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1 Introduction

Over the last decade, Next-to-Next-to Leading Order (NNLO) QCD calculations for hadron

collider processes have sustained tremendous progress. Owing to the development of many

independent approaches [1–31] almost all non-loop-induced 2 → 1 and 2 → 2 processes have

now been computed, typically in more than one computational approach. Such massive

theoretical progress has led to the creation of public codes and has started to produce

valuable and solid LHC phenomenology on a massive scale.

The computation of 2 → 3 hadron collider processes represents a natural step beyond

the current state of the art in NNLO calculations. Since many of the available compu-

tational approaches are generic, in principle they should be able to handle the problem

of double real radiation in 2 → 3 processes. The calculation of the so-called real-virtual

correction to such processes should also be possible, in principle, due to the existence of

numerically stable libraries for one-loop amplitudes. The only ingredient for such calcu-

lations which is not readily available are the two-loop five-point amplitudes. Thanks to

the development of various new methods [32–45], first results for selected helicities, color

structures or kinematics (typically Euclidean) have started to appear. This includes 5-point

amplitudes computed in QCD [46–56], in pure Yang-Mills [57–59], in supersymmetric the-

ories [60–63] and in gravity [64–66]. In this work we calculate the two-loop amplitude

qq̄ → γγγ which is the first time a 5-point two-loop QCD amplitude is derived explicitly, in

analytic form, in the physical region. We discuss this result at length in section 2.2 below.
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The goal of the present work is to demonstrate the feasibility of existing calculational

technologies to deal with 2 → 3 hadron collider processes. We have decided to apply this

first-ever NNLO 2 → 3 calculation to the process pp → γγγ + X. Our motivation for

choosing this process is twofold. First, the production of colorless final states has always

occupied a special place among hadron collider processes and has been the pioneering work

for both 2 → 1 and 2 → 2 processes. In addition, the calculation of the two-loop amplitudes

is more feasible due to the smallest number of scales involved.

Second, the process pp → γγγ +X is of direct phenomenological interest. The cross-

section for three isolated photons at the LHC 8TeV was measured in detail by the ATLAS

collaboration [67] (see also the earlier measurement [68]) and was found to be significantly

above the NLO QCD prediction in a wide kinematic region. Since at NLO the theory error

is completely dominated by missing higher-order terms this process represents a prime case

for an NNLO QCD calculation. Indeed, we find that with the help of our calculation this

discrepancy can be addressed (see section 3).

The paper is organized as follows. In section 2 we explain our calculation with emphasis

on the derivation of the two-loop amplitude. In section 3 we present our predictions for

the fiducial and differential cross-section. In section 3.4 we discuss the important question

of perturbative convergence in this process. Our conclusions are summarized in section 4.

2 The calculation

In this work we follow the STRIPPER approach [11–13] previously applied at NNLO in

QCD to top-pair [69–73] and inclusive jet [74] production at the LHC. The framework is

implemented in a fully-differential partonic Monte Carlo program which can calculate any

infrared-safe partonic observable. The technical details about our implementation can be

found in ref. [74].

The complete calculation converges very well in terms of phase-space integration. Not

counting the CPU time needed to evaluate the two-loop finite remainder (see section 2.2.2

for details), it took only about 2k CPU hours to complete. The slowest contribution (about

1k CPU hours) is the real-virtual finite contribution due to the slow evaluation of the 6-

point one-loop amplitude with OpenLoops 1. That contribution, however, converges fast

in terms of required phase-space points.

The ingredients needed for the present calculation are tree-level amplitudes as well as

the finite remainders of one-loop and two-loop amplitudes. Their calculation is described

in detail in section 2.1 and section 2.2. Here we only point out that all required one-loop

amplitudes are included exactly, with full color dependence. The finite remainder of the

two-loop amplitude qq̄ → γγγ is included in the leading color approximation, additionally

excluding diagrams with closed fermion loops. The justification for this approximation is

given in section 2.2 below.

The infrared subtraction operator (sometimes called “Z”-operator) is given in ref. [13];

its leading color approximation can be found in ref. [51]. We work in a theory with 5

massless active quark flavors and renormalize the amplitudes accordingly. No loops with

massive fermions are included in our calculation. Their effect in the context of diphoton

production has been discussed in ref. [75].
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2.1 Tree-level and one-loop amplitudes

All tree-level diagrams are computed with the help of the library avhlib [76, 77]. For the

derivation of the two-loop finite remainder the one-loop amplitude qq̄ → γγγ is needed to

order ε2 (where d = 4−2ε is the space-time dimension). We have computed it following the

standard Feynman diagram plus Integration-by-Parts (IBP) identities [78, 79] approach.

All required master integrals expanded to that order in ε are available in electronic form

in ref. [53]. The finite remainders for all one-loop amplitudes are obtained from the library

OpenLoops [80, 81], while the one-loop squared qq̄ → γγγ contribution is taken from the

library Recola [82].

Unlike the case of diphoton production, the gluon-initiated one-loop amplitude

gg → γγγ vanishes and thus does not contribute to the process studied in this paper. Since

the gg-flux is sizable, the vanishing of this contribution is of phenomenological significance

and we discuss it in more detail in section 3.

2.2 The two-loop amplitude for qq̄ → γγγ

An important novelty in this work is the calculation of the two-loop amplitude for the pro-

cess qq̄ → γγγ. Although our calculation is restricted to the leading color approximation,

this is the first time a two-loop five-point amplitude is put in a form that can be used in a

phenomenological application. For this reason we describe it in detail in this section.

2.2.1 Structure of the two-loop amplitude

We need the two-loop amplitude |M (2)(qq̄ → γγγ)〉, multiplied by the Born one

|M (0)(qq̄ → γγγ)〉, and summed/averaged over helicities and color. Its color decomposition

reads:

∑

2Re〈M (2)|M (0)〉 = M (lc, 1)
(

N3
c − 2Nc + 1/Nc

)

+M (lc, 2)
(

N3
c −Nc

)

+M (f)
(

N2
c − 1

)

+M (np) (Nc − 1/Nc) , (2.1)

where Nc = 3 is the number of colors.

In this work we simplify the calculation by utilizing the following approximation:

∑

2Re〈M (2)|M (0)〉 ≈ N3
c

(

M (lc, 1) +M (lc, 2)
)

, (2.2)

i.e. we neglect the non-planar contribution M (np) as well as all contributions M (f) with a

fermion loop (both planar and non-planar).

The non-planar contribution M (np) is suppressed by a factor of 1/N2
c relative to the

leading color one. It is thus expected to be numerically subdominant. The non-planar

contribution cannot be computed at present since the required IBP solutions (topologies

B1 and B2 in the notation of ref. [38]) are not yet fully known.

The contribution M (f) contains all diagrams with one closed fermion loop. Both pla-

nar and non-planar diagrams contribute to it. It cannot be currently derived since the

required non-planar IBPs (topology B2 from ref. [38]) are not yet known. The term M (f) is

suppressed with respect to the leading color one by a single power 1/Nc. At the same time
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some diagrams1 are enhanced by the number of massless fermion flavors nf = 5. Therefore,

although in the strict Nc → ∞ limit M (f) is suppressed relative to the leading color contri-

bution, its numerical value may not necessarily be sub-dominant with respect to eq. (2.2).

For this reason, to be conservative, one should assume that it is comparable numerically to

the leading color contribution. As we show in section 3 below (see in particular figure 6),

the numerical impact of the leading color approximation eq. (2.2) to the differential cross-

section is itself negligible, at the percent level, which aposteriori justifies the approximation

M (f) ≈ 0. In the future, once the corresponding contribution M (f) becomes known (same

for the term M (np)), we can easily update our cross-section predictions.

2.2.2 Calculation of the two-loop amplitude

To compute the two-loop amplitude we use a standard Feynman diagram-based approach.

The diagrams are generated with the help of a private software. After multiplying with

the Born amplitude and then computing the traces of spin tensors and color factors, the

resulting scalar integrals are mapped to master integrals using the IBP results of ref. [38].

The last step is the inserting of the results for the required master integrals. To that

end we utilize the results of ref. [39] where a set of integrals has been explicitly computed

in terms of the so-called pentagon functions fij . This set of integrals can be algebraically

related to the set of master integrals in ref. [38] with the help of the IBP solution derived

in that latter reference.

At this point the bare amplitude can be computed numerically using the routines for

the numerical evaluation of the set of integrals provided with ref. [39]. We do not follow

this approach here for two reasons. First, we would like to provide an explicit analytic

result in terms of basic functions, like the set of pentagon functions. Second, the complete

results involves not just the 61 master integrals but also many integrals that are obtained

from them by crossings of external legs. In practice we have more than 70 set of crossings

that need to be applied to the set of master integrals. While not every master integral

will need to be crossed for all crossings, the complete set of integrals, accounting for all

crossings, far exceeds the dimension of functions needed to describe the amplitude. For

this reason such an approach would not be minimal and could lead to more severe loss of

precision during the numerical evaluation.

For the above reasons, we use the explicit representation of master integrals in terms

of pentagon functions fij [39] and have applied the momentum crossings directly to those

functions. To minimize the set of functions, we have derived various functional identities

between those functions with different arguments. As a result, we have derived an explicit

expression for the squared amplitude eq. (2.2) as a polynomial in transcendental constants

and fij functions with various arguments. The coefficients of this polynomial are rational

functions of the kinematic invariants. They have been factorized and simplified, in some

cases using the finite-field reconstruction package FiniteFlow [83].

Besides the usual ζ(2) and ζ(3) a new set of constants, collectively called bc4, appear at

weight 4 [39]. Their treatments requires special attention. These constants are associated

1These are the diagrams that involve no photon coupling to the closed fermion loop.
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with the master integrals at weight 4 and, despite being called “constants”, in general

take different numerical values in the various physical regions. We have accounted for this

possibility in the process of applying momentum crossings to the master integrals. Many

of these constants take the same value in the various physical regions. We have utilized the

numerical values which are included in the numerical code accompanying ref. [39]. Similarly,

the analytic continuation of the pentagon functions fij across the various physical regions

is performed automatically by the numerical library of ref. [39]. To check the correctness of

our manipulations, we have compared in each physical region the numerical predictions for

each master integral, constructed by us as described above, with the numerical value for

the master returned directly by the library of ref. [39] and have found complete agreement.

We have also checked many integrals against the numerical program pySecDec [84], finding

agreement in all cases.

In summary, we have expressed the complete analytic result for the bare amplitude

in a basis of about 1800 transcendental terms involving ζ(2), ζ(3) and fij functions plus

about 100 terms involving bc4 “constants” of weight 4.

Most of the rational coefficients are small (i.e. kB size) but some exceed 1MB. The loss

of numerical precision due to cancellation between the various terms is thus of particular

concern. To minimize such cancellation we have evaluated all rational coefficients with

exact rational arithmetic. Specifically, we rationalize each phase-space point by preserving

the accuracy of the original floating point number, and then use its rational form to compute

the rational coefficients as exact rational numbers. This is implemented with the help

of the CLN library [85]. The evaluation is much slower than the evaluation in double

precision, however the overall timing is negligible compared to the evaluation of the slowest

pentagon functions of weight 4. We have performed various tests for the depth of numerical

cancellations and have found them to be under control in all test cases.

The numerical evaluation of the functions fij is performed with the help of the C++

library provided with ref. [39]. The time it takes to evaluate these functions depends

strongly on their weight. All functions through weight 3 are standard polylogarithms and

can easily be computed with full double precision in negligible time. The functions of weight

4 are the slowest and can take up to several minutes per phase-space point. Their precision

is less than full double precision due to conflicting requirements of precision and speed as

well as the numerical stability of the integration routines used for their calculation. With

the help of extensive experimentation we have found that computing them with at least 7

significant digits is sufficient for our purposes. To test the depth of numerical cancellations

we have also computed the weight 4 functions requiring 5 significant digits. This results in

a finite remainder with, typically, 2 significant digits.

It takes about 10–50 min, depending on the phase space point, to compute the finite

remainder in a single phase-space point on a single CPU (i.e. without any parallelization).

The average time is about 17 min when a relative precision of 10−7 for the weight 4 functions

is requested. In general, several hundred thousand points are required in order to integrate

the three-photon phase space over the required bins. Such a calculation requires significant,

cluster-size computer resources. While a one-off evaluation is possible it poses non-trivial

problems, especially if re-evaluation of the amplitude is needed (for example for a different
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setup or collider energy). To minimize this computational effort we have utilized a two-fold

strategy.

First, we have produced an optimized set of phase-space points which have been gen-

erated according to the Born cross-section. Such an approach has already been used in

refs. [86–90] and it allows us to obtain a good quality double-virtual contribution with a

reduced number of events. In practice, we have computed 30k events.

Second, we have utilized an approach to the implementation of two-loop finite remain-

der where the above mentioned 30k phase space points have been used to construct a

(four-dimensional) interpolating function for the real part of the finite remainder. Con-

structing multi-dimensional interpolating functions is a hard problem. In our case we have

used the purposely developed library GPTree [91] which uses advances in machine learning

to optimize the interpolation tables and to produce an estimate of the interpolation error.

The output of the GPTree library is a C++ library which is portable and very easy to link to

a C++ code and to use. It has the advantage that if more phase-space points are computed

in the future the interpolation tables can be refitted and thus be further improved. This

library will be made public in a future publication. We have also found it very useful as

an additional monitor for the appearance of numerical instabilities.

In view of the phenomenological application of the two-loop amplitude eq. (2.1), see

section 3, we make explicit the scale dependence of its finite reminder H(2):

H(2)(µ2
R) = H(2)(s12) +

4
∑

n=1

cn ln
n

(

µ2
R

s12

)

, (2.3)

where s12 is the partonic c.m. energy squared. Since the coefficients cn can be determined

exactly from the tree-level and one-loop amplitudes, throughout this work the scale depen-

dence of the two-loop finite reminder is included with full color dependence. Therefore,

the approximation eq. (2.2) is applied only to the first term in the r.h.s. of eq. (2.3). As

can be seen in figure 6 below, the numerical impact on the NNLO cross-section of the

scale-independent part of the two-loop finite remainder H(2)(s12) is rather small, at the

percent level. The explicit expressions for the amplitude, as well as further details about

its evaluation, will be given in a subsequent publication.

3 Phenomenology

3.1 LHC setup

Our calculational setup follows the 8TeV ATLAS measurement [67]. The definition of

histograms and experimental data is taken from the corresponding HEPData entry [92].

Our event selection is based on the following phase-space cuts:

• ET cut for the three photons: ET,γ1 > 27GeV, ET,γ2 > 22GeV and ET,γ3 > 15GeV,

where γ1 represents the hardest photon while γ3 the softest one.

• All photons are required to have |ηγ | < 2.37, excluding the range 1.37 < |ηγ | < 1.56.

– 6 –
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• Photon separation: the angular distance ∆R between any two photons is required to

be ∆Rij > 0.45, where ∆Rij =
√

(ηi − ηj)
2 + (φi − φj)

2.

• A minimum three-photon invariant mass is required: mγγγ > 50GeV.

• Following Frixione [93], we impose smooth photon isolation. Specifically, for any

angular distance ∆R away from each photon, subject to ∆R ≤ ∆R0, we require

Eiso
T (∆R) < Emax

T

1− cos(∆R)

1− cos(∆R0)
, (3.1)

where ∆R0 = 0.4 and Emax
T = 10 GeV. The energy Eiso

T (∆R) is defined as

Eiso
T (∆R) =

∑

i

ET,iΘ(∆R−∆Ri,γ) . (3.2)

The sum in the above equation is over all final-state partons i, and ET,i and ∆Ri,γ

are parton i’s transverse energy and angular distance with respect to the photon.

Our calculation uses the NNPDF31 nnlo as 0118 pdf set [94]. We have not computed

the pdf error; it was estimated in ref. [67] and found to be below the (NLO) scale variation.

In this work we have utilized two different forms for the dynamic factorization and

renormalization scales:

HT ≡
3

∑

i=1

ET,γi , (3.3)

MT ≡
√

p2γγγ,T +m2
γγγ with pγγγ =

3
∑

i=1

pγi and m2
γγγ = p2γγγ . (3.4)

Our default central scale choice is µ0 = HT /4, which follows from the findings of

ref. [72]. In fact, in the following we have studied the choices µ0 = HT /n, with n = 1, 2, 4

as well as the alternative choices µ0 = MT /n, with n = 1, 2, 4, that are based on the

transverse mass of the three-photon system. The MT -based scale was used in the latest

diphoton production study [95]. We find that the differences between calculations with

central scales MT /n and HT /n, with n = 1, 2, 4, are relatively small. Scale variation of the

factorization and renormalization scales is derived with a standard seven-point variation

around the central scale µ0.

3.2 Fiducial cross-section

In figure 1 we compare ATLAS data [67] with the predictions for the fiducial cross-section

as defined in section 3.1. We compare predictions based on 6 different renormalisation and

factorization scales, in LO, NLO and NNLO QCD. In all cases we observe large shifts

from LO to NLO and from NLO to NNLO which are much larger than the scale variations

at, respectively, LO and NLO. Specifically, for our default scale µ0 = HT /4 we have an

NLO/LO correction of about 2.8 while the NNLO/NLO correction is about 1.6. We discuss

this important feature in section 3.4 below.
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0
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Figure 1. Predictions for the fiducial cross-section in LO (green), NLO (blue) and NNLO (red)

QCD versus ATLAS data (black). Shown are predictions for six scale choices. The error bars on

the theory predictions reflect scale variation only. For two of the scales only the central predictions

are shown.

Predictions based on the two different scale functional forms eqs. (3.3), (3.4) are rather

similar relative to the sizes of scale variations and experimental uncertainties. Therefore,

in the following, we will mainly focus our discussion on the HT -based scales.

The scales µ0 = HT /4 and µ0 = HT /2 both agree with data, especially the HT /4 one.

The scale µ0 = HT is only just outside the measurement’s uncertainty band. For simplicity

in this work we did not compute the full scale variation around the scale HT (same for

MT ) which is why only the central value is shown for these two scales. We do not expect

the scale variation around the two scales will be much different that the pattern already

emerging from figure 1.

In general we observe that the scale variation increases when going from LO to NNLO

and that all scales are consistent at a given order within their scale uncertainties. For a

proper interpretation of the reliability of the theoretical predictions it is therefore imper-

ative to understand the issue of perturbative convergence. We devote section 3.4 to this

issue but here we only say in advance that we believe the NNLO predictions are probably

the first order for which the theory prediction, with its associated scale variation, is reliable.

To summarize, based on the above discussion we conclude that our default scale choice

is in perfect agreement with the experimental measurement

σfid(ATLAS) = 72.6± 6.5(stat.)± 9.2(syst.) fb ,

σfid(NNLOQCD; HT /4) = 67.5
+7.4 (11%)
−5.7 (8%) (scales) fb . (3.5)

Clearly, the inclusion of the NNLO QCD correction plays a crucial role in this agreement.

The MC error on the fiducial NNLO prediction is below 1%. The fiducial predictions

based on the various scale choices are available in electronic form as supplementary material

attached to this paper.
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Figure 2. pT distribution of the hardest photon γ1 (left), γ2 (center) and the softest one γ3 (right).

Top plot shows the absolute distribution at NNLO (red), NLO (blue) and LO (green) versus ATLAS

data (black). Middle plot shows same distributions but normalized to the NLO. Bottom plot shows

central NNLO predictions for 6 different scale choices (only the central scale is shown) with respect

to the default choice µ0 = HT /4. The bands represent the 7-point scale variations about the

corresponding central scales.

3.3 Differential distributions

A very large number of differential distributions have been measured by the ATLAS col-

laboration in ref. [67]. In this work we have computed the theory predictions in NNLO

QCD for all of them.

We start by showing in figure 2 the predictions for the pT distributions of the three

individual photons: the hardest one γ1 (left), γ2 (center) and the softest one γ3 (right).

We show the absolutely normalized distributions at LO (green), NLO (blue) and NNLO

(red) in QCD. The top and middle panels show the central scale predictions and their

corresponding 7-point scale variations for our default scale choice µ0 = HT /4: the top panel

shows the absolutely normalized distributions while the middle one shows the same results

but normalized to the NLO central predictions. Shown in black is the ATLAS data. The

bottom panels show the central scale predictions for the other 5 scale choices normalized

to the central scale value for the default scale HT /4. For a more quantitative comparison

we also show the scale variation band of the default scale as well as the ATLAS data.

The plots for all other differential distributions shown next follow the same pattern:

in figure 3 we show the three ∆Φ angles between the three pairs of photons, in figure 4

we show the three rapidity differences |∆η| between the three pairs of photons and, finally,

in figure 5 we show the invariant mass distributions between the three pairs of photons as

well as the invariant mass of the three-photon system.

Overall, a very consistent picture arises from all differential distributions, both in

relation to the properties of the theory predictions as well as in relation to their agreement

with data.

The most notable feature evident in all differential distributions are the large jumps

from LO to NLO and from NLO to NNLO. The difference between orders is much larger

than the corresponding scale variations at LO and NLO which, in principle, raises the

question of the validity of perturbative convergence in this process. This behavior closely
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Figure 3. As in figure 2 but for the ∆Φ(γi, γj) distributions.
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Figure 4. As in figure 2 but for the |∆η(γi, γj)| distributions.

resembles the one already discussed for the fiducial cross-section. At this point we will only

mention that we believe the NNLO QCD predictions is likely already a reliable prediction

which can be confidently compared to data. We leave the detailed discussion of this point

to section 3.4.

The second notable feature is the overall good agreement between NNLO QCD pre-

dictions based on a scale HT /4 with data. While in most distributions there are bins that

do not agree with the NNLO prediction, the overall shape as well as normalization of all

distributions is clearly correctly described at NNLO. In fact in some of the bins where

deviations is observed could be due to larger statistical fluctuations in data. An improved

future measurement will clearly be very useful to clarify this. Interestingly, it is the dis-

tributions ∆Φ and ∆η that are described best and in fact in those two we observe perfect

agreement between NNLO and data for all pairs of photons.

The relative MC error on the differential NNLO predictions shown here is below 3

percent. The theoretical predictions for all distributions, based on our default scale HT /4,

are available in electronic form as supplementary material attached to this paper.

In summary, we would like to stress that in this calculation we have only accounted

for the QCD corrections through NNLO. Other theoretical contributions should at this

point also be revisited. These include electroweak corrections and (refining the study of)
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Figure 5. As in figure 2 but for the m(γi, γj) and m(γ1, γ2, γ3) distributions.

effects due to photon isolation. Effects due to pdfs appear to be subdominant to the

scale variation at NNLO but this should also be cross-checked in a more complete study.

The issue of the “best” scale choice can always be debated and at this level of precision

seems to be a dominant source of theoretical uncertainty. For a detailed phenomenological

study the MC error of the predictions shown here can be improved further. Finally, for

completeness, one would like to have the complete NNLO prediction by including the

contributions to the two-loop finite remainder neglected in this work, although we expect

them to be phenomenologically insignificant.
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3.4 Discussion of perturbative convergence

As in diphoton production [75, 95, 96], the inclusive production of three photons exhibits

behavior that at first glance is inconsistent with perturbative convergence. Indeed, as

emphasized above, we observe large jumps from LO to NLO and from NLO to NNLO.

These jumps are much larger than the corresponding scale variation bands at LO and

NLO. This behavior is evident in all differential distributions as well as in the fiducial

cross-section. Specifically, we recall that for our default scale choice the fiducial cross

sections at NLO exceed the LO one by a factor of 2.8 while the NNLO/NLO K-factor is

about 1.6. This behavior is very similar to the one encountered in diphoton production.

Various arguments have been given in the past for the appearance of such large K-

factors in diphoton production. Two of those arguments are the presence of asymmetric

cuts imposed on the two photons as well as the sizable loop-induced gg → γγ contribution.

While these arguments have their merit, it is easy to see that they are not the drivers

behind the behavior we are trying to understand in diphoton (as well as three-photon)

production. For example, the asymmetric cuts should not play an appreciable role for

three-photon production because the Born state is naturally asymmetric. Similarly, while

the loop-induced reaction is very large relative to the LO diphoton cross-section, its relative

contribution at NNLO is not that sizable, only of the order of 10% [95]. While such a

contribution is important it is not large enough to be the driver behind the large K-factors

observed in both processes. In fact, this issue can be cleanly understood in three-photon

production process where the corresponding loop-induced amplitude gg → γγγ vanishes.

The above analysis of the gg-driven correction brings a very important point, namely,

the role the initial-state flux plays in the apparent perturbative convergence of these two

processes. To quantify this in figure 6 we show the composition of the fiducial cross-section

at LO, NLO and NNLO organized by initial-state partonic reactions. We show the results

for three different HT -based central scales; the results for the corresponding MT -based

scales are very similar.

What we observe in figure 6 is very illuminating. First, we note that the gg flux does

contribute (due to double real emissions and collinear subtractions) although its effects is

marginal, in the few percent range, depending on the choice of scale. Clearly, despite the

fact the gg flux is very large it nevertheless has negligible effect on the cross-section simply

because the corresponding partonic cross-sections are very small. The large gluon pdf does

have a substantial impact on the three-photon cross-section but this happens through the

qg reaction. As also emphasized in ref. [95] for the case of diphoton production, the qg

reaction starts to contribute only at NLO. This leads to a very unique interplay between

purely partonic contributions, including their radiative corrections, and partonic fluxes.

Specifically, the qq̄ contribution receives a sizable but not huge NLO radiative correction.

At NLO this contribution is now dwarfed by the newly generated qg correction which at this

point is only LO. At NNLO the qq̄ result gets another significant yet moderate correction,

and the qg reaction also receives sizable but reasonable perturbative correction. At NNLO

two new channels open — the gg and qq′ ones, the latter being much more significant than

the former. As also concluded in ref. [95] for the case of diphoton production, NNLO is

the first order where all large partonic reactions have already been included together with
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Figure 6. Anatomy of higher-order corrections to the three-photon fiducial cross-section at LO

(green), NLO (blue) and NNLO (red) by partonic channels for three different central scale choices.

Also shown is the contribution from the scale-independent part of the two-loop finite remainder

(VV) computed in our approximation defined in section 2.2.1.

higher-order corrections to the largest ones; therefore one can reasonably expect that from

this point on the yet-higher order N3LO corrections to be derived at some point in the

future are likely to start showing a more convergent behavior.

Before closing this section we would like to emphasize that the pattern of scale depen-

dence observed when going from LO through NNLO should not be viewed as anomalous.

The fact that scale dependence increases towards NNLO is simply due to the fact that the

scale variation at the lower orders is artificially small and that, as explained in this sec-

tion, at each new order through NNLO new large partonic reactions enter the process thus

increasing the overall scale dependance. The arguments given here imply that starting at

N3LO the scale variation should start to decrease. This will be very interesting to check in

the future. In summary, in our view, the above arguments imply that the scale dependence

of the NNLO prediction is likely not artificially small.

4 Conclusions

In this work we calculate the NNLO QCD correction to three-photon production at the

LHC. Our calculation is complete except for the scale-independent part of the two-loop fi-

nite remainder which is included in the leading color approximation. We estimate the effect

of the missing two-loop contributions. We expect they are phenomenologically insignificant.

Our calculation is the first NNLO calculation for a 2 → 3 scattering process. Although

the production of colorless final states is not as complicated as a generic 2 → 3 reaction, we

believe that our calculation clearly demonstrates that current computational technology

is capable of dealing with the complicated structure of infrared singularities in multi-final

state processes. In particular, based on our experience with dijet production (which was
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computed within the same STRIPPER framework as the present calculation) we think that

the NNLO computation of three jets at the LHC is feasible.

An important part of our work is the calculation of the two-loop amplitude qq̄ → γγγ

in the leading color approximation. We have expressed the amplitude in a fully analytic

form, defined directly in the physical region. To the best of our knowledge this is the

first time a 5-point two-loop amplitude has been expressed in a form readily available

for phenomenological applications. To this end we had to go beyond simply producing

an analytic result that implements the many momentum crossings inherent to processes

with many particles in the final state together with the relevant analytic continuations;

we have extensively investigated the question of numerical stability and have been able

to evaluate the amplitude numerically in about 30k phase-space points with sufficient

numerical precision. We would like to stress that this problem is highly non-trivial due

to the large size of the amplitude and the large number of independent transcendental

functions that appear in it.

The evaluation of the two-loop amplitude is expensive in terms of CPU time. We have

investigated two possibilities to mitigate this problem: one involves specially generated

phase-space points that accelerate the convergence of the phase-space integration, while the

other involves the construction of a four-dimensional interpolating function which internally

utilizes machine-learning techniques. We find that both approaches lead to compatible

predictions within the corresponding Monte Carlo errors.

We observe that the structure of higher-order corrections in inclusive three-photon

production is very interesting and resembles closely the one known from diphoton pro-

duction. We find very large higher-order corrections; the NLO prediction for the fiducial

cross-section is larger than the LO one by a factor of 2.8 while the NNLO exceeds the

NLO one by a factor of 1.6. We have presented detailed analysis of the anatomy of the

higher-order corrections in this process and have concluded that the NNLO prediction is

likely to be reliable.

Finally, we have compared our predictions with the high-quality LHC data available

from the ATLAS Collaboration. We find that the sometimes huge discrepancies between

QCD predictions and data noted previously at NLO are absent at NNLO and that the

NNLO prediction agrees well with data for all distributions. This result clearly demon-

strates how indispensable higher-order corrections are to quantitative phenomenological

LHC analyses.
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