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ABSTRACT: Hadronic jets in deeply inelastic electron-proton collisions are produced by
the scattering of a parton from the proton with the virtual gauge boson mediating the
interaction. The HERA experiments have performed precision measurements of inclusive
single jet production and di-jet production in the Breit frame, which provide important
constraints on the strong coupling constant and on parton distributions in the proton. We
describe the calculation of the next-to-next-to-leading order (NNLO) QCD corrections to
these processes, and assess their size and impact. A detailed comparison with data from
the H1 and ZEUS experiments highlights that inclusive single jet production displays a
better perturbative convergence than di-jet production. We also observe that the event
selection cuts in some of the di-jet measurements of both H1 and ZEUS induce an infrared
sensitivity that destabilises the perturbative stability of the predictions. Our results open
up new opportunities for QCD precision studies with jet production observables in deep

inelastic scattering.
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1 Introduction

The HERA electron-proton collider produced a very precise data set on deeply inelas-
tic scattering (DIS) processes, both fully inclusively as well as for specific hadronic final
states [1, 2]. Especially jet final states in deep inelastic scattering contain important in-
formation on the distribution of partons in the proton, which are a crucial ingredient for
the prediction of any cross section at the LHC and at other future hadron colliders. Single
jet inclusive and di-jet cross sections in deep inelastic scattering [3-5] are among the few
precisely measured processes [6-19] that provide sensitivity to the strong coupling constant
and the gluon distribution already at tree level. The importance of these cross sections for



precision QCD studies has long been known. However, having the relevant hard sub-process
coefficient functions only at next-to-leading order (NLO) in perturbative QCD [20-25], the
HERA deep inelastic jet data could not be confronted with a sufficiently precise theory
description to fully exploit their physics potential.

Owing to methodological advances in the calculation of two-loop amplitudes [26-28]
and in the treatment of infrared singular real radiation [29-42], an increasing number of
collider processes have been computed in fully differential form to next-to-next-to-leading
order (NNLO) QCD accuracy. Following earlier results on the Drell-Yan process [43, 44],
on Higgs production [45, 46] and on ete™ — 3j [47-49], NNLO results have been ob-
tained in recent years for pp — v [50, 51], pp — V H [52], pp — Vv [53], pp — tt [54, 55,
pp — H+j [56-58], pp — W+ [59], pp — Z+j [60-63], pp — v+ X [64], pp — ZZ [65, 66],
pp — WW [67, 68], pp — ZW [69], ep — 15 [70] and pp — 25 [71, 72]. All these calcu-
lations were implemented in the form of parton-level event generators (some of the lower-
multiplicity processes have also become part of the latest version of the MCFM code [73]),
which provide full kinematical information on all final state particles, and consequently
allow to account for the precise definition (jet algorithm, kinematical acceptance cuts) of
observables used in the experimental analyses.

Calculations of collider observables to NNLO require to combine three types of parton-
level contributions, which are individually infrared divergent: double-real radiation, single-
real radiation at one loop and two-loop virtual contributions. To implement these con-
tributions into a parton-level event generator, a method to extract and recombine their
infrared (IR) singular parts is required. Our group has developed the antenna subtraction
method [32-35] for this purpose. This method forms the basis of the NNLOJET code,
which provides the necessary infrastructure and building blocks to implement NNLO cor-
rections to different collider processes. Up to now, pp — Z + j [60-62], pp — H + j [58]
and pp — 2j [71, 72] have been implemented in NNLOJET.

The same framework is used in the calculation of NNLO corrections to jet production
in DIS, and first results on di-jet final states were reported in a short letter [74]. This
paper extends this calculation to single-jet inclusive production in DIS, and provides a
detailed documentation of its implementation in the NNLOJET framework. Section 2
establishes the notation and describes the kinematical situation of jet production in DIS.
The calculation of the NNLO corrections is described in section 3, which also addresses in
detail the handling of initial-state partons in the antenna subtraction method. Our results
for the NNLO corrections to single jet inclusive production and di-jet production in DIS
are discussed in detail in sections 4 and 5 where we also compare to the available data from
the HERA experiments. We conclude with section 6.

2 Kinematics of jet production in deep inelastic scattering

The basic interaction in deep inelastic lepton-proton scattering is mediated by a virtual
gauge boson. The kinematics of the fully inclusive process can be inferred from the mo-
menta of the incoming particles and of the outgoing lepton:

I(k) + p(P) = I'(K') + X (px),



PI

Figure 1. An illustration of the basic hard scattering process in the Breit frame with incoming
proton momentum P, incoming lepton momentum k, virtual boson exchange momentum ¢, outgoing
proton momentum P’ and outgoing lepton momentum &’.

such that a four-momentum ¢ = k — &’ is transferred to the proton. Measurements are
carried out in terms of the following variables (neglecting the proton mass):

Q* ¢-P @
xXr = = —— = — .
2q-P’ YTk P TSy

Sip = (k + P)Qa Q2 = _q27 (2.1)
The underlying parton-level process is the scattering of a quark from the proton with the
virtual boson. At leading order, this quark carries a momentum fraction x of the proton
momentum and scatters by an angle v, defined as

1- ?J)pr —yk
(1- y)pr + yEl’

COSYp = (2.2)
with E denoting the energy.

More detailed information on the underlying parton-level dynamics can be gained by
examining the hadronic final state X. This is often analysed in the Breit frame of reference,
figure 1, which is defined by requiring proton and gauge boson momenta to take the form

Pp = (Q/(Qx)’ 0,0, Q/(Ql‘)) y 4B = (O’ 0,0, _Q) ) (23)

with Q = \/@ . Momenta in the Breit frame are indicated by a subscript B. The Lorentz
transformation from the laboratory frame to the Breit frame can be determined from the
measured lepton kinematics. In this frame, the leading order DIS process results in an
outgoing quark with vanishing transverse momentum, such that higher order contributions
to DIS can be resolved by looking at final state objects with non-vanishing transverse
momentum pr g in the Breit frame.

Of particular interest is jet production in the Breit frame, which has a large cross
section and allows the measurement of a variety of different distributions that can provide
constraints on the parton content of the proton and on the strong coupling constant. Inclu-
sive DIS at leading order is at O(a?a?) and only contains quarks in the initial-state; sen-
sitivity to the strong coupling, o and initial-state gluons only arises at NLO. In contrast,
jet production is sensitive to as and both initial-state quarks and gluons already at LO.



Jets are reconstructed in the Breit frame based on the transverse momenta pr g (or
equivalently transverse energies E7 g), pseudorapidity np = —Intan(©p) (with ng > 0 in
the incoming proton direction) and azimuthal angle ¢p of individual particles. Jets are
formed from the particles by using an iterated clustering algorithm based on a distance
measure [89]:

.95 2 2 25 p2
dij = min(p7'p ,;, 07 5 )Ri; »  dip =07 5:RG

where Ry is a resolution parameter and § = 1 for the kr algorithm and § = —1 for the anti-
kr algorithm. If the minimal distance measure is d;;, then objects ¢ and j are recombined,
if it is d;p, then object 7 is called a jet and removed from the list. The recombination of
particle clusters is done in the Er scheme, as

pT,B:ZpT,Bﬂ-, nB:ZW’ QZ)B:Z]M
%

P pr.B P pbr.B

This scheme results in massless clusters and consequently massless jets, and pr g = Er B.
The jets are accepted if they are within rapidity cuts and above a minimum transverse
momentum. They are ordered in decreasing transverse momentum, and denoted as j1, 52
and so forth.

The HERA electron-proton collider operated in its run II with beam energies
E. =27.5GeV and E, = 920 GeV, resulting in ,/sc;, = 318 GeV. The HERA experiments
H1 and ZEUS measured jet production cross sections [11, 12, 19] using the kp algorithm
with Ry = 1 as function of the Breit frame jet variables

Mj; = Mo =1/ (pj1 + pj2)?,

_ 1
Erp = (pr)2 = 5 (p1,Bj1 + P1,B,j2) >

2
M2
5—52—96<1+Q122) ;
1
=5 e~ sl (2.4)

For di-jet production at leading order, £ can be identified with the momentum fraction of
the incoming parton relative to the proton momentum.

3 Calculation of NNLO corrections

To calculate jet production at NNLO, all matrix elements which contribute to the process
at the desired order in ay must be considered. Beyond leading order, radiative corrections
can proceed via virtual loops or additional on-shell final-state particles, both of which
can modify the cross section for an observable in non-trivial ways. We use dimensional
regularisation with d = 4 — 2e space-time dimensions as regulator of both ultraviolet and
infrared divergences in these contributions. Inclusive and semi-inclusive jet cross sections
involve final-states containing up to one additional jet at NLO and up to two additional
jets at NNLO, relative to the LO final-state.



The theoretical prediction for a given n-jet final state at NNLO receives double-
real (RR) corrections from all relevant tree-level (n + 2)-parton matrix elements, real-
virtual (RV) corrections which involve the interference between one-loop and tree-level
(n + 1)-parton amplitudes, and double-virtual (VV) corrections involving the interference
between two-loop and tree-level n-parton amplitudes as well as the one-loop n-parton
contribution interfered with itself. For di-jet production in deep inelastic scattering, the
relevant matrix elements have been known for a long time [75-84]. The RR and RV con-
tributions are also part of the NLO corrections to tri-jet production in DIS [25], and the
relevant matrix elements can now be generated automatically using standard tools [85-88].

3.1 Structure of the NNLO cross section

The colourless ingredients of the matrix element as well as the QCD coupling and colour
factors can be pulled into an overall factor for each sub-process; this leaves the colour-
stripped matrix element as the basic object on which to perform the subtraction, which
is appropriate as this is the function which contains all the IR singularities. The overall
factor at leading-order for initial-state parton flavour 4, is given by

NEO = 4(470)2V SiC; <;);-> gg (3.1)

where V = N2 — 1, N = 3 the number of colours, « is the strong coupling and « is the
fine structure constant. The initial-state colour averaging factor for the incoming parton

is given by
1 1
Cq = N Cy = v (3.2)
The initial-state spin averaging factors are given by
1 1
S, = S, = , (3.3)
S¢5e S¢5¢

where the number of spin states for the various initial-state particles are given by s, =s,=2,
sq = 2(1 — ¢€), and the factors

(4m)€
82

C(e) = e, C(e) = 87%C(e) (3.4)

which are arising from dimensional regularisation are introduced.
The nomenclature for squared matrix elements we adopt in this paper is to denote the
various types of colour stripped squared matrix elements with the shorthand:

Mt (3.5)

n

where M can stand for A (all gluons), B (one quark-pair), C' (two quark pairs of distinct
flavour), D (interference terms for two quark pairs of identical flavour), n denotes the
number of gluons in the process and ¢ the number of loops. The case of two quark pairs
of the same flavour can be decomposed into distinct-flavour matrix elements (C-type) and



level | sub-process | factor notation
oy —aqg | NFO | B]Y(1,3,2)
gv—qq | NFO | BIY(2,1,3)

LO

Table 1. Summary of the scattering channels and matrix elements contributing at leading order.
The argument with a caret denotes the initial-state parton, and the lepton momenta are omitted
from the argument list.

interference-only contributions (D-type). In the list of momentum arguments, the two
outermost momenta denote the primary quark pair. A secondary quark pair is enclosed
by semi-colons in the momentum list. In the case of matrix elements containing two quark
pairs it is also necessary to distinguish which quark line the exchanged electroweak boson
couples to. Sub-leading orders in colour are indicated by M, and closed fermion loop
contributions by M.

The different contributions to the cross section at leading order are given in table 1.
The antiquark-initiated processes are implemented explicitly in the NNLOJET program but
considered only implicitly in this paper as they are closely related to the quark-initiated
processes by relabelling.

To simplify the equations in this paper we absorb all additional powers of the coupling
relative to leading-order into overall factors suitable for the correction being considered.
We purposefully do not absorb additional colour factors into these factors so it is always
clear which colour factor we are considering. To this end we define the following NLO
factors for the real (R) and virtual (V) contributions,

el
N = NEO (52 ) = o N (3.7)

which are used to define the contributions to the cross section at NLO summarised in
tables 2 and 3.

At NNLO we define the set of overall factors,

NER Z prLO ( % )2282 (3.8)
2 A0 \2
NRV Z prpo (s CO7 oy wrr (3.9)
¢ v 2w ) Cfe v
(&)
NIV = NFO (;;) O = Oe) NV = () NFR, (3.10)

which are used to consistently define the various contributions to the NNLO cross section
in tables 4 and 5.



level | sub-process factor notation
05 . .
- 400 Nf - N /2! B)"(1,i,4,2)
. N (/N | B3O(1,3,4.2)
B NE Cy°(1;3,4;2)
qY — 4qq -
Nf - (-1)/N | DFO(1,2:4,3)
NN BY'(1,3,2)
ay = q9 ———
v Ny - (=1)/N | B (1,3,2)
qy — q9° NY - Np B'(1,3,2)

Table 2. Summary of the quark-channel partonic sub-processes and colour factors for the NLO
calculation. Non-numeric arguments denote summation of gluon permutations. e.g. the matrix ele-
ment B;’O(i, 1,7,2) includes a summation {i,7} € P(3,4) where P denotes the set of permutations.

Each © denotes a closed quark loop.

level | sub-process factor notation

NE.N B°(3,i,4,4)

R 9v = qq9

NE-(=1)/N | B3°(3,1,2,4)
. NY N B (2,1,3)
97 = qq v i
% NY (=1)/N | BY'(2,1,3)

97 = 4q° NY - Np BY(2,1,3)

Table 3. Summary of the gluon-channel partonic sub-processes and colour factors for the NLO
calculation. The matrix element BJ°(3,4,,4) includes a summation {i,;} € P(1,2), where 1 is
the initial-state gluon. Each © denotes a closed quark loop.

Occasionally, in the subtraction terms listed in appendix A and appendix B, we retain
some information about the coupling of the vector boson to the quark line. In the case
of a matrix element containing two distinct flavour quark lines (of flavours ¢ and @) in
an unresolved limit where two of the quarks become collinear to form a gluon, it is often
necessary to retain the information about which quark line remains. The reduced two-quark
matrix element in the subtraction term is then denoted by either of the two terms,

,g 76
By B;Z’Q (3.11)
to distinguish the different flavoured quark lines. Similarly it is sometimes necessary to use
a matrix element which has been symmetrised over the final-state quark pair’s momenta;

we denote these matrix elements like so,

By (1gyig, -+ g, 29) = Z B (1g,ig, g, 24)- (3.12)
P(1q12§)



level | sub-process factor notation
NEER.N2/3! BI°(1,4,5,k,2)
9y — 4999 NER . (~1)/3! BI°(1,i,j,k,2)
NRR 1/3!. (N2+1) Bﬁ” ( 3,4,5,2)
RR NRR . N C70(1,5:4,3:2)
) NEE.(—1)/N | C7°(1,5;3,4;2)
@y — 4999 =
NqRR(_l)/Q D’ly7 ( 7572;473)
NEE.1/(2N?) | DT°(1,5,2:4,3)
NEV . N?)2! BY'(1,4,4,2)
97 — 499 NEV . (~1) /2! BY'(1,1,5,2)
NRV 1/@N?) | BN, 3,4,2)
| NV NNgp/2! BYY(1,4,5,2)
ay = 499 P
RV NGV - (=Np)/(2IN) | B3"(1,3,4,2)
NV
NEV. N Cy(1;3,4;2)
NV (=N CYN(;3,452)
a7 — qqq po— T
NEV.1/2 DJ'(1,2;4,3)
NEV -(1)/2N?) | DJ'(1,2:4,3)
@y — 49q° NV - Np Cot(1:3,4;2)
NGV - (Np)/(2N) | Dyl(1,2:4.3)
quv ° N2 B,l‘/72(17372)
97— qg NYV 1 B*(1,3,2)
= 72 ~
. NV - 1/N? B*(1,3,2)
NYV - NNp B*(1,3,2)
qv = q9° ERP
NYV - Np/N B*(1,3,2)
@7 — q9°° NYV - NE B1*(1,3,2)

Table 4. Summary of the quark-channel partonic sub-processes and colour factors for the NNLO

calculation and the notation used for the colour-stripped squared matrix elements. Non-numeric

arguments denote summation over permutations of partons, e.g. Bg ’0(1,

i,7,k,2) is summed over

the six permutations of the labels {i, j, k} € P(3,4,5). The lepton momentum labels are suppressed.
Each ° denotes a closed quark loop.



level | sub-process factor notation
NgRR‘N2/2! BV’ 4,i,7,k,5)
gy —aagg | NFE.(-1)/20 | BJ°(4,i,4,k,5)
NRR 1/2!- (N2+1) Bg,o( 2,3,5)
RR NEE . 2N 01%0(3 5,4;2)
| NEE(—1)2N | 0703155, 4:2)
97 — 4499 .
N (=1)/4 DY(3,1,2;4,5)
NI 1/(aN?) | DT°(3,1,2;4,5)
71 ..
NQRV‘NQ BQ (3727,774)
_ ~ 7]_ .
97 = qq9 NEV . (-1) B3 (3,4,4,4)
RV NIV . 1/N? BY'(3,1,2,4)
_ NQRVNNF 3371(3717274)
97 — q49° T
NgRV(_NF)/N B;’ (3>17274)
209 3
NyV - N? B]*(2,1,3)
gy — qq NV B]*(2,1,3)
= 72 ~
VV NYV . 1/N? BY*(2,1,3)
) NYV - NNp B}*(2,1,3)
9Y = 4q° PP
NYV - Np/N B}*(2,1,3)
97 — qq*° NyV - NE B1*(2,1,3)

Table 5. Summary of the gluon-channel partonic sub-processes and colour factors for the NNLO
calculation. Non-numeric arguments denote summation over the set of gluons, which may include
the initial-state gluon. e.g. the five-parton matrix element B ’0(4,i,j, k,5) represents a sum over
the permutations {4, j,k} € P(i, 2,3). The four-parton matrix element B;’1(3, i,7,4) represents a
sum over {i,j} € P(1,2). Each ° denotes a closed quark loop.

Aside from the colour factors given in tables 1-5 there are also contributions carrying
the charge-weighted sum over flavours

> eq)2
S

These occur in multi-quark interferences between amplitudes where the vector boson cou-

Npq = (3.13)

ples to lines of different quark flavour or 1-loop matrix elements where the vector boson
couples to the closed quark loop. The contributions coming from this overall factor are



finite and only amount to a negligible correction to the cross section and are not included
in our calculation.

3.2 Application of the antenna subtraction method

With the notation defined in section 3.1 we can write the NNLO correction to the cross
section, with incoming parton species a, in the form,

R

(I’n+2

- / <d&§’V +dgMF 1>
(I>n+1
- / (dﬁaV V4 d&é‘”?), (3.14)

fR, dérfv d&t‘l/v are the contributions from tree-level, one- and two-loop squared

where d&
matrix elements. They are decomposed into individual quark-initiated and gluon-initiated
sub-processes in tables 4 and 5. The d&(]lw FL.2 are the counter-terms arising from the mass-
factorisation of the physical PDFs.

It is well known that each of these contributions contains singularities which render
them individually ill-defined: d&f*® contains single- and double-unresolved divergences
when integrated over the (n 4 2)-parton phase space. d&ftV 4 dgMF1 contains explicit

poles as deep as O(e2) in the dimensional regularisation parameter € as well as single-

MEF?2

unresolved divergences when integrated over the (n+1)-parton phase space. dg)V +dé?

contains explicit poles as deep as O(e™?).
To ensure the cancellation of all explicit poles in € and render each phase space integral
finite, one constructs three local subtraction terms and recasts the cross section in the form,

Aoy MO = / <d&fR —dsy )
q)n+2
+ / (d&fv —deT )
q)'rH»l

+/ (d&aVV —d&f{). (3.15)
(PTL

Various methods for the construction of these subtraction terms at NNLO have been put
forward in the literature [29-42]. We use the antenna subtraction method at NNLO [32-35].
In this method, antenna functions are introduced to account for all unresolved partonic
radiation off a pair of two radiator partons [90-92]. The antenna subtraction term for
each colour-ordered squared matrix element is then constructed as a sum (over all pairs
of radiators) of products of antenna functions with reduced squared matrix elements of
lower multiplicity. Each antenna function is integrated analytically over the sub-space
of unresolved parton momenta in d = 4 — 2¢ dimensions and added back into a lower
multiplicity final-state contribution as a Laurent series in e, thus ensuring the analytic
cancellation of all explicit poles. The following subsections provide a detailed description
of the construction of the antenna subtraction terms in eq. (3.15).

~10 -



3.2.1 Phase-space mappings

To ensure that each antenna subtraction term converges to the unresolved limits of the
full squared matrix element that it is intended for, the momenta in its reduced squared
matrix element must be appropriate to this limit. However, by its construction, the antenna
subtraction term is defined over the full phase space. To ensure the correct factorisation
behaviour in all unresolved limits consequently requires a factorisation of the full phase
space into a reduced phase space and a so-called antenna phase space corresponding to
the unresolved radiation in each antenna subtraction term. The momenta of the reduced
phase space are constructed from the original momenta by a phase space mapping, which
is typically a non-linear transformation. This ensures the correct factorisation behaviour
of the subtraction term in the unresolved limits, but also the factorisation of the phase
space itself into disjoint spaces so that the analytic integration can be achieved over each
antenna sub-space.

The form of the mapping depends on the kinematic configuration of the two hard
radiators involved in the antenna function, final-final (FF) [32-34], initial-final (IF) [93]
or initial-initial (II) [93]. Since DIS processes have only one parton in the initial state,
only the FF and IF mappings can occur. In each configuration there exists a mapping
appropriate to single-unresolved (n + 1 — n particles) and double-unresolved (n +2 — n
particles) configurations. The subtraction terms are then constructed such that the antenna
function depends on potentially unresolved unmapped momenta, whereas the reduced-
multiplicity squared matrix element (and any event selection criteria) depends only on the
mapped momenta.

3.2.2 Subtraction for double-real (RR) contributions

The double-real matrix elements contain both single- and double-unresolved divergences
and the subtraction term therefore has to be able to regulate both types of limits. The
single-unresolved limits of the matrix element, M;ZfQ, when considering at least n jets, are
dealt with by subtraction terms of the general form,

X3 (P2 DM (B DI (B ), (3.16)

where X9 denotes an antenna function, which may in general be in the FF, IF or II
configuration and is a function of three of the momenta from the (n-+2)-parton momentum
set, {pn+2}. Jﬁnﬂ) represents the jet function which builds at least n jets from n + 1
partons. The reduced matrix element and the jet algorithm depend only on the (n + 1)-
parton mapped momentum set, {p,t1}.

Colour-connected double-unresolved limits in the matrix elements are regulated us-
ing a four-parton antenna function and a double-unresolved momentum mapping. The
subtraction terms for these limits take the form,

X3 (a2 MY ({5 1) TS ({Bn})- (3.17)

Colour-disconnected and almost-colour-connected double-unresolved divergences (where
unresolved partons share at most one hard neighbour in the colour ordering) are removed

- 11 -



using subtraction terms with iterated single-unresolved mappings,

X3 ({Pn+21) X3 (Bt DM ({50 }) IS ({Bn})- (3.18)

These three types of subtraction term are sufficient to remove all potential divergences
in the (n + 2)-parton phase-space integral and allow it to be computed in d = 4 using
numerical techniques. The explicit forms of the RR subtraction terms for quark- and
gluon-initiated channels are given in appendix B.1 and appendix B.2, respectively.

3.2.3 Subtraction for real-virtual (RV) contributions

The real-virtual matrix elements contain only single-unresolved divergences but unlike the
double-real matrix elements, they also contain explicit poles in € which have to be cancelled.
The explicit poles of the (n + 1)-parton real-virtual matrix elements, Mg’jl, are cancelled
analytically by a subtraction term of the form,

I (P}, MY (s DITH) (P ), (3.19)

where the integrated real radiation function J%:Z;l is constructed [35] from the integrated
form of the antenna function introduced in eq. (3.16) and possibly also the kernels coming
from the mass factorisation counterterms. The labels i and j denote the flavours of the hard
partons and belong to the set {QQ, QG, GQ, GG} for quark-antiquark, quark-gluon, gluon-
quark and gluon-gluon integrated real radiation functions. The labels k and [ denote the
kinematical configuration and belong to the set { F'F, [ F, 11} for final-final, initial-final and
initial-initial configurations respectively. In DIS kinematics only FF and IF configurations
are present.

The single-unresolved divergences of the real-virtual matrix elements are regulated
using two distinct subtraction terms, built to reflect the factorisation behaviour of one-
loop amplitudes. The first term reflects the divergence associated with a tree-like singular
function and a one-loop reduced matrix element and has the form,

X3 ({pasa DM ({5 }) IS ({Bn})- (3.20)

The second type of subtraction term reflects the divergence associated with a one-loop
singular function and tree-like reduced matrix element and so involves a one-loop antenna
function,

X3 ({pas DM ({5 1) TS ({Bn})- (3.21)

The subtraction terms in eq. (3.19) remove all explicit poles from the matrix ele-
ments yet contain their own single unresolved divergences, whereas the subtraction terms
in egs. (3.20), (3.21) remove all single-unresolved divergences from the matrix elements yet
contain their own explicit poles in €. To cancel these remaining poles and divergences we
introduce subtraction terms of the form,

Ty (b1} € X({pnsa DM ({5 ) IS ({50 }) (3.22)
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and

XS DI ({pn b MY ({5 DI ({Bn}), (3.23)

which render the RV contribution finite and integrable using numerical techniques. It
should be noted that the reduced matrix elements are required only through to their finite
terms in the e-expansion. The explicit form for the RV subtraction terms in quark- and
gluon-initiated channels are given in appendix B.1.7 and appendix B.2.7, respectively.

3.2.4 Subtraction for double-virtual (VV) contributions

The double virtual matrix elements, M, ’2, are integrated over the n-parton phase space and
exhibit no IR divergences; however they do contain explicit poles in € which are cancelled
analytically using subtraction terms of the form,

Ty ({pa}, ) MY ({pn I ({pn}), (3.24)
Tyl ({pa},€) ® Jyh t ({pn}, MO ({pa}) I ({pn}), (3.25)

and
Tyt (Lo}, MO ({pa IS ({pn})- (3.26)

2 k.l contains the integrated form of the four-parton antenna from eq. (3.17),

The function J;’
the integrated one—loop antenna from eq. (3.21) and several other elements of lower com-
plexity (essentially products of three-parton antenna functions) which conspire to cancel the
poles of the two-loop matrix elements. The integrated antenna functions up to NNLO were
derived in refs. [32-34] for FF kinematics, in ref. [94] for IF kinematics and in refs. [95-97]
for II kinematics. In DIS processes, only FF and IF kinematics contribute to the subtrac-
tion terms.

Once the RR and RV subtraction terms have been defined, the form of the VV sub-
traction terms is completely fixed and so for brevity we do not present these explicitly in

an appendix.

3.3 Initial-state identity changing collinear limits

In scattering processes with initial-state partons, there is an additional complication that
arises when attempting to capture the singularity structure of the matrix element where
the identity of the initial-state parton changes due to a collinear limit with a final-state
parton: for example an initial-state gluon becoming collinear with a final-state quark,
combining to form an initial-state anti-quark. In this situation the matrix element will
factorise, as usual, into a product of a splitting function and a reduced multiplicity matrix
element, e.g. consider the gluon-initiated two-quark-two-gluon DIS sub-process (of which
some indicative Feynman diagrams are shown in figure 2) in a collinear limit between the
initial-state gluon and the final-state quark,

3\\1 1

370(3117 ly,24,4q) — 13PqQHG B?O(iq’z@’%)a (3.27)
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Figure 2. A subset of Feynman diagrams contributing to the matrix element B ’0(3q7 ig, 24,47)

with indicative momentum labels for the external legs.

In this limit, the parton entering the reduced matrix element is an anti-quark (denoted by

g with an initial-state momentum), and its momentum is given by:

pj =Dj — Ps- (3.28)

=0

We would like to regulate this kind of divergent limit using an appropriate subtraction
term constructed from antennae and reduced matrix elements. A candidate subtraction
term would be,

~ 70 o -
D3(3,1,2) B (14,(23),,4q)- (3.29)

This subtraction term does indeed mimic the matrix element faithfully in the 14|34 limit,
which can be seen by considering:

N i 1
Dg(ga 17 2) — gpq(ﬂ—Gy (330)
3011
3|11
P; —> P — DP3- (3.32)

An attractive feature of the antenna subtraction method is that one antenna function
regulates several unresolved limits. This is possible because of two facts:

1. The antenna function tends to the appropriate universal function in each unresolved

limit.

2. The composite momenta for the reduced matrix element tend to the appropriate

resolved momenta in each unresolved limit.

The former is ensured by a proper definition of the antenna functions, the latter achieved by
an appropriate phase-space mapping which interpolates between several unresolved limits.

For soft or collinear limits between final-state partons this procedure is unproblematic,
as it is for collinear limits between initial-state partons and final-state partons where the
species of the initial-state parton is unchanged (for example, a final-state gluon becoming
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collinear with an initial-state quark); we refer to these limits as identity-preserving (IP)
limits. We refer to the initial-final collinear limits that change the species of the initial-
state parton as identity-changing (IC) limits. When a subtraction term, such as that in
eq. (3.29), attempts to regulate both IP and IC limits then an inconsistency arises due to
the fact that we have to make a choice about the momentum assignment in the reduced
matrix element. This determines in turn the momentum crossing in which the reduced
matrix element is evaluated. For example, consider the matrix element in eq. (3.27) and
the subtraction term in eq. (3.29). The matrix element contains, among others, divergences
in the 1,/3, and 1,2, initial-final collinear limits. As we have seen, the subtraction term in
eq. (3.29) successfully regulates the 14||3, limit. In the 1,||2, the matrix element factorises
according to,

R 2 1 2
B (34, 14,24,4¢) — gpgggc B34, 1,,49), (3.33)
where now,
P; =P — P2 (3.34)

The subtraction term in eq. (3.29) also contains a divergence in the 1,2, limit,

DY(3.1,2) By (1, (23),.49) ~3 ;ngea BI(14,3,4q). (3.35)
This clearly does not regulate the matrix element in this limit because the reduced matrix
element in the subtraction term has the quark as its initial-state parton. This choice is
appropriate for the igHBq limit, but inappropriate for the igHQg which requires an initial-
state gluon in the reduced matrix element. The phase-space mapping can interpolate
between resolved momenta in different unresolved limits but cannot interpolate between
different crossings of the reduced matrix element.

There are several solutions to this problem of mixed IP and IC limits. A simple
solution is to partial fraction the antenna such that it only contains either the IP or IC
singularities, thus fixing the choice of crossing for the reduced matrix element. Following
this approach we would divide the subtraction term into two terms, one handling each
unresolved limit, e.g.

(3.1,2) B]"(1,,(23),,45)

+ df 4
(3,1,2) BY°((23),, 14, 49), (3.36)

9—q

0
+ dS,ng
where the first line only contains the 14||3, limit and the second line only contains the 1,||2,
limit and they carry different reduced matrix elements. The disadvantage of this approach is
that it relies on our ability to partial fraction the antenna function and successfully integrate
the sub-antenna analytically. The three-parton antennae relevant for NLO calculations
have been partial fractioned in this way and successfully integrated [93] so all ingredients
are available to apply this method at NLO. However, the problem of mixed IP and IC limits
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is also present in three-parton one-loop and four-parton antennae used for NNLO subtrac-
tion terms. Partial fractioning these more complicated antennae is a non-trivial task and
integrating the resulting sub-antennae analytically poses a substantial technical challenge.

An alternative to this method, which requires no additional analytic integrations, is
to construct subtraction terms which remove all IP limits from the matrix element. The
antennae in these subtraction terms will generally contain IP and IC collinear limits, but the
reduced matrix element is chosen to be appropriate for IP limits only. The strategy is then
to use quark-antiquark antennae to remove the spurious IC limits from these subtraction
terms. Once this is achieved, the genuine IC limits of the matrix element can be removed
using the same set of quark-antiquark antennae but now carrying the crossing of the reduced
matrix element appropriate to the genuine IC limit. For example, consider the combination
of matrix elements,

,0 2 ,0 2
B; (3%1972974@)"1_3; (3%2971974(7)' (3'37)

These contain the initial-final IP collinear limit 14]|2,, initial-final IC limits 1434, 14/|45,
as well as several final-state soft and collinear limits which are irrelevant to this discussion.
We can regulate these matrix elements with the subtraction term,

+D8(3,1,2) BY°((23),, 1, 44)
+D3(4,1,2) BY (34,14, (24),)
— A9(3,1,4) BY(24,1,,(34),

)
4) BT (14,24, (34),).

(3.38)

The first three lines carry crossings of the reduced matrix element appropriate for IP
limits (gluon initiated). The fourth line carries the crossing of the reduced matrix element
relevant to the IC limits (quark initiated). The first two lines regulate the 1,]|2, IP limits
but contain spurious IC 1,||3, and 1,||4; limits. These spurious singularities are then
removed by the quark-antiquark antenna in the third line, which by necessity also carries a
gluon-initiated matrix element. The fourth line is similar to the third insofar as it captures
IC limits, but now uses a quark-initiated reduced matrix element to regulate the genuine
limit. Taken together, the block of terms in eq. (3.38) successfully disentangles and removes
all IP and IC divergences for the block of matrix elements in eq. (3.37).

The advantage of this method is that although it is more cumbersome at NLO, as in
the example considered here, the same method can be applied to combinations of three-
parton one-loop antennae and four-parton antennae to disentangle the NNLO IP and IC
limits. This method requires no new integrals and all ingredients are readily available such
that the problem is reduced to constructing an appropriate subtraction term. For example,
the subset of RR matrix elements for gluon-initiated DIS,

,0 AL 0 P 0 . s
Z |:B£),Y (3qa lga tg,Jg> 4(7) =+ Bg (3(]7 g, lgv.jgv 46) + Bg (3(]7 tgyJg» 197 417) ) (339)
P(i,j)
contain the IC triple-collinear limits (14]|34]|39), (14]|341174), (14]145llig);s (141145l74), as well
as the TP triple-collinear limits (1,]|ig||7,), (34igll74), (44llig|lss). Following the strategy
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outlined above at NLO, we construct a subtraction term that regulates the IP limits using
full antennae,

+ D2(37 1727.7) B¥70(@B ig,

q’ 4
+ Dg(?’?Z? ia]) B¥7O(@Bq7 i974‘j)
+ D2(3,i,j, i) B¥70(@Bq’ i9’ 4@)

+D2(47i727.7) B¥70(3<I7ig7(4ij) )
+D2(4,i,i,j) B¥70(3q7i97(4ij) )

—~—

+ DY(4,4,5,1) BY(3,,1,, (4i5),). (3.40)

Of course, these subtraction terms contain spurious IC limits which can be removed using
quark-antiquark four parton antennae,

— AY3,1,4,4)B7°((3i4),, 14, ja)
— A9(3,i,1,4)BY°((3i4) ., 1+ jq)
— AY(3,1,5,4)BT((3j4), 1. ig)
— A9(3,5,1,4)B}°((374) ., 14, ig)- (3.41)

The genuine IC triple-collinear limits of the matrix elements in eq. (3.39) can then be regu-
lated by the same set of quark-antiquark antenna, but now carrying a quark- or antiquark-
initiated reduced matrix element,’

) )
+A93,5,1,4)B] (14,44, (3j4),)- (3.42)

The alternative would be to partial fraction the D} antenna into sub-antennae which is
significantly more difficult than the partial fractioning of the Dg antenna due to the presence
of overlapping single- and double-unresolved limits. The integration of such a sub-antenna
would also present significant technical challenge and additional master integrals.

In practice, we employ a mixture of approaches to the subtraction terms constructed
for this calculation. We use the known NLO partial fractioned antennae where possible
to simplify the subtraction term and use a carefully constructed combination of antennae
for the genuine NNLO IC limits such as the triple collinear or one-loop single collinear 1C
limits. In principle all partial fractioned antennae could be eliminated from the subtraction
terms, but this would only serve to make the construction more baroque so we take an
optimal approach and use partial fractioned NLO antennae where possible.

'n the case of the axial coupling of the vector boson to the quark line ( Z-exchange contribution), the line
reversal symmetry of the partial amplitude (implicitly used in this example) is broken and so appropriate
symmetrization over the final-state quarks should be employed to reinstate it.
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3.4 Implementation into NNLOJET and validation

The NNLOJET code is a parton-level event generator that provides the framework for the
implementation of jet production processes to NNLO accuracy, using the antenna subtrac-
tion method. Besides containing the event generator infrastructure (phase-space integra-
tion, event handling and analysis routines), it supplies the unintegrated and integrated
antenna functions and the phase-space mappings relevant to all kinematical situations.
The multi-dimensional phase space integration is performed using the adaptive Monte
Carlo integrator VEGAS [98]. To avoid numerical instabilities in the matrix elements, all
parton-parton Mandelstam invariants are required to beeither 1o = 10~7 or y9 = 3 - 1077
times the electron-parton centre-of-mass energy squared. We have validated that our re-
sults are insensitive to variations of yg by one order of magnitude in each direction. The
implementation of processes in the NNLOJET framework requires the availability of the
matrix elements for all RR, RV and VV processes, and the construction of the antenna
subtraction terms. NNLOJET provides testing routines to verify the point-wise conver-
gence of the subtraction, as documented for example in refs. [99, 100]. Processes included
in NNLOJET up to now are Z and Z + j production [60-62], H and H + j production [58]
as well as di-jet production in hadron-hadron collisions [71, 72].

Our NNLOJET implementation [74] of jet production in DIS uses the same matrix
elements [75-84] as were used in Z + j production [60-62], however in different kinematical
crossings. While the phase space for Z+j production corresponds to a single crossing region
of the matrix elements, three different crossing regions are required [20, 21, 101, 102] to
describe each DIS process, depending on the relative size of Q? compared to the parton-
parton invariants. The matrix element contributions are summarised in tables 4 and 5.
The antenna subtraction terms relevant to each of these contributions are collected in
the appendix.

To validate our implementation of the tree-level and one-loop matrix elements, we
compared the NLO predictions for di-jet and tri-jet production against SHERPA [103] (in
DIS kinematics [104]), which uses OpenLoops [85] to automatically generate the one-loop
contributions at NLO. The antenna subtraction is then verified by testing the convergence
of subtraction terms and matrix elements in all unresolved limits and by the infrared pole
cancellation between the integrated subtraction terms and the two-loop matrix elements.

3.5 Scale dependence of the NNLO cross section

The coupling constant renormalisation and mass factorisation procedures are performed at
a renormalisation scale y, and factorisation scale p, where the strong coupling constant
as(pr) and parton distribution functions f;(x, us) are evaluated, respectively.

Beyond leading order, the fixed-order contributions to the parton-level cross sections
contain an explicit dependence on p, and p ¢, which compensates the dominant scale depen-
dence from the coupling constant and parton distributions at the previous orders. These
scale-dependent terms can be predicted from the renormalisation group equations (our
normalisation conventions are summarised in the appendix of ref. [58]). Starting from the
evaluation of the DIS di-jet cross section at fixed default values j1y = p1, = po (which can

~ 18 —



be chosen dynamically event-by-event):

o (o, po, s(o)) = (OM) 5 @ fi(uo) + <as(u0)>25£1) ® fi(1o)

2 21
3
# () 6 6 fiu) + O, (3.3

the full scale dependence of the cross section can be predicted in terms of
2
i Ky
L, =log ( > Ly=log|—|. 3.44
Mo ! Mg ( )

(/‘T’:U’fvas( Lrva)
2
as T A~ as T ~
(22) 60 @ g + (2} 0 & )

+Lr< s )> 606" @ filug) + Ly <as<m>>2{_&Z‘(O)®<Pi(’?)®f’“(”f)”

It takes the form:

27 2

)> 6 @ filus) + Lr (O‘SQ(::’“)Y(M '+ Bi 6} )®fz(uf)
s(fhr

+L2< = ) 836" ® filly)

3
w1y (S) [0 (P @ fulun)) — 0% (P @ fulur) ]
s\ L L, .
+ 13 <a 2(’7: )> [2050) ® (Pl(k) 2PV g fl(,uf)) + 500 9w (Pi(,f) ® fk(#f))}
3
+LyL, <“2(7’f)> | —26061% @ (PP @ flny)) | +O(ad). (3.45)

In the above expressions, summation over the parton indices is implicit. Equation (3.45)
can be used to compute the cross section at multiples of an initially chosen scale, and
was also employed to perform detailed validations of our implementation of the different
contributions to the NNLO corrections to di-jet production.

4 Inclusive jet production

Inclusive jet production in deep inelastic scattering has been widely studied by the
H1 [6, 7, 9-12] and ZEUS [14-18] experiments at DESY HERA. The jet measurements
are preformed in the Breit frame, where the transverse momentum requirement on the jet
ensures the existence of a partonic recoil, even if only a single jet is reconstructed in the
kinematical acceptance. Jets are reconstructed using the kp-algorithm with Ry = 1.

In this section, we use the kinematic criteria (see table 6 below) used in the final H1
measurements [11, 12] to discuss several generic features of the NNLO corrections to inclu-
sive jet production, followed by an in-depth comparison of the newly derived predictions
to the H1 data [11, 12].
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Figure 3. Quark and gluon initiated contributions to the inclusive jet transverse momentum
distribution at NLO and NNLO.

4.1 Structure of the inclusive jet production cross section at NNLO

Inclusive jet production in the Breit frame receives leading order contributions both from
quark-initiated and gluon-initiated processes. The relative magnitude of these depends on
the final-state kinematics. Figure 3 shows the relative contributions from quark and gluon
initial states to inclusive jet production, evaluated at NLO and NNLO for a representative
range in Q?, using the cuts from the H1 low-Q? analysis (see below). We observe that at low
transverse momentum, pr < 10 GeV, inclusive jet production is mainly gluon-initiated (to
almost 80%). With increasing pp, the quark-initiated contribution becomes more and more
important, reaching 50% at around pr = 30 GeV, and further increasing towards higher
pr. NNLO corrections affect the relative importance of the different initial states only in
a moderate manner, and only at high-pr. Compared to NLO, the gluon-initiated fraction
decreases more slowly for larger values of pp. The overall behaviour of the parton fractions
and their modification between NLO and NNLO remains largely unchanged at higher Q2.

The inclusive jet production cross section receives contributions from different jet mul-
tiplicities. At NNLO, final states with up to four identified jets contribute. The jets are
ordered in transverse momentum. Figure 4 displays the contribution of the first, second,
third and fourth jet to the inclusive jet distribution at NNLO for a given bin in Q2. It
can be seen that the leading jet and subleading jet contribute about 85% and 12% to the
distribution over the full pr range. This behaviour can be understood from the fact that
the jet production is measured in the Breit frame, where the leading order process will
always yield a pp-symmetric two-jet final state. The jets are not necessarily both found
inside the rapidity cut, such that in some fraction of the events, only the leading jet is ob-
served. Furthermore, real radiation from higher order corrections can lower the transverse
momentum of the second jet compared to the first one, such that the same event will enter
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Figure 4. Contributions to inclusive jet production (kr-algorithm with Rg = 1) from first, second,
third and fourth jet.

H1 (high-Q?) H1 (low-Q?) ZEUS
150 < Q%/GeV? < 15000 5.5 < Q2/GeV? < 80 125 < Q%/GeV?
02<y<0.7 02<y<0.6 —0.65 < cos y, < 0.65
5GeV< pB <50GeV  4.5GeV< pZ <50GeV 8 GeV< pB
~1.0<nt <25 ~1.0<nk <25 ~-1.0<nB <2

Table 6. Kinematical cuts used to define the inclusive jet phase space in the measurements of H1
at high-Q? [11] and low-Q? [12], and ZEUS [16].

the pr distribution at a larger value with the first jet than with the second jet. Due to
the sharp decrease of the distribution with increasing pr, the relative importance of the
second jet is lower than of the first jet. The contributions from the third and fourth jet are
at the level of a few per-cent and a few per-mille respectively at low pp. Their importance
decreases to higher pp, which can be understood from the limited final-state phase space
that is available for multi-jet production at large transverse momenta.

4.2 Comparison to HERA data

Inclusive jet production in the Breit frame (using the inclusive kr algorithm with a mass-
less E recombination scheme) was measured double differentially in Q2 and p? by the H1
experiment, which distinguishes a low-Q? [12] and a high-Q? sample [11] and by the ZEUS
experiment [17, 18]. The event selection criteria for all three studies are summarised in
table 6. We compute theoretical predictions at LO, NLO and NNLO, always using the same
set of parton distribution functions (NNPDF3.0 NNLO) with as(Mz) = 0.118. Our predic-
tions use a dynamical central scale choice u2 = ,u?: = (Q*+ p2T7 5)/2, and the theory uncer-
tainty is determined from a seven-point scale variation with rescaling factors [1/2,2]. The
theoretical predictions are multiplicatively corrected for hadronization effects, using the
correction tables from the experimental papers [11, 12]. These corrections are most impor-
tant at low transverse momentum and approach unity with increasing pr, and vary between
0.86 and 0.95 for the H1 low-Q? data and between 0.92 and 0.98 for the H1 high-Q? data.
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Figure 5. Inclusive jet production cross section as a function of the jet transverse momentum pr g
in bins of Q?, compared to H1 data.

Figure 5 compares our NNLO predictions to the H1 data. We observe that the NNLO
corrections are very substantial at low-Q? and low—pg , with an up to 60% enhancement with

respect to NLO. These large corrections are within the NLO uncertainty band (close to the
upper edge), and result in a residual theory uncertainty of 20% even at NNLO. Especially
at low Q?, the shape and normalisation of the theory prediction changes significantly going
from NLO to NNLO, and results in a considerably improved theoretical description of the
data, as already statistically quantified in the experimental H1 study [12]. A very similar
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Figure 6. Inclusive jet production cross section as a function of the jet transverse momentum pr g
in bins of @2, compared to ZEUS data.

pattern is also observed for the ZEUS measurement shown in figure 6. With increasing
Q?, the size of the NNLO corrections decreases, accompanied with very small residual
theoretical uncertainties (decreasing from 10% at Q% = 150 GeV? to 2% at 5000 GeV?). In
this region, the combination of precision data with the newly derived NNLO corrections
has clearly the potential to provide important new constraints for precision QCD studies.

5 Di-jet production

In the Breit frame, di-jet production and single jet inclusive production in deep inelas-
tic scattering are mediated by the same Born level processes and are closely related. In
contrast to single jet inclusive production, where only the rapidity and transverse momen-
tum of the jet can be studied, di-jet final states allow for more kinematical observables
to be reconstructed (see section 2 above). Typically, di-jet cross sections are measured
inclusively based on the two leading jets in an event, i.e. including events with more than
two reconstructed jets. Inclusive di-jet production was measured by the H1 [6, 8-12] and
ZEUS [13, 16, 19] experiments at DESY HERA.

In this section, we adapt the event selection (see table 7 below) used in the final
H1 measurements [11, 12] to discuss several generic features of the NNLO corrections to
inclusive jet production, followed by an in-depth comparison of our NNLO predictions to
the ZEUS [19] and H1 [11, 12] data.

5.1 Scale setting in the di-jet production cross section at NNLO

The dependence of the NNLO cross section on the renormalisation and factorisation scales
has been derived in section 3.5, where it can be seen that each order in the perturbative
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Figure 7. Di-jet production cross sections for different scale settings.

series compensates the dominant scale dependent terms from the previous order. Con-
sequently, the residual scale dependence of a fixed-order prediction is commonly used to
estimate the error on the prediction resulting from missing higher order corrections. The
scale dependence of the theoretical prediction is quantified by choosing central values for
pp and g, and then evaluating the cross section for variations around these central scales,
typically by a factor two.

These central scale values should reflect the dynamics of the process. In processes
involving only a single mass scale (such as for instance inclusive deep inelastic scattering,
depending only on the photon virtuality Q?), the central scale choice is unambiguous (at
most up to a constant factor). For processes involving multiple physical scales, several
choices are possible (and a priori equally well motivated). The only guiding principle for
choosing the central scales in this case is the occurrence of large logarithmic terms in each
order in perturbation theory, which spoil the convergence of the perturbative expansion
and indicate an inappropriate choice of the central scale.

Di-jet production in DIS depends on two scales: the photon virtuality @2 and the
average transverse momentum of the two jets <p¥ )2. Using the kinematical cuts of some of
the bins in the H1 low-Q? di-jet measurement (which are discussed in detail in the following
subsection) as an example, we study different choices for the central scales in figure 7.
We compare the following three options:

(2) uf=u=(Q°+1)3) /2,

(b) pi=Q% ui=(Q+(h)3) /2

(¢) pf=upi=0Q%

All three options were considered previously in comparisons of NLO predictions to the H1

and ZEUS jet data [6-19]. Option (a) represents the average of both hard scales in the
jet production process, and is used as default throughout this paper; option (b) is used

frequently in the experimental studies, with the argument that the partonic structure of
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H1 (high-Q?) H1 (low-Q?) ZEUS
150 < Q%/GeV? < 15000 5.5 < Q%/GeV? <80 125 < Q%/GeV? < 20000

02<y<0.7 02<y<06 02<y<06

5GeV< pB <50 GeV 4GeV< pZ EB > 8GeV
~1.0<nt <25 ~1.0<nt <25 —1.0<nt <25
Mis > 16 GeV Mis > 20 GeV

Table 7. Kinematical cuts used to define the inclusive di-jet phase space in the measurements of
H1 (high-Q? [11] and low-Q? [12]) and ZEUS [19].

the proton (u) is resolved by the virtual photon, while it is hard QCD emission () that
yields the two-jet final state; finally option (c) is entirely based on the photon virtuality to
describe the hardness of the interaction.

We observe that the scale choices (a) and (b) yield similar predictions, except in the
region of large transverse momentum. Especially at large Q2, the choice (b) results in
slightly higher cross section predictions, accompanied with larger scale uncertainties. In
contrast, scale choice (c) results in unphysical predictions (negative cross sections) if applied
at low Q2 and large transverse momentum. These results confirm earlier observations made
at NLO [20-25]. By examining the analytical form of some of the NLO contributions [22-24]
for scale choice (c), the emergence of large logarithmic corrections in the jet transverse
momenta could be established. These corrections are largely compensated in the hard
coefficient functions for scale choices (a) and (b), which are clearly preferable in terms of
reliability and perturbative stability. It should be pointed out that the large logarithmic
terms alone (which can be inferred from threshold resummation [105]) do not properly
account for the bulk of the NNLO corrections, as observed in ref. [12].

5.2 Comparison to HERA data

Inclusive di-jet production was measured by both HERA experiments: H1 [11, 12] provides
double-differential results in Q? and (p?}g or Q% and &, using the k7 and anti-kp jet
algorithms in the Breit frame. ZEUS [19] uses only the k7 jet algorithm and provides
single-differential results in EB = (p2)s, Q?, M;;, n*, € = & as well as double-differential
results in Q2 and £ or EQE. The kinematical cuts in the measurements are summarised in
table 7. We compute theoretical predictions at LO, NLO and NNLO, always using the
same set of parton distribution functions (NNPDF3.0 NNLO) with as(Mz) = 0.118. Our
predictions use the central scales p2 = ,u?c = (Q? + (pr)3)/2 and the theory uncertainty is
determined from a seven-point scale variation with rescaling factors [1/2,2].

The theoretical predictions are multiplicatively corrected for hadronization effects, us-
ing the correction tables from the respective experimental papers [11, 12, 19]. These correc-
tions are very similar in magnitude to those in inclusive jet production. They vary between
0.86 and 0.96 for the H1 low-Q? data, between 0.92 and 0.98 for the H1 high-Q? data and
between 0.95 and 1.08 for the ZEUS data.
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Figure 8. Inclusive di-jet production cross section as a function of the electron variables Q? (left)
and z (right), compared to ZEUS data.

Figure 8 displays the inclusive di-jet cross section for the ZEUS kinematics as a func-
tion of the electron variables Q2 (left) and of = (right). We observe the NNLO corrections
to be sizeable especially at low values of @Q? or x, where they enhance the NLO prediction
by about 15%. In this region, the scale dependence of the NNLO prediction is as large as
at NLO, or even larger. We also note that the shape of the data is better described by
the NLO prediction than at NNLO. A similar pattern is observed in the distributions in
(pB)s and M;; shown in figure 9, with sizeable NNLO corrections in the lower range of the
distributions. In both these distributions this range clearly correlates with the approach to
the infrared limit, as can be seen even more clearly in the double differential distribution
in <p§)2 and @2, figure 10. In this limit, the QCD coupling constant increases and loga-
rithmically enhanced contributions could deteriorate the convergence of the perturbative
fixed-order expansion. This issue is further aggravated by the interplay of the Mj; cut (see
table 7) with the transverse momentum requirements on the final state jets, as discussed
previously in ref. [74], and elaborated upon in more detail below. The relatively small
scale dependence of the NLO predictions in this range is likely an artefact originating from
a cross-over of the upper and lower edges of the scale-band, as investigated in detail for
hadronic di-jet production in refs. [71, 72]. The scale variation at NNLO therefore provides
the more realistic assessment of the theoretical uncertainty.

The di-jet cross section as function of n* and of log({2) is shown in figure 11. While good
perturbative convergence is observed in the plateau region n* < 0.65, NNLO corrections
turn out to be very sizeable at higher rapidities. The perturbative instability in this
region was already pointed out and explained by the ZEUS collaboration [19]. The log(&2)
correlates most directly with the parton distributions, indicating that the ZEUS di-jet
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Figure 9. Inclusive di-jet production cross section as a function of (p£)s (left) and M;; (right),
compared to ZEUS data.

data will likely deliver important constraints in the determination of the gluon distribution
for momentum fractions in the medium range 0.01 < & < 0.1. The double-differential
distribution in log(&2) and Q?, figure 12, further illustrates this impact, showing a coherent
pattern of discrepancy between data and NNLO theory over the full Q2 range. It will be
very interesting to further study the impact of these data in the determination of parton
distributions at NNLO.

The H1 dataset is divided into a high-Q? and a low-Q? sample, see table 7. For the low-
Q? sample [12], double-differential distributions were measured in Q* and (pZ)s, which we
compare to our NNLO calculation in figure 13. Compared to NLO, the NNLO corrections
enhance the prediction of the di-jet cross section at lower values of (p?)g, leading to a
considerable improvement in the description of the H1 data, as already pointed out in
ref. [12]. Moreover, we observe an excellent convergence of the perturbative series and
a considerable reduction of the theory uncertainty in going from NLO to NNLO. This
highlights the potential of these data for future precision studies of parton distributions
and the strong coupling constant.

For the high-Q? sample, slightly different event selection criteria are applied: in par-
ticular, a minimum value of M;; is imposed. In a previous work [74], we have already
studied the impact of the NNLO corrections in the double differential distributions in Q>
and <p§ )o for the H1 high-Q? sample. Figure 14 collects these results. It can be seen that
the improvement of the theoretical uncertainty from NLO to NNLO is less pronounced
than for the low-Q? study, and that perturbative instabilities arise at low (p? )2. These can
be traced back [74] to the M;; > 16 GeV cut. Combined with the cuts on the transverse
momenta of the jets, the M;; cut results in a severe restriction of the LO and NLO phase
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Figure 10. Inclusive di-jet production cross section as a function of (p%)s in bins of @2, compared

to ZEUS data.

NNLOJET
NNPDF 3.0

140 T

—— NLO

NNLO

ZEUS data

Hf=12=(Q% pr 12

do/dn’[pb]

do/dlog(§2)[pb]

Ratio to NLO

Ratio to NLO

-1.6

-1.45 -1.3
log(&>)

Figure 11. Inclusive di-jet production cross section as a function of n* (left) and log(&s) (right),

compared to ZEUS data.
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Figure 12. Inclusive di-jet production cross section as a function of log(¢) in bins of Q2 compared
to ZEUS data.
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Figure 13. Inclusive di-jet production cross section as a function of (p£)s in bins of @2, compared
to H1 low-Q? data.
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Figure 14. Inclusive di-jet production cross section as a function of p?2 in bins of @2, compared
to H1 high-Q? data.

space for di-jet production at low (pZ)s, which is only filled gradually by the real radiation
contributions at higher orders. This type of perturbative instability is well-known [106],
and can be circumvented by avoiding cuts that overly restrict the phase space available for
the leading order process.

Figure 15 compares the NNLO predictions for double-differential distributions in Q2
and & to the H1 high-Q? measurement (these distributions are not available for the H1
low-Q? study). We observe that the quantitative behaviour is very similar to the ZEUS
distributions, figure 12. At LO, & is directly related to the momentum fraction carried by
the incoming parton, such that figure 15 indicates the kinematical range where the H1 data
can potentially improve the determination of parton distributions. Recalling the definition
of & (2.4), we moreover observe that the H1 high-Q? data set typically probes lower values
of & than its low-Q? counterpart (which is due to the transverse momentum requirement
on the final state jets, and contrasts with the kinematical correlations in inclusive DIS).

To illustrate the problematic impact of the symmetric cuts on p? , combined with a
cut on Mj;, we re-evaluated the double differential distribution in Q? and & for a different
set of jet cuts: p%jl > 5GeV, pgﬂ > 4 GeV. The result is shown in figure 16, where we
observe a very substantial improvement in the perturbative convergence, compared to the
cuts used in the H1 analysis [11].

6 Conclusions and outlook

In this paper, we described the calculation of the second-order (NNLO) QCD corrections to
jet production in deep inelastic scattering. By defining jets in the Breit frame of reference,
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Figure 15. Inclusive di-jet production cross section as a function of &; in bins of Q?, compared to
H1 high-Q? data.
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this process requires at least two partons in the final state, thereby providing sensitivity
on the gluon distribution and the strong coupling constant already at leading order. We
consider inclusive production of single jets and of di-jet systems in the Breit frame, which
start both at the same perturbative order.

Our calculation uses the antenna subtraction method to cancel infrared singularities
among parton-level sub-processes of different multiplicity. The application of this method
to processes with one hadron in the initial state requires the dedicated treatment of infrared-
singular splittings that change the parton identity. Our calculation is implemented into
the NNLOJET parton-level event generator framework, which was also used recently for
the NNLO corrections to pp — Z + j [60-62], pp — H + j [58] and pp — 25 [71, 72].

The HERA experiments H1 and ZEUS have measured inclusive single jet and di-jet
production over a broad kinematical range. We observe that the NNLO corrections to
inclusive single jet production modify the shape of the kinematical distributions, which are
now described considerably better than at NLO. The corrections are moderate in size (ten
to twenty per cent) except for very low jet transverse momenta or low photon virtuality @2,
and their inclusion substantially reduces the scale uncertainty on the predictions, typically
well below the experimental statistical and systematical uncertainty.

The NNLO corrections to di-jet production are found to be sizeable, and often well
outside the scale uncertainty band of the NLO predictions over a broad kinematical range
for most of data sets from ZEUS and H1. Already in an earlier study [74], we could relate
this behaviour to the interplay between the cuts on the jet transverse momentum and di-jet
invariant mass, which overly restricts the final state phase space at LO and NLO. We now
provide further evidence for this argument by performing dedicated comparisons of the
predictions with and without invariant mass cut, with the latter displaying much-improved
perturbative convergence and reduced scale uncertainty. Only one H1 di-jet data set (low-
Q? [12]) was measured without the invariant mass cut; this data set is well-described by
the NNLO theory.

Our NNLO results open up several opportunities for precision phenomenology with
jet observables in deep inelastic scattering. The determination of parton distributions at
NNLO from a global fit is currently dominated by processes that are only quark-initiated
at leading order (inclusive DIS, Drell-Yan processes). Constraints on the gluon distribution
come mainly from indirect effects (scaling violations) or from the inclusion of data from
processes (like jet-production) where the full NNLO corrections are unknown. In these
cases, the NNLO corrections to the hard process cross sections are either approximated
using some ad-hoc assumptions or discarded altogether. A recent study [107] on the impact
of LHC inclusive top quark cross section data on the determination of the gluon distribution
illustrated the importance of a consistent treatment of NNLO effects (which are known for
top quark production [54, 55]). Our newly derived NNLO corrections to jet production
in DIS enable the consistent inclusion of HERA data on this process into global parton
distribution fits at NNLO. The magnitude of the corrections, as well as their kinematical
dependence, makes it likely that their inclusion will lead to modifications of the gluon
distribution, also leading to a substantial reduction of its uncertainty in the crucial region
of medium-z.
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Jet production data from HERA have been used to measure the strong coupling con-
stant as [9, 11, 14, 15]. The error on all these measurements was dominated by the theory
uncertainty inherent to the NLO predictions used in the extraction of as. This uncertainty
was found to be typically a factor two or more larger than experimental statistical or sys-
tematical uncertainties, thereby proving to be the limiting factor to further improving a;
measurements from jet production in deep inelastic scattering. Given that the analysis of
inclusive deep inelastic scattering structure function data typically yields values of the oy
at the lower boundary of the range indicated by other determinations [108], it will be very
interesting to apply the NNLO corrections derived in this paper to perform an NNLO-
accurate determination of the strong coupling constant from DIS jet production data.
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A NLO subtraction terms

In this appendix we include all the subtraction terms for the NLO two-jet calculation. The
matrix elements and their associated factors are collected in tables 2 and 3.
A.1 Quark-initiated subtraction terms

The quark channel receives contributions from the processes ¢y — qgg, ¢v — qqq at tree
level and ¢y — ¢qg at 1-loop.

Real. Real emission corrections at NLO contain up to three final-state partons and are
comprised of By ’0, cy 0 and D] 0 matrix elements.

A.1.1 B-type O(N?!) contribution

The leading-colour contribution is composed of two-quark-two-gluon matrix elements, By ’0,
which are summed over both permutations of the final-state gluons. This matrix element
and the corresponding subtraction term are given by

> B3(,i,5,2) - > BYY(1,i,4,2), (A1)
P(i,5) P(i,5)
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where P(i,j) denotes the permutations of the labels in the set of final-state gluons {3,4}.
The subtraction term is constructed for a single permutation and given by

BY"S(,i,j,k) =
+d3,(1,4,5) BY° (T, (i), k) IS ({p}2)
+dS(k, 4,0) B (1, (i), (k) I8 ({p}2)- (A.2)

A.1.2 B-type O(N™1!) contribution

The two-quark-two-gluon matrix element also contributes at sub-leading colour where it
is given by the BJ 0 matrix element. The subtracted contribution to the cross section is
given by

B}°(,3,4,2) — BJ*%(1,3,4,2). (A.3)
The gluons in this function act as if they are abelian due to the particular combination of

interferences used to define it. This changes the factorization behaviour compared to the
leading-colour matrix element and we construct the subtraction term to reflect this:

By (1,i.j.k) =
+ A8, (1.4.k) BY (L, (GR)) 15 ({p}2)
+ A9, (1,4, k) BT, , (i) IS ({p}a). (A4)
From this subtraction term it is clear that the gluons are colour connected only to the

quark and antiquark, not other gluons; which is what would be expected for an abelian
gauge boson.

A.1.3 C-type O(Np) contribution

With three final-state partons and an initial-state quark we must also evaluate the contribu-
tion from four-quark matrix elements of identical (¢y — ¢¢@) and non-identical (¢y — ¢QQ)
flavours. The full four-quark matrix element, summed over possible quark flavours, can
be written as a term derived from the non-identical flavour matrix element, C ’O, and an
interference term, D] 0 The of ¥ function contains contributions from diagrams where the
vector boson couples to each quark line and the subtraction term is given by

> (C30(154,3:2) - €3 5(154,3,2)) (A.5)
34

where
0 (i, jik) =
+ BS (k. i, §) BYo(1, (7i), (i) 52 ({p}2)
o 5 B 1K) BESGLT, () A8 ({p)2)

1 . ~ =
5 By 1 0) Bl ((GR). T.0) 13 ({p}2). (A.6)
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In this subtraction term we note the appearance of the BK’S and Bz’g reduced matrix
elements which were introduced in section 3.1 and which carry over the information on
which quark line the vector boson is coupling to in the reduced matrix element.

We can see that the first term of the subtraction term regulates the quark-antiquark
collinear limit between partons ¢ and j which constitute a quark line of flavour @) and so
in the reduced matrix element the vector boson couples to the remaining quark line of
flavour ¢q. The remaining subtraction terms, on the other hand, regulate the collinear limit
between the quarks 1 and k, which are of flavour g¢. Consequently, the vector boson in the
reduced matrix element couples to the remaining quark line of flavour Q.

A.1.4 D-type O(N?) contribution

As explained above, the four-quark matrix element also contains a term given by the
interference of four-quark amplitudes with different quark assignments, arising from the
identical flavour contribution,

DJY(,2;3,4). (A7)

We include this contribution but note that it is finite in all unresolved limits and so requires
no subtraction term.

Virtual. The virtual NLO contributions to the cross section arise from the interference of
a one-loop amplitude with a tree-level amplitude for the process ¢y — qg. Once all colour
factors are stripped out, this leaves three separate contributions to the cross section.

A.1.5 B-type O(N?!) contribution

The leading-colour contribution and its subtraction term is given by
BI'(1,3,2) - BY'Y(1,3,2), (A.8)
where
BT (1,4,5) =
1,FF O/ -~ (2
— Ty (sii) BYO(1,,9) I3 ({p}a)
1,IF O/1 - o (2
— Ty e (510) B (1,1, ) IS ({p}a). (A.9)

All the poles of the one-loop matrix element are cancelled analytically by this subtraction
term.

A.1.6 B-type O(N~1!) contribution

The two-quark-one-gluon one-loop matrix element also gives a contribution at subleading
colour,

BI'(,3,2) - BYV(1,3,2), (A.10)
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where
BYH (i) =
— Ty b (s15) BY (1,0, 5) ISP ({p}a). (A.11)

The integrated real radiation function in this subtraction term, which contains all the
explicit poles, is a function of the quark and antiquark momenta but not the gluon mo-
mentum. This can be traced back to the colour connection of the virtual gluon in the loop;
at subleading colour the virtual gluon is colour connected only to the quark line.

A.1.7 C-type O(Np) contribution

The one-loop diagrams which contain a closed quark loop form a distinct matrix element,
B?’l, carrying a factor of Np. The poles of this matrix element are cancelled by the

) 5y 1T
subtraction term Bj"".

We must also include the integrated subtraction terms com-
ing from section A.1.3 where the reduced matrix element is gluon-initiated rather than
quark-initiated.

This type of subtraction term was discussed in section 3.3 and is referred to as an
identity changing (IC) term. Such a terms clearly cannot cancel the poles of the one-loop
matrix element as it is proportional to the gluon-initiated reduced matrix element. Instead,

the relevant integrated antennae from the real subtraction term are combined with the IC

B%LT

mass factorization kernels to generate a finite virtual subtraction term, By 7, .

B''(1,3,2) — BV (1,3,2) — BYLT (4,3,2), (A.12)

d—g
where
BT (1,4,5) =
= 2Jy 58 (si) BY(1,4,5) JP ({p}a), (A.13)
Byt (1,d,5) =
LI ) B0 A (0))

1 . . 2
5 J;,’ég,qqg(sjl) B (i,1,5) I ({p}a)- (A.14)

A.2 Gluon-initiated subtraction terms
The gluon channel is composed of the tree-level process gy — ggg and the one-loop process

97 — 4q.

Real. Due to the initial-state gluon, no four-quark matrix elements contribute to the real
correction, but only two-quark-two-gluon matrix elements with one of the gluons crossed
into the initial state.
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A.2.1 B-type O(N?!) contribution

The leading-colour contribution is, as in the quark channel, given by the BJ ' function. We
sum over all gluon permutations, where now one of the gluons is in the initial-state. The
subtracted contribution to the cross section is given by

> B3°3.1,2,4) - Y BY*(3,1,2,4), (A.15)
P(i,2) P(i,2)
where

By (i,1,5,k) =

+dS,4(i,5.1) BY (i), T.k) 73 ({p}2)

+d§ (k. 5,1) BT (k). T,4) J§° ({p}z)

— af 421, k) BY (L, 4, (ik)) J52 ({p}2)

— a8 gk, 1,9) BT (i), 5, 1) IS ({p}2): (A.16)

The final two terms in the subtraction term account for IC limits where the initial-state
quark becomes collinear with a final-state quark or antiquark.
A.2.2 B-type O(N~1!) contribution

The subleading-colour contribution to the process gv — qqg is given by the Bg 0 function
with one of the gluons crossed into the initial-state,

B1°(3,1,2,4) — B*%(3,1,2,4). (A.17)

The initial-state gluon cannot become soft, but can participate in a collinear limit with
final-state partons. As the gluons in this matrix element behave as if they were abelian,
no gluon-gluon collinear limits exist and all IF collinear limits are therefore IC limits with
the final-state quark or antiquark,

BY*5(i,1,4,k) =
— a8 4 (i, 1,K) BT (T, ], (ik)) J2 '({p}2)
—af 4y (k. 1,1) BY((ik),4,T) 182 ({p}2)
+ A0, 5, k) BY (7). 1, (k7)) I ({p}2). (A.18)

Virtual. The virtual NLO contributions arise from the interference of a one-loop ampli-
tude with a tree-level amplitude for the process gy — ¢q.

A.2.3 B-type O(N?!) contribution

The leading-colour contribution contains a subtraction term which cancels the poles of the
one-loop matrix element and an IC subtraction term which is finite,

BY(2,1,3) - B (2,1,3) — BY, 7, (2.1,3), (A.19)
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where
B, 1,5) =

C N (2
— |+ Iyl (s1) + Jysn(s1)| BYG,1,5) I ({pha), (A.20)
and the finite IC subtraction term is given by

’17T . 7 S
By, 1,5) =

D .. 2
— 20300 9 5a(51) BT (1,1, ) I ({p}a). (A.21)

A.2.4 B-type O(N~1) contribution

The subleading-colour matrix element is given by the B?’l function, whose poles are can-
celled by the subtraction term B?’LT. The IC integrated subtraction terms coming from
section A.1.2 are combined with the IC mass factorization kernels to form the finite sub-

traction term, Bl’gl’jq. The total subtracted contribution to the cross section is given by
BYY(2,1,3) - BYV(2,1,3) - BY, 0 (2,1,3), (A.22)
where
~ 1T, . & .
B?L (Z7 17]) =
1,FF 0/ N (2
— T30 (si) BY(6,1,9) 17 ({p}o), (A.23)
» ’17T -7 -
Biy,gaq(la 1,j) =
1,IF 7,0 .. 2
= 27500 4q(51) BY (L) 15 ({p}). (A.24)

A.2.5 B-type O(Np) contribution

The one-loop matrix element with a closed quark loop is given by the Bfl function. This
function contains explicit poles, but as is clear from table 3, there is no real subtraction term
contributing to this colour factor. This means there are no integrated antenna functions to
cancel the explicit poles of the matrix element. However, the NLO mass factorization term
does contribute to this colour factor and cancels the poles of the matrix element. This is
reflected in the fact that the integrated real radiation function for this process is formed
entirely from mass factorization kernels, as is noted in ref. [35]:

BI'(2,1,3) - B (2,1,3), (A.25)
where
BYM,1,9) =
— 20y 5 (si1) BY (0,1, 1) I8P ({p}). (A.26)
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B NNLO subtraction terms

In this appendix, we include the subtraction terms that are used to regulate each colour-
stripped matrix element introduced in section 3.1. The matrix elements associated with
the subtraction terms are listed in tables 4 and 5.

B.1 Quark-initiated subtraction terms

The quark channel at NNLO receives contributions from the tree-level sub-processes ¢y —
qggg and qv — qqqg, the one-loop correction to the processes ¢y — qgg and ¢y — qqq and
the two-loop corrections to the process ¢y — gg.

Double real. The tree-level five-parton contributions are given by the colour decom-
position of the two-quark-three-gluon and four-quark-one-gluon matrix elements with the
quark crossed into the initial-state.

B.1.1 B-type O(N?) contribution

The leading-colour matrix element is summed over all six permutations of the final-state
gluons. The subtraction term is summed only over the cyclic permutations of gluons. The
cancellation of divergences occurs once all terms in the sum are evaluated,

S B0 k2 - Y BYYS(,i,4,k,2), (B.1)
P(i,5,k) Pc(i,5,k)
where Pc denotes the restricted sum over cyclic permutations. The subtraction term is
given by
BI*S (1,4, 5,k 1) =
+ £9(, 4, k) B3 (1, (i), (7). 1) 57 ({p}s)
+ 9. 4.k) BY° (1, (Gk). (i7),1) 13 ({p}s)
+d(1. k. §) BY (1,4, (k). (1)) 1S ({p}s)
+dS(1.4,5) BY (L, k, (ji), <zZ>>J§3 ({p}s)
+d3(1,k, ) BY° (1, (kj).4,0) I3 ({p}3)
+dS(1,4,5) BY* (1, (7). k. 1) 57 ({p}s)
+ DY (L4, 5.k) BT (1, (igk). (7)) J5” ({p}2)

e~ o~

— d3(1,4,7) d((T0), (i), k) BY (L, (k(i)), (1) (i) J5> ({p}=)

—_—~—

— f(k, 5,9) d3(1, (k7). (G3)) BY° (1, (k) (i), (1K) J52 ({p})

+ DYk 3.6) BY" (L, (k). (1K) J5” ({p}2)

—_—

(0. k, ) dY((ER). (R). 1) BY°(L. (iGhg)). (1) R)) T2 ({p)2)

—_— =

— 5,5, k) &3 (57), (GR)) BT (1, () (k). (1G4))) I ({p}a)
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+ DY(1,i,5,k) BY° (L, (ijk), 1) J5” ({p}2)
— d3(1,4,5) DY(T, k, (i) BY° (T, ((@5)k), 1) I3 ({p})

—_—~—

— (1, k, 5) D§(T,4, (kj)) BY*(T, ((kj)i),1) J5* ({p}s)
— A0, K DY, ), (B) BY (L, 7)), 1 I8 (p})
+ DY*(l,k,i,5) BYO(1, (jik), (1Ki)) J5 ({p}2)

+ DYk, §) BYO(1, (Gki), (1k)) ISP ({p}s)

900 k. ) dY((TR). 1, (R7)) BYO(L, (107, (iR)) J2 ({p})

—~—

— (11,9 dS((T0), b, (7)) BT (L, (k7). (600)) I ({p}o)
— AQ(1,4,k, 1) BY° (1,4, (1ki)) J5 ({p}2)

+ AY(L,i,0) AY(T, b, (00) BY°(T, . (6(00))) I ({p}o)
AL k1) AY(L () BYO(T, . Gi(1k))) I ({p})

—_—~—

45 B ALk, () BT, (k7). ) 7 (1))

L B0 ) ALk (7)) B (k). () I ({p))

—fA%luwmlkﬁBW(<m><»é%@b>

1 FF _ oFF FF FF FF FF
2 | 5@ T Sy~ i T g, i T @)

< (1 k. (7)) BYO (L, (k(i7)). (5)) 2 ({p}2)

—~—

45 ALk, ) (T, i, (7)) BT, (k). D K2 ({p)2)

—~—

— 5 (k) (1, () BT (T, (k). () I ({p)o)

1 — .. = =~
— 5 Ak D (L) B (L (67), (1)) 15 ({p)o)
1 + SFF o FF FF FF + SFF

) 1k(jk) Tk(i(jk)) (Ik)k(Gk) (ﬁc)k(@) Sw(m) Tk (lk)

< d(1,1, (7)) B (T, (G0)). () 75 ({p}:)
5 (L) (), k. () B (L, (), (B)R) I ()

— 5 (L) A, () B, (k). (8)) I ({p}s)

—fmwmw%wwkﬁwﬂ (F), (k(00))) 79 ({0)2)
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1
S S gPE L PF_ _gFE L PF_
2| @ Catmiemy N Tugtg) O e

d8<<ﬁ> k, (7)) BY°(1, (k(if)), (k(10))) J5” ({p}2)

—~—

+Z d“(z b, ) d((TR), i, (k7)) BY° (1, (i(k)), (1)) J$2 ({p}2)

—~—

— 5 Bk 5 B0, () BYO(, (k). () IS ({p))

~ 3 AY(L, k1) dY((TR), . ) BYO(T, (), (i(0))) 72 ({p})

1
. SFF SF/,EV/ _ SFF + FF __ SFF + FF _
2 DR “Glphaary WD) TGy RO T kG

x d%(ﬁf), i, (k7)) BT (L, (i(k7)), (i(1k))) J5” ({p}2)

— = A°<1,Z,Z>A°<1 k, (1)) B (1, 4, (k(19))) IS ({p}2)

2 91,0, 5) AYT, k1) BYOT, (7). (7)) 2 ({p)a)

d§(1,i, ) AS(1 k, (10)) BY (T, (57), ((10)k)) J5” ({p}2)

_l’_

FF _ _ QFF FF  _ oFF.
11(11) + S Ti(k (h)) + S(ﬁ)i(fj) (k(13))i(57) + Sli(ij) Li(ij)

N~ N~ DN

(1, k. (13)) BY° (T, (i), (k(10))) IS ({p}2)
AY(1, k. 1) AS(T, 4, (1K) BT (L. J, <z‘<7k>>> I ({p}2)
(L. k, §) A3(T,4,0) BY°(T, (kj), (17)) J5” ({p}2)

(1, k. ) AY(L, 4, (1)) BY°(T, (k7). (0)i)) /2 ({p}2)

SFF FF FF FF FF__ FF _

X
wo

_l’_
l\D\H[\DM—‘[\DM—t[\DM—t D

@) g0 TP @RED T Gk T k) T Tk

x AY(L, 4, (F) BY°(T, (k7). (iU%))) 12 ({p}a). (B.2)

B.1.2 B-type O(N°) contribution

The Bg 0 matrix element contributes at subleading colour, 1/N? relative to leading colour.
The interferences of colour-ordered amplitudes which form this function result in one of
the gluons behaving as if it were an abelian gauge boson, colour connected only to the
quark line. The two remaining gluons are colour connected to the quark line but also to
each other. The abelian-like gluon is always the first gluon argument in the function Bg 0,
The subtracted contribution to the cross section is given by

S BY(ig k) — > BP®S(A,4,5k,1). (B.3)
P(i,j,k) P(i,g,k)

The abelian-like nature of the gluon ¢ (first argument) in the subtraction term can be seen
by the fact that there are no divergent collinear limits for this gluon with other gluons in
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the subtraction term,
BY" (14,5, k1) =

+ A3(1,4,0) B (T 5. k, (10)) J5¥ ({p}s)
+dS(L, 4. k) BY (4. (7k).1) 15V ({p}s)
+d§(L, k, ) B3 (1,4, (k). (1)) J5* ({p}s)
+ AY(1, 4.k, 1) BI(L,4, (k1)) J2(2)({p}2)
— 01,5, AYE, G0 BYT 4 (GR) K (o)
— a0,k ) AY(L, G, () BY°(T, 4, (7R) 1)) 72 ({p)2)
+ AY(1,4,5,0) By (L k, (ij1)) Jy” <{p}2>
— AY(1,4,0) AY(T, 5, (1) BY° (L, k, (j < 1)) 75 ({p}s)
= AY(1,5,0) AY(T, i, () BT ks (107))) P (o))
+ AY(1, 5,0 AT, (7)) BY° @ k. (103)) 2 ({p})
= 01,5 k) AT 0,0 B R, (1) 57 (o))

(L k,5) AY(L, i, (1K) BYO(T, (R3), (k) S ({p)2)
_ | 4 §FF. _ gFF__ FF_ FF_ _ oFF __ FF_
15(15) T(i(Tj)) 15(k3) 1j(kj) (15)7(kg) G(15))i(k7)
x AY(1,4, (7)) BY° (T, (k3), (i(15))) J5” ({p}a). (B.4)

B.1.3 B-type O(N~2) contribution

The Bg ¥ matrix element contributes to two subleading colour factors, as can be seen in
table 4. This function is symmetrised over all gluon momenta and therefore behaves as if
all three gluons are abelian. This restricts the unresolved limits of the final-state gluons to
QED-like factorization. The subtracted cross section is given by

B°(i,3,4,5,2) — BY*5(1,3,4,5,2), (B.5)
where
BY™S(1,4, .k, 1) =
+ A§(1,4,1) BY°(1, 4, k
+ AY(1,5.0) BY (i, k, (1)) J5”
+ AY(1, k1) BYO (1,4, 5, (1K) J
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— AS(L,4,1) A3(T, j, (1)) B (L. k, ((T)))Jf)({p} )

— A§(1,5,0) AS(T, i, (17)) BT (T, b, (i(1))) J3” ({p}2)

+ AY(L,4,k, 1) BYY(T, 4, (1K) J52 ({p))

— AY(1,4,0) A3(T, &, (13)) BY° (1, 4, (k(14))) J52 ({p}2)
— AY(1,k,0) AY(L, 4, (1)) BY°(L, 4, (i(1k))) J3”) ({p}=)

+ AY(1, 4.k, 1) BY (1,4, (1K) IS ({p)2)

AL 1) YTk (05)) BYO (T, (k(9)) I ({p))

—~

— AY(L, k. 1) AS(T, 4, (1K) BY° (L4, (5(IK))) 57 ({p}2). (B.6)

B.1.4 C-type O(NgN?!) contribution

The four-quark-one-gluon matrix element contains contributions from identical and non-
identical quark flavours for the two quark strings. As was the case at NLO in sections A.1.3—
A.1.4 the full four-quark contribution can be separated into a term derived from the non-
identical flavour matrix elements, given by the C} 0 functions, and a remainder of interfer-
ence terms given by the DY’O functions.

The CY’O terms include both colour orderings and the vector boson coupling to both
quark lines. The subtracted contribution to the cross section is given by

1 )
5> [0370(1,5;4,3; 9) — C7%5(1,5;4,3; )] (B.7)
P(3,4)

where

CT5 (1,5, k; 1) =

+ A3(1,4,5) CFO(T; (i), ks 1) I ({p}3>

+ AQ(k,7,1) C3°(1; 5, (ki); (13)) ISV ({p}s)
+ ES(1, 5, k) BYo(1, (k). i, (1) J5” ({p}3)
+ ES(1, 4. k) BYa(1,, (jk), (i) J5” ({p}3)

+ EY(L .k, 1) BYY(L, (ik9), (k) IS ({p)2)

+ Yk, 9) BY (L (K. (1K) 137 ({p)2)

——

— Y4, k) d3((T5), 7, (7R)) BYO(L, (GR)), ((07)i)) S ({p}2)

B k) (), (). 1) BYO(L (1)), () GE)) 72 ({p))

— AY(k,i,0) BS((4), (i), §) BYS(L, (j(ki)), (ki) (10)) J5” ({p}2)

+ BY(L,k, 7,7) By (T, (i5k), 1) IS ({p}2)
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—_—~—

— BY(L,5,k) DY(1, (k5),0) BY (T, (i(k5)), (1)) 52 ({p}2)
— AY(L,4, ) BY(T b, (7)) BLOT, (RGN, 1) I ({p})

— B gk, 1,0) BYO (kD). 1,4, 5) I3 ({p}s)

— BY gk, 1,0) BYY (KD, 0, T, ) I8 ({p}s)
— E(k,1,1,1) BYO((kli), T,5) J$ ({p}2)
+ B, (ko 1,0) DY((RY, T,) BYS((RDi), T, ) I ({p}o)
— BY(k,1,1,0) BY g (K1), T,5) 52 ({p}o)
Bk, 1, 1) DY((RL), T, ) BYS((0)0), T, 5) 152 ({p}2)

+ A0 k) ES g (kD). 1, (1)) By o (ki) (1), T, 5) IS ({p}2)

+ BY(k,1,1,5) BYS (i, T, (jlk)) I3 ({p}2)

5

7Q

—_

— 2B (k1 0) 0l o (KD, T, ) BTG (0, T, (kD)) J57 ({p}2)

+ BY(k, 1,1, 5) BY 5 ((jlk),i,T) Js” ({p}2)

—

— B gk 1, 1) ad 50, T, (K1) BYS((G (kD). 4, 1) 52 ({p}2)

By (6 LD 6y (), T, ) BYS(T 1, GR) 72 (o)
+ AY (1, 5) BS ok, T,0) BY G (KL, T, (7)) I3 ({p}2)
Ak, ) ED gy (Ri), 1,0) BYS (R, T, (1)) J52 ({p})
Bk, 1,0) AYGRD), i, ) BYS((RDI). T, (7)) J2 (pba)

- SFFN FE_gFF _ QFF | gEF
Ti(ki)(1i) (ki)ij (,;)(ﬁ)i < 11(1@1) il Lij

x BS o ((ki), 1, (I7)) B”°<<m><u>, T,5) 15 ({p}a).

quark for some reduced matrix elements indicated by a B.

B.1.5 C-type O(NrpN~1) contribution

L > [01%0(1,5;4,3;2) Cr%5(1,5;4,3; 2)]
P(3,4)
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In this subtraction term we once again retain information on the flavour of the quark
line in the reduced matrix element and employ a symmetrisation over the quark and anti-

The subleading-colour contribution to four-quark-one-gluon scattering can also be split into
a term derived from non-identical flavour matrix elements, é’?’o terms, and a left-over set
of interferences, D]"? terms. The C7"” terms contain all colour orderings and vector boson
couplings to both quark lines. The subtracted contribution to the cross section is given by

(B.9)



where

CY (1, k1) =
+ AY(1,0,1) O (T34, ks <zz>>J§3><{p}3>
+ AY(j, i, k) €3 (1; (1), (Ki): 1) I ({p}s)
—249(1,1, k) C3 (T 4, (ki) 1) I3 ({p}s)

—2A8(5,1,1) O °(1; (i), k: (12)) Js” ({p}s)
+2A9(1,4,§) C3°(T; (i) k: 1) I3 <{p}3>

+2A9(1,4,k) € (1, 4, (ki) (1)) T3 ({p}s)
+ ES(1, 4, k) BYS(1,i, (kj), (1) J5” ({p}3)

+ BY(1,5,k,0) BY(T,4, (k1) J52 ({p})

P

— EY(, 4. k) AY(L, (kj), (13)) BY2 (T4, (k5)(15)) IS ({p}2)

45 B2 5 k) BEOL, (7). 1) 752 ({phs)

A, k) BS 4 (1, (G0), (ki) BY2 (T, (i) (Ki), 1) J52 ({p}2)

231, j,i, k) BY (1, (kig), (171)) 52 ({p}2)
5 A0, k) E3(1, (7). (ki) BY (1, G (), (G 12 (p})
—E;?(z j. k) AS(1,4, (1)) B (T, ﬁ%) 60 1 ({p}2)
+ AY(1,i, k) BY(T, (ik), j) By (1, << 1), 1) J3 <{p}2>

(
b A 0,1) EY(L k, (7)) BIO, (6G1), () J£ (p}a)
(
(

+

— AY(1,4,5) ES(1, &, (ji)) BT, T (k). 1) 72 (p))
— AY(1, i, k) ES(1, (Ki), §) By (T, ((ki)5), (10) J52 ({p}=)

+ SFF + SFF SFF FF

14(ki) (ji)il 14(j1) li(ik)

+Ag12k>E L, (ik), >B”°< u(zk)) (Uik))) IS ({p}2)

k(7)) BYY(1, <k< ), (@)k) S ({p}2)

AL i) B k. () BYO(L, (k(G0), (1R) I (1))
(

iy (
3, 1) ES (1)

P

— AQ(1, i, k) BY((E), (Ri), 5) By (L, ((Riyj), (i) (k) 72 ({p)o)

FF FF FF FF
+ S li(k )+ S(Jl)ll Sll(]z) li(ik)
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-

O, D)), (W) I ({p2)
- %Eg,qqgw,l,n By (k.14 (1) 157 ({}s)
o((kD,i,T,5) IS ({p}s)
+ B, 1,1, k) BY (T, (1k)) I3 ({p}a)
5 g1 D) A, T, ) BES(T, i, (GOR) 2 ({p)2)

5 By (b L) AR, T, ) BT, (R7)) 782 (p)o)

qu%g(k 1,0) B}

R

907, 1,4,1) By gk, T, (jil)) 52 ({p}2)

AY(1,4,0) BS g (5, T, (1) BYG (k, T, (5G0)) I35 ({p}2)

9k, 1,4,0) BYO((kil), T, ) 152 ({p}2)

5 AL 00 B g (kT (i) BY g ((k(iD). T, ) J5” ({p}2)
b3 By (11 ARG ) BES(GRi), T, (G0)) 52 (fpho)
+§E§,qqg<k,1,z>A8<<m>z’y)B“)((( D), 1, (1)) J5” ({p}2)
- Aga,i,k)Eg«;;;),mBw(a(m» L) 5" ({p}2)

— Y1) Bk 1, () BYS((k(). T, Gi)) ) ({p}e)
+ A(L,i,5) B§(k, 1,0) BY((1h), T, (i) J5” ({p}2)

+ A3(1, 4, k) B9 ((ki), 1 ,(l%))BY,O((k‘Z)(l) 1.5) 75 ({p}2)

FF FF FF FF
- Su(i%) - Sji(ﬁ) =51 (12)i(ik)

x B3((ik), 1, (1d)) By ((ik)(10), 1, 5) Js” ({p}2)

— AS(L,4,k) BS(4,1,0) By ((ki), T, (1)) I8 ({p})

— AS(j,1,1) BS((70), 1, (1d)) BY g (k. T, () (12)) J5” ({p}2)
k(1

AL ) B(GE), T BYS (T, (G

J
L, (I
1,
(1)) 57 ({p}2)

- AL, k) EQGL 1, () BYS((RD), T, (00)) & (o))

FF FF FF l*:F _
= | T 5@ T O ~ Sk~ S@Ea)

< BY((7), 1, () BYS (T, () (00)) 72 ({p}a).
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B.1.6 D-type O(N?) contribution

The interferences of quark orderings arising from the identical flavour contribution to four-
quark-one-gluon scattering gives the subtracted contribution to the cross section,

DYY(1,5,2:3,4) — DY™9(1,5,2:3,4), (B.11)
where
DY (1,0, g1k, 1) =
+ AY(1, 4, k) DYO(T, j; (ik), 1) ISP ({p}s)
+ A9G,4,0) DI (1, (i) k, (12)) IS ({p}3)

+209(L,k,j,0) BYY(1,4, (k1)) 52 ({p}2)
+2C0(k,1,,0) BYg (kD). 5,T) JP ({p}2)
+209(L, 5.k, 1) BYY(T,4, (k1)) 52 ({p}2)
+209(.1,k,1) BYY(T,4, (k1)) 52 ({p}2)- (B.12)

B.1.7 D-type O(N~2?) contribution

The interferences of quark orderings also contribute to the subleading colour and require
subtraction,

DY°(1,5,2;3,4) — DY%5(1,5,2;3,4), (B.13)
where the subtraction term is given by
DY5 (1,4, 4;k,1) =

— A3(1,4,k) DY (T, js (ik), 1) IS ({p}s)

+ A3(1,4,1) D (1, j: k (zl))Jé‘”’)({p})

+ A3(1,4,5) DY (T, (i) k. 1) 5V ({p}3)

+ A3(j. i, k) DO (1, (7i): (ki), 1) I3 ({p}s)

— A8(j,i,1) D3 (L, (ji); k. (1)) J5” ({p}s)

+ AS(k,i,1) DP°(1, 5 (i), (10)) IS ({p}s)

+2C9(1, k. 4. 1) BY) (1,4, (k1)) J52 ({p}2)
+209(k, 1,5,0) By ((7kL).4, 1) Iy ({p}2)
+209(1,5,k,1) By (L4, (k1) Ty ({p}2)
+209(5. 1.k, 1) By (L4, (kD) Ty ({p}2) (B.14)

Real-virtual. The real-virtual contributions to the quark channel receive contributions
from the two-quark-two-gluon and four-quark one-loop matrix elements, where the four-
quark matrix elements include identical and non-identical flavoured quarks. Each matrix
element may be decomposed into its colour-stripped functions, as set out in table 4.
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B.1.8 B-type O(NN?) contribution

The leading-colour contribution is given by the Bj -1 function, which is then summed over
both gluon permutations. The subtracted contribution to the cross section is given by

> BYY(i.i5.2) - B3 (1,4,5,2), (B.15)
P(ij)

where the subtraction term for a single ordering is given by

B (1,4,5,k) =
- [+ le,’chG(Sli) + J%,’Sg(sw + ng,’gg(sz‘j)] By (1,4, 5,k) I3 ({p}s)
[+$%&mn+@Qd%»+@axﬂﬂB%u%ZM%<@b>

D (1,0.3) [ B 060 50— ) 801~ 2

+ (+ b >E£wuﬁm%ﬁhﬁA%mﬁ
+ d3(k, 5, { ), (k7)) 6(1 — 21) 5(1 — 2)

+(+ G >E$ﬁ>m0m%um@mpﬁwm
+ d3(k,i,7) [B (ki) 6(1 — 21) 6(1 — 22)

+<+E$@mw+ﬁ$mm@3wmﬁm%ﬂ#Mmg

+ [dé(k,z’,j) 6(1— 1) 6(1 — x2)

(TG o)+ T ) 258 ) + TG o)) k)
x BY°(1, (i), (ki) J5” ({p}2)

+ [d;,(k,j,i) 6(1— 1) 6(1 — x9)

(I o)+ T8 ) =~ 2156 )+ T ) ) )
x BY°(1, (i), (k7)) Ji ({p}2)

+ [Dé,q(l,i,j) 6(1— 1) 8(1 — x9)

(g5 o)+ TEE () 273 ) + o) ) DAL

x BY(L, (i), k) J52 ({p}2)

- [Aég(l,i, k) (5(1 - .%'1) (5(1 - xg)
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+ ( + Iy e (s1k) — Jé,’éé(sm))) A3(1,3, k)] BYO(T, 5, (ki) 52 ({p}2)
- [Aéq(l,j, E)S(1— 1) 6(1 — x9)
(4 I o) — T 1) ) Y130 B (7)) I ()
+ % [+ Tyo0(51k) = Ty 0 (511) = I3 7h6(515)

+ Ji’é@(si@)) + Tyl (sk) — J%,’gg(sk(fj))

FF FF FF
+ (+ ST (815, 85 T1jkg) — S (Si@), Skjaxi(fj)ﬁj) =S (Skjs Skjs 1)

+ SFF(sk(;j), Skjs %@),kj) — ST (811, 81jy Tk ) + ST (57100 Sk $1k,kj)>]
x d§(1,i, ) By (T, (i7), k) J¥ ({p}2)
by |+ Ihbaten) = T sn) - g o)
+ J;,’ég(SI(ﬁ)) + nggg(s;m) - ngjgg(t?k(ﬁ))
+ (—i— ST (514, Skis T1i i) — SFF(ST(;Z-), Ski, xT(ﬁ),ki) — ST (514, 50, 1)
+ 8T (551 ki TGy ) — ST (8185 ki Targi) + ST (571, 8, xlk,ki)>]
x d§(1,5,3) BT(T, (i7), k) J5 ({p}a)
by [+ I ) = T o) + TG )
+ Jrl0a(517) = Jaga(s15) — Tagc (sk))
+ ( + S (s swjo 1) = STV (5 iy 3y Sk T iayiyg) — ST (814 Sk T1585)
+ SFF(51(7;3)a Skj> T1(5) k) S (18, 815> w11,7) + SFF(%(&')’ Skj l‘1(1€¢),kj)>]
x d§(k,i, 3) BO(1, (i), (ki) J§ ({p}2)
by |+ I o) — Ty ) — o)
+ o6 (55 0) + F206(511) = Jaga(sigy)
+ (—|— ST (814, 831y 1) — SFF(S(E)@), Ski x(ia})(ﬁ),ki) — ST (514, Skis T1i i)
R T o e DR IR xl@%ki)ﬂ

x d(k, 5,1) BY°(1, (i), (k5)) J52 ({p}2)
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LIF 1,IF 1,IF
T3 [+ Ja00(18) — Jo0051im) — Jalga(514)

LIF LFF 1,FF
+ J20a(515) = Jalga (ki) + Ja g6 (5(),)

+ < = 8" (s1ks sg @ag) + ST sy st Ty y) + ST (15 505 0109)
— 8" (515 885 71 1)
+ S8 (s, 815 1) = ST (s Skwx(l%)j,kj))]

x AY(1,4,k) By (T, j, (ki) 5 ({p}a)

o AL

1,IF 1,FF 1,FF

+ ( — 8" (11 Sk Takpi) + SFF(ST@;), Skis LUT@),M) + ST (514, Sk, 210 4i)

— 8" (533, Skir 73 1) + ST (ki Skin 1) — SFF(S@)~7 Skis ﬂf(@)i,ki))]

)

x AY(1,5.k) BY° (1,1, (kj)) IS ({p}a). (B.16)

B.1.9 B-type O(IN?) contribution

The subleading-colour matrix element contains a mixture of colour connection structures
for both the virtual gluon loop and the external gluons. This leads to a set of subtraction
terms which are colour connected only to the quark line, and a set which are also colour
connected to gluons. The subtracted contribution to the cross section is given by

> BY(,i,5,2) - BYY(1,4,5,2), (B.17)
P(i,5)

where
By (d,i,4,k) =
— TR (s1) BYO(1,4, 4. k) IS ({pa)
— Ty b (s1e) BY (1, 4,4, k) JS ({p}s)

~ R 3
- [+ Ty e(515) + Iy bt (s17) + Ty b (s10) + Iy b <ski>} BI°(1,4,j, k) IS ({p}s)
+ Jy e (s16) BYO(1, 4,1, k) IS ({p}s)

AL k) [B#(l,j, (F)) 6(1 = 21) 6(1 — 22)

(4 TR+ T ) ) B )| 7 ()
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AL k) [Bmz; (k)31 — 1) 6(1 — 22)
(T o) + TG ) ) BT ) I ()
=+ dg(kv Za]) Biy’l(lv (&)? (]ZZ)) 5(1 - 371) 5(1 - $2)

I o) B (7). i) | 57 (0))

 dk, ) | YL GO, (R3) 61— 1) 8(1 )
I ) B G0, ()| I8 (4oe)
+ D, (10.3) | BT (). 00600 20 50— 22)
+ o0 BY(TL 7). )] 87 ()
+ {Aé,q(l,z’, E)S(1 —21) 6(1 — )
" ( Ty sxy) + TR o1) + T o) ) 430,10 B, ) 75 (p)e)
+ | Az (1,4, k) 6(1 — 1) 6(1 — x2)
+ ( 00105 + oa(s13) + 7 ng) A5(1, 4, k)] BY°(1,i, (k7)) J3” ({p}2)

+ | A3, (1,4,k) 6(1 — 21) 6(1 — 22)

+ ( 50 (518) = T3 00 (51m) AS(LM)} BY°(1, 4, (ki) 57 ({p}2)
—0—[ 7qu, (1 —2x1)0(1 — x2)
(= B i) + T (o)) 30130 BLT 4 59 I8 (p)a)
+ |:Jr J2 QG (s15) + J2 QG(sk]) Jg’ég(slk)
— Jya0(517) = Jyo6 (86;) + Jab0 (51
+ <—|— ST (s, Skij»> T1k,kj) — SFF(ST(];Z,), skj,xi(];i)m) — ST (545, Skj» T1j,kj)
+ SFF(STJ-, Skj»TTjkj)  — ST (skj, 585, 1) + SFF(S(];Z.)]., Skj’x(l&)j,kj)>]
x AY(1,i,k) BYO(1, 4, (ki) 52 ({p}2)

IF LIF FF
+[ J21QG(811) JQQG’( i)+ leQG(Skz)
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1,FF 1,IF 1,IF
= Dalac 5@5) — ag(sk) + Llgo(s15)

FF FF FF
+ <+ S (S1k, Skis Tk ki) — S (81(75)7 5ki7$1(’k‘3)7ki> — SV (814 Skis T ki)

+SFF(sii,8ki,:vnki) — 8" (shiy 500, 1) + 8 (s S(kj)ir Skis T (E)i,ki)>:|

x AY(L,5.k) BY° (1,4, (k7)) I ({p}2). (B.18)

B.1.10 B-type O(IN~2) contribution

The most subleading-colour contribution contains only abelian-like colour connections and
therefore only contains quark-antiquark antennae and quark-antiquark integrated real ra-
diation functions. The subtracted contribution to the cross section is given by

BIY(1,3,4,2) — By (1,3,4,2), (B.19)
where
‘5%17T(ivi7j7 k) =
: 57,0014 - (3)
— Ly oo (s1k) BYO(Li,5.k) Jy” ({p}s)

+ AR, K) | BY T, (F) 61 — 1) 5(1 )

1,IF
JQQQ( (~

<

) BI(1, j, (ki) ] ({p}2)

AL R) | BY (L1 (5) 601 - 21) 6(1 - o)
+ Iy b0 (1 )>B’*°<1 i. (k) ] 17 ({p})

+ Aéq(l,i, k)01 —x1)6(1 — 22)

+ ( + Drlaq(518) = Lo (1) | A5, k)] BY (T4, (ki) 15 ({p}2)

+ Aé,q(lnja k) 5(1 - ZL’1) 5(1 - x2)

( Ty o)~ T 1)) A4S0 BY L) (). (820

B.1.11 B-type O(NpN') contribution

The two-quark-two-gluon matrix element with a closed quark loop contributes to two colour
factors. The leading contribution is given by the B; ’1(1, i, 7,2) function. The poles and un-
resolved limits of this matrix element are removed by the subtraction term 3; ’I’T(i, i,7,2),
and both of these functions are summed over the permutations of final-state gluons.

As was the case at NLO, there is also a contribution to the subtracted cross section
from the integrated IC subtraction terms in section B.1.4. These are combined with the IC
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mass factorization terms to generate a finite subtraction term with no unresolved limits,
BYYT  The total subtracted contribution to the cross section is given by

2,q—g°
S P ~ P 1
> [33’1(1,%%2) Bg’l’T(l,z,Jﬁ)} -5 > B3n,0.3.42), (B.21)
P(i,7) P(4,2)

where

BIYT (4,4, k) =
- [ QJIEE (s40) + 27VEE <8kj>] BYO(, 4,3, k) 19 ({phs)

+ dg(l,i,j) I:Belml(lv (Z})?k) 5(1 - 1'1) 6(1 - .%'2)

b (+ T + 5 55 (sw) BT 05). 0] 8 (o1
+ dy(k,j,i [ Y11, (i), (k) 6(1 — 21) 6(1 — 22)
b (T o) + T ) ) BLGL ). ()| 2 ()

n [ (1,4,7) 8(1 = 1) 6(1 = z2)

(AT o) ~ T - B i) ) L] BIT G0 I (0)2)

+ <+4J5;55 (583) =06 (5 @3y~ A;,’éFG(sl@))d%(k,j, i)] BI(1, (70).(ki) S5 ({p}2)
+ |+ 20y b8 (skg) — 4dy b(s1i) + 20y b (sm} d3(1,4,5) BY°(T, (i), k) I ({p}2)

+ | = 20y 58 (siy) + 2, QG<skz>] d3(k, j,7) By (1, (Gi), (k) 152 ({p}2) (B.22)

Byt (1,4,5,k) =
— 20y o (516) BY (k, 1,4, 7) 5V ({p}s)
IF ; . N (3
— 20y g (s18) BY (k1. 1,5) T3 ({p}s)

+4J§é€;qﬁg< w) DS(k, 1,4) BT (ki) T, 5) J5* ({p}e)
= 23 asg (518) 2037000 o () | AS s ) BYO (i), 1, (5)) 57 ({p})

—4J§é€;w s18) 3 gq(k, 1,7) B0, (k5)) IS ({p)2)

+ 2y a1y (5T) A3 (7,1 1) BT (K, T, (ji)) J5 <{p}2>
— 20y o Siiy) B9 Ui, 1) BYO (kD) T, ) JP ({p}2)
— 20y g (s10) 3y g (R, 1,9) BY (14, (k) J52 ({p}2)
— 20yt g (518) 63 (5,1, k) BY((GK), 1. T) I ({p)2) (B.23)
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B.1.12 B-type O(NrN~!) contribution

The subleading-colour contribution to the two-quark-two-gluon matrix element with a
closed quark loop, é; ’1, has a subtraction terms which cancels all poles and all diver-
gences, é; ’LT, and a finite subtraction term which is generated from the IC subtraction
terms in section B.1.5 and IC mass factorization counterterms, B%;”ql’_?g. The total sub-
tracted contribution to the cross section is given by

BY(1,3,4,2) — BPMT(1,3,4,2) — Byl (1,3,4,2), (B.24)

where
é;’:l’T(i’ iv.jv k) -
— 4y b6 (su) BYO(1,i,5,k) ISV ({p}s)

+2A3(1,0.0) | B (T, (7)) 301 = 1) (1 22)

+ 2 ) B (L )| (01

+2 [A§(1, i k) 6(1 — 21) 6(1 — w2) + 20y 56 (ski) AS(L,4, k) | BYO(1, 4, (ik)) I ({p}a)
+ [ + 40306 (sk) — 40306 <8<gi>j>} A(1,4,k) BY (1, 5, (k) I ({p}), (B.25)

BT (4,4,4,k) =
U AR

1,IF LIF ~~.0 G
— |+ T3 g 518) Iy bty g (5150 | BT (ks 1,4,5) J5 ({}s)

[ .. ~. ™. 2
|+ St grsg (518) F Tyt g (513) | AB (R 1, 3) BT ((Ri), 1, (1)) JS2 ({p}a)

[ ] . — .~ 2
| = Tl e (S16) = Sy g (517) | 05 gsg (ks 1,5) BYO (T4, (K5)) J52 ({p}2)

[ IF IF . 05 - 7(2
+ _JQI,GQ,q/_m(Slk)_JQI,GQ,q/_m(Slj) agvg_ﬂl(‘],1,k)BYO((kj),z,l)J2( )({p}2)- (B.26)

B.1.13 C-type O(NpN1) contribution

The quark channel receives contributions from the four-quark one-loop scattering processes
with identical and non-identical flavour quarks. The full four-quark scattering process can
be decomposed into a term calculated from the non-identical flavour matrix element and
the remaining interference terms, analogous to sections A.1.3—A.1.4 for the tree-level four-
quark matrix elements. The corresponding one-loop matrix elements have an additional
colour decomposition coming from the virtual loop.

The leading colour contribution to the cross section is given by

> [0371(1;4, 3;2) — OV (154, 3; 2)] : (B.27)
P(3,4)
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where
CytT (g, ki) =
) [ + Iy 00(1) + T3g0 wcﬂ €3 (114, ks ) J5” ({p}a)
3 B3 | B (0L, ()60~ 20) 801 - 22
(T ) + T o)) BTS00 2 (k)
+ 5 BL0.0) | B (LG, 1)6(1 - 20801 - )
(4 TS ) + T8 s ) B G0 I8 o)
S (L LIEAE RS
 (F IS i) T8 ) 25 5 ) ) BR(G 0. 0] BLEL GRL ) 87 ())
+ % {E%(l,j, k)3(1 — 1) 6(1 — 29)
(4 o) + Thfftoue) = 27 ) ) ESCL 0| BLOCL G0 75 (o))
- B (L) | U .5) 601 20 51— 22)
+ (+ Thbften) + S5
~ J306.gvaS10) — Ji’é@yw“ﬂ) B?,’gz((iwk),lyj)] I ({p})
— [Equ,(/c, 1,4)6(1 — 21) 6(1 — x2)
+ < + le,’ég(sm) + ngjQFg(Ski)
- 2 51 + 28525 ) Bl 1,0)] BE(.1.0) 27 ()
- [‘i' J%,’ég(su) - J%,’ég(slk) + ngjgg(skj) - J%jgg(sj(,;i))

LIF LIF LIF 1L,IF
+95000615) — J2,00(51)) = 12106,9q(S1i0) T 2106.94(515)

+ < — ST (81, spiy w15 0i) + ST (1, Sk 21k k) — ST (Skjy Skiy Thj i)

+ SFF(Sj(za)’ Skis & (i ki) SFF(ST@)’ Skis 15y i) + S (51, s, "”W"))]

x B9 gk, 1,0) BYS((ki),1,5) IS ({p}2). (B.28)
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B.1.14 C-type O(NrN~!) contribution

The subleading-colour term constructed from non-identical flavour four-quark matrix ele-
ments has the contribution to the cross section given by

CJ(1;4,3;2) — €M (1;4,3;2), (B.29)
where
Gyt (34 ki) =

IF FF IF
|+ 2000 (518) = 20750 (ski) =y gg(s1:)

gl o)+ 21355 o) = 255 )| €150 I (o)

1 =1, . ..
=+ 5 E§(27.7a k) 5(1 - 1'1) 6(1 - .%‘2) + JQI:SS(SJ'IC) Eg(lv.jv k):|
x BY(1, (Gk), (1)) J5” ({p}2)
1 -~ . .
+ 92 E%,q(lmﬁ k) 5(1 - wl) 5(1 - 1'2) + J;:gg(sjk) qu(l?]v k):|

x BYY(T, (jk),1) 157 ({p}2)
+ 3 B3 | BULGRL ()60 - 231 - 22)
I ) B GO )] 82 ()
45 B(L0.0) | B GR),0)6(1 - 20) 801 - 22
+ I o5 B (R0 | J57(0))
- [Jr Ty00(s11) + Ty'00 (5i) = Jog0(517) = Tooq (ski)
+ ( — ST (811, S1js Tk pg) — ST (81, Sk Tijirg) + ST (815, Skjs T15kj)
S5 s s 1ias) ) | ERG0.0) B G 7)) I8 (o))
| )+ I ) — T o1 - TS o)
+ < — ST (s11, 81y Tk kj) — ST (81, Sk Tijirg) + ST (515, ks T15k5)
+ STF (g4, 515, m)] ES(1,5,k) BY(1, (jk),1) 52 ({p}2)

1 R = = =
-5 qu,_)g(], 1,1) [Bl’é(kz, 1,(i5)) (1 — x1) 6(1 — x2)

IS 5,5 BT )] (0
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1 ~ A ST
-5 qu,_)g(k‘, 1,1) {Bl’é((zk), 1,7)0(1 —21)0(1 — x2)

+ IS sy) B, T.9)] 4 ()

I I L
-5 B (5, 1,4) 0(1 — 21) 6(1 — @) + Jy i (516) B g, 4 (1 1,1)]
x BY Ok, 1, (i7)) 15 ({p}2)

1

2
x BIS (%), T.4) J5 ({p}2)

LIF LFF LIF LFF
+ [—F Jy00(81k) + Jol00 (Sij) — Joo0(s15) — Jaloq (Ski)

— = | B3 (k. 1,0) 6(1 — 1) 0(1 — m2) + Jy gy (s1) BS g (ki 1, i)}

+ ( — ST (s11, 81 211 i) — ST (81, 8i8 Tigin) + ST (515, 85k T15.5%)

+ S (sp4, 81 xki,jk)ﬂ E9(j,1,4) BYg (k. T, (i3)) I3 ({p}=)

LIF 1,FF 1LIF 1,FF
+ [Jr J2100(515) + Jalgq (ik) = Joigo(s1k) = Ja)gq (i)

+ < — S (515, 885, 1j17) — ST (Siks Skjs Titepg) + STE (S1ks Skjs T1k15)

+ ST (554, 515, a;ﬁ,kj)ﬂ E(k,1,4) B9 (. T, (ik)) 52 ({p}2). (B.30)

B.1.15 C-type O(NZ) contribution

The contributions with four quarks and a closed quark loop can be written purely in terms
of the non-identical flavour matrix elements with a closed quark loop, C 1 The subtracted
contribution to the cross section is given by

CJt(1;4,3;2) — CIM(1;4,3;2), (B.31)
where
C’g’l’T(i;j,k;i) =

3 B3G5k BINL GR), () 51 — 0) 61— 22)

1 N U o
5 B8 (1,4, k) BTy (T, (7K),4) 5(1 = 21) (1 — )

45 B3k BYA, GR), () 51— 0) 61— 22)

1 - o
5 Bl g(L,5.k) B (L, (58),0) 6(1 — 21) 6(1 = a2)

- EZ?,q’—)g(jv 17 Z) BK’é(l@T, ({:7)) 5(1 - ‘Tl) 6(1 - w2)
— B3 ,(5.1,1) BY3(k, T, (i5)) 6(1 — 1) 6(1 — x2). (B.32)
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B.1.16 D-type O(N°) contribution

The remaining four-quark one-loop interferences between different quark orderings also
contribute to two colour factors. The leading-colour term has the subtracted contribution
to the cross section given by

Dy (1,2;:3,4) - DYV (1,2;3,4). (B.33)

The matrix element contains explicit poles but no single unresolved divergences for the
same reason that the tree-level Dg’o was finite in all limits. The subtraction term is then
given by

DYV, jik, i) =

+ |+ Ty (s1) + Jy e (s:0) | DI0(L, 4, k, 1) 52 ({p}s). (B.34)

B.1.17 D-type O(IN—2) contribution

The subleading-colour contribution to the identical-quark interferences similarly has no
single-unresolved limits and requires only the poles to be removed. The contribution to
the cross section is given by

Dyt (1,2:3,4) - Dy (1,2:3,4), (B.35)
where
Dyt (L, s ki) =
+ | + 217’52(511@) — Ji’ég(su) — le,’égg(slj)
~ Tyt (sim) + Ty (s50) = Ty (si) | D3 (L ki) P ({pla). (B.36)

B.2 Gluon-initiated subtraction terms

The gluon channel receives contributions from the sub-processes: gv — ¢ggg and gv — qGqq
at tree level, gy — ggg at one-loop and gv — ¢g at two loops. Each of these contributions
can be separated into their respective colour factors which are listed in table 5.

Double real. The double-real correction to the gluon channel contains two-quark-three-
gluon, and four-quark-one-gluon matrix elements with one of the gluons crossed into the
initial-state.

B.2.1 B-type O(N?) contribution

The leading-colour contribution is given by the Bg’o function, summed over all gluon per-
mutations, where one of the gluons is in the initial-state. The subtraction term is not
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summed over any orderings but is constructed to cancel against the full set of matrix
elements due to the intricate singularity structure of the subtraction term,
> BY(4,1,i,5,5) — B3 (4,1,2,3,5), (B.37)
P(1,.5)
where the permutation sum P(1,4, ) runs over the set {1,2,3} and the subtraction term
is given by

+ £94(1,4,1) BY (k. (i), T,1) J3” ({p}s)
+ £9,(1,1.5) B3 (k. (70), 1.1) J3 ({p}s)
+ 19,(1,4,0) BY (T, (50), 1) J§” ({p}s)
+ £9,5(1,4,5) BY (T, (i), 1) 57 ({p}s)
+d3(1,5,9) BY(k, 1, (73), (1)) 15" ({p}s)
+dy(k, j.7) B3 ((kj). (7i). 1,1) J§3><{p}3>
+dS(1,1,5) BY (K, 1, (i), (10)) J§ <{p}3>
+d§< i, §) BY°((ki), (i), 1,1) 157 ({p}s)

k
d9 o (ki 1) B3 O((ki), T,5.1) S ({p}s)
d3 (k. 5.1) B ((k9), 1,4,1) 13 ({p}s)
d,4(1,4,1) BY° (k, 4, T, (17)) J5 ({p}s)
d9,4(1,3,1) B3 ki, T, (1)) J5” ({p}s)
+ DY(k,i,5,1) BT ((kij), T,1) J§ <{p}z>
— &k, 7,9) DY, (), 1) BY(0)7), T.1) I ({p})
= £9,(1,50) DY, (), T) BT ((R(), T, 1) 72 ([p)2)
+ DY(k,1,4,5) BY O ((ki), 1,0) 152 ({p}a)
— (0, ,3) DY), (i), 1) BY (RGO, T 12 (k)
= 19,0149 DG (), T) By (i), T, 1) 2 ({p})
+ DL, 5,1) BY(k, T, (13j)) 57 ({p}2)
— d(1,9) DY(E), (), 1) BT O, T, (10 (i7)) I ({p})
— 95(1,5,8) DY (), T) Bk, T, (1) I8 ({})
+ D§(L,1,4,5) BY(k, T, (1)) J ({p}a)

—_—

— d3(1,,3) D§((1), (53), 1) BY (k. T, (1) (59)) J5” ({p}a)
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— f3,(1,4.5) D3(1, (ij),

1) B (k. T, (1)) /9 ({p}2)
— 2 AY(k,1,1) DY(1,i,5) BY 1

O((kD),T, (7)) ISP ({p}2)
+ DY(k,i,1,5) BT ((kij), 1,1) Jé”({p}

)
1,0 I ({p)a)
L0 IS ({p}e)

(
2
— d3 ,(1,4,1) D((10), 1, §) BY°(k, 1,

— ), 0,5,1) DY), T,0) BY°(k, T, (1) J “({ph)
— AS(k,1,0,0) BYO((Kil), T,5) 1S ({p}2)
= Al 1,0 BY((RiD, T,9) 137 (p)2)
+ df 4 (k. i, 1) AY((ki), T,0) B <<< 0).1,4) 15 ({p}2)
o (0,3,1) AS((T0), T, k) BYO((k(E0)), T, ) S ({p)2)
- AY(k, 1,0) AY(T, 4, () By (G ORD). T, ) I8 (o))

— A§(k,1,5,0) BT ((kjD), T,0) 15

— AQ(k,j,1,1) BY*((kjl), 1,1) J. é <{p}z>
+ df 4 (k, 5, 1) AY((kj), T,1) BT°( i) ISP ({p}a)
+ df 41,3, 1) A((15), T, k) BT ((k(15)), T,0) J ({p}2)
+ AYR,1,0) AT 4, (B) BYO(G0)), T,1) 72 (p})
— AQ(k, 5,1,0) BYO((k3l), T,1) IS ({p}a)

—_——

+ AQ(k, 5, 1) AS((k3), 1, (G1) BY (k) G, 1,4) 52 ({p}o)
Ak, 1,0) AY(T, . (RD) BTO(G(R)), T, 1) I8 (o))
— AQ(k,i, 1,0) BY((kil), T,5) J52 ({p}2)

Ay, 1) AQ(GRD), 1, () BT (@), T,9) I8 ({p}2)
A0, 1,0) AS(L , (R0)) BYO (6D, T, ) S ({p}2)

— AY*(k,i,5,1) BYO((kij), 1, (13) I3 ({p}2)

— AV (k, 5,0, 1) BY (k). 1, (i) J52 ({p}2)
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i) BY°(((ki)j),1, (5 (L) @) 12 ({p})

+ AY(k,i, 1) AY((Ki), 4, (i
+ AY(k, 5,1) AY((kj).4, (j1)) BY
1,

(F7)i). 1, GGD)) 72 (o))
+ £9,(1,5,1) dS gy (K, (fj))BY’O((k(w)) L0 I ({p}e)
— dY(k, 5,5) dY ;o ((K5), 1, (G3)) BY (k) (i > ({p}z)

+ A(k, 4,1 d3 ;o ((kj),1,0) BYO((i(kj)
— d8, (1.5, 1) &S g (K, T,0) BY°((ki), T, (1)) J2(2)({p}2)

FF FF FF EF
S(zml (k)iGi) k)il Sijt

x dS g ((K5), 1, (i) BY*((k3)(05), 1,0) IS ({p}2)
+ f9,(1,0,5) d3 y g (k. T, <jz'>>B¥7°<<k<j ). 1.0) J57 ({p}2)
i), 1,0) 15 ({p}2)

,1(')) ({p}s)
1)) J5” ({p}2)

- do(k i .7) dgg—)q

— .
&

~— \-/
—_

—~
~

<.

~—

~—

> W
—~ =2

(=)

—~

—~

@‘

N

/\
S

+ A3(k,i 1) d3, ,,

— d3,(1,i,1) d3 (K,

FF FF FF EF
G0 = Stii T S Sl

x Sy g (KD, 1, (70)) BY (ki) (ji), T,1) Jy” ({p}2)

+ 19,(1,5,4) S (LT, (7)) BY (K, T, (13i5))) J52 ({p)2)

-

— d3(1,5,3) 5y (1), 1, G) BY (K, T, (1) (59) I ({p}2)

+ AY(1, g, k) dS g ((15), 1,8) BY (k). T, (i(15))) 57 ({p}=)
— d3 (k. 4. 1) d3 g (1, T,6) BY ((K)), T, () IS ({p}2)

B +S(IZJ§31 S(I;Jl;( )—i_S(Fljk_S’l“j1
x d3 ,,((19),1, (i7)) BY° (, L)) 12 (p))
+ f9 (L4, 5) dS 5o (LT, (7)) BT (k T.0G0) 12 (p))

i) Y ()1 () Bk T, () (7)) S (p))
+ AL, k) dS 4, ((0), 1, 5) BY (ki) T, (j <u>>>J§ '({p}2)
— d3 (ki 1) dS (LT, §) BY((K0), 1, (1)) J52 ({p}2)

_ FF FF FF _ gFF
+S(ﬂ)11 (li)i(ij)+ (li)ik Skil

< df (). 1, (7)) By (k. T, (1) i) 2 ({p})
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+2d3(k, 4, §) AS((Ki), 1,1) By ((U(k)), T, (i) Js” ({p}2)

—_~—

+2d3<k,j,z'>A“((k?),l,wé%%a@n,i<ﬁ>>Jé”({pb)
+2d3(,4,5) AY((L), 1, k) BY°((k < i), 1, (7)) IS ({p}2)

+2d3(1, 4, 4) AJ((15), 1, k) BT ((k ( ), 1, (j ))J(Q)({p}z)
— 2 A§(k, 1,1) d3((k1), i, j) B ((( D), T, (7)) 15 ({p}2)
— 2 A§(k, 1,1) d§((K1), j,i) B ((( D7), T, (7)) IS ({p}2)
— 2 A3(k,4,1) A3 ((kl),lv(zl))BY’o((é)\(/) ) 152 ({p}a)
— 2 A§(k, j, 1) A§((kj), 1, (ﬁ))BY’O((k/;(/l), Li) 73 ({p})

X AS((ka), 1, (1)) BY°((ki) (1), T, ) I ({p}2)

+2 —I—SFF SFF _ qFF FF FF FF :|

S V10 R G ) A N S COF ()

><A°<<kj>, 1, (1)) BY (k) (17), T.4) IS ({p}2)

—_

g (ki 1) & (Ri), 5. T) BYO (k). T,0) I ({p})

- ; d o (1,3, 1) d3 o (k, 4, T) BY*((K3), T, (1d)) 52 ({p}2)

—_—~—

— 5 A1)y (Fi), 3, 1) BT (G (R0, T, () 52 (o))

_1 FF _ QFF _ qFF FF  oFF FF
2 +S(/€~i)i1 (j(ﬁg))ﬁ 1i(ﬁ)+ Ti(li) (l~i)z‘(k~z‘)+ (Z%)i(j(/ﬁ))

—_~—

x dS (ki) 5, 1) By ((Gi(k0)), T, (10)) J52 ({p}2)
by By 3.1, ((R7),6,T) BT ((h) T, 2 ({p))

- % dg,g(l>j> 1) dg,g(ka Z>T) BY’O((EZ.)vi (l;)) J§2)({p}2)

—_—~—

— 5 A3 (k). 1) BY(GRN), T G) 752 ({pho)

1
4= FF 4 gFF + §FF FF_ | gFF FF

2

—_ —

2 S(kj)]l (@’j/)) T 15(15) Sij(fj) (15)3(F5) ()i (i(k7))
x (7). i,1) BT (k). T, () 127 ({p}2)

1 . .
+ 5 d%g(l,Z, 1) dg,g((lz) )Bwo(k@l?( ( ))) ({p}Z)

5 Bk i, 1), 015.T) BY (), T, (7)) S ({p)2)
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— 5 AL ), (00), 5,1 BYO(GR), T, G00)) £ (o))

}_FF FF FF _ oFF FF _ oFF
Jr2 S(ﬁ)il (]ﬁ))ﬁJr (ki)il S(i&)zTJrS(Ei)i(ﬁ) S(,;i)i(jﬁf))

x dS ,((13), 4, 1) BY°((ki), T, (j(12))) J5° ({p}=)

b5 8,051 (), 6.T) B (h, T, (1)) I ({p)2)

— 5 By, 3. 1), 0,5, T) BY(GR)), T, () 5 ({p)2)

— 5 AR, (), BY(GR), T, (9))) 75 (ko)

—i—l _ gFF FF FF_ _ gFF_ FF _ _ gFF __
2 (15)51 ()41 15 (k3) 15 (k3) (k)7 (15) (k)i (i(15))

x dS,((15),4,1) B} ((k3), T, (i(15))) J5” ({p}2)

—_— —

— 5 Y3, 1) SR, . () Bk, 1, G3))) 752 (ko)

—~—

b5 By 3,1) A3(RD), 6,0) BY (k). T, (1)) 152 ({p))

by (0,5, 1) A 6 ) BY (@), T, (10) IS (o))

1
4o |4 QEE __gFE_ _gEE 4 gFF EF L
2 kDI GGy FDIL T TGy I T

—_— ——

x AY((k3), 4, (13)) By ((i(k), 1, (i(15))) J52 ({p}2)

—_~—

— 5 ASCh i) AR, 5, () BY°(G(Ri)), 1, G09) TS (o))

—~—

b5 By 1) AY(R),3.1) BYO(G(Ri)), T, GI) 82 ({p)2)

b5 8,06, 0) AY((T0), 5.k BYGR). T, (G00) L2 ({p)2)

1 FFE FFE FFE FF FFE FF
+ =+ 5=~ — —~ — =5 45 — S5 =, —
20 0 GGauGa)  F TGy G G)a
x AY((ki), 4, (1)) BY*((i(ki)), 1, (5(10))) IS ({p}2)
— AY(k, 1,1) BY°(T, 4,4, (k1)) J$¥ ({p}s)
— AQ(k,1,1) BY° (1,4, j, (k1)) IS ({p}s)

— AQ(k,i,1,0) BY (T, 4, (kil)) J5” ({p}2)
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+ AQ(k, 1, 1) AY(T, 4, (kD)) BY(T, 4, (i(kD)) J5? ({p}2)
— AQ(k,1,4,0) B (L, (jl) I3 ({p}a)
— AQ(k,5,1,0) BY (L4, (kjl)) 57 (tpy2)
)y (0,5, 1) AU, T,0) BT, (1) 72 ({p})

+ d5 (15 ) A5, Tk) BT (L, (k(lg 13))) 78 ({p)2)

+ AYR,1,0) AYT, 5, (B)) BP0 i, (i) >>> ({p}2)
AL g (T, () BYO(E, (h(2)) <w>> D) 15" ({p}2)
= d3(h, 1) d5 (D), 1 (G0) BT (T, (R (5D G), D) 12 ({p}2)

),

+ AS(k, 5,0 dS ;o ((k4),1,4) BY°(T, (i), () 12 ({p}2)
— d3,(1,4,1) dS (K, T,9) BYO(1, (i), (1)) Js” ({p}2)

FF FF FF EF
— | T Sahn ~ Sanigy T~ P

B10(T, (kj)(i5),0) J52 ({p}e)
1,

—_~

X d3 g—)q( k.j) (U)
(k, T, (j2)) BY° (T, (k(j0)), 1) 52 ({p}2)

+ f39(1 i ])dBQHq k

ki) ((Ri). 1, () BT, (R (@), 1) S ({p))

—_~

((
+ AQ(k, i, 1) S ((RD), 1, ) BY (T, (j (ki) (1d)) IS ({p}2)
— d3 (i, 1) d3 o (k. T, §) BYO(T, (k5), (10) J52 ({p}2)

_ FF FF FF _ QFF
+S(]z)z1 S(ki)i(ij)+ (Ki)il St

X d3 g (kD). 1, (j0)) BY (T, (ki) (i), 1) J2(2 ({p}2)
+ f9(L 1) d3 g (1, T, (i) BT (1, L (1)), k) 75 ({p}s)

—_——

— d3(1,4.i) d3 gy (), 1, (G2)) BY° (T, (1) (i), k) IS ({p}2)
+ A4, k) d3 g ((5),1,6) BYO (T, (i(15)), (k3)) S ({p}2)
— d3 (k. 4. 1) d3 4 ,g(1,T,9) BYO (T, (I7), (k3)) J57 ({p}2)

FF FF FF
S(U)Jl S(lj)() S(lJ)Jk

Skjl

k) I ({p}2)

x d9 .o (7)1, (7)) B (T, () (i5),
+ 19, (L, 7)) dS g (LT, (G0) BY (T, (1(j0). k) J57 ({p}2)

i), (0. 1, (5)) B (B)(0), k) 2 ({p)a)
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T AYL k) dS, o ((F0), 1,9) BYO(E, (), (i) 72 (o))
— 3 (kviy 1) dS (1T, §) BYO(T, (1), (Ki) J52 ({p}2)

FF FFE
- S(yz)zl S<ﬁ>i<fj>+5<zz> — Skit

x dS o, ((0), 1, (i) BY (T, (1) (ji), k) J. <2><{p}2>
+ d(k.i, §) AS((ki), 1,1) BY(T, uz),(z(m))) I ({p}2)
+ dS (k. 5.0) A((k5),1,0) By (1, (i) >,<1<kj>> I ({p})

T (L. §) A3, 1 k) BYO(T, (i), (k(00))) 7 ({p}o)
+ dS(1,5,9) AY((15), 1, k) BY° (T, (i), (k(15)) J52 ({p}2)

—_~—

— AY(k, 5,0) AS((k), 1, (31)) BT (T4, (k) (1) J52) ({p}e)

Ak 1) AY((Ri), 1. () BY (T, . (ki) iD) 2 ({p)2)

+ —i—SfF— FF FF FF + FF FF :|

L Y T G A L B GO U (1) B Ty

X AO((kZ), (00)) B, , (ki) (10)) 52 ({p}o)

FE _ GFF___ FF _ ¢FF FE
+_+Sza<157(l/3)+sm ST(’E)(U) Stsi 2@ SU?J’”’”J’J

x AS((K7), 1, (7)) BY° (L4, (k) (1)) I ({p}2). (B.38)

B.2.2 B-type O(N°) contribution

The subleading-colour matrix element, Bg ’0, is summed over all gluon permutations, in-
cluding the initial-state gluon. The subtraction term is constructed in a way such that it
is summed only over final-state gluon permutations.

The form of the IF collinear unresolved limits depend on whether the initial-state
parton is abelian-like or not and so the subtraction term is constructed to reflect these
possibilities. The total subtracted contribution to the cross section is given by

ST BB 4,0,5,4) - Y BYYS3,1,4,5,4), (B.39)
P(1,ij) P(i,j)
where
B (k,1,4,5,1) =
+ A§(k,i,1) BY*((ki), j, 1
+ AY(k,i,1) BY°((ki), 1,
+d3 ok, 5. 1) B3 ((kj), i
+d3,(1.5,1) By (k,i, 1,

(12)) I ({p}s)
(12)) I ({p}s)
.0 I8 ({p}s)
(15)) 157 ({p}s)
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+ d3(k, 1, 5) BY (ki) 1. (i), 1) I3 ({p}=2)
+d3(1,4,4) BY (k. 1, (), (1)) J5” ({p}=)
+ Ak, 0,5, 1) BY((Kig), 1, (17)) IS ({p}2)

ki, ) AY((RD), (7). D) BYO((R0) i), 1, (1)) 2 ([p}s)

_~

— d3(1, j. ) AS(k, (73), (1)) BT ((k(5)), 1, (G (1)) J52 ({p}2)

kj), i, (15)) BY°
—dg,gw,j,l)A((ky)zz>B%°<< 9)i), 1, (I4) 2<{p}2>
— d3 (1, 5,1) AQ(k, 4, (3)) BY°((k0), T, (1)) J52 ({p}2)

)
(ki (
- A%(k,y,wA%((%?),zy (1)) BY°(
+ Ak, ;1) AS(( (ks

(k

|4 §EE  _gFE___ _gFF | gFF  _ gFF | gFF
DI GGy EDIL GGy @I )

< A7)0, (T7)) BrO(Ge), 1, (605))) 72 ({p})

— AY(k,1,0) BY°(T,4, j, (k1)) IS ({p}3)

— AY(k,1,0) BY° (1,4, j, (k1)) ISP ({p}3)

— AQ(k,1,4,1) BY (T, j, (kL)) J3 ({p}2)

A, 1,0) Y, () BT, i0))) S ({p))
A4, 1) AQ((R), 1, () BTV, 5, (Ri) 00)) 7 ({p))
— AQ(k,1,5,0) BY (L4, (k1)) JSP ({p}a)

AR, 1,0) AT, (R)) BT, (R))) I8 ({p)2)
Ak, 4, 1) AR, 1, () BY (L, () (D) 2 (o)
— AQ(k,5,1,0) BY (L4, (kjl)) JSP ({p}a)
(05 1) AR, T, BT, (1)) I (p)2)
— AQ(k,1,4,0) BY (L4, (kjl)) J5” (tph2).
(05,1 AU, TR BYOT 1, (6{1) 72 (b))

Ak, 1,0) AY(T 4, (F1)) BY°(T. 4, Gi(RD)) 2 (o))
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— AQ(k,1,1) A§((ki), 1, (10)) BT (T, j, (ks )( 0) 757 ({p})
+ d§(k, i, §) AS((ki), 1,1) BY(L, (i), (( 00) I3 ({p}a)
- dY(L.i. ) AY((E). 1. k) BYO (L (7). (7)k)) 152 ({p}2)

FFE FF FF FFE FFE FFE
U oy (o R R (S (R oy
x AY((ki), 1, (1)) BY° (T, 4, (Ii) (ki) J52 ({p}a). (B.40)

B.2.3 B-type O(N~2) contribution

The most subleading-colour two-quark-three-gluon matrix element contains only QED-
like unresolved limits and is not summed over any gluon permutations as it is completely
symmetric in all gluon arguments. Its contribution to the cross section is given by

B1°(3,1,2,5,4) — BY*5(3,1,2,5,4), (B.41)

BYYS(k,1,0,5,1) =
+ AQ(k, i, 1) BY((Ki), 1, 4, (1)) IS ({p}s)
+ AQ(k, 3, 1) BY* (k) 1,4, (13)) I8 ({p})

+ AY(k, i, 5,0) By ((kij), 1, (177) IS ({p}o)

+ AV (k, 4,4,0) By ((kji), 1, (1)) IS ({p}2)

—_—~ —~—

— Ak, i, 1) AS((KD), j, (1)) BY°((G()), 1, (1)) J52 ({p}2)
A, 4,1 A, 4 (7)) BYG0)), 1, (103)) I8 ({whe)

— AY(k,1,0) B (L i, 5, (kD)) 15 ({p}s)

— AY(k,1,1,1) BY°(T, 4, (kil)) J5? ({p}2)

+ AQ(k, 1,1) AY(T,4, (kD)) BY (T, j, (i(kD)) J5? ({p}2)

+ AQ(k, i, 1) AY((ki), 1, (1)) BY (T, 5, [(ki), (1)) J5°) ({p}2)

— AQ(k,1,5,0) BY° (L4, (kL)) 75" ({p}2)

- AY 0, 1,0) AYCT, j, () YO, GORD)) I8 (o)

+ AS(k, 5.1) AY((K3). 1, (13)) BT (L., [(k5). () Js” ({p}2). (B.42)

B.2.4 C-type O(NgN?!) contribution

The four-quark-one-gluon matrix element has contributions from identical and non-
identical flavour quark lines. As was the case in sections B.1.4-B.1.6 for the quark channel,
the gluon-initiated matrix elements can be decomposed into CY’O terms and DY’O, where
each term can be further decomposed into leading colour, subleading colour and closed
quark loop terms.

— 67 —



The leading-colour contribution to the cross section is given by
C7°(3,1;5,4;2) — C7"5(3,1;5,4;2), (B.43)
where
CT5(k, 134, s 1) =
+ (.. 5) B3 (k. (7). 1. (10)) 15" ({p}s)
+ B (k. 3.1) B3 (k3), 1, (50), ) 13 ({p}a)
7,

—a} g (k1,0 CFO(Ti4, 3 () IS ({p}s)
—a} g1, 1) CFO((RL): 4, 53 T) IS ({p)s)
— (i, 1,7) O30k T, (i) 1) I8 ({p}s)
— g (3, 1,9) OO (ks (7). T; 1) 5V ({p} )
(k. 4.1) a, o (F7), 1.1) BYO(T, (7). (R3)D) 12 ({p})
+ B4, ) alg g (1), 1, K) BYO(@0)R), (), T) I ({p}a)
+ B4, 1) BY (k. T, (1)) J5” ({p}2)
+ BY(k, j,i,1) By ((kji), T,1) IS ({p}2)
— a3 g (1,1, k) BS(T, ,4) BYY (K1), T, (i) J52) ({p}2)
(i), 1, (k

Ty
(kL)) IS

bb

(1
— a g (k, 1,1) ES(T, j,4) BT (i ({p}o)
(

(
Bk, 4.1) a, o (F), 1.1) BYY((). T, (R3)1) 152 ({p}2)
B4, ) 0y g (1), 1, K) BYO((@0)R), T, (7)) 2 ({p}a)
a1, 5) B (k. (7). T) BEO((K(i7)).T. 1) 12 ({p})

— a3 g (G, 1.9) ES(L (i), T) BYD(k, T, (1(i9))) J5” ({p}2)

_

— ES(k, i) dS (), 1, (7)) BY 2 (k) (i), 1) 37 ({p}2)

— B0, )y (O, (), 1) BYO((RGi), T, () 72 (o)
)y (F2), 1, (57)) BTG T, (00 07)) 2 ({p))

= BBk, 4, 9oL (), ) BYX(GRA). T, (G))) I ({w}a)

+ ES(j. k, z>B”0<uk>, 1, (ik),4) J5” ({p}s)

+ ES(i,1,k) By g, (1), 1, (i0)) J5” ({p}s)

B0, ) 0l (), 1, ) BYS (D7), (R1). T) I ({p}a)

) a8 g (), 1,) BYQ(T, (R, (GR)0)) I (1))

+ E9(i, 1k, 1) BY S (5, T, (Kli)) J5” ({p}2)

- Eg(laZ J

+ EY(j k.1
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+ E(j,k,1,1) By g((k5), 1,4) J52 ({p}2)
(T, k1) BY 3 (i), 1, (k1)) J5” ({p}2)
— a8 (G 1,0) ES(T, k1) BYS((RD, T, (i) J2 ({p}2)
+ ES(i,1, k) af o, ((00), 1,5) BYS (D7), T, (k1)) I3 ({p}2)
- ESGkyD) agsg(GR), 1,1) BYS (R, T, (GR)) I ({p}a)
(k) I ({p}2)
— a§ (1,1, k) ES (5, (KL, T) B?’%(jffsz)),i i) 152 ({p}2)

)
— (k1,0 ES G, (K1), T) BYS (5,1, (i(kD))) J5”
— E9(i,1, k) dS ,,((i0), 1, (k1)) BT3 (4, T, () (R1)) 72 ({p}2)

E9
- asg g—>q(lv 1a]) 3
EY
3

— B,k 1) dS, (i, (R1), 1) BYS(GR), T, GG))) 72 ({p))

— ES(j, k, 1) d o ((5K),

— ES(i,1, k) 3., (5, (K1), 1) BY 9 (G (kD). T, (i) 52 ({p}2).

L, (k1)) BYO((ik) (kL) T,7) J5 ({p}2)

B.2.5 C-type O(NrpN~1) contribution

(B.44)

The subleading-colour matrix element constructed from squared non-identical quark am-

plitudes contains both colour orderings and diagrams where the vector boson couples to

either quark line. The contribution to the cross section is given by

él%o(ga i; 5,4; 2) -

where

YO8 (k, 154, 5;1) =

2Bk 5) BYO(GR) 1, (7),1) 18 ({p}s)

2
b5 B30,.9) ByO Gk, (). 1, () 75 (o)
— Sy gis1,7) CF (s T, () 1) J57 ({p}s)
—a gk, 1,0 O (T4, ; (kD) I8 ({p}3)
— a8 4 g3, 1,8) CF 0 (k: (i), T50) I ({p} )
— a3 o (L 1K) CFO((R): i, 55 T) I8V ({p}s)

+ BY(k,i,,0) B2 ((kij), 1, (130)) Jy” ({p}2)

2

N = l\D\H

P

—_~

ES(1,4,5) AS((00), (7). k) BTy ((k(ig)), 1, (13)(37)) J3

29(k,4,1,5) BYS((kig), T.1) JS ({p}=)
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C7%5(3,1;5,4;2),

L B0k, i.5) AY(GRD), (77),1) BYO(R0) ). 1. (1G7))) S ({p))

~——

2 ({p}2)

(B.45)



AQ1.4) L (T, (7)) BYO (k7). T.0) 12 ({p)2)

EY(1,4,1,5) BYY(k, T, (1i) J5” ({p}2)

AY(i,1,5) ES (LT, (i) BY2(k, T, (1(i))) Js” ({p}2)

+ LB, 04y el (Fi), 1.1 BYO(T, (7). (1)) 72 ({o}o)

4o BS(k,i,§) aS g (L 1, (kD) BYD((U(KD)), (i), T) Js? ({p}2)

+ = BY(Li, ) a3 g gk, 1, (1) BYS(L, (i), (k(12)) J5” ({p}2)

LB, ) 0, (), 1K) Bk, (), T) I ({p))
+ E3<m> 5303, (KL, 1, (i%)) IS ({p}s)

+z Ego,kw 7Ok, 1, (kD) 7) ISP ({p}s)

)—ll\’)\»—lw\»—l DN | =

— N =N =N

— N

+ BY(i, k,1,5) BYS((ilk), 1, (kD)) JS ({p}2)

e~

—_~—

—+

E(i,k,1,1) BY9 (5. T, (kD) IS ({p}2)

Ak, 1,0) BS oo (0, T, (RL) BYS (3, T, (i(kL)) I8 ({p})

2(]7 k? 17 l) B’Y b ((]kl)v 17 Z) JQ ({p}Q)
L 0 B, G T (R) BES(GRD). T i) 2 (p))
ES(i,k,1) a3, ((iK), 1, §) BYS((i(ik)), (kD), T) I ({p}2)

+ 5 B9, k1) a3 4,0, 1, (ik)) BYS (T, (kL), (j(ik))) IS ({p}2)

—~—

+ 5 B8 G k1) a3 g (), 1,8) BYG(L, (RD), (i(8))) J5” ({p}2)
1 —~ 0, =

+ 5 B30, 1) 08 gq i 1, () BYG(G(GR)), (KD, T) T3 ({p}a).

+
— N = l\D\H[\D\H m\}—lm —

+

NN

— DN

B.2.6 D-type O(NY) contribution

— = BS(i, k. 1) AS((ik), (kL), ) Bz;g«ﬁ?», 1, (ik) (kD)) 52 ({p}2)

B,k 1) AS(GR), (R1), 1) BYS(GR) (R, 1, (1)) 7 ({p}2)

(B.46)

The leading-colour term coming from interferences of quark orderings is given by the DY’O

function, which generates the contributions to the cross section,

DT°(3,1,2;4,5) — D*%(3,1,2;4,5),
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where
DY (k, 1, j34,1) =
— AY(i,1,k) DI°(T,
— A%(j,1,1) DY (4,

+209(1, 4.4, jik), 1, (15i)) IS ({p}2)

0(i, k,,1) B3 ((ikj), 1, (k!
+209(k,i,j,1) B”;q“w%?j), 1, (i51)) Jé ({p}2)

(1.1, k) BY((jik). 1, (

(7. L, k) BY9 (k). 1, (510)) IS ({p}2) (B.48)

+2C4 J?lalv

B.2.7 D-type O(N~2) contribution

The subleading-colour matrix element D?’O has the same infrared structure as the D?’O
function discussed above and so their subtraction terms are identical,

DYY(3,1,2;4,5) — D7%%(3,1,2;4,5), (B.49)
where
DY5 k1, j5i,1) =
— AY(i,1, k) DYO(T, ; (ik), 1) TS ({p}s)
— AY(j,1,0) YO0, T: &, (1)) J57 ({p}s)

+ 2090, k, 5. 1) BYD (k). 1, (kjD) J5? ({p}2)
+2C9(k, i, 4.1) BY9((kig), 1, (1) 152 ({p}2)
+2C90, j,i,k) BYY((Gik), 1, (150) 152 ({p}2)
+209(5. 1,1, k) By ((1ik), 1, (1)) Jy” ({p}2). (B.50)

Real-virtual. The gluon-induced real-virtual corrections have at most three partons in
the final state and therefore only the two-quark-two-gluon one-loop matrix elements are
necessary. These matrix elements have a colour decomposition given in table 5 and we
present the subtraction terms for the colour-stripped matrix elements in this section.

B.2.8 B-type O(IN2) contribution

The leading-colour matrix element is given by the function By ’1, which is summed over
both gluon orderings. The subtraction term B; ’1’T, is constructed to cancel against the full
set of orderings and is thus not summed over any permutations of gluons. The IC terms
from the RR and the IC mass factorization kernels combine to form a finite subtraction

’y?
term, By’ g_,q

> BY'(3,1,2,4) - By (3,1,2,4) - B, (3,1,2,4), (B.51)

The total contribution to the cross section is given by

P(i,2)
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BV (1,4, k) =
- [+ Ty 66(513) + Ty o0 (ski) + Jé:é&slj)] By (j,1,1,k) J5V ({p}s)
- [+ At + B 0+ o) | B3 G010 25 ()
i 1) | BY G TR) 6(1 = 20601~ )
+ (Tl + Tt ) B0 A ()

+ dj 4(k, i, 1) [B’Y’I(J}L (ki) 6(1 — 1) (1 — z2)

+ (+ Ty 60 513 + J%:é’&slj)) By (5,1, (ki) | J5? ({p})

+ [d};’g(j,i, 1D 6(1—21)6(1 — )

+ ( = 2ygo(s1) + Taicio (1) + Jaiga (si0) + J;,’éFG(sM)) EHERS 1>}

x B ((71), T, k) I ({p}2)

+ {d;gﬁq(g’, 1,4)6(1 — 21) 6(1 — a2)

" ( 2B (s )+ TEE (1) + T () + J;;gasm) &G, i)}
x BIO((i),1, k) I ({p}2)

+ [dé’g(k:,i, 1)6(1 —21)6(1 — x9)

+ ( + Jyga(510) + Tygg(s1k) + Jaoq (ski) — 2J§;é§(sl(,;i)>> 49, (ki 1)]

x BYY(5,T, (ki) J5* ({p}a)

+ {di%,’gﬁq(k, 1,4)6(1 — 21) 0(1 — )

+ ( + 5 (515) + oo (s18) + Ty 66 (k) — 2J§;ég<sl@)>) d9, (1, ¢>]

x BY°(5,1, (ki) J$2 ({p}2)
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- [ 48401050 - 22) 801 - 22

+ < ~ D00 (517m) + Jaico(s1k) + J%:éé(aﬂ) A3 gq(i 1, k)}

x BYO((7k), T,4) J52 ({p}o)

_ {+ JEEE (s30) + TEE (510) — JEEE (550) — JEEE (511)

+ < — SFF(SM, Sji, T1i4i) + SFF(st-, Sji, 1) — SFF(sjk, Sjis Tjk ji)
+ S8TF (515, 554, xlk,ji)ﬂ d3 4y, 1,0) BYY((73), 1, k) IS ({p}2)

- {Jr Tyt (51) = Tyt (ski) + Tyn (5k1) = 3 Go (1)

+ < — ST (514, 810y w1ik) + ST (81 Sk 1) — ST (Skj, Skis Thojia)

+SFF(81j,sm7$1j,kz‘)>] dg,gﬁq(k, 1,1) B?’O(j,T, (l;:vi)) Jz(z)({p}g)

LFF LIF LFF
. [ 00 (5ik) = Bgo(sigm) + L206 (5m):)

1LIF 1,FF 1,FF
+ JQ,QG(STi) - J2,QG(3ji) - JQ,QG(Ski)

+ ( + ST (550, 85k, i k) + ST (skis Sk Thi ) — ST (S Sjky 1)

= S (s Gy it T Gyig) = ST (510 83k i) + ST (s Sk muﬁém))]

x A3 (i, 1, k) BYO((GF), 1,1) IS ({p}o)

1 1,IF LIF LIF
) [+ D26 (515) = Jaaq(517) — Jaioq(s1k)

1,IF 1,FF 1,FF
+ JQ,GQ(SIk) - JQ,QQ (sjk) + JQ,QQ (S(ﬁ)k)

+ < = 8T (515, 85, w1j8) + ST (5350 Sk T1Giy i) T ST (51ks 8jks Tk, k)

= 8" (g s Tk, jk) T ST (sjky ks 1) — SFF(S(ﬁ)k’ Sk f(ﬁ)k,jk)ﬂ
x S 47,3, 1) BY((70), T, k) J57 ({p}2)
1

L,IF 1,IF JIF
D) [ J2,GQ(51k) - J2,GQ<8T(k~i)) - J21,GQ(81j)

LIF LFF 1,FF
+ 60(515) = Jaloq (3ki) + J2100 (55)
+ < = ST (s1s sugs w1k kg) + ST (570 k55 Trny ) T ST (5175 Sk T1jk5)

FF FF FF
=S (Sijvskjvxfmkj) +S (S/ijskj71) = (S(&)jaskja$(&)17k])>:|

- 73 —



x dS 4(k,i,1) BY° (5, T, (ki) J5” ({p}2)

LFF LFF 1,IF
+ 9 [+ JQ,QQ (Sjk) - J2,QQ (S(ﬁ)(k})) - JQ,GQ(SIJ')
LIF LIF 1,IF
+ JQ,GQ(Sl(ﬁ‘)) — Jolag(sie) + J2,GQ(31(1&'))

+ ( - SFF(Sjk, Siks 1) + SFF(S(jF'z)(sz)’ Sjk’x(fi)(lgi),jk) + SFF(Slj, sjk,x1j7jk)

- SFF(Sl(ﬁ‘)a Sik, xl(ﬁ),]k) + SFF(Slka Siks $1k,jk) - SFF(Sl(];i)a Sik, l‘l(kﬁmk))]
x AY(j, i, k) BY°((7i), 1, (ki) I ({p}2)

IF IF coN B0 T T 2
+ | = 20500 .6q(516) + 2J§,QQ,gaq<slk>} DY(1,4,§) BY° (i), T, k) J5? ({p}=)

| N B0, = 2
| 2050040 (510) = 20500, 4-1q 555 | A3(L 4, k) BTG T, (%)) 15 ({p}2)

. = TN T . 2
+ |+ 2500,gq(518) = 2J5,’52,H<81@;>>] AY(1.4.K) By ((7K). T.4) 1 ({p}2)

| AN D -~ ~. 2
| = 27560,40(510) + 20550, g2q (1) | 8 (ks 8,5) BY(05), 1, (ki) J5” ({p)2)

+ | = 20200, (516) + 2J§:é$gﬁq<sl@>>] (k. 3,1) By (i), 1. (k7)) JS ({p}2)

N L= 2
+| = 20 6a(s14m) + 2J§;ég<sl@>] 0 gk, 1,8) BY G, T, (ki) J2 ({p}2)

+ | = 26 (1) + 2J§;é2<sl@)>} d3 g5, 1,0) BY((G0), 1,k) I3 ({p}2)
b (T )+ TG ) ) B G I (0)a)
- [ 48,001,050 - 22801 - 22
+ ( — L0 1Gm) + Saba(sik) + J%:éé(sm) A9(5.1, k)] BY° (1,4, (k5)) J5” ({p}2)
|+ TS ) = T s — TEEE (50 + T o)
+ ( — ST (54, Sji, T1i4i) + SFF(SJ'Z', Sji, 1) — SFF(sjk, Sjis Tjk ji)

+ ST (s1k, 854, xlk,ji)ﬂ d3 4,5, 1,0) BYY(T, (i), k) IS ({p}2)

1,IF

, 1,FF 1,IF 1,FF

+ < — ST (814, sk w10k) + ST (Skiy Sk 1) — ST (Skjy Skis Theji ki)
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+SFF(81j7Skz‘7$1j,ki)>:| dgﬁgﬁq(k, 1,4) BY’O(T, (l%vi),j) JQ(Z)({p}Q)

LFF 1,FF 1,FF
+ I:-i- J27QQ (Sjk) — J2,QG (Sji) — J2,QG (Skz)
1LIF 1,FF 1,IF
— D2 001G T Jaloc (G T Jae(sTi)

+ < + ST (554, 81y i i) + ST (ki ks T ) — ST (8 Sy 1)

= S (s Gy it P Gig) = ST (57 83k i) + ST (sy g Sk xl(ij)J'k))]

x A3, 1,k) BY° (1,4, (Gk)) I ({p}2),

B;:glil;q(jv iviak) =
1,IF 57,0 .. 3
— Ty b gsa(51%) BYY (1,5, k) IS ({p) s

1,IF =701 o 3
Ty bt aosa(516) BT (1,5, k) I8 ({p}s

)
)
+ [+ 200 g-q(518) = J%:éé,gwslw} AY(L,4, k) BY(T, 4, (i%)) 12 ({p}e)

i {+ Ty 000 g 518 = Ty g 51)) | A4S, K) BY (i, (8) 7 (o)

Iy b9 B1(y) A3k 1, 3) BYO(1, (i7), (ki) I ({p}o)

+ Ty gra (576) (L, 4,7) BY (T, (i), k) J57 ({p}2)

+ Ty 60551 B3k, 5:0) BIY(1, (51), (k) T3 ({p})
(

NS - 2
+ Ty b gsa (510 d3(1,4,5) BY (T, (70), k) 52 ({p}a).

B.2.9 B-type O(N°) contribution

(B.52)

(B.53)

The subleading-colour matrix element B; 1 (3, 1,2, 4) has its poles and divergences regulated
by the subtraction term B’; ’1’T(37 1, 2,4) and we also construct the finite IC subtraction

terterms. The total contribution to the cross section is given by

Z ‘é;,l(?’? iv 2a 4) - B;’LT(?” 17 27 4) - B;:glgq(& ia 2, 4)7
P(12)

where

B;’LT(jv iv ’i, k) =
— Iy bb (i) BYY G0, k) I ({p)s)
— TR (s50) BY° (i, 1, k) I (p)s)

— |+ Tyl (s1k) + Ty (s1) | B3C(, 1,4, k) I8V ({p}s)
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[+ JIEE (o.0) + JNEE <sm>] BOG. L k) I ({p}a)
+ Iy (5 B3, 1,0, k) IS ({p}s)

+ A%(4,4, k) [ ((ji), 1, kz))5(1 —x1)0(1 — z2)
(- I ) + o) ) B ) S )
G, [éz’l«ﬁ),l, B)8(1 — 21) 6(1 — )
I (s ) BT <<m,1,k>] 12 ({p})
(ki) [é?l(j,l, (R7)) 6(1 = 21) (1 — 22)
IS 50) BY LT ()] 87 ()
n [A%,(jn,k) 5(1 — 1) (1 — 2)
+ < + J21,755(3ji) + J;,jgg(ski) - J%:gg(s(gi)(ﬁ))) Ag(j7 i, k)]
x BYO((Gi), 1, (ki) J52 ({p}a)
+ [Ag,(j,i, k)6(1 —x1)6(1 — x2)
(4 T o) = T o)) ASG 0| B, () S7((0)o
1,FF JFF JF
- [+ 200 5i%) = T30 (5 Giyi) — Taoe(51)
1,IF 1L,IF 1,IF
+J, GQ(31(]Z)) J2,GQ(31k) + J2,GQ(S1(E¢))
+ ( — SFF(Sjk, Sk, 1) + SFF(S(]Z)(EZ), Sk, x(ﬁ)(la),]k) + SFF(Slj, Sik xlj,jk)
- SFF(Sl({j)a Siks $1(i~j),jk) + SFF(Slk, Sik, xlk,jk;) - SFF(Sl(f{i)’ Sjks x1(§i),jk)>:|
x AY(j, 4, k) BYO((70), 1, (ki) IS ({p}2)
AL R [Brlm, (G5)) (1 - 21) 5(1 — )

b (T ) + T ) ) BT G| I8 (o))
A1) [é;“u,z', GR)) 3(1 — 1) 6(1 — 22)

+ IR s1 ) B (L, G| 57 (k)
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- [Aé,g@, 1K) (1 — 1) 6(1 — 22)

Ty b0 (s100) + Tt (515) + 13 GQ(SM)) 90,1, k)]

(-
x BT (1,4, (jk)) 57 ({p}2)
[Agg(j, LE)O(1 —21)6(1 — o)

(= I srgm) + I8 (o)) 430G 1.0)| BICL G IS (o))

[+ J;ég( SGk)1 )+ legg(sﬂ) + le’gg(m)
1,IF 1L,FF 1,FF
— Jo0a(51) — Jaloa (3 Gmy) — 2100 (Sik)

FF FF FF
+ <— ST (s Grym Sik Tz gn) =S (Sig ik Tigk) — S (Skis ks Thi k)

+8"(s S (Gkyi Siks T (]k)i,jk)+SFF(51i’5jk’951i,jk)+SFF(5jk75jkvl)>]

x A3, 1.k) BY (L, (%)) J5” ({p}), (B.55)
Byt (i k) =
— Ty gsa(516) B (1,4, 3, k) I ({p}s)
T 0.gsa(s1) BT (1,53, k) 5 ({p}s)
Ty 0.9 -+a(51) BY (11,5, k) 8 ({p}s)
Ty ga () AS(L, 0, ) BY (T, 5, (1)) I8 ({p}2)
+ Ty g (sk1) AS(L 5. B) BY° (1,4, (jk ) 12 ({p}a)

)
y 1,IF
+ [+ T500.0a(516) = Ta00, g%q(sl(kx))] 3

" [_ JQ{éZ,gﬁq( (kj)) + JQ QQ, g%q(slk) AS(1, 4, k) Bvo(lﬂv (]k)) J( )({p}Q)
g a(S1) A3(k, . 3) BYO (1, (i), (ki) I35 ({p}2)

S1(kj

] RQ.9—q
00,9 (51) B (14,1 BI(L. (7). k) 137 ({p}2)
T Ty 00.9a(15) Bk 4.0 BY(L, (G1), (k1) I3 ({p}2)
Iy 00,951 B4 5) BY (L. (i), k) I3 ({p}2)
G (51) D01, 35 0) I ()
T (s DY 15, K) ) (p)s). (556
We note that the last two lines of B; ’g’—>q come from the integrated version of the IC

terms in the Dg’o’s subtraction term because this contributes to the same colour factor as

the B; 1 matrix element. These two lines are therefore finite on their own.
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B.2.10 B-type O(IN~2) contribution

The subleading-colour two-quark-two-gluon matrix element Bg 1 has its poles and diver-
gences removed by the subtraction term Bg 15 We also construct the finite IC subtraction

term, B; ’;’_j:q The total subtracted contribution to the cross section is given by

By'(3,1,2,4) — BYT(3,1,2,4) — By (3,1,2,4), (B.57)

where
BYNT (1,4, k) =

306 (538) BY (G 1,4, k) IS ({p}s)

# A3 ) | BP0 1,5 801 = 1) 81 - 22)

IS ) B (0 1.0 | I (o))

+ [Ag,(j,z’, k)6(1—x1)6(1 — x2)
(4 IS0 = T ) ) ASG )| B 1, () S (0)o

- A0 | B (0, D) 81 - 20) 801~ 22
I3 BL, G)| 87 (o)

— [Aé’g(j, LE)o(1—z1)6(1 — x2)

(4 IS0 = 1) ) 43610 BIOLE GRD I (o), (B

,1,T
B%g—)q(]'} 17 Z, k)

IIF

.. 3
— Ty bt gsa(518) BY (1., ) IS ({p}s)
1,IF 0
3

B
+ Ty bt gorg(516) AS 4 (1,0, k) BT (T, 4, (ki) 52 ({p}2)
+ Ty bty gorg (516) AS 4 (1,5, k) BY (1,4, (k7)) J52 ({p}2)
1
= 5 T200.gq(51) D3 (1,5 k,8) 157 ({p}s)

1
2']216[929%11(513)1) S 1k, ) Jz ({p}B) (B.59)

)

As in the section above, we note that the last two lines of the IC subtraction term
are the integrated version of D?’O’S, combined with the appropriate IC mass factorization
counterterms to render it finite. They are included here, as these terms come with the
same colour factor as the B; ' matrix element and are finite on their own.
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B.2.11 B-type O(NrN') contribution

The matrix elements containing a closed quark loop contribute to two colour factors in
table 5. The matrix element, B%l, is summed over both gluon orderings but the subtraction
term, BJ ’1’T, is constructed to cancel the poles and divergences of the full matrix element

and so is not summed over any permutations. We also construct a finite IC subtraction
7, 1,T

term, B27gﬁq.

The leading-colour contribution to the cross section is given by

S BY'3.4,2,4) - BV (3,1,2,4) - By (3,1,2,4), (B.60)
P(12)

where
BV (A, i, k) =
- [+ 20 (s) + 2358 <sﬁ>] BY(. 1,4, k) I8 ({p}s)
- {Jr 205 (5ii) + 2j21,’££(8ki)} By°(j.i,1,k) J" ({p}s)
+ DY) | B4 (G, T 0 801 = 1) 800 — 02

T+ 27H0 (5,0) BYO(G0), T, k:)} 12 ({p}a)

+ DY (k,i,1) [E%Y’l(j, T, (

)
203 (5,0) BTG T, <k7'>>] I ({p}2)
1)

+ 238 s B .1, G| J57((0))
- A1) | BYN(GR L0600 ) a1~ o)
+ 203 s a) BRI (o))
A, Gk 51— 1) 50— ) 205 () AL, (L)

70,0, (k5)) I8P ({p)e)

+ |+ 20058 (sj0) — 20358 (sm] a3 (K, 1,9) BYY (1,0, (k5)) I8 ({p}2)

X
lbd||

+ | = 2Jy 58 (s50) + 20356 <s]-k>] a3 a1, k) BYO (1,4, (k7)) IS ({p}2)

- Aé,g(ja 1, k) 5(1 - xl) 5(1 - x2) + 2j21:55(5jk) Ag,g—ﬂ](j) L, k)

x BYY((k7),T,1) 5 ({p}2)
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+ |+ 20y 06 (si8) — 20556 <sm->] a3 (ks 1,9) BYY (k). T,4) IS ({p}2)

+ | = 20y 58 (si) + 20y b <s]-k>] a3 a1, k) BYO((GF), 1,1) IS ({p}2)

+ | D3 (.1, 1) 8(1 — 1) 6(1 — w2) + 2y e (s15) D (4,3, 1)

x B% (7). 1. k) 57 ({p}2)

+ | + 20556 (k) = 2f§:éé<su>] d,4(,4, 1) By (1), T, k) I8 ({p)2)
FREEE () (1) B0, T, () 2 ({p)2)

= 2036 (513) di g 1,1) BT ((57), T, 1) 7 ({p}2)

+ | D (k1) (1 — 21) 6(1 — w2) + 2Jy o (s18) DY 4 (k. i, 1)

x BT, T, (ki) I ({p}2)

71L,FF

+ |+ 20y b () — 20y b (s |d g (k. i, 1) BYO(G T, (ki) ISP ({p}2)

+2J§5£?< i) S g 1,4) BY((G0), 1 k>J2 '({p}2)
- 2J2,’QG(31k)d3,g—>q(k 1,i) BVO(J,L(N)) ({p}?) (B.61)

AT
B;gﬁq(], 1,k,i

)

JLIF s15)
Iy QQ,g—q\°Li

) =
(511) C3 (13 4. ks 1) ISV ({p}3)

— g sa(510) €3 (i34, ks 1) ISV ({p}3)

Ty b g $15) B4, B) BY(L (GR), (07)) 78 ({p})

Ty b ga(570) B 4(1,5.K) BYY(T, (k). 1) J3” ({p}2)

= 2y b gsa(510) 230 o g (570 | ES, (1,5, %) BT (), T,0) J$2 ({p}a)

= -~ 2
Ty b g sa(510) BS g (5, 1,4) BY o (k. T, (i) I8 ({p)2)

1,Q
21522 gﬁq(sl") E3 . —>g(k7 1,1) 175(( 79)71]') J2(2)({p}2)- (B.62)

B.2.12 B-type O(NrN~!) contribution

The subleading-colour contribution to the closed quark-loop matrix element is given by the
B;’ ! function. The poles and divergences of this function are removed by the subtraction
term ég LT We also construct the finite IC subtraction term, B; ’g’_>q which is derived
by integrating the IC terms in section B.2.5 and combining with the relevant IC mass
factorization kernels. The total contribution to the cross section is given by

BY(3,1,2,4) — BT (3,1,2,4) — Byl (3,1,2,4), (B.63)
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where
By, i k) =
- [+ Jylc (850) + Ty (1) + 2J§;é€;<sjk>] B3(j, 1,1, k) I ({p}s)
~ A8 LR | B GR) 801~ 1) 61 - )
2L o ) B4 G| 87 ()
A8 | B (1, ) 601~ ) 51— 22)
+ 23 s y) B0 1, )| 57 (b
- [A;;(j,i, k) 6(1 — 1) 6(1 — x2)
(4 T3+ I ) ) 4860, 0] B0 1, () 57 ()

- {Aé,g@, 1,k) (1 — 1) 6(1 — z2) + 2y oy (s0) A7, 1, k)] BY° (1,4, (jk)) IS ({p}2)

| - TG o) = G5 )+ 27588 ) | A8 1.8 BT G I (),
(B.64)
ByLT (. 1,i,k) =
3 g (516 €3 011, ks 1) ISV ({p)s)
3 g s (516) €3 005, ks 1) ISV ({p)s)
Ty gsa (1) ES G 3.K) BYO(L, ). (1)) 157 ({p}2)
Ty g g (57:) ES (L5, K) BLY(T, (7K),0) 5 ({p}2)
Ty asa($10) B (G, 1,1) BYS (R, T, (7)) I8 ({p}2)
— 3 00,g-5a(516) B g (K, 1,3) BTG (kD) T, 5) I3 ({p}e). (B.65)
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