ŷ magnetization. Simulations of the inversion
profiles for a variety of pulse shapes, pulse widths, and
frequency separations confirm that the same technique
can be used to correct the frequency offsets caused by
three or more simultaneous soft pulses at nearby fre-
quencies. The improvement is particularly pronounced

FIG. 21. Similar to Fig. 18 but with frequency shift correction.

From Steffen et al., 2000.
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when the frequency window of the shaped pulse is two
to eight times the frequency separation between the
pulses sSteffen et al., 2000d.

B. Composite pulses

Another practical method for compensating for sys-
tematic control errors in NMR experiments is the appli-
cation of a sequence of pulses instead of a single pulse.
This method of composite pulses arises from the obser-
vation that concatenation of several pulses can produce
more accurate rotations than is possible using just a
single pulse, due to strategic cancellation of systematic
errors and other unwanted systematic effects. Compos-
ite pulses work particularly well for compensating errors
arising from the RF field inhomogeneity, frequency off-
sets, imperfect pulse length calibration, and other instru-
mental artifacts introduced in Sec. III.B.3. They leverage
the ability to control one parameter precisely to com-
pensate for the inability to control another parameter
well. We describe two approaches to construction of
composite pulses: an analytical method and one employ-
ing numerical optimization.

1. Analytical approach

The three parameters that characterize a hard pulse

are its frequency offset Dv, phase f, and area "gB1tpw,

given by the product of the pulse amplitude B1 and

pulse duration tpw sSec. II.B.1d. In terms of qubit opera-
tions, errors in these parameters translate directly into

errors in the axis n̂ and angle u of rotation, such that the

actual operation applied is not the ideal Rn̂sud of Eq.
s23d, but rather

R̃n̂sud = expF− i
fsu,n̂d · sW

2
G , s50d

where fsu , n̂d is a function which characterizes the sys-
tematic error. For example, under- and over-rotation er-
rors caused by pulse amplitude miscalibration or RF

field inhomogeneity may be described by fsu , n̂d=us1
+edn̂, while RF phase errors may be described by

fsu , n̂d=ufn̂x cos e+ n̂y sin e , n̂y cos e− n̂x sin e , n̂zg, where

e is a fixed, but unknown parameter. The essence of the
composite pulses technique is that a number of errone-

ous operations are concatenated, varying n̂ and u, to ob-

tain a final operation which is as independent of e as

possible. This is done without knowing e.
This technique can be illustrated by considering the

specific case of linear amplitude errors, in which

R̃n̂sud = expF−
ius1 + edn̂ · sW

2
G . s51d

Let the goal be to obtain Rxsp /2d. Using as a measure of
error the average gate fidelity, defined in Eq. s113d,

we find that F̄„Rxsp /2d , R̃xsp /2d…= f2+cossep /2dg /3<1

−p2e2 /24, so the error is quadratic in e for small e. Con-
sider, in contrast, the sequence

BB1u = R̃fspdR̃3fs2pdR̃fspdR̃xsud , s52d

where R̃fs·d denotes a rotation about the axis

fcos f , sin f ,0g, and the choice f=cos−1s−u /4pd is
made. This sequence gives average gate fidelity

F̄„Rxsp /2d ,BB190…<1–21p6e6 /16384, which is much
better than for the single pulse, even for relatively large

values of e, as shown in Fig. 22. The operation of the

BB190 sequence is illustrated graphically in Fig. 23.
A few comments about this result are in order. This

result is the best that has been presented in the litera-
ture to date sWimperis, 1994; Cummins and Jones, 2000;
Jones, 2003bd. Currently, no pulse sequence that cancels
out errors to higher order sfor all possible initial statesd
has yet been published. It is also fairly general; BB1u

approximates Rxsud. Also, while composite pulses have
been widely studied and employed in the art of NMR,
this sequence is special in that it is universal salso termed

fully-compensating or class Ad: the amount of error can-
cellation is independent of the starting state of the spin
sTycko, 1983; Tycko et al., 1985d. Other examples of such
universal composite pulses are the sequence

R̃60s180dR̃300s180dR̃60s180d , s53d

which performs a X2 rotation with compensation for
pulse length errors, and

R̃ys385dR̃ys− 320dR̃ys25d , s54d

which performs a Y rotation compensating for off-
resonance errors and to some extent for pulse length
errors as well.

Earlier, in the original work which introduced the con-
cept of composite pulses into NMR sLevitt and Free-
man, 1979; Levitt, 1986d, only limited pulse sequences
were known, which worked only for particular initial
states; for example, there is the common

R̃xsp /2dR̃−yspdR̃xsp /2d, used to approximate Rxspd. Fig-

FIG. 22. sColor in online editond Comparison of gate fidelities

for average and composite unitary transforms: Lower curve,

plot of the average gate fidelity between the ideal Rxsp /2d and

actual unitary transforms R̃xsp /2d; upper curve, plot of fidelity

between the ideal Rxsp /2d and the composite sequence BB190,

as a function of the fraction of over-rotation error e. Note how

much higher fidelity the BB1 sequence has sthe best possible

fidelity is 1d, over a wide range of errors.
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ure 24 illustrates how this simple sequence removes the
effect of errors in either the rotation angle or the rota-
tion axis.

Systematic errors in the coupling strengths can also be
tackled using composite rotations, in order to obtain ac-
curate two-qubit gates. This was shown explicitly for the
case of Ising couplings sJones, 2003ad.

Similar compensation for slowly fluctuating errors can
be achieved during a train of pulses, separated by time

intervals of free evolution. The simplest instance of such

a pulse train uses only 180° pulses. Off-resonance effects
in such pulses can be largely reversed by properly choos-
ing the phases of the pulses. For instance, and at first
sight surprisingly, the errors from off-resonant pulses

X2X̄2 roughly add up, while they largely compensate

each other in X2X2. This cancellation can be appreciated
via a simple Bloch sphere picture sFig. 25d. The remain-
ing errors are further reduced for a properly chosen

train of four pulses, X2X2X̄2X̄2, which performs mark-

edly better than X2X̄2X2X̄2 sLevitt et al., 1982d. Further
reduction of the effect of off-resonance errors can be

obtained by using even longer trains of 180° pulses sLev-
itt et al., 1982d.

Evidently, quantum computing sequences are not as

transparent as just a train of 180° pulses. Even through-
out a quantum computing sequence, the effect of RF
inhomogeneities can be removed to a large extent
sVandersypen, Steffen, Sherwood, Yannoni, Breyta, and

FIG. 23. sColor in online editiond Illustration of the trajecto-

ries of a spin as it transforms under the BB1 pulse sequence of

Eq. s52d, starting initially in the u0l state. Three trajectories are

shown, in which the error is 50%: sad under-rotation; sbd zero,

and scd 50% over-rotation. Plotted symbols denote the end-

points of each pulse in the sequences.

FIG. 24. sColor in online editiond Trajectory in the Bloch

sphere described by a qubit initially in u0l, when a composite

180° rotation is applied, consisting of three imperfect rotations,

R̃xsp /2dR̃−yspdR̃xsp /2d: sad The tip angles are set 0 ,5 , . . . ,20%

too short; sbd The pulse is applied off-resonance, with sv0

−vrfd /v1=0,0.05, . . . ,0.20. In both cases, the effect of the er-

rors in the individual pulses is largely removed by the compos-

ite pulse.
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Chuang, 2000d, as illustrated in Fig. 26. After completion

of a routine involving the equivalent of about 1350 90°
pulses, the measured amplitude was about 15% of the
full amplitude. Without removal of the effect of RF in-
homogeneity, the signal would have been buried in the
noise very rapidly.

This level of error cancellation was achieved partly
due to a judicious choice of the phases of the refocusing
pulses. Nevertheless, a more detailed description and
understanding of the error operators is needed in order
to fully exploit the potential for error cancellation in
arbitrary pulse sequences.

2. Numerical optimization

The composite pulses we discussed in the previous
subsection are designed to compensate for certain types
of errors smostly over- or under-rotations and frequency
offsetsd, and work even when the exact Larmor frequen-
cies, spin-spin coupling strengths, and the magnitude of

the errors are unknown. This is the usual case in NMR
spectroscopy. However, in quantum computing experi-
ments, detailed knowledge of the system Hamiltonian is
usually available and can be used to tailor the composite
pulses to the system specifics, taking the degree of quan-
tum control one step further.

Following the notation of Fortunato et al. s2002d, we
consider the concatenation of a number of rectangular
pulses, each described by four parameters: the pulse du-

ration tm, a constant amplitude v1
m, the transmitter fre-

quency vrf
m, and the initial phase fm, where m indexes

the pulse. These parameters may be strongly modulated
from one pulse to the next.3 Via a numerical optimiza-

tion procedure, the values of tm, v1
m, vrf

m, and fm are

chosen such that the resulting net unitary evolution Unet

is as close as possible to the ideal unitary transformation

Uideal, according to some fidelity measure sSec. V.Cd.
In practice, the number of time slices in the composite

pulse is increased starting from one, until a satisfactory
solution is found. While the fidelity function may have
many local maxima, and finding the global maximum
may therefore take a long time, suitable algorithms such
as the Nelder-Mead Simplex algorithm sNelder and
Mead, 1965d often succeed in finding a reasonably good
solution. Furthermore, the optimization routine can in-
corporate penalties on high powers, large frequencies,

3Jumps in the transmitter frequency can be conveniently re-
alized with phase-ramping techniques. As discussed in Sec.
IV.A.2, this is done by phase shifting the raw RF excitation in
fixed increments per time so that a different RF frequency is
obtained.

FIG. 25. sColor in online editiond Trajectory in the Bloch

sphere of a qubit initially in u0l, subject to two consecutive 180°

pulses, applied off-resonance with sv0−vrf /v1d=0.5: sad If the

two pulses are applied with the same phase sX2X2d, the qubit is

taken simply along a circular trajectory through u0l, and

reaches a point near u0l; to be precise, the 50% resonance

offset makes the rotation angle Îs22+11d /22=Î5/4 larger than

360°. sbd In contrast, if the two pulses are applied with opposite

phases sX2X̄2d, the qubit is left far from u0l.

FIG. 26. Experimental serror barsd and ideal scirclesd ampli-

tude of u↓↑↓l, as a function of the number of iterations of a

quantum search algorithm sNielsen and Chuang, 2000d, for

three qubits, executed on 13CHFBr2. Each iteration contains

the equivalent of almost 50 90° pulses. The dotted lines serve

to guide the eye. Dashed line: the signal decay for 13C due to

decoherence, which represents a lower bound on the decay

rate. Solid line: the signal strength retained after applying a

continuous RF pulse of the same cumulative duration per

search iteration as the pulses in the actual experiment saver-

aged over three spins, measured up to four iterations and then

extrapolatedd. Similar observations have been reported in

Vandersypen et al. s1999d. From Vandersypen, Steffen, Sher-

wood, Yannoni, Breyta, and Chuang, 2000.
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and negative or very long time periods, in order to pre-
vent the algorithm from returning infeasible solutions.

Computation of Unet uses the fact that the Hamil-
tonian during a fixed-amplitude RF pulse can be made
time independent by transforming into a reference
frame rotating at the transmitter frequency, as we have

seen in Sec. II.B.2. We shall call Hrot
m the effective

Hamiltonian in the frame rotating at vrf
m during segment

m. Given that vrf
m may be different for every segment of

the pulse, it is most convenient to transform back to a
common reference frame at the end of every time slice.
This can be the frame of the raw RF frequency, or the

laboratory frame of the n-spin system. In the lab frame,

the time evolution during segment m is described by

Um = e−ivrf
mok=1

n
Iz
k
tm

e−iHrot
m

tm
. s55d

Since all Um are expressed in the same reference
frame, we can simply multiply them together to get

Unet=pm Um and compare the result directly with Uideal,
expressed in the laboratory frame as well.

Two representative examples of composite pulses de-
signed for spin-selective rotations in homonuclear spin
systems are given in Fig. 27. The gate fidelity sSec. V.C.2d
obtained with these two pulses is displayed in Fig. 28.
Naturally, the fidelity is close to unity only near the reso-
nance frequencies for which the gate was designed to
work.

Composite pulses can thus effectively generate accu-
rate single- and multiple-qubit Hamiltonians, using de-
tailed knowledge of the system Hamiltonian and only
limited knowledge about the errors. Often, however, full
knowledge of the system parameters is not available,
and thus methods beyond composite pulses must be em-
ployed.

C. Average-Hamiltonian theory

The average-Hamiltonian formalism offers a versatile
framework for understanding how to effectively create
or remove arbitrary terms in the Hamiltonian by peri-
odic perturbations, without requiring full knowledge of
the system dynamics. The refocusing sequences pre-
sented in Sec. III.A.4 and more general multiple-pulse
sequences designed to neutralize the effect of dipole-
dipole couplings can be explained within this frame-
work. Reduction of full dipole-dipole coupling given by
Eq. s5d to the simplified forms of Eqs. s6d and s7d can
also be understood with average-Hamiltonian theory.

Following Ernst et al. s1987d, we first introduce the
Magnus expansion and then see how we can modify a
time-independent Hamiltonian via a time-dependent
perturbation. We use two concrete examples to illustrate
the concepts.

1. The Magnus expansion

The essence of average-Hamiltonian techniques is

that the evolution Ustd under a time-dependent Hamil-

tonian Hstd can be described by an effective evolution

under a time-independent average Hamiltonian H̄, un-
der two conditions sHaeberlen and Waugh, 1968; Ernst

et al., 1987d: sid Hstd is periodic and siid the observation is

stroboscopic and synchronized with the period tc of Hstd.

We can then calculate H̄ exactly from

Ustcd = exps− iH̄tcd , s56d

by diagonalizing Ustcd and taking the logarithm of the
resulting eigenvalues sNielsen and Chuang, 2000d.

In practice, it is often more convenient to compute H̄

approximately. Let us assume that Hstd is piecewise con-
stant fthe analysis can be easily generalized to the case
of continuously changing Hamiltonians sErnst et al.,

1987dg: Hstd=Hk for o0
k−1ti, t,o0

kti, and tc=o0
ntk, so

FIG. 27. The ideal RF waveform for two examples of strongly

modulated pulses: solid lines, amplitude of the waveform;

dashed lines, phase. Details of the pulse parameters, as in Eq.

s55d are listed below each wave form. The 6-ms time interval

with zero RF power before and after the composite pulses is

needed due to experimental implementation issues. The com-

posite pulse in sad performs a 90° rotation on one of the 13C

nuclei of 13C-labeled Alanine and the pulse in sbd performs a

simultaneous 180° rotation on two 13C nuclei of 13C-labeled

Crotonic acid. Courtesy of D. G. Cory. Reproduced from For-

tunato et al., 2002.
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Ustcd = exps− iHntnd ¯ exps− iH0t0d . s57d

Repeated application of the Baker-Campbell-Hausdorff
relation,

eBeA = expHA + B +
1

2
fB,Ag+

1

12
s†B,fB,Ag‡

+ †fB,Ag,A‡d + ¯J s58d

gives

H̄ = H̄s0d + H̄s1d + H̄s2d + ¯ , s59d

where

H̄s0d =
1

tc

hH0t0 + ¯ + Hntnj , s60d

H̄s1d =
− i

2tc

hfH1t1,H0t0g + fH2t2,H0t0g + fH2t2,H1t1g

+ ¯j , s61d

and so forth. This expansion, called the Magnus expan-
sion sMagnus, 1954d, forms the basis of average-
Hamiltonian theory.

2. Multiple-pulse decoupling

Let us consider a pulse sequence of n infinitesimally

short pulses Uk separated by time intervals tk of free
evolution under the system Hamiltonian H0, and such

that Un¯U2U1=I sfor pulses of finite length, the dura-
tion of the pulses must also be included in the averaged.
The pulses correspond to basis transformations, and we

can thus describe the system evolution via a sequence of

time intervals tk of free evolution under the Hamil-

tonian H̃0skd, with

H̃0s0d = H0, s62d

H̃0s1d = U1
−1H0U1, s63d

H̃0s2d = U1
−1U2

−1H0U2U1, s64d

and so forth. Note that the order in which the Uk are

applied to H0 is reversed and that the Uk themselves are

reversed as well. If we let tc=o0
ntk, then the overall

transformation Ustcd is given by

Ustcd = exps− iH̃0sndtnd ¯ exps− iH̃0s0dt0d . s65d

We can now use the Magnus expansion of Eq. s59d and

Eqs. s60d and s61d, where we replace Hk by H̃0skd, to

obtain the average Hamiltonian H̄0 which describes the

net time evolution during tc. The zeroth-order average
Hamiltonian is given by

H̄s0d
0 =

1

tc
o
k=0

n

tkU1
−1 ¯ Uk

−1
H0Uk ¯ U1. s66d

The crux of average-Hamiltonian theory is that, by

properly choosing the pulse Uk, we can ensure that H̄0
s0d

contains only the desired terms.
Sophisticated pulse sequences sMehring, 1983d can

also remove undesired contributions from the higher-
order terms in the expansion, although this is generally

harder since H̄0
s1d

,H̄0
s2d,

, . . . contain cross-terms between

the various H̃0skd. The commutators involved in the

higher-order terms do become smaller for shorter cycle
times, though, so fast cycles result in better averaging.

We also point out that pulse sequences which satisfy

H̃0skd = H̃0sn−kd s67d

or equivalently

Uk+1 = Un−k
† s68d

contain no contributions of odd orders to H̄0,

H̄skd
0 = 0 for k = 1,3,5, . . . , s69d

and thus perform significantly better than other se-
quences.

Let us now illustrate the operation of multiple-pulse
decoupling via two examples. First, the original
multiple-pulse sequence for removal of dipole-dipole in-
teractions is the WAHUHA-4 sequence sWaugh et al.,
1968d,

tX̄tY2tȲtXt , s70d

where the pulses are applied to all qubits involved, t
stands for free evolution under the system Hamiltonian

for a duration t, and the unitaries are ordered from right

FIG. 28. sColor in online editiond Gate fidelity of the two ex-

ample pulses of Fig. 27 as the resonance frequency of a test

spin is varied. The solid sdashedd line is calculated with identity

sdesired transformationd as the intended transformation. The

vertical dotted lines denote the actual chemical shifts for each

spin. Courtesy of D. G. Cory. Reproduced from Fortunato et

al., 2002.

1058 L. M. K. Vandersypen and I. L. Chuang: NMR techniques for quantum control and computation

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



to left, as usual. The pulses rotate the Zeeman terms in

the Hamiltonian from −ẑ to −ŷ, −x̂, −ŷ, and back to −ẑ

fsee Eqs. s62d–s64dg for a duration t, t, 2t, t, and t, re-
spectively. The zeroth-order average Zeeman term is

thus oriented along −sx̂+ ŷ+ ẑd, with strength scaled

down by a factor 1/Î3. The dipolar Hamiltonian of Eq.

s6d goes through the forms f3Iz
i Iz

j −Ii ·Ijg, f3Iy
i Iy

j −Ii ·Ijg,
and f3Ix

i Ix
j −Ii ·Ijg for equal durations, and is thus zero on

average.
By selectively not pulsing specific qubits, it is also pos-

sible to reintroduce some of the couplings as desired. In

Fig. 12, we already saw explicitly how to do this for Iz
i Iz

j

couplings.
A second example is an extension of the conventional

spin-echo sequence sSec. V.A.4d to three-component
spin echoes sAugustine and Hahn, 1997d. In conven-

tional echo sequences, 180° pulses about x̂ or ŷ remove

the effect of a Hamiltonian of the form czsz. Now we
ask ourselves what sequence of pulses would freeze the
evolution under a Hamiltonian of the form

H = cxsx + cysy + czsz, s71d

where cx ,cy ,cz are arbitrary coefficients. We can use Eq.
s66d to verify that the sequence

X2tX̄2Y2tȲ2Z2tZ̄2t , s72d

or equivalently, after simplification,

X2tZ2tX2tZ̄2t , s73d

gives a zeroth-order average Hamiltonian H̄s0d=0, and
thus in effect corresponds to a three-component echo
sequence. Another way to show this is to note that

X2HX̄2 = + cxsx − cysy − czsz, s74d

Y2HȲ2 = − cxsx + cysy − czsz, s75d

Z2HZ̄2 = − cxsx − cysy + czsz. s76d

Clearly, H+X2HX̄2+Y2HȲ2+Z2HZ̄2=0, and so the se-
quence of Eq. s72d gives, to zeroth order, no net evolu-

tion. Again, if t is sufficiently short, the higher-order
contributions will be negligible.

3. Reversing errors due to decoherence

Can we apply multiple-pulse sequences to reverse the
effect of interactions of a qubit with degrees of freedom
in the environment? It is not clear a priori that this is
possible: standard average-Hamiltonian theory assumes
that we can manipulate both interacting particles in-
volved, for instance, via RF pulses. However, we have
no control of degrees of freedom in the environment.

Remarkably, it is actually possible to remove the ef-
fect of unwanted interactions with degrees of freedom in
the environment, even when applying operations to the
system only sViola and Lloyd, 1998; Viola et al., 1998;
Duan and Guo, 1999; Vitali and Tombesi, 1999d, pro-

vided the control operations are applied faster than the
fluctuations. Knowledge about the nature of the interac-
tions can be applied to simplify the sequence of decou-
pling operations, and such knowledge can even be ex-
perimentally extracted sByrd and Lidar, 2003d, in part
using a procedure known as process tomography, de-
scribed in Sec. V.B.2.

If the fluctuations are faster than the accessible con-
trol operations, errors can be corrected using quantum
error correction sShor, 1995; Steane, 1996; Nielsen and
Chuang, 2000d, or they can be prevented by encoding
the qubits in a subspace that is not affected by decoher-
ence sZanardi and Rasetti, 1997; Lidar et al., 1998d. This
is discussed further in Sec. V.D.

V. EVALUATION OF QUANTUM CONTROL

The pulse control methods presented in the last two
sections can have impressive performance, but this is
very much contingent on having an accurate model of
the system under control. A variety of techniques have
been used in NMR to characterize the system dynamics
and to evaluate the performance of control sequences.
In this section, we review some of these techniques, be-
ginning with a set of standard experiments to determine
how quantum a qubit system is, then proceeding to to-
mographic methods for fully characterizing system dy-
namics, and concluding with fidelity metrics for control
and their implications for scalability to large systems.

A. Standard experiments

In NMR spectroscopy as in atomic physics, a number
of standard experiments serve to test the quantum-
mechanical behavior of a given system and to determine
the extent of its isolation from the environment ssee Sec.

II.Cd, in terms of its phase coherence time T2 and its

energy relaxation time T1, as well as the decay time in

the rotating frame T1r.

1. Coherent oscillations driven by a resonant field

The dynamics of a single spin, driven resonantly by a
coherent field, were presented in Secs. II.B.1 and II.B.2.
From Eq. s27d, we have that in the ideal case the RF

field induces transitions from u0l to u1l, where a qubit

initially in u0l will be found in u1l after an RF pulse of

duration tpw with probability

Prfu1lg = sin2sgB1tpw/2d = sin2sv1tpw/2d . s77d

The probability initially increases over time, until it

reaches a maximum Prfu1lg=1 and then decreases again,
by stimulated emission, a cycle which keeps repeating
itself.

Such oscillations of a two-level quantum system
driven by a resonant field are known as Rabi oscillations

sRabi, 1937d, and the Rabi frequency v1 /2p is propor-
tional to the amplitude of the control field. Observation
of Rabi oscillations is usually accepted as a signature of
quantum coherent behavior.
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In reality, the envelope of the Rabi oscillation signal is
always damped, due to decoherence as well as instru-
mental imperfections; measurement of this decay time is
useful, and known as a nutation experiment. In NMR,
the Rabi decay time is often much shorter than the in-

trinsic phase randomization time constant T2, due to the
inhomogeneity across the macroscopic sample of the RF
field driving the Rabi oscillation. In other systems, the

Rabi decay time may be longer than T2, because sid a

long pulse can be seen as a concatenation of many 180°
pulses, which can have a refocusing effect ssee Sec.

III.A.4d, and siid the qubit is near ±ẑ, where phase ran-
domization has no effect, for roughly half the time dur-
ing Rabi oscillations.

Coherent oscillations driven by a resonant field have
been observed in NMR and in many atomic systems for
a long time. Recently, however, observations of such co-
herent dynamics have been made in other qubit systems,
including systems made from Josephson junctions sNa-
kamura et al., 1999d, molecular vibrational states sTesch
and de Vivie-Riedle, 2002; Vala et al., 2002d, and exci-
tons in semiconductor quantum dots sStievater et al.,
2001d.

2. Coherent oscillations initiated by a kick

A quantum system starting off in a state that is not an
eigenstate of the sstaticd system Hamiltonian will precess
about the quantization axis of the system Hamiltonian, a
motion known as Larmor precession ssee Sec. II.A.1d.
Such a situation could be realized by abruptly changing
the system Hamiltonian, e.g., by suddingly applying a

strong static field along x̂ instead of along ẑ. Alterna-
tively, and more realistically in NMR, Larmor precession
can be initiated by suddenly kicking the qubit out of the
Hamiltonian eigenbasis. For a nuclear spin with Hamil-

tonian −"v0Iz, as in Eq. s1d, this is done by applying a

90° RF pulse, causing a transition for instance from u0l
to su0l+ u1ld /Î2, which initiates the time evolution

ucstdl =
eiv0t/2u0l + e−iv0t/2u1l

Î2
, s78d

as illustrated in Fig. 2. Like Rabi oscillations, the obser-
vation of Larmor precession is also a signature of quan-
tum coherent behavior.

The Larmor precession is also damped, but in contrast
to the Rabi decay time, the Larmor decay time, termed

T2
*, is never longer than T2. Usually, T2

*,T2; in particu-
lar, for NMR,

1

T2
* =

1

T2

+
1

T28
, s79d

where T28 is the dephasing time constant due to static
magnetic-field inhomogeneities or other instrumental
imperfections.

Larmor oscillations initiated by a kick have been ob-
served recently in a variety of systems, including those
driven resonantly mentioned earlier, and in addition a
system of charges in coupled quantum dots sHayashi et

al., 2003d. The oscillations can be observed directly if the

measurement basis lies in the x̂-ŷ plane, as is the case in

NMR. If the measurement takes place along ±ẑ, we

must first change the basis via a second 90° pulse.

3. Ramsey interferometry

The double-pulse experiment

X t X , s80d

where time goes from right to left sas always, for unitary

transformations given in this articled and t denotes a free

evolution period, under the evolution operation e−iHsyst/"

is known as a Ramsey interference experiment sRamsey,
1950d. Originally, this “method of separated oscillatory
fields” was applied to electronic states of molecular
beams traversing through two microwave excitation
zones. In NMR, two pulses are involved, separated by a

delay time t. Ramsey interference is most naturally de-
scribed in the rotating frame of the RF field driving the

transition. If the qubit starts off along ẑ, the first X pulse

rotates it to −ŷ. Then the qubit precesses about ẑ for a

time t. Finally the second X pulse rotates the ±ŷ com-

ponent of the qubit state to 7ẑ. Components along ±x̂ at

the end of the interval t remain along ±x̂ after the sec-

ond X pulse.
If only a single qubit is considered and the RF field is

exactly on-resonance with the qubit precession, the qu-
bit stays in place in the rotating frame during the time
interval in between the two pulses, and the final state

does not vary with t. However, if the RF and the qubit

are detuned in frequency by Dv, both the x̂ and the ẑ
components of the final state display a beating pattern as

a function of Dvt, the so-called Ramsey fringes. The

decay time of the envelope of the Ramsey fringes is T2
*,

the same as that for Larmor precession.
For coupled qubits, the beating pattern contains infor-

mation on the coupling strengths. This fact forms the
basis for two-dimensional correlation spectroscopy
sJeener, 1971; Ernst et al., 1987d, a widely used range of
two-pulse techniques for molecular structure determina-
tion.

4. Measurement of T2

The intrinsic T2 time can be extracted in an experi-
ment that is based on Larmor or Ramsey experiments.
Certain imperfections which cause the Ramsey or Lar-

mor decay time T2
* to be smaller than T2 can be removed

by applying refocusing sequences.
The simplest instance of such a refocusing sequence

consists of a single 180° pulse applied halfway through

the time interval of free evolution initiated by a 90°
pulse. The entire sequence is thus

t

2
X2 t

2
X . s81d

A second X pulse should be added at the end if the

measurement takes place in the ±ẑ basis. In multispin
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systems, the pulses must be applied selectively to one

spin, in order to measure the T2 of that spin.

The X2 refocusing pulse not only removes simple sca-
lar spin-spin couplings, as described in Sec. III.A.4, but
also undoes the effect of spatial variations of the static

magnetic field along ẑ. Such field inhomogeneities cause
spins in different regions of the sample to become pro-
gressively out of phase with each other during the first

time interval t /2. As a result, their magnetic moments
cancel each other out and the NMR signal vanishes. Pro-
vided the magnetic-field variations are constant through-
out the experiment, all the spins come back into phase

again snow along +ŷd by the end of the second time

interval t /2, because of the 180° refocusing pulse. As a
result, the signal recovers, producing the well-known
spin-echo. A generalization of this technique known as
three-component refocusing sSec. IV.C.2d undoes effects
from any static spin Hamiltonian terms.

The echo signal decays as a function of t, and the

decay time constant is a measure of T2. However, terms
in the Hamiltonian fluctuating on a time scale shorter

than t are not removed by a single refocusing pulse.
Their effect can still be removed if the fluctuations are

slow compared to t /n and a train of n refocusing pulses
is applied, each preceded and followed by a time inter-

val t /2n of free evolution. This so-called Carr-Purcell
sequence sCarr and Purcell, 1954d,

t

2n
X2 t

n
¯ X2 t

n
X2 t

2n
X , s82d

produces a first echo along +ŷ after t /n, a second echo

along −ŷ after 2t /n, a third along +ŷ after 3t /n, and so
forth. The magnitude of the echo signal decays exponen-
tially throughout this sequence, and the echo signal left
at the end of this sequence decreases exponentially as a

function of the total time t. To the extent that slow fluc-
tuations in the Hamiltonian have been refocused, the

decay time constant is the intrinsic T2.
As we have seen in Sec. III of this review, small but

fixed errors in the pulse amplitude or duration may ac-
cumulate throughout a multiple-pulse sequence such as
the Carr-Purcell sequence. However, if the phase of the

refocusing pulses is shifted by 90° with respect to the

initial 90° pulse, pulse length errors are compensated on
even-numbered echoes and are thus not cumulative. In
this sequence,

t

2n
Y2 t

n
¯ Y2 t

n
Y2 t

2n
X , s83d

known as the Carr-Purcell-Meiboom-Gill or CPMG se-
quence sMeiboom and Gill, 1958d, the echoes appear all

along −ŷ. Again, the decay time constant of the echo

signal gives T2.

Since T2 indicates how long a qubit can remain phase
coherent, it is usually called the coherence time, al-
though the terms phase randomization time, dephasing
time, and transverse relaxation time are also used. In

NMR, T2 is also known as the spin-spin relaxation time.

In any case, T2 is an important number for evaluating

the potential of quantum computers, as the ratio of T2

over the typical duration of a quantum logic gate ex-
presses the number of operations that can be completed
coherently.

5. Measurement of T1

Energy exchange with the environment makes a qubit
that is out of equilibrium gradually return to thermal
equilibrium. In thermal equilibrium, the qubit is in a

statistical mixture of u0l and u1l, with probabilities set by

the temperature and the energy difference between u0l
and u1l. The time constant of this equilibration process,

T1, is often called the energy relaxation time, the longi-
tudinal relaxation time, or simply the relaxation time. In

NMR, T1 is often termed the spin-lattice relaxation time.

Two standard experiments for measuring T1 are inver-
sion recovery and saturation recovery. The sequence for
the inversion recovery experiment is

XtX2. s84d

The 180° pulse inverts the u0l and u1l probabilities, then

during time t, relaxation takes place, and finally a 90°
read-out pulse is applied if necessary si.e., when the

measurement basis is in the x̂-ŷ planed. In saturation re-
covery, a strong RF field is applied for a long enough
time that it saturates the qubit transition and equalizes

the u0l and u1l probabilities. As in inversion recovery, the

original u0l and u1l populations are altered, and we can
monitor the populations’ return to their equilibrium

value as a function of t. The time constant of this equili-

bration process is T1.
Note that both the inversion recovery and saturation

recovery experiments bring the qubit out of equilibrium,
but to a state that has no coherence. As a result, phase
randomization does not affect the equilibration
process—we measure purely the effect of energy ex-
change with the bath. In contrast, Ramsey and spin-echo

experiments for measuring T2
* and T2 pick up contribu-

tions from phase randomization both without and with
energy exchange with the bath. If energy exchange

dominates phase randomization, the measured T2 is 2T1.

The relevance of T1 is twofold. First, it sets an upper

bound for T2 and second, it tell us how much time we

have to perform a measurement in the hu0l , u1lj basis.

Phase randomization does not change the u0l and u1l
probabilities, so T2 is irrelevant during such a measure-

ment. In many cases, T1@T2, in which case we have
more time to measure than to perform coherent opera-
tions.

6. Measurement of T1r

A third decay time useful to characterize the degree

of isolation between a qubit and the environment is T1r.
This time constant can be measured via a technique
called spin locking, in which the spin is first rotated into

the x̂-ŷ plane, say, by a Y pulse, and next continuous

irradiation is applied, phase shifted by 90° with respect
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to the pulse, so it is aligned with the spin state salong the

x̂ axisd:

RxscontinuousdY . s85d

The continuous irradiation along x̂ locks the spin to the

x̂ axis, in the following sense. Whenever the spin starts

to diverge from the x̂ axis due to interactions with the
environment, the RF field rotates it to the opposite side

of the x̂ axis within a time p /v1. Provided that the spin is
still moving in the same direction after this time, it will

thus return to the x̂ axis snote that spin locking thus also

inhibits evolution due to J couplings and moderate fre-
quency offsetsd. Only if the spin moves in the opposite

direction after p /v1 will it continue to depart from the x̂
axis due to the rotation by the RF field. So the ampli-

tude along x̂ decays, and the decay time constant is

termed T1r, known in NMR as the spin-lattice relaxation
time in the rotating frame.

We see thus that, whereas T2 is governed by low-

frequency fluctuations in the environment and T1 de-
pends on fluctuations at the Larmor frequency, the de-
cay during spin locking arises from fluctuations at the
Rabi frequency used during spin locking. The spin-
locking experiment thus gives additional information on
the spectral density of the interactions with the environ-
ment.

B. Measurement of quantum states and gates

The standard experiments presented in the previous
section give only partial information on the system dy-
namics. Here we show that in fact the full relaxation
superoperator can be determined systematically by a
procedure known as process tomography, which builds
upon state tomography, as described below.

1. Quantum state tomography

The density matrix r completely describes our knowl-
edge of the state of a system. Measurement of the den-
sity matrix is therefore extremely helpful when testing
or claiming the preparation of specific quantum states.

One-time measurement of each of n qubits, in a given

basis of 2n states uml, gives very little information on r.

All that can be inferred from a measurement outcome m

is that PrfumlgÞ0.

Repeated measurements of n qubits, each time pre-
pared in the same state and measured in the same basis,
reveals the probability distribution for the measurement
basis states,

Prfumlg = kmuruml = Trsrumlkmud = TrsrMd , s86d

where M is an observable or measurement operator. If

we repeatedly measure each qubit in the hu0l , u1lj basis,

we thus obtain all the diagonal entries of r, rii.
Quantum state tomography sChuang, Vandersypen, et

al., 1998; Chuang et al., 1998a, 1998bd is a method that

allows all the elements of the density matrix r to be
determined. This method consists of repeating the mea-

surement of the same state in various measurement

bases, until all the elements of r can be determined, by
solving a set of linear equations. In practice, it is often
more convenient to first rotate the qubits via a unitary
transformation and then perform the measurement in a
fixed basis. This is equivalent to measuring in different
bases, since

TrfrsUMU†dg = TrfsU†rUdMg . s87d

Specifically, we can expand the density matrix of a

single qubit r as

Fr00 r01

r10 r11
G = r00u0lk0u + r01u0lk1u + r10u1lk0u + r11u1lk1u .

s88d

Measurements of a single qubit in the hu0l , u1lj basis give

us r00 and r11=1−r00. However, after changing basis via

a 90° rotation about x̂, transforming r to XrX†, we ob-

tain access to Imsr10d=−Imsr01d. Similarly, measurement

after transformation by Y reveals Resr10d=Resr01d.
Thus, by measuring the qubit state first directly, then

measuring the same state again after an X read-out

pulse, and then again after a Y read-out pulse, we can

reconstruct r completely.

Similarly, for n qubits, we can expand r as

r = o
i=0

2n−1

o
j=0

2n−1

rijuilkju s89d

and choose a set of basis changes that gives access to all

4n−1 degrees of freedom in r.
However, it is much easier to find a suitable set of

basis changes if we use the Pauli expansion of r instead
of Eq. s89d. The Pauli expansion for a single-qubit state
is

r = c0s0 + c1s1 + c2s2 + c3s3, s90d

where c0=1 for normalization, and we use s0=I /2, s1

=sx /2, s2=sy /2, s3=sz /2. Measurement in the compu-

tational basis, described by the observables s0±s3, gives

us Prsu0ld= sc0+c3d /2, and Prsu1ld= sc0−c3d /2 so we can

extract c3. Since

XrX† = c0s0 + c1s1 − c3s2 + c2s3, s91d

YrY† = c0s0 + c3s1 + c2s2 − c1s3, s92d

we indeed obtain sc0±c2d /2 after applying X and

sc07c1d /2 after using Y.

For n qubits, Eq. s90d generalizes to

r = o
i=0

3

o
j=0

3

¯ o
k=0

3

cij¯k si ^ sj ^ ¯ ^ sk, s93d

where c00¯0=1. Measurement in the computational basis
is described by observables of the form

ss0 ± s3d ^ ss0 ± s3d ^ ¯ ^ ss0 ± s3d s94d

and returns the probabilities
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o
i,j,. . .,kPh0,3j

±
cij¯k

2n
. s95d

For example, for two qubits, these are

Prsu00ld = sc00 + c03 + c30 + c33d/4, s96d

Prsu01ld = sc00 − c03 + c30 − c33d/4, s97d

Prsu10ld = sc00 + c03 − c30 − c33d/4, s98d

Prsu11ld = sc00 − c03 − c30 + c33d/4. s99d

After measurement of the four Prfumlg, we can solve for

c03 ,c30 ,c33 from this overdetermined set of linear equa-

tions. Again, we can determine the other cij¯k by trans-

formation of the corresponding sij¯k to an observable,
for instance,

X1Y2ss0 + s2d ^ ss0 + s1dX1
†Y2

†

= ss0 + s3d ^ ss0 − s3d . s100d

We end this discussion of state tomography with three
additional comments:

First, in order to obtain all the basis-state probabilities
as in Eqs. s96d–s99d, we must each time read out all the
qubits. If it is only possible to read out any one single

qubit in each experiment, we obtain n bit-wise probabili-

ties instead of 2n basis-state probabilities, giving spin-
spin correlations. The measurement operators are then
of the form

2n−1fs0 ^ s0 ^ ss0 ± s3d ^ ¯ ^ s0g s101d

and we measure probabilities

1

2
sc0¯000¯0 ± c0¯030¯0d . s102d

It is now no longer possible to rotate arbitrary compo-

nents of r into observable positions using just single-
qubit rotations. Two-qubit gates are necessary to obtain

all cij¯k.
Second, the measurement basis obviously need not be

the computational basis. In NMR experiments, for in-
stance, the single-qubit measurement operator can be

written as −is1−s2. For two coupled spins, the measure-
ment operators are

2s− is1 − s2d ^ ss0 ± s3d , s103d

ss0 ± s3d ^ 2s− is1 − s2d , s104d

and so forth. Since NMR experiments are normally per-
formed on a large ensemble of molecules, the expecta-
tion value of the observables can be read out by acquir-
ing a single spectrum. The four operators in Eq. s104d
correspond to the four lines in the spectrum of a two-
spin system stwo doubletsd. Phase-sensitive detection
permits us to separately record the real and imaginary

component of each spectral line and distinguish s1 and

s2 contributions.

Third, errors in the gates used for changing basis dur-
ing state tomography lead to a measured density matrix
which differs from the actual state of the system. If the
errors are known and can be modeled accurately, they
can be incorporated in the state tomography procedure
and the actual state can nevertheless be determined ac-
curately.

Quantum state tomography has been experimentally
implemented in many atomic systems, notably the early
work mapping out photon states sSmithey et al., 1993d
and vibrational cat states of trapped atoms sMeekhof et
al., 1996d. Recently, it has become a common tool used
to evaluate NMR states sChuang, Vandersypen, et al.,
1998; Chuang et al., 1998bd, states of optical photon qu-
bits sThew et al., 2002d, and even vibrational states of
molecules sSkovsen et al., 2003d.

2. Quantum process tomography

Now that we know how to determine experimentally
the state of a quantum system, it is only a short step to
the characterization of a quantum process, such as a
quantum logic gate, communication channel, storage de-
vice, and so forth. In general, let us consider a quantum-
mechanical black box whose input may be an arbitrary
quantum state, and whose output is the result of the
internal dynamics of the black box, as well as interac-
tions with the outside world. Then can we ascertain the
transfer function of this black box?

The answer is yes sChuang and Nielsen, 1997; Poyatos
et al., 1997; D’Ariano and Lo Presti, 2001; Boulant et al.,
2003d. The outline of the procedure is to first determine
the output state of the black box for a set of input states
which form a basis for the system Hilbert space, and
then to use the fact that quantum mechanics is linear to
compute the entire transfer function from this finite set
of input-output pairs.

An arbitrary quantum state transformation is a linear
map E,

r °

Esrd

TrfEsrdg
, s105d

where we can express Esrd in the operator-sum represen-
tation or Kraus representation sKraus, 1983; Nielsen and
Chuang, 2000d

Esrd = o
k

AkrAk
† . s106d

This is an alternative to the superoperator formalism

widely used in NMR sErnst et al., 1987d. The Ak are
operators acting on the system alone, yet E completely
describes the possible state changes of the system, in-
cluding unitary operations, generalized measurements,
and decoherence sfor trace-preserving processes,

oi Ak
†Ak=1d. The expansion of Eq. s106d is in general

not unique. In fact, we can always describe E using a

fixed set of operators Ãk which form a basis for the set
of operators on the state space, so that sChuang and
Nielsen, 1997d
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Esrd = o
p,q

xpqÃprÃq
† , s107d

where xpq is a positive Hermitian matrix. Since the Ãk

are fixed, E is completely described by x. In general, x

will contain 16n−4n independent real parameters, where

n is the number of qubits.

In order to determine x experimentally, we choose a

basis of 4n linearly independent density matrices rj

which span the system Hilbert space, and determine

Esrjd for each j. We can then write down a set of linear
equations of the form of Eq. s107d, where we plug in the

measurement outcomes Esrjd and solve for the xmn.

The most convenient choice for the rj depends on the
implementation of the qubits and on the observables, as
was the case for state tomography. Clearly, the effort
needed to perform quantum process tomography in-
creases even more rapidly with the number of qubits
than quantum state tomography. This procedure has
been used experimentally only for one- and two-qubit
NMR sChilds et al., 2001; Boulant et al., 2003d and
optical-photon systems sAltepeter et al., 2003; Mitchell
et al., 2003d.

The operation elements Ak in the operator sum rep-
resentation of Eq. s106d can describe arbitrary quantum
operations, but among these a select subset are useful to

identify. For example, when Ak is a unitary matrix, this
corresponds to perfect, closed-system Hamiltonian evo-

lution. Phase damping sT2d is described by

A0 = F1 0

0 Îg
G, A1 = F0 0

0 Î1 − g
G , s108d

and amplitude damping sT1d by

A0 = F1 0

0 Îg
G, A1 = F0 Î1 − g

0 0
G , s109d

where g,e−t/t parametrizes the strength of the damping,

for time t, in terms of a time constant t. These and other
relaxation parameters sNielsen and Chuang, 2000d can
be obtained by process tomography.

Such results can, in turn, be useful for approximate
numerical simulation of relaxation and decoherence
processes in spin systems. Phase damping and energy
relaxation can be simulated in alternation with unitary
evolution under the system and control Hamiltonian,
taking sufficiently short time slices to obtain a good ap-

proximation of the true dynamics. This permits an n-spin

system to be simulated using n4n steps, compared to 16n

for fully general quantum operations. Experimental re-
sults have shown this method to be predictive of the
system dynamics throughout sequences containing hun-
dreds of RF pulses sVandersypen, 2001; Vandersypen et
al., 2001d.

C. Fidelity of quantum states and gates

The methods of the previous section give us full
knowledge of the system state and dynamics, but some-

times a more succinct measure for comparing theoretical
expectations with experimental measurements is useful.
This can be provided by quantum state fidelity and gate
fidelity.

1. Quantum state fidelity

One elementary goal of quantum control is to create

some pure state ucl. However, suppose the final output is

instead the pure state ufl. Does ufl represent ucl with
high fidelity?

Classically, the fidelity of two probability distributions

hpxj and hqxj is given by Fspx ,qxd=ox
Îpxqx; when they

are equal, the fidelity is one. The analogous quantum

measure of fidelity for two pure states ucl and ufl is

Fsucl, ufld = ukfuclu , s110d

which is simply the absolute value of the overlap be-
tween the two states.

More generally, the output state of a control sequence

is often described by a density matrix r; this is useful
because density matrices can describe classical statistical
mixtures of quantum states, arising from decoherence
processes, for example. The fidelity between a pure state

ucl and a mixed state r is

Fsucl,rd = Îkcurucl , s111d

which reduces to Eq. s110d when r= uflkfu.
The most general case is the fidelity between two den-

sity matrices, r and s, which is defined as sNielsen and
Chuang, 2000d

Fss,rd ; TrÎÎsrÎs . s112d

Despite the apparent asymmetry in this expression, it is

actually symmetric in r and s and, furthermore, reduces
properly to Eq. s111d when one density matrix is pure.

Note that in the literature, sometimes the square of
Eq. s110d is defined as the fidelity sBowdrey et al., 2002d;
this departs from the usual classical definition for fidel-

ity, but is convenient because Fsucl , ufld2 can be inter-

preted as the probability that a system in the state ufl is

found to be in the state ucl when measured in the

hucl , uc'lj basis. Such probabilities are meaningful in the
accuracy thresholds discussed in Sec. V.D.

Other metrics for comparing two states have been
used to quantify the relative error between theoretical
and experimental states, such as the simple two-norm
sVandersypen et al., 2000d and other expressions sFortu-
nato et al., 2002d. These were used because the diagonal
elements of the density matrix were suppressed; such
metrics are inferior to the fidelity measure, which should
be used when possible, due to its direct connection to
quantum information measures and fault-tolerance
theorems.

It is worthwhile to consider a specific example relating
control precision to state fidelity. Suppose we desire

ucl= u1l, but obtain ufl=Rysp+edu0l=−sin e /2u0l
+cos e /2u1l<−e /2u0l+ s1−e2 /8du1l. The resulting error
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probability is 1− ukf uclu2=e2 /4. This example makes the

point that, for small rotation angle errors e, the gate

failure probability goes as e2.

2. Quantum gate fidelity

A more complex goal of quantum control is to accom-
plish a desired quantum operation. Perhaps the most
common scenario is one in which the desired operation

U is a unitary transform on a single qubit, whereas the
actual transform accomplished is some quantum opera-
tion E sgiven in the operator sum representationd.

A natural way to evaluate control precision is through
the average gate fidelity

F̄sE,Ud =E F„ucl,U†EsuclkcudU…2 dc s113d

=E kcuU†EsuclkcudUucl dc , s114d

where the integral is over the uniform sHaard measure

dc on the Hilbert space of the system. For a single qubit,
this formula can be reduced to a simple expression
sBowdrey et al., 2002; Nielsen, 2002d,

F̄sE,Ud =
1

2
+

1

12
o

k=h1,2,3j
TrfUskU†Esskdg , s115d

where sk are the three Pauli matrices. Similar simple
formulas can be obtained for higher-dimensional sys-
tems sNielsen, 2002d. Note that by convention sNielsen
and Chuang, 2000d, the average gate fidelity is defined
such that it goes as the square of the usual state fidelity;
thus it can be interpreted as a probability.

A more difficult quantity to calculate is the minimum
gate fidelity,

FsE,Ud = minuclF„Uucl,Esuclkcud…; s116d

the square of this quantity gives the worst-case gate fail-
ure probability that is relevant for fault-tolerance
threshold theorems.

D. Evaluating scalability

This article has been concerned with the control of
complex systems composed of multiple distinct physical
pieces. Given some degree of control over a few such
pieces, how controllable is a very large quantum system
composed of many pieces? Normally, one would expect
that a system composed of unreliable pieces would itself
be unreliable, and that the overall probability of failure
increases rapidly with the number of pieces. Unexpect-
edly, however, arbitrarily reliable quantum systems can
be built from unreliable parts as long as certain criteria
are met.

The main criterion for being able to construct a reli-
able system is that the probability of error per operation

p be below the “accuracy threshold” sAharonov and
Ben-Or, 1997; Gottesman, 1997; Kitaev, 1997; Knill et al.,

1998a; Preskill, 1998d pth. When p,pth is satisfied, a

quantum error correction circuit ffor instance, as dem-
onstrated by NMR experiments sCory, Mass, et al., 1998;
Leung et al., 1999; Knill et al., 2001dg can be constructed
using the unreliable components; this circuit performs
computations on encoded qubits, such that a net de-
crease in error is achieved even when error correction
itself is done with the faulty gates.

The probability of failure per operation p must of
course be defined, and this is done in terms of the fidel-
ity metrics discussed in the previous section, which in-

corporate decoherence se.g., T1, T2, gate times, etc.d and

control imperfections. Thus, for example, p is bounded

from above by the gate fidelity pø1−FsE ,Ud2.
Remarkably, no reliable resources need be utilized for

the fault-tolerant construction. Through k levels of re-
cursive application of error correction, the device error

p can be reduced to p2k
, using physical resources sspace,

time, and energyd, which scale as dk for some constant d.
Thus a small increase in resources exponentially reduces
the overall error. Many assumptions are made in obtain-

ing pth, such as the availability of local, fast, parallel clas-
sical control resources, but the generally accepted theo-

retical optimal value of pth is about 10−4 sKnill et al.,
1998a, 1998bd, with optimistic estimates ranging as high

as 10−3 with additional restrictions sSteane, 2002d. As we
have seen at the end of Sec. V.C.1, this implies that, for
instance, rotation angles must be precise to order

,Î10−4=10−2. In principle, pth can be experimentally
measured by implementing a recursive error correction
circuit and testing its probability of failure, but this has
not yet been accomplished.

The fault-tolerance threshold pth and its relative value
compared with state and gate fidelities give a crisp crite-
rion for system scalability for specific implementations.
Modern classical systems are robust mainly because
component failures can be controlled; similarly, the fu-
ture of control over quantum systems hinges on our abil-

ity to evaluate pth and to build components that fail with

probability p,pth.

VI. DISCUSSION AND CONCLUSIONS

In this review, we have presented a diverse set of tools
intended to compensate for undesired or uncontrolled
terms in the Hamiltonian of coupled qubits, as well as
for instrumental limitations. These tools are most pow-
erful and easiest to design when all the terms in the
system Hamiltonian commute with each other and the
control terms can be much stronger than the system
Hamiltonian. The common theme of the control tech-
niques is careful tailoring of the amplitude, phase, and
frequency of the time-dependent terms in the Hamil-
tonian, whether in the form of shaped pulses, composite
pulses, or multiple-pulse sequences. We now discuss the
effectiveness and applicability of these advanced control
techniques, with a look at where they could be used in
other quantum systems.

• Pulse shaping is particularly attractive because of the
modular and scalable design approach. Amplitude
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profiles are selected from a library of standard or
specially designed shapes in order to minimize cross-
talk sfrequency-selective pulsesd and coupling effects
sself-refocusing pulsesd. Robustness to experimental
imperfections can also be considered in the choice of
pulse shape. Once suitable amplitude profiles have
been chosen, the pulse lengths are set as short as
possible while maintaining qubit selectivity. The
same amplitude profiles and pulse lengths are then
used throughout the pulse sequence.
Remaining cross-talk effects can be further reduced
at a small cost squadratic in the number of qubitsd.
From the amplitude profiles and pulse lengths, unin-
tended phase shifts produced by single RF pulses as
well as off-resonance effects during simultaneous
pulses can be precomputed, once for every pair of
qubits.
The main disadvantage of the standard pulse-shaping
techniques is that often the coupled evolution during

the pulses sin particular 90° pulses or simultaneous
pulsesd cannot be completely frozen. The remaining
coupled evolution can be unwound to a large extent
during the time intervals before and after the pulse,
but such reversal is never perfect because the RF

terms in the Hamiltonian, Ix
i and Iy

i , do not commute

with the coupling terms, Iz
i Iz

j . Furthermore, shaped
pulses must often be quite long in order to remain
spin-selective, which means that decoherence has
more effect. This problem clearly gets worse as the
Larmor frequencies of the spins approach each other.
Nevertheless, the combination of pulse-shaping and
phase-ramping techniques has been very successful
in practice. It has enabled the implementation of the
most complex sequences of operations realized to
date, acting on up to seven nuclear spins.

• Composite pulses have proven to be a versatile tool
in NMR spectroscopy, mostly for compensating sys-
tematic errors such as RF field strength variations
and frequency offsets. Another useful application of
composite pulses is the effective creation of unitary
operators which are otherwise not accessible or not

easily accessible. A good example is the composite ẑ

rotation, created from a sequence of x̂ and ŷ rota-
tions.
Even so, the use of shardd composite pulses in NMR
quantum computing experiments has been limited so
far. Their main drawback is that in multispin homo-
nuclear molecules, single-frequency but high-power
and rectangular pulses will rotate spins in a large fre-
quency window, about an axis and over angles which
depend on RF field strength and the respective reso-
nance offsets. This severely limits straightforward ap-
plication of hard composite pulses in homonuclear
spin systems.
Nevertheless, it is in principle possible to take advan-
tage of the differences in resonance offsets in order
to rotate one spin while the other spins undergo no
net rotation. Such effective frequency selectivity de-
spite the use of hard pulses was demonstrated in a

quantum computation on a homonuclear two-spin
system, first using single hard pulses sJones and
Mosca, 1999d and later using composite hard pulses
sCummins and Jones, 2000d.
The same idea underlies the operation of composite
pulses tailored to achieve any rotation of one or
more spins about an independent axis, using detailed
knowledge of the system Hamiltonian. Furthermore,
short, high-power pulses can be used, so the effect of
decoherence is reduced compared to the case of the
long, low-power shaped pulses. Even more attractive
here is the fact that all the coupling terms can be
effectively frozen and that other types of cross-talk,
such as Bloch-Siegert effects, are automatically taken
care of, unlike the case of shaped pulses.
The main disadvantage of such strongly modulated
composite pulses is that the time needed to find near-
optimal pulse parameters increases exponentially

with the number of qubits n, as it involves computing

unitary matrices of size 2n by 2n. Nevertheless, for
small numbers of qubits, this technique can be very
useful.

• Average-Hamiltonian techniques underlie the opera-
tion of widely used multiple-pulse refocusing se-
quences. In the context of liquid NMR quantum

computing, couplings are of the form Iz
i Iz

j and refo-

cusing sequences consist simply of a train of 180°
pulses. Such refocusing sequences are an essential in-
gredient of all NMR quantum computing experi-
ments involving more than two spins.
More complex decoupling sequences exist to remove
the effect of coupling Hamiltonians of a different
form, as is the case of solid-state NMR and many
other qubit implementations. Even errors arising
from interactions with the environment, i.e., deco-
herence, can be removed using multiple-pulse se-
quences.

In all cases, the refocusing operations se.g., the 180°
pulsesd must be fast compared to the fluctuations
they are intended to cancel, and they must also be
repeated at a rate faster than the fluctuations.

• Perspective. In early NMR quantum computing ex-
periments on heteronuclear spin systems, where
short, high-power RF pulses were used, errors in the
time evolution were usually dominated by various
instrumental limitations. Most experiments on
homonuclear systems, in contrast, made use of long,
low-power pulses, and were limited by cross-talk and
coupling effects. As the pulse techniques for coping
with limitations of the Hamiltonian and instrumenta-
tion became more advanced, the field reached the
point where errors due to imperfect quantum control
were smaller than errors caused by decoherence.
Reaching this point in many-qubit systems must be a
prime objective for any implementation of quantum
computers, along with reduction of decoherence it-
self. Quantum information and computation theory
offers a common language which can facilitate trans-
fer and translation of the techniques for coherent

1066 L. M. K. Vandersypen and I. L. Chuang: NMR techniques for quantum control and computation

Rev. Mod. Phys., Vol. 76, No. 4, October 2004



control of coupled nuclear spins to other fields of
physics. Such cross-fertilization has already started,
in systems as diverse as trapped ions sGulde et al.,
2003d, excitons in quantum dots sChen et al., 2001d,
and Cooper pair boxes sCollin et al., 2004d, and is
likely to accelerate the progress towards the elusive
goal of complete control over quantum systems.
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