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1 Introduction

The production of a pair of photons at the LHC is of special interest. On the one hand
this process represents the main background to the cleanest Higgs boson decay channel
h → γγ. On the other hand it is a process where our ability to accurately predict LHC
cross sections by including higher-order QCD corrections can reliably be tested.

Inclusive diphoton production pp→ γγ +X has been studied extensively at NNLO in
QCD [1–5]. Prior work also includes NLO QCD corrections [6] or electroweak effects [7],
as well as photon isolation [8]. Beyond NLO, resummation effects have been included
at least to NNLL [9–12]. Interference between γγ + jet and h → γγ + j have also been
investigated [13]. A detailed analysis of the limitations of existing results can be found
in ref. [14].

A distinguishing feature of this process is the presence of very large higher-order QCD
corrections which has raised some questions about the reliability of such higher-order pre-
dictions for this process. With time our understanding of the behavior of higher-order
corrections in this case has developed significantly. It is presently believed [3] that starting
with N3LO, perturbative corrections will be much more mild and consistent with pertur-
bative convergence. A similar conclusion has also been reached recently for the process
pp → γγγ [15, 16]. Clearly it is very desirable to have a full N3LO accurate calculation
of inclusive diphoton production where these ideas can be tested and hopefully validated.
The present work, together with the recently computed 3-loop amplitudes for diphoton
production at the LHC [17], represents a significant step in this direction.

The transverse momentum of the photon pair, pT (γγ), plays a special role in inclusive
diphoton production pp → γγ + X. As is well known, due to the fact that at lead-
ing order pT (γγ) = 0, an NNLO-accurate calculation of inclusive diphoton production is
only NLO-accurate for the pT (γγ) distribution. To achieve NNLO accuracy for pT (γγ)
at nonzero pT (γγ) one needs to compute the NNLO QCD corrections for the process
pp → γγ + jet + X. The present work presents the first calculation of pp → γγ + jet + X

in NNLO QCD and makes public NNLO QCD predictions for a number of diphoton ob-
servables at nonzero pT (γγ).
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The main reason the pT distribution of the diphoton system is of special interest is
that it represents the main background for Higgs production at high pT . High-pT Higgs
production is relevant for Dark Matter searches [18, 19] and for disentangling the nature
of the Higgs boson’s local vertex [20] which is not possible at low pT where the effective
ggh vertex describes Higgs production well. The pT (γγ) distribution, together with the
angular distribution of the two photons in the Collins-Soper frame [21], represents a strong
discriminator for the spin of a possible resonance decaying to two photons [22]. For further
details about high-pT Higgs production we refer the reader to the recent review [23].

This work is organized as follows: in section 2 we briefly describe our calculation while
in section 3 we present our predictions for a number of differential distributions. Our
conclusions are given in section 4.

2 Setup of the calculation

The calculation is performed in the STRIPPER approach [24–26]. The approach has already
been applied in the calculation of NNLO QCD corrections to top-pair [27–31], inclusive
jet [32], three-photon [15],W+c jet [33], identified B-hadron [34] and polarizedW -pair [35]
production at the LHC. A detailed description of the technical aspects of our implemen-
tation has been given in ref. [32].

All tree-level diagrams are computed with the avhlib library [36, 37]. The contributing
one-loop amplitudes, including the loop-induced contribution, are obtained from the library
OpenLoops [38, 39].

The relevant two-loop contributions qq̄ → gγγ and qg → qγγ are handled in the
following way. We first separate the finite remainders H(2)(µ2

R) of the two-loop amplitudes
from their infrared poles. The latter can be predicted exactly and we have included them,
including their finite contributions, without any approximation. In terms of the scale
dependence of the two-loop finite remainder H(2) (defined as in ref. [26]):

H(2)(µ2
R) = H(2)(s12) +

4∑
i=1

ci lni
(
µ2
R

s12

)
, (2.1)

where s12 is the squared partonic center-of-mass energy, we have included without any
approximation all two-loop terms ci corresponding to lni(µ2

R) with i ≥ 1. The scale-
independent part H(2)(s12) is included in the leading color approximation as derived in
ref. [40] with the help of refs. [41–43] (an equivalent expression for the spin-averaged two-
loop squared amplitude has also been derived in ref. [44]), i.e. we approximate H(2)(s12) ≈
H(2)

l.c.(s12). This is the only approximation made in this paper. Further details about the
implementation of the leading color approximation of the two-loop finite remainder can be
found in ref. [15].

As a justification of the leading color approximation just described we have verified
that the numerical contribution of the scale-independent part of the leading color two-loop
finite remainder H(2)

l.c.(s12) is small. For all distributions computed here it is about 1–2%
of the complete NNLO prediction in all bins. This makes it smaller than the Monte Carlo
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integration error in the differential distributions. This should serve as a concervative error
estimate on the missing sub-leading color terms. More details can be found in section 3.

We have also included the so-called loop-induced (LI) contribution gg → gγγ which
begins to contribute starting at NNLO. As we explain in section 3 its effect is about five
percent and is strongly dependent on the distribution.

The QED coupling is taken to be α = 1/137. The strong coupling constant and parton
distributions are renormalized such that they evolve with nf = 5 active flavors. Diagrams
with top-quark loops are included in all contributions except the two-loop finite remainder
and the one-loop squared contribution. The current calculation uses the NNPDF3.1 pdf
set [45] of order that matches the order of the perturbative calculation. The value of the
strong coupling constant is taken from the LHAPDF interface [46]. The central values of
the factorization and renormalization scales have been fixed to:

µ2
F = µ2

R = 1
4
(
m2(γγ) + pT (γγ)2

)
. (2.2)

This scale choice has been motivated by the scales used in refs. [6, 8]: we have replaced
the pT of the jet with that of the photon pair since in our setup, see below, we have no
explicit jet requirements. At LO the two scales are equivalent.

Scale uncertainty has been estimated with the help of a 7-point restricted independent
variation by a factor of 2 of the scales µF and µR. Since in this work we are primarily
concerned with perturbative convergence and estimates of missing higher-order corrections,
we have not included pdf error estimates. We expect that those are not dominant over
the scale variation in the kinematic ranges considered here. We hope to include them in a
future update of the present work.

Our calculation has been performed for the LHC at 13TeV and is subject to the
following set of selection cuts:1 we require two photons satisfying the following criteria

• pT (γ1) > 30GeV, pT (γ2) > 18GeV and |η(γ)| < 2.4 ,

• Smooth photon isolation [48] with ∆R0 = 0.4 and Emax
T = 10 GeV (see ref. [15] for

details) ,

• mγγ ≥ 90 GeV ,

• ∆R(γ, γ) > 0.4 ,

• pT (γγ) > 20GeV (for lower values resummation effects become important [12]).

No additional jet requirements are imposed. In particular, infrared safety is ensured by
the pT (γγ) cut specified above.

3 Phenomenological results

In this work we calculate the NNLO QCD corrections to a number of one-dimensional
distributions in the following variables: the transverse momentum of the photon pair

1This set of cuts is based on typical selection requirements, see refs. [22, 47].
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Figure 1. Absolute pT (γγ) (left) and m(γγ) (right) differential distributions. Shown are the pre-
dictions in LO (green), NLO (blue), NNLO (red) QCD. The colored bands around the central scales
are from 7-point scale variation. The colored bars shows the estimated Monte Carlo integration
error in each bin. The lower panel shows the same distributions but relative to the NLO central
scale prediction.
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Figure 2. As in figure 1 but for them(γγ) distribution subjected to different pT (γγ) cuts: pT (γγ) >
50GeV (left), pT (γγ) > 100GeV (center) and pT (γγ) > 200GeV (right).

pT (γγ), the invariant mass of the two photons m(γγ), the angle between the two photons
in the Collins-Soper frame φCS , the absolute difference in rapidities of the two photons
∆y(γγ) = |y(γ1) − y(γ2)|, the azimuthal angle between the two photons ∆φ(γγ) and the
absolute rapidity of the photon pair |y(γγ)|. We also calculate the NNLO QCD corrections
to the following two-dimensional distributions: m(γγ)⊗ pT (γγ) and φCS ⊗m(γγ).

We first discuss the pT (γγ) differential distribution which is of central interest to this
work. The distribution is shown in figure 1. As can be seen from this figure, the NLO QCD
correction is very significant relative to the LO one. In particular, the scale uncertainty
bands at LO and NLO do not overlap anywhere. This behavior is easy to understand
based on the properties of inclusive diphoton production through NNLO. Clearly, a reliable
prediction of this observable requires the inclusion of, at least, the NNLO QCD corrections.

As can be seen from figure 1 the inclusion of the NNLO corrections has a major
stabilizing impact on the pT (γγ) distribution. With the exception of the very low pT (γγ)
region which we will discuss shortly, the scale uncertainty decreases significantly, by a factor
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of about four, relative to NLO. Moreover the NLO and NNLO scale bands now overlap
everywhere. Such a behavior is consistent with the expected stabilization of the inclusive
diphoton production cross-section starting at N3LO.

The low-pT (γγ) behavior of this distribution deserves special attention. A fixed-order
perturbative description would not be adequate for pT (γγ) below about 20GeV due to the
importance of resummation effects, but we expect it to be reliable for larger pT (γγ) values.
For this reason one may wonder why the low-pT (γγ) part of the spectrum shows signif-
icantly increased scale dependence and larger NNLO/NLO K-factor. This behavior may
be influenced by resummation effects however we do not expect them to be the dominant
ones. We suspect that the main factor behind it is the loop-induced contribution gg → gγγ

which only starts to contribute at NNLO.
The impact of this contribution is shown in figure 6 as a ratio of the full NNLO to

the NNLO excluding this contribution. As figure 6 indicates the loop-induced correction is
concentrated at relatively low pT (γγ) values and becomes completely negligible for pT (γγ)
values about 200GeV or larger. If the loop induced correction is excluded, the scale de-
pendence of the first bin becomes smaller by about a factor of two and the NNLO/NLO
K-factor also decreases by a factor of about two.

Our findings indicate that at the level of NNLO QCD corrections, the loop-induced
contribution becomes significant. This contribution can be tamed further, by including the
NLO QCD correction to the loop-induced contribution (which is a partial N3LO contribu-
tion for this process). Such a calculation requires the two-loop amplitude for the process
gg → gγγ. This result is not available in the literature but it is certainly within reach
given the number of other five-point two-loop QCD amplitudes that have been computed.

Overall, the scale uncertainty of the pT (γγ) spectrum at NNLO is rather small —
about couple of percent for diphoton pT ’s above 200GeV or so. This implies that this
observable is well described within perturbative QCD and can be used in precision anal-
yses of Higgs physics and searches for resonances decaying to diphoton final states. The
dominant uncertainty at large pT (γγ) is due to the Monte Carlo integration error of the
calculation itself. It can be further improved albeit at a significant computational cost. A
future update may also include pdf uncertainties, electroweak effects as well as the NLO
correction to the loop-induced process. Finally, the effects from the leading color approx-
imation used here may also need to be improved upon. As can be seen from figure 6 the
approximated contribution is a rather small 1–2% effect and is much smaller than the MC
error. It can also be improved upon once the complete two-loop amplitudes for this process
become available.

We next turn our attention to the m(γγ) distribution. It is shown in figures 1 and 2.
This distribution is significant for any search of resonances decaying to diphotons at non-
zero pT . To thoroughly understand the interplay between m(γγ) and pT (γγ) we have
shown the m(γγ) distribution in several ways. In figure 1 we show the m(γγ) distribution
subjected only to our default selection cuts. In figure 2 we show the same distribution
but with more stringent pT (γγ) cuts of 50GeV, 100GeV and 200GeV. A summary of the
same result (only the NLO and NNLO are displayed) is shown in figure 5 (right). Figure 5
(center) shows the m(γγ) distributions for several slices of pT (γγ).
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Figure 3. As in figure 1 but for the angular distributions in φCS (left) and ∆φ(γγ) (right).

From these plots it is clear that the m(γγ) distribution has a pattern of higher-
order corrections that is similar to pT (γγ): large NLO/LO corrections and much smaller
NNLO/NLO ones. The size of the NNLO corrections strongly depends on the pT (γγ) cut
and they decrease as the cut increases. For small values of the pT (γγ) cut the NNLO and
NLO scale bands do not overlap while they fully overlap for pT (γγ) cuts above 100GeV.
One may wonder if such a behavior is related to the loop-induced contribution. In figure 6
we have shown its effect for all pT (γγ) cuts considered in this work. From this one can
conclude that indeed the size of the loop-induced correction is consistent with the non-
overlap of the NLO and NNLO scale bands. This means that for theoretical predictions
to be reliable with full NNLO accuracy for pT (γγ) cuts below 100GeV or so, the NLO
corrections to the loop induced contributions might need to be included.

In general, the effect of the NNLO correction on the m(γγ) distribution is a rather
flat shift with respect to the NLO one and leads to a decrease of the scale uncertainty by
a factor of about two at low pT (γγ) and four or more at large pT (γγ). Another important
source of error is the MC integration one. The effect from the leading color approximation
in the finite remainder is at the percent level and therefore insignificant.

In figure 3 we show distributions in the angular variables φCS and ∆φ(γγ) while in
figure 4 we show the ∆y(γγ) and |y(γγ)| rapidity distributions. The φCS distribution in
slices of m(γγ) is shown in figure 5 (left). All these distributions have very large NLO/LO
K-factors. Unlike the pT (γγ) and m(γγ) distributions, however, they also have sizable
NNLO corrections which in most bins are outside the NLO uncertainty bands. This pat-
tern of higher order corrections indicates that for the scale used in this work, the NLO
approximation is inadequate for describing these distributions.

Based on the above observations one may question the presence of perturbative stability
in these variables. As a first step towards analyzing this we consider the behavior of the
NNLO prediction without the loop-induced contribution (in the following we refer to it
as NNLO-minus-LI). The numerical impact of the loop-induced contribution for each
differential distribution can be seen in figure 6 and figure 7. We observe the following.
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Figure 4. As in figure 1 but for the following rapidity distributions: ∆y(γγ) (left) and
|y(γγ)| (right).

For the φCS distribution the NNLO-minus-LI scale uncertainty band is mostly within the
NLO one or the two bands overlap. This is not the case for the first and last bins of this
distribution, however, the behavior of the φCS distribution in these two bins is strongly
affected by the kinematic cuts. The NNLO-minus-LI band for the ∆y(γγ) distribution
overlaps in all bins with the NLO one. Same can be observed for the case of the |y(γγ)|
distribution. In fact, the only distribution for which the NNLO-minus-LI and NLO scale
uncertainty bands do not mostly overlap is the ∆φ(γγ) one. For this distribution we observe
that the NNLO-minus-LI and NLO scale uncertainty bands overlap for ∆φ(γγ)/π > 0.6
while below this value they are not very far apart, see figure 7. Given that the NLO/LO
K-factor in this region is more than a factor of two it seems that such a non-overlap is not
too concerning.

From the above discussion it seems reasonable to conclude that the non-overlap be-
tween NNLO and NLO scale uncertainty bands observed in the angular and rapidity dipho-
ton distributions is somewhat affected by the loop-induced contribution. It is therefore
plausible to assume that the inclusion of this contribution’s NLO correction may alleviate
this non-overlap. Other factors that may be affecting this behavior is the choice of scale
as well as resummation effects which are relevant at low pT (γγ). A detailed investigation
of those is however outside the scope of this work. On the other hand, as can also be seen
from figure 6, the two-loop finite remainder has a rather small contribution and, therefore,
we do not expect these distributions to be significantly affected by two-loop subleading
color corrections.

4 Conclusions

In this work we calculate the NNLO QCD corrections to the process pp → γγ + jet.
This process is the main background to high-pT Higgs boson production decaying to two
photons. The main result of this work is the calculation of the diphoton pT spectrum
with NNLO accuracy. The NNLO correction to this variable is important and it brings
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Figure 5. Two-dimensional differential distributions: in φCS⊗m(γγ) (left) and in m(γγ)⊗pT (γγ)
but shown in two alternative forms and for different choice of bins: in pT (γγ) bins (center) and
with pT (γγ) cuts (right). Only the NLO and NNLO central scale predictions and scale variation
bands are shown. Note that the figure to the right shows the same results that already appear in
figures 1, 2.

the uncertainty from un-calculated higher-order corrections down to a couple of percent at
intermediate and large values of pT (γγ). Overall, the quality of the theoretical prediction
for this distribution is very high and it appears to be under good theoretical control. The
same conclusion applies for double differential distributions in pT (γγ) and m(γγ).

We have suggested various possible avenues for further improving the quality of the
theoretical predictions in this process. They include the calculations of the partial N3LO
corrections due to loop induced processes which can be calculated with the help of NLO
technology. The only missing ingredient for such a calculation is the two-loop amplitude
for the process gg → gγγ whose calculation is within reach. A more extensive study of
possible scale choices for this process might also be beneficial given the very high precision
reached in the pT (γγ) distribution. Merging our fixed-order calculations with resummed
calculations will allow for a quality description of the pT (γγ) spectrum from very high
down to very low values of pT (γγ).

We conclude by stressing that the quality of the theoretical description achieved for this
process is high which makes it possible to use it in background estimates for Higgs boson
studies and related searches as well as in dedicated measurements of diphoton production.

Note added. After the completion of the current work, ref. [49] appeared. It provides
the subleading-colour expressions for the two-loop amplitudes for this process. We will
include them in a future update of this work.
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Figure 6. Comparison of various approximations to the NNLO differential predictions: the com-
plete NNLO prediction (red), NNLO excluding the loop-induced contribution (dark brown) and
NNLO excluding the finite remainder H(2)(s12) defined in eq. (2.1) (green). The colored bars
shows the MC integration error of the complete NNLO prediction while the red band shows its
scale variation.
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Figure 7. Comparison of NLO (blue) scale bands to NNLO QCD excluding the loop-induced
contribution (dark brown).
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